ULRICH NOWAK, ALEKSANDER GRAH, MANFRED SCHREIER

Parameter Estimation and Accuracy Matching Strategies for 2-D Reactor Models
Parameter Estimation and Accuracy Matching Strategies for 2-D Reactor Models

Ulrich Nowak¹, Aleksander Grah², Manfred Schreier²

Abstract

The mathematical modeling of a special modular catalytic reactor kit leads to a system of partial differential equation in two space dimensions. As customary, this model contains unconfident physical parameters, which may be adapted to fit experimental data. To solve this nonlinear least squares problem we apply a damped Gauss-Newton method. A method of lines approach is used to evaluate the associated model equations. By an a-priori spatial discretization a large DAE system is derived and integrated with an adaptive, linearly-implicit extrapolation method. For sensitivity evaluation we apply an internal numerical differentiation technique, which reuses linear algebra information from the model integration. In order not to interfere the control of the Gauss-Newton iteration these computations are done usually very accurately and, therefore, very costly. To overcome this difficulty, we discuss several accuracy adaptation strategies, e.g., a master-slave mode. Finally, we present some numerical experiments.

Keywords: parameter estimation, accuracy matching, method of lines, differential-algebraic systems, extrapolation methods, catalytic reactor models

MSC: 65M20, 65K99, 80A23, 80A20

¹Konrad–Zuse–Zentrum für Informationstechnik Berlin
²Martin–Luther–Universität Halle-Wittenberg

Supported by the Deutsche Forschungsgemeinschaft (projects No388 and Sch396)
1 Introduction

Many chemical substances are produced by catalytic processes. For process development and optimization, the simulation of associated mathematical models is a helpful tool. Usually, within these models there are parameters whose exact values are not known. A common way of determining these values is parameter identification with nonlinear least squares techniques.

We consider a two-dimensional, time-dependent model for a cylindrical reactor module, which is part of a special modular catalytic reactor kit [3]. This kit consists of standardized flange mounted reactor modules with different geometrical and thermal properties. This allows a simple realization of very different reactor structures. A measurement module allows to place sensors at nearly any requested position inside the catalyst fill of the reaction module.

In order to carry out parameter estimation for different models of that main reactor module, we combine, and slightly modify, efficient and robust algorithms for simulation [9, 10] and sensitivity analysis [19] with a sophisticated Gauss-Newton (GN) algorithm, which has proven to work very reliably in complex parameter identification problems, see, e.g., [5, 17].

In the next section we first briefly describe our modeling of the basic reaction module. Then we shortly depict our method-of-lines treatment which yields a large ODE model. In section 3 we present the numerical methods for the evaluation of the objective function of the GN-method (simulation), its derivative (sensitivity computation), and, finally, the damped GN-method. In section 4 we discuss the problem of accuracy matching and propose a smoothness oriented matching strategy. In section 5 some numerical examples are presented. We end with a short conclusion and an outlook on future work.

2 Mathematical model

The mathematical model for the interior of the catalytic reaction module is based on the usual balance equations for mass and energy using standard transport models. Mixing processes are considered by the dispersion model. As heat balance equation for the interior temperature T of the module we use

\[
\left[\rho c_p \epsilon + \rho c_p R (1 - \epsilon)\right] \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \lambda_r \frac{\partial T}{\partial r} \right) - \rho c_p \nu \frac{\partial T}{\partial z} + r_{\text{eff}} (-\Delta H).
\]

(1)

The balances for the mass fractions g_i are expressed by

\[
\frac{\partial g_i}{\partial t} = \frac{\partial}{\partial z} \left(D_z \frac{\partial g_i}{\partial z} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r D_r \frac{\partial g_i}{\partial r} \right) - \rho \nu \frac{\partial g_i}{\partial z} + \frac{M_i}{\rho} \nu_{ij} r_{\text{eff}}.
\]

(2)

The one-dimensional model for the reactor wall includes axial heat conduction and convection and heat capacity of the reactor jacket and the fluid. Interior
temperature at the wall \((T_R)\) and temperature of the wall \((T_W)\) are coupled by the transport equation
\[
\lambda_r \frac{\partial T_R}{\partial r} = \alpha_W (T_R - T_W).
\] (3)

Otherwise the usual boundary conditions are applied. A detailed discussion of equations (1-2) and an overview of heterogenous gas catalytic modelling can be found in [1, 2].

In order to solve the model equations we apply a classical MOL-approach. In a first step, all spatial derivatives of the model equations are replaced by centered, 2nd order finite difference approximations on appropriately chosen nonuniform tensor product grids. With that, a very large system of differential-algebraic equations (DAE) arises, which may be written in the form
\[
B(y; p)\dot{y} = f(y; p) , \quad y(t_0) = y_0 ,
\] (4)
where \(y(t)\) denotes the solution vector of dimension \(n\) at all spatial discretization points \((z_l, r_k)\), and \(p\) is the vector of dimension \(q\) of parameters to be identified. Let \(n_z\) and \(n_r\) denote the number of grid point used for the spatial discretization of the cylindrical coordinate system. Let \(n_{PDE}\) denote the dimension of the system under consideration (temperature and mass fractions of the chemical species). The dimension of our semi-discrete system (4) is then given by \(n = n_z \times n_r \times n_{PDE}\). \(B\) is a possibly singular diagonal matrix and \(f\) a general nonlinear mapping. Both functions may depend also explicitly on the spatial coordinates \((z, r)\) and time \(t\). For ease of presentation we drop the latter dependencies in our notation.

3 Numerical treatment

3.1 Simulation

System (4) is nonlinear, stiff and block structured. For integration, we apply the linearly implicit extrapolation code LIMEX [9, 10]. It uses as an elementary step the discretization
\[
(B(y_0) - hA)(y_{k+1} - y_k) = hf(y_k) - (B(y_k) - B(y_0))(y_k - y_{k-1}) ,
\] (5)
where \(A \approx \frac{\partial}{\partial y}(f - B\dot{y})|_{t=t_0}\) is the (approximate) Jacobian of the residual of (4) evaluated at a time point \(t_0 \leq t_k\).

Combined with extrapolation this one-step method permits an adaptive stepsize and order control, for details see [6]. Applied to the discretized PDE-problem 4 the main amount of work for one step is the solution of the arising linear equations. The associated matrix \((B - hA)\) is very large but sparse and direct, as well as iterative, sparse matrix techniques can alternatively be used for the linear system solution.
3.2 Sensitivity computation

Our parameter identification procedure requires the computation of the sensitivity matrix \(S(t) := \frac{dy(t)}{dp} \). There are several well established ways to approximate \(S(t) \), see, e.g., [15]. One approach is the differentiation of the DAE (4) with respect to \(p \), yielding the \(q \) sensitivity equations for \(S = [s_1|...|s_q] \),

\[
B(y;p)s_i = \frac{\partial}{\partial y} f(y;p) - \frac{\partial}{\partial y} B(y;p) \dot{y} \\
= f_y(y;p)s_i + f_p(y;p) - (B_y(y;p)s_i + B_p(y;p)) \dot{y}.
\]

These equations are then solved simultaneously with the original equation. Applying LIMEX to this coupled system yields an associated Jacobian matrix \(A \), which turns out to be

\[
A = \begin{pmatrix}
A_1 & A \\
\vdots & \ddots & \ddots \\
A_q & A
\end{pmatrix},
\]

where \(A \approx \frac{\partial}{\partial y}(f - B \dot{y}) |_{t=t_0} \), and \(A_i \approx \frac{\partial}{\partial y}[f_y s_i + f_p - (B_y s_i + B_p) \dot{y}] |_{t=t_0} \). An integration of the coupled system using the matrix \(A \) would be rather expensive. However, replacing \(A \) by its block diagonal part, i.e., \(A \rightarrow \hat{A} = \text{diag}(A,\ldots,A) \) would speed up linear algebra computation dramatically. Therefore, this simplification is widely used, see, e.g., [16, 19].

The major drawback of this approach is the need for explicitly given functions \(f_y(t,y) \) and \(f_p(t,y) \) in the case of constant \(B \), and, additionally, \(B_y(t,y) \) and \(B_p(t,y) \) in the general case.

To overcome this problem, we replace, in part, the differentiation \(\frac{d}{dp} \) in equation (6) by a finite difference approximation and get as sensitivity equations

\[
B(y;p)s_i = \frac{1}{\Delta p} \{ f(y + \Delta ps_i; p + \Delta p) - f(y;p) - (B(y + \Delta ps_i; p + \Delta p) - B(y;p)) \dot{y} \}.
\]

Choosing \(\Delta p = \sqrt{\text{epmach}} \) (\(\text{epmach} \) = relative machine precision) and integrating with a prescribed tolerance \(tol \), the precision of the sensitivity matrix \(S \) will be of order \(tol + \sqrt{\text{epmach}} \), cf. [15]. For a wide range of problems this sensitivity computation turns out to be very efficient and robust [18].

3.3 Parameter identification

Assume that for some components of the state vector \(y(z,r,t;p) \) measurements are available at some spatial points \((z_\psi,r_\psi), \psi = 1,...,\Psi_\theta \) at times \(t_\theta, \theta = 1,...,\Theta \). We arrange them in a vector \(y_{obs} \) of dimension \(m \). In order to allow an unconstrained adaptation of temporal and spatial stepsizes (either automatically or by hand) the measurement points and times should be not necessarily part of their computational counterparts. Therefore we need
a proper interpolation procedure to generate solution approximations at the spatio-temporal measurement grid. For interpolation in time we use the global solution representation of LIMEX. Spatial interpolation is done by means of a monotone piecewise cubic hermite interpolation due to [12]. Having get with this procedure simulated counterparts y_{sim} for all components of the vector y_{obs} we can calculate a weighted residual vector

$$F(p) = \sum_{i=1}^{m} \frac{y_{\text{sim}}^i - y_{\text{obs}}^i}{y_{\text{w}}^i}. \quad (9)$$

To determine q uncertain parameters $p = (p_1, ..., p_q)^T$ of the model equations one may solve the nonlinear least squares problem

$$1/2||F(p)||^2 = 1/2F^TF = \min. \quad (10)$$

A well established scheme for solving nonlinear least square problems is the Gauss-Newton method. For so-called small residual problems the method is known to converge superlinearly near the solution p^*. However, for bad initial guesses the method may diverge. To overcome this difficulty, several globalisation techniques exist, e.g., the popular Levenberg-Marquard method. We use another way of enlarging the convergence domain, which is due to [8]. This method realizes a damped GN iteration, where the adaptive damping strategy and the convergence monitor are based on monitoring only GN corrections and not - as usual - the residuals. For a detailed mathematical derivation, analysis and comparison with other algorithms we refer to the upcoming textbook [7]. Omitting details, the main algorithmic flow of the method is sketched in the following informal algorithm.

Damped Gauss-Newton algorithm

p_0, λ_0 given

$$p_k, \lambda_k \text{ given}$$

do $k = 0, \ldots, k_{\text{max}}$

$$\Delta p_k = -J^+(p_k)F(p_k)$$

$(*)$ $p_{k+1} = p_k + \lambda_k \Delta p_k$

$$\Delta p_{k+1} = -J^+(p_k)F(p_{k+1})$$

if $||\Delta p_{k+1}|| < ||\Delta p_k||$ then

$$\lambda_{k+1} = \lambda_{k+1}^{\text{prev}} = \min(1, \frac{||\Delta p_{k+1}||}{||\Delta p_k||} \lambda_k)$$

else

$$\lambda_k = \lambda_k^{\text{post}} = \min(1, \frac{\lambda_k^2 ||\Delta p_{k-1}||^2}{2||\Delta p_{k+1} - (1-\lambda_k)\Delta p_k||^2\lambda_k})$$

$goto$ $(*)$

endif

if $||\Delta p_{k-1}|| \leq \epsilon_{GN}$ break

$endo$
Herein, *J*° denotes the Moore-Penrose pseudoinverse of the Jacobian *J*(*p*) = *F'*(p), and *Δpk* is the so-called simplified Gauss-Newton correction. *λkprio* and *λkpost* are the a-priori and a-posteriori estimates for the optimal damping factor. The required tolerance is *εGN*.

In order to perform one iteration step, the main computational work is the evaluation of the GN-Jacobian *J*ₖ, which requires the computation of the sensitivity matrix *S*. To calculate the corrections *Δpk* and *Δpk+1* two linear least square problems are solved by means of an *QR*-algorithm. If the monotonicity test

\[||\Delta p_{k+1}|| < ||\Delta p_k|| \]

is passed for the first trial iterate *p̂k+1* just one function evaluation *F*(*p̂k+1) is required per step as this information is reused in the next iteration step. If the monotonicity test fails, the damping factor is reduced, and an additional function evaluation *Fk+1* is computed. If the iteration converges to a solution *p**, the usual linearized statistical analysis is done, see, e.g., [5], in order to get information on the statistical quality of the solution in terms of standard deviations and confidence intervals.

3.4 Accuracy matching

A sophisticated least squares solver like (10) requires a certain smoothness of the underlying problem. In our case, the theoretical derivation requires, that *F(p)* is twice continuously differentiable. So, even if *F* is an explicitly given function, the finite machine precision destroys this property formally, but for practical computations this roundoff error can be neglected. However, if *F* is a discretized operator, then rather large errors *δF* may show up. In general, as long as the temporal and spatial discretization remains fixed, not only the true operator, say *F̂(p)*, but also the error *δF* depend smoothly on *p*. Thus, the discretized operator *F = F̂ + δF* will vary smoothly with *p* also. However, changing a temporal and/or spatial stepsize while computing, e.g., *F*(*p̂k*) and *F*(*p̂k+1*), will introduce a certain roughness into *F*(p), as the assumption *δF(p̂k) ≈ δF(p̂k+1)* is no longer valid. As a first consequence, the monotonicity test (12) may give wrong answers, and, furthermore, the evaluation of the a priori and a-posteriori damping factors may be corrupted. To overcome these difficulties, one may evaluate the discretized function *F(p)* and its derivative *J(p) = F'(p)* very accurately in order to mimic a smooth behaviour of *F* and *J*. Typical required tolerances for *F*-evaluation, *εF*, and *J*-evaluation, *εJ*, are in the range \([10^{-4}, 10^{-7}]\). But, using such stringent accuracy requirements may be prohibitive for 2D time dependent problems. So, one way to reduce the computational work is an adaptation of the tolerance with the following general strategy. Relax ed accuracy requirement far from the solution and successively more stringent tolerances when approaching the solution of the parameter estimation problem. First steps in this direction have been made.
for damped Gauss-Newton schemes, combined with ODE models, in [5, 17]. However, it turns out that the adaptation procedures must work very carefully in order not to disturb the GN-iteration severely. The main problem of such adaptation strategies is still the introduction of roughness into the objective function $F(p)$.

So, we propose an adaptation strategy which is smoothness oriented. First of all, we do not adapt the computational grid, neither within one time integration nor within the course of the GN-iteration. Instead, we use an initially chosen grid, which, however, may be non-uniform. Concerning the time stepping procedure of LIMEX, we use the idea of a master/slave integration which works as follows.

In order to meet a prescribed time tolerance ϵF, the very first GN function evaluation, $F(p_0)$, is done with the adaptive stepsize and order control switched on (master mode). All subsequent function and sensitivity evaluations are performed in slave mode, i.e., using the stepsizes, orders and, if necessary, the number of linear system iterations, of the master mode integration. During the slave mode integration for F the error estimator of LIMEX is activated and the maximum value over time is recorded. If this achieved precision, say $\tilde{\epsilon}_F$ is much larger than the prescribed precision of the master run, e.g.,

$$\tilde{\epsilon}_F > \sigma_1 \epsilon_F \ (\sigma_1 \approx 10)$$

this integration is repeated. Now again in master mode with ϵ_F as required tolerance.

In addition, a heuristical approach for checking the quality of the proposed damping factors has shown to improve the GN-iteration considerably. If within one step, say from k to $k + 1$ the achieved error $\tilde{\epsilon}_F(k + 1)$ increases too much, i.e.,

$$\tilde{\epsilon}_F(k + 1) > \sigma_2 \tilde{\epsilon}_F(k) \ (\sigma_2 \approx 10)$$

the current damping factor is not accepted and reduced heuristically, e.g., by factor of two. The subsequent re-evaluation of F is done still in slave mode.

For the spatial discretization a rather coarse tensor product grid $\mathcal{Z} \otimes \mathcal{R}$ is used. With that, the overall computing time for the GN-iteration is drastically reduced and the performance of the numerically disturbed iteration is rather close to the "optimal" performance, i.e., an iteration without discretization errors.

However, convergence will not occur to the true solution (of the continuous problem), but to a value which is corrupted by comparatively large temporal and spatial discretization errors. We try to estimate these errors (at least the order of magnitude) in the parameter estimates (not in the numerical solution $y^{\text{sim}}(p^*)$) by the following refinement procedure.

Starting with $\text{eps}_F(1) = \text{eps}_F$, $\mathcal{Z}(1) = \mathcal{Z}$ and $\mathcal{R}(1) = \mathcal{R}$ we refine separately the time tolerance and initial grid sizes and perform in each case a full GN-iteration. Starting with the available solution $p_{111}^* = p^*(\text{eps}_F(1), \mathcal{Z}(1), \mathcal{R}(1))$
as a very good initial guess, just one or two iteration steps are required. As a rough error estimate for p^*_1 due to time discretization we use the differences $||p^*(\epsilon\psi^F(1), Z(1), R(1)) - p^*(\epsilon\psi^F(2), Z(1), R(1))|| = ||p^*_1 - p^*_2||$. If the error estimate is in the order of the statistical error of the parameters the refinement is stopped, otherwise we continue the refinement process in order to get the estimate $||p^*_{21} - p^*_{31}||$ (and so forth, if necessary). Similarly the error due to spatial discretization in z-direction and r-direction, respectively, are estimated. This procedure is finished with a final Gauss-Newton iteration using appropriately refined tolerances and grids, i.e., for which the error estimates are in the range of the statistical error.

4 Numerical examples

We present some numerical experiments for our parameter identification procedure, applied to a heat transfer problem and a carbon monoxide gas oxidation model.

Heat conduction problem

To study heat transfer properties of our reactor module, we investigate a heat conduction problem without chemical reaction. A fixed bed flown by cold air will be heated up over a time period of several hours. The reactor allows temperature measurements at different radial and axial positions as well as in the reactor jacket. Smoothed measured temperature profiles were used to prescribe the boundary conditions at the inlet of the fixed bed and at the reactor walls. The measurements were realized for different tube diameters and flow rates, at a temperature range from 20 up to 350 °C. So, a whole bunch of parameter estimation problems have been solved, using the data provided by [4]. The heat transport coefficients to be identified are the radial effective heat conduction λ_r and the wall heat transfer coefficient α_w of equation (3), and the width of a laminar flow film δ, c.f. [13].

Concerning the numerical difficulty, the integration problem is rather easy to solve. No steep spatial gradients appear and there is a moderate dynamical behaviour in time. Using good starting values, the performance of the GN scheme is generally very robust and reliable - nearly independent of the applied accuracy matching strategy.

Things change, if we use rather bad initial guesses p_0. Comparing our new strategy with a standard approach where all F and J evaluations are done in master mode (for a fixed prescribed time tolerance) the new strategy allows to use tolerances of $\epsilon^t_F = 10^{-2}$, whereas the standard strategy requires values of about $\epsilon^t_F = 10^4$ in order to show a similar smooth behaviour as the new strategy. In all cases we use a grid of size $n_z \times n_r = 31 \times 16$. Our a-posteriori error estimator for the accuracy of the parameters characterized this grid as sufficiently good for nearly all scenarios.

Carbon monoxide oxidation
The carbon monoxide oxidation reaction (CuO catalyst) [11] is prescribed by
\[CO + \frac{1}{2}O_2 \Rightarrow CO_2 \].

The effective reaction rate is determined by the mole fraction of the carbon monoxide and the Arrhenius approach
\[r_{eff} = x_{CO} \ k_\infty \exp\left(-\frac{E_A}{RT}\right). \]

The specific enthalpy of the exothermal reaction is \(\Delta H_R = -290 \cdot 10^3 \text{ kJ/kmol} \).

The mathematical model for this problem consists of a system of type (1-2) for temperature \(T \) and 3 chemical species. The dynamics of this system is drastically more challenging than in the previous example. For slightly improperly chosen parameter values one can observe reactor runaway, as illustrated in Fig. 1. As local overheating (hot spots) causes catalyst damage, we stop the simulation whenever a temperature value \(T > 650K \) is observed. Real measurement data are available for the stationary state only. So, in order to study the effect of our temporal master/slave accuracy adaptation we generate artificial measurement data for 50 spatial positions at 10 time points. To generate these data, we use parameter values close to the one identified using the stationary data only. The artificial measurements are perturbed (relatively) using normally distributed random numbers with standard deviation \(\sigma = 0.02 \). Solution and measurement values for temperature and \(CO \), in stationary state, are depicted in Fig. 2.

In our numerical experiments we try to re-identify the four diffusive parameters \(\lambda_r = 0.8, \lambda_z = 0.18, D_r = 10^{-3}, D_z = 5 \times 10^{-6} \).

In a first step, we choose starting guesses \(p_0 \) for our GN method by a random selection, uniformly distributed in the cube \([p^T/2, 2p^T]\). About 20% of them turn out to be "too bad" in the sense, that the initial function evaluation \(F(p_0) \) fails, i.e., was terminated by indicating reactor runaway. For about 30% of the test runs a smooth convergence of our GN scheme can be observed. A solution \(p^* \) is found typically within 5-6 GN iterations with at most 1-2 damped steps.
The remaining test cases turn out to be very critical. The restart condition (13) and/or the reject condition (14) are activated at least one time, sometimes up to three times. Nevertheless, the highest GN iteration count was 11 (successful) steps using 7 damped updates.

For all these test runs a fixed spatial grid $n_z \times n_r = 31 \times 16$ and an initial time tolerance of $\epsilon_t F = 10^{-2}$ was used.

In order to illustrate our a posteriori refinement procedure we have collected some results for one specific test run in Tab. 1. Note that the coarse tolerance solution depends on the choice of p_0. However, the results given in Tab. 1 are quite representative.

<table>
<thead>
<tr>
<th>Solution</th>
<th>λ_r</th>
<th>λ_z</th>
<th>D_r</th>
<th>D_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>0.708</td>
<td>0.181</td>
<td>0.995(-3)</td>
<td>0.479(-5)</td>
</tr>
<tr>
<td>Coarse</td>
<td>0.604</td>
<td>0.182</td>
<td>0.950(-3)</td>
<td>0.404(-5)</td>
</tr>
<tr>
<td>Refined</td>
<td>0.668</td>
<td>0.181</td>
<td>0.979(-3)</td>
<td>0.4590(-5)</td>
</tr>
<tr>
<td>Num. Err.</td>
<td>3%</td>
<td>1%</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Stat. Err.</td>
<td>40%</td>
<td>1%</td>
<td>4%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Table 1: Accuracy comparison of parameter estimates

In the first row of Tab. 1 a set of reference parameters, calculated on a very fine spatial grid, using a very stringent time tolerance, are given. Due to the measurement errors they differ from the values used to create the artificial measurements. In the second row the estimated parameters of the coarse grid/tolerance GN solution are given. The third row contains the values using the final GN solution with the automatically refined grid/tolerance values $n_z = 69$, $n_r = 36$, $\epsilon_t F = 0.25 \times 10^{-2}$. The last two lines display the relative errors of this solution and the estimated relative error due to statistical uncertainty in terms of the individual confidence intervals. Obviously, the numerical errors are below the latter level. Computing numerically more accurate parameters would just waste computing time.
5 Conclusion and outlook

An adaptive accuracy matching strategy was developed, which enables a robust, reliable and efficient performance of a self-adaptive, damped Gauss-Newton scheme. Within the course of one GN-iteration the temporal and spatial discretization is chosen initially and then frozen in order to have a discrete functional changing smoothly with changes in p. The nonlinear least squares solution may be refined by repeated GN-iterations with varying, more accurate discretizations until a reasonable level of accuracy is reached, i.e., only slightly more accurate than the statistical uncertainty in the parameters to be estimated. Further testing is required to check the quality of some of the heuristic parameters in our procedure. Furthermore, techniques for a locally oriented spatial refinement will be investigated.

References

[1] R. Adler, Stand der Simulation von heterogen-gaskatalytischen Reaktionsablaufen in Festbettreaktoren - Teil 1, Chemie Ingenieur Technik 72, 2000, 555-564

