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Abstract

We study the the polytopes of binary n-strings that encode (positive)
integers that are not divisible by a particular positive integer p | the
indivisibility polytopes, as well as the more general \clipped cubes". Also,
we discuss a potential application to factoring. Finally, we present some
results concerning divisibility polytopes.
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Introduction

We assume familiarity with the basics of polytopes (see [39]) and integer

programming (see [30]). Let p and n be positive integers, and let N :=

f0; 1; 2; : : : ; n� 1g. We de�ne the indivisibility polytopes

Ipn := conv

8<:x 2 f0; 1gN :
X
j2N

2jxj 6�= 0 (mod p)

9=; :

That is, Ipn is the polytope of binary n-strings that encode (positive) integers

that are not divisible by p. As an example, which can be used to visualize

many of the results, we depict I33 in Figure 1. Extreme points of the cube are

labeled in base 10.
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Figure 1: The indivisibility polytope I33

If we were only interested in methods for incorporating indivisibility by p

as a constraint on a positive integer variable y in an optimization formulation,

we could simply introduce further integer variables ` � 0 and 1 � z � p � 1,

and then set y = `p + z. Our interest in indivisibility polytopes stems from

a desire to form products of such variables, which is e�ectively accomplished

using their binary representation (see [14]).

In Section 1, we introduce \clipped cubes". Most indivisibility polytopes

| the \nondyadic" ones | are clipped cubes, and this notion provides a

2



clean view of certain aspects of these indivisibility polytopes. In particular,

we (i) give a characterization as the solution set of a totally dual integral

system of linear inequalities, (ii) characterize adjacency of extreme points,

(iii) describe a simple construction for �nding short edge paths, (iv) give an

e�cient separation algorithms for the facet describing inequalities, (v) give an

e�cient algorithm for optimizing a linear function, (vi) make connections with

balanced and ideal 0;�1 matrices, and (vii) discuss alternative models.

In Section 2, we focus on indivisibility polytopes and make the connection

with clipped cubes. To complete the study of indivisibility polytopes implic-

itly studied in Section 1, we give linear inequality descriptions and characterize

extreme point adjacency for the relatively trivial \dyadic" indivisibility poly-

topes which are not clipped cubes. We describe very mild conditions which

ensure that the simple bound inequalities describe facets of the nondyadic

indivisibility polytopes.

In Section 3, we discuss a potential application to factoring.

In Section 4, we de�ne the divisibility polytopes. For divisibility poly-

topes, we investigate some properties of the facet describing inequalities.

Other notation: For j 2 S, S�j := S nfjg. For j =2 S, S+j := S[fjg.
For sets S1; S2 2 N , S14S2 denotes the symmetric di�erence (S1 nS2)[ (S2 n
S1). Let 2N denote the set of all subsets of N . For positive integer n, RN

denotes the vector space of real n-tuples with coordinates indexed from N .

Similarly, [0; 1]N := fx 2 RN : 0 � xj � 1; 8 j 2 Ng, and f0; 1gN := fx 2
RN : xj 2 f0; 1g; 8 j 2 Ng. For c; x 2 RN, hc; xi :=P

j2N
cjxj . For j 2 N ,

ej is the standard unit vector in RN. For S � N , x(S) :=
P

j2N ej . Also, we

write e for any vector of all ones.

For a polytope Q, G(Q) is the 1-skeleton of P , V (G(Q)) is the set of

vertices of G(Q) (i.e., the set of extreme points of Q), and E(G(Q)) is the set

of edges of G(Q) (i.e., the set of 1-dimensional faces of Q). Finally, voln(Q)

denotes the volume (i.e., n-dimensional Lebesgue measure) of the polytope

Q � RN.

1 Clipped Cubes

In this section we introduce and study \clipped cubes". In Section 2, we make

a precise connection between most indivisibility polytopes and clipped cubes.

For a subset C of 2N , we de�ne a polytope

Q(C) := conv
�
x(S) : S 2 2N n C	 � f0; 1gN :

A clippable subset of 2N is a C � 2N satisfying:
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(C1) fjg =2 C; 8 j 2 N ;

(C2) S =2 C, for some S � N having jSj > 1;

(C3) jS14S2j 6= 1; 8 S1; S2 2 C.
As will become evident, the important property is C3, while C1{C2 are

included for technical reasons. We note that if C is clippable, then all subsets of
C are clippable. That is, the set of clippable sets is an \independence system".
On the other hand, clippable sets can be large; for example, the set of even

cardinality subsets of N is clippable (when n � 3).

For a clippable subset C of 2N , we refer to Q(C) as a clipped cube.

1.1 Inequality Description

Obviously, the simple bound inequalities

�xj � 0 ; (1)

xj � 1 ; (2)

8 j 2 N ;

are valid for Q(C). In addition, we have the clipping inequalities

�(S) :
X
j2S

xj �
X

j2NnS

xj � jSj � 1 ; (3)

8 S 2 C :

Proposition 1 A point x 2 f0; 1gN satis�es the clipping inequalities (3) for

all S 2 C if and only if x 2 Q(C).

Proof: Suppose that x 2 f0; 1gN is not in Q(C). Then S := fj 2 N : xj =

1g 2 C. For this choice of S, the left-hand side of (3) is jSj, which exceeds the

right-hand side. So not all clipping inequalities (3) are satis�ed by x.

Conversely, considering all x 2 f0; 1gN , the maximum of the left-hand side

of (3) is jSj, and this is only achieved when xj = 1 for all j 2 S and xj = 0

for all j 2 N n S. But in this case, the hypothesis indicates that x is not in

Q(C). �

Proposition 2 The clipped cube Q(C) is full dimensional.
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Proof: Suppose that X
j2N

ajxj = b (4)

is a nontrivial equation satis�ed by all points of Q(C). By C1, x(fjg) 2 Q(C)
for all j 2 N , so we can plug these points into (4) to obtain aj = b for all

j 2 N . Since we have assumed that (4) is nontrivial, we can divide (4) by b

to obtain X
j2N

xj = 1 : (5)

Next, by C2, we choose an S � N such that S =2 C and jSj > 1. Plugging

x(S) into (5), we obtain a contradiction.

Therefore, there are no nontrivial equations satis�ed by all points of Q(C).
�

Proposition 3 All clipping inequalities describe facets of the clipped cube

Q(C).

Proof: Let FS(C) be the face of Q(C) that is described by (3) for an S 2 C.
We will demonstrate that any other linear inequality that also describes FS(C)
is just a positive multiple of (3). Suppose thatX

j2N

ajxj � b ; (6)

describes the same face of Q(C) as (3) does. By C3, we observe that for each

k 2 S, S � k =2 C. Therefore, for each k 2 S, since obviously x(S � k) satis�es

(3) as an equation, we have x(S � k) 2 FS(C). Plugging this point into (6) as
an equation, we conclude thatX

j2S�k

aj = b ; 8 k 2 S : (7)

Furthermore, x(S) =2 FS(C), thereforeX
j2S

aj > b : (8)

Subtracting (7) from (8), we conclude that ak > 0 for all k 2 S.
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Similarly, by C3, we observe that for each l 2 N nS, S+ l =2 C. Therefore,
for each l 2 N nS, since obviously x(S+ l) satis�es (3) as an equation, we have

x(S + l) 2 FS(C). Plugging this point into (6) as an equation, we conclude

that

al +
X
j2S

aj = b ; 8 l 2 N n S : (9)

Subtracting (7) from (9), we conclude that

ak + al = 0 ; 8 k 2 S; l 2 N n S : (10)

So we can divide (6) by jaj j, which is the same for all j 2 N , to obtain

the inequality (3). Notice that the right-hand side of (3) is correctly obtained

as a consequence of (7). �

We also have a converse to this last result.

Proposition 4 If C � 2N satis�es C1 but not C3, then there are (at least

two) clipping inequalities that do not describe facets of Q(C).

Proof: Suppose that C satis�es C1 but not C3. Then there is a set S 2 C and

an element k 2 N n S with S + k 2 C. Clearly S 6= ; or C1 would be violated;

hence the existence of S+k 2 C means that C satis�es C2. Therefore, Q(C) is
full dimensional and its facet describing inequalities are unique up to positive

scalar multiplication.

Now, we add the valid clipping inequalities �(S) and �(S+ k), divide by

two, and round the right-hand side down to obtain the valid inequalityX
j2S

xj �
X

j2Nn(S+k)

xj � jSj � 1 : (11)

Since �(S) (resp., �(S + k)) is the sum of the valid inequalities (11) and

�xk � 0 (resp., xk � 1), these two clipping inequalities do not describe facets

of Q(C). �

Next, we give a complete characterization of the clipped cube by linear

inequalities.

Proposition 5 Let C be a clippable subset of 2N . Every facet of Q(C) is

described by a simple bound inequality or a clipping inequality.
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Proof: Suppose that (6) describes a facet of Q(C) other than one described

by a simple bound inequality. Let

S := fj 2 N : aj > 0g ;

and let

S0 := fj 2 N : aj < 0g :
First, by contradiction, we demonstrate that S 2 C. Suppose otherwise.

Then x(S) maximizes the left-hand side of (6) over the extreme points ofQ(C).
Indeed, every maximizer of the left-hand side of (6) has xj = 1 for all j 2 S
and xj = 0 for all j 2 S0. But, since (6) is not described by a simple upper

bound inequality, we must have S = S0 = ;. But then aj = 0 for all j 2 N ,

contradicting the hypothesis that (6) describes a facet.

Next, we observe by C3 that x(S� j) 2 Q(C) for all j 2 S, and x(S+ j) 2
Q(C) for all j 2 N n S. So, these jN j points are among the extreme points of
Q(C) that may potentially maximize the left-hand side of (6). Let

� := min fjakj : k 2 Ng :

Indeed, the maximum of the left-hand side is x(S) � �. Certainly we have

� > 0 since (6) describes a facet of Q(C). Now, if aj > � for some j 2 S, then
xj = 1 for every maximizer of the left-hand side of (6). Also, if aj < � for

some j 2 N n S, then xj = 0 for every maximizer of the left-hand side of (6).

Either case would contradict our initial hypothesis. Therefore, jaj j = � for all

j 2 N . Now, plugging in a maximizing point (either x(S � j) for some j 2 S
or x(S + j) for some j 2 N n S), we obtain b = �(jSj � 1). Finally, dividing

(6) by �, we obtain the clipping inequality (3) with S = S. �

1.2 Separation, Optimization and Total Dual Integrality

Let C be a clippable subset of 2N that is described by a membership oracle.

Let ~x be a point in QN . We consider the following decision problem.

CLIPMEMB: Is ~x in the clipped cube Q(C)?

Proposition 6 CLIPMEMB is in NP \ Co-NP.

Proof: Proposition 5 implies that whenever ~x is not in Q(C), there is a

short proof of this fact | namely, a violated clipping inequality. That is,

CLIPMEMB is in Co-NP.
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Next, by Carath�eodory's Theorem (see Proposition 1.15, (ii), p. 46 of [39],

for example), if ~x is in Q(C), then there are n + 1 sets Si 2 2N n C such that

the following system has a solution:

nX
i=0

�i x(Si) = ~x ;

nX
i=0

�i = 1 ;

�i � 0 ; for i = 0; 1; : : : ; n :

In fact, exploiting standard results concerning rational inequality systems, this

system has a rational extreme point solution which has a short binary encoding

(see Proposition 2.12, (ii), p. 158 of [30], for example). Note that we can check

that each Si is not in C using the membership oracle. Therefore, CLIPMEMB

is in NP. �

Proposition 6 is strong evidence for CLIPMEMB being in P. Indeed, we

provide a simple algorithm for CLIPMEMB in the proof of the following result.

Proposition 7 CLIPMEMB is in P.

Proof: We describe an O(n) procedure. We may assume that ~x satis�es the

simple bound inequalities since there are only 2n of them to check. The point

~x violates (3) if and only ifX
j2S

(1� ~xj) +
X
NnS

~xj < 1 : (12)

De�ne the set S0 := fj 2 N : ~xj >
1
2g. Clearly S0 minimizes the left-hand

side of (12) over all S � N . Now, this minimum in nonnegative, and any set

S � N will make the left-hand side of (12) at least jS04Sj=2. Therefore, we
only need consider, for possible violation of (12), those n+1 choices of S with

jS04Sj � 1. So if any of these sets S is in C and satis�es (12), we have the

violated clipping inequality �(S). Otherwise, ~x is in Q(C). �

Another use of the separation procedure is a converse to Proposition 5.

Proposition 8 If C � 2N satis�es C1 but not C3, then there are facets of

Q(C) that are described by no simple bound inequality and no clipping inequal-

ity.
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Proof: Suppose that C satis�es C1 but not C3. Choose nonempty S and

k 2 N n S as in the proof of Proposition 4. Let l be any element of S.

Consider the point ~x := 1
2
x(S) + 1

2
x(S � l + k). Obviously ~x satis�es all of

the simple bound inequalities. It is easy to con�rm that ~x violates the valid

inequality (11) (by 1
2
). Also, because ~x has two coordinates equal to 1

2
, the

separation procedure indicates that there is no violated clipping inequality.

Hence Q(C) must have a facet that is described by no simple bound inequality

and no clipping inequality. �

Another natural problem for the clipped cube Q(C) is the following linear
optimization problem. Let c be in Qn.

CLIPOPT: Find a point x of Q(C) that maximizes P
j2N

cjxj .

A consequence of Proposition 7 is the following result.

Proposition 9 There is a polynomial-time algorithm for CLIPOPT.

Proof: This follows from Proposition 7, using the polynomial-time equivalence

of separation and linear-function optimization for polytopes implied by the

ellipsoid method (see [19, 20, 21]). �

A more direct and constructive proof of Proposition 9 is provided by the

simple recipe of the next result.

Proposition 10 Let C be a clippable subset of 2N , let c 2 RN, and let S+ :=

fj 2 N : cj � 0g.
(i) If S+ 2 2N n C, then x(S+) maximizes hc; xi on Q(C);
(ii) if S+ 2 C, then let k := argmaxfcj : j 2 N n S+g, and let l :=

argminfcj : j 2 S+g (so ck < 0 or = �1, and cl � 0 or = +1).

(a) If �ck � cl, then x(S+ + k) maximizes hc; xi on Q(C);
(b) if cl � �ck, then x(S+ � l) maximizes hc; xi on Q(C).

Proof: Our proof relies on linear programming duality. Consider the primal

linear program of maximizing hc; xi , subject to (1{2) 8 j 2 N , (3) 8 S 2 C.
We have the dual linear program

min
X
j2N

yj +
X
S2C

(jSj � 1) zS ;
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subject to yj +
X
S2C :

j2S

zS �
X
S2C :

j2NnS

zS � cj ; 8 j 2 N ;

yj � 0; 8 j 2 N ;

zS � 0; 8 S 2 C :

If the hypothesis of (i) holds, then x(S+) is a primal feasible solution with

objective value
P

j2S+ cj . It is easy to check that setting yj = cj for j 2 S+

and setting all other dual variables to 0 gives a dual feasible solution with

the same objective value as the primal solution. Hence, both primal and dual

solutions are optimal.

If the hypothesis of (iia) holds, then, by C3, x(S++k) is a primal feasible

solution, and it has objective value ck +
P

j2S+ cj . It is easy to check that

setting yj = cj + ck for j 2 S+, setting zS+ = �ck, and setting all other dual

variables to 0 gives a dual feasible solution with the same objective value as

the primal solution. Hence, both primal and dual solutions are optimal.

On the other hand, if the hypothesis of (iib) holds, then, by C3, x(S+� l)

is a primal feasible solution, and it has objective value �cl +
P

j2S+
cj . It

is easy to check that setting yj = cj � cl for j 2 S+, setting zS+ = cl, and

setting all other dual variables to 0 gives a dual feasible solution with the same

objective value as the primal solution. Hence, both primal and dual solutions

are optimal. �

One consequence of the proof of Proposition 10, is another proof of Propo-

sition 5. Also, when the cj are integers, the constructive proof method provides

integer optimal dual solutions. Therefore, we have the following result.

Proposition 11 Let C be a clippable subset of 2N . The system (1{2) 8 j 2 N ,

(3) 8 S 2 C is totally dual integral.

1.3 Generalized Covering

A 0,1 matrix is balanced if it does not contain a square submatrix of odd order

with two ones per row and per column (see [3]). Berge demonstrated (among

other things) that if A is balanced, then the the fractional covering polyhedron

fx 2 Rn : Ax � e; x � 0g

has only integer extreme points (see [4]).

For an m� n 0;�1 matrix A, let �(A) 2 Rm be de�ned by letting �i(A)

be the number of entries in row i of A that are equal to �1. Following others,
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a 0;�1 matrix is ideal if the fractional generalized covering polyhedron

fx 2 Rn : Ax � e � �(A); 0 � x � eg
has only integer extreme points. (see [9, 31, 15], for example). These polyhedra

are the natural ones to study when formulating propositional logic problems

in \conjunctive normal form" as linear 0,1 optimization problems (see [8, 38]).

Let �(A) 2 Rm be de�ned by letting �i(A) be the number of entries in row

i of A that are equal to +1. Rewriting the de�ning system of the fractional

generalized covering polyhedron as

fx 2 Rn : (�A)x � �(�A)� e; 0 � x � eg ;
we see an immediate connection with our inequality description of the clipped

cube Q(C) (i.e., the system (1{2) 8 j 2 N , (3) 8 S 2 C). That is, our inequality
description of Q(C) describes a fractional generalized covering polyhedron.

Interpreted in the framework of propositional logic, for each S 2 C, we can
interpret (3), for binary encodings x 2 RN, as saying either some bit in S

is \o�" or some bit not in S is \on" (otherwise x would encode S). By

Proposition 5, this particular fractional generalized covering polyhedron has

only integer extreme points | that is, the constraint matrix associated with

the clipping inequalities is ideal.

Truemper introduced balanced 0;�1 matrices as a generalization of bal-

anced 0; 1 matrices. A 0;�1 matrix is called balanced if every square submatrix

with two nonzero entries per row and per column has the sum of its entries

divisible by 4 (see [37]). Conforti and Cornu�ejols generalized Berge's poly-

hedral result by showing (among other things) that if the 0;�1 matrix A is

balanced, then A is ideal and the generalized covering formulation is totally

dual integral (see [10, 9]).

In light of Propositions 5 and 11, it is natural to wonder whether the

constraint matrix described by the clipping inequalities (3) 8 S 2 C is balanced.
Alas this is not the case: since our matrix has no entries of zero, the only square

submatrices with two nonzeros entries per row and per column are of order

2; except in some trivial cases, the constraint matrix has submatrices of the

form �
1 1

1 �1
�

;

with the sum of the entries being 2. Indeed this submatrix also demonstrates

that the constraint matrix is not ordinarily totally unimodular.

Finally, we wonder whether there is some higher reason that explains why

the generalized covering formulations for balanced 0;�1 matrices and for the
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clipped cubes are totally dual integral. The inductive proof scheme in [15] for

demonstrating the total dual integrality of generalized covering formulations

having 0;�1 balanced constraint matrices, relies only on the idealness of the

constraint matrix and all submatrices obtained by the deletion of rows. So

that proof scheme can be adapted here as well. So perhaps the class of ideal

matrices having all submatrices obtained by the deletion of rows being ideal

bears further study.

1.4 Volume and Alternative Models

Studying the n-dimensional volume of polytopes arising in discrete optimiza-

tion was introduced in [25] and then further studied in [23, 35]. LetQ � [0; 1]N

be an arbitrary polytope with extreme points in f0; 1gN . One theme in [25] is

that for certain such polytopes Q, it is desirable and may be possible to �nd

a polytope Q0 � [0; 1]N such that

(i) the volume of Q0 is nearly that of Q ;

(ii) Q0 \ f0; 1gN = Q \ f0; 1gN ;

(iii) the inequality description of Q0 is simpler than that of Q .

The point is that because of (iii), we may have a relatively easy time

working with the relatively simple linear programming subproblems associated

with Q0 | indeed, this would certainly be the case if we had an inequality

description of Q0 but not of Q. The aim of (i) is to suggest that the relaxation

from Q to Q0 is not so weak in some average sense. Property (ii) ensures that

optimal solutions of integer programs over Q0 are extreme points of Q. In this

section, we investigate clipped cubes from this viewpoint.

First, we observe that even though clippable subsets of 2N can be large

(e.g., the even cardinality subsets of N when n � 3), the volume of a clipped

cube is always nearly 1.

Proposition 12 Let C be a clippable subset of 2N . Then voln(Q(C)) = 1 �
jCj=n!. In particular, voln(Q(C)) � 1� 2n�1=n!.

Proof: First, we demonstrate that the clipping inequalities remove pieces of

the cube [0; 1]N that have pairwise disjoint interiors. Suppose that S1 and S2
are distinct sets in C. Consider the strict inequalities

�
X
j2Si

xj +
X

j2NnSi

xj < 1� jSij ;
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for i = 1; 2. Adding these together, we obtain

�2
X

j2S1\S2

xj + 2
X

j2Nn(S1[S2)

xj < 2� jS1j � jS2j :

Adding in twice the simple lower bound inequalities (1) for all j 2 N n(S1[S2)
and twice the simple upper bound inequalities (2) for all j 2 S1\S2, we obtain

0 < 2� jS1j � jS2j+ 2jS1 \ S2j ;
or, equivalently,

jS14S2j < 2 ;

which contradicts C3.

Next, by demonstrating that each clipping inequality removes a simplex

of volume 1=n! from the cube [0; 1]N, the �rst part of the result follows. For

an S 2 C, the extreme points of the closure of the points of [0; 1]N violating

the clipping inequality (3) are: x(S), x(S � l) for l 2 S, and x(S + k) for

k 2 N nS. That these n+1 points are a�nely independent and have as their

convex hull a simplex of volume 1=n! follows from the following calculation.

We arrange these points as columns of an order n + 1 square matrix with a

row of ones appended at the top:

x(S � l) x(S + k)

S :

N n S :

0@ 1 11�s 11�n�s
1s�1 1s�s � Is�s 1s�n�s
0n�s�1 0n�s�s In�s�n�s

1A ;

where s := jSj. Expanding the determinant along the last n � s rows, and

then subtracting the �rst row from the remaining row, we see that this matrix

has the same absolute determinant as�
1 11�s

0s�1 �Is�s

�
;

which obviously has absolute determinant 1.

The inequality follows by noting that any set C of subsets of N satisfying

C3 is a vertex packing on G := G([0; 1]N). The maximum number of vertices

in such a packing is bounded above by the optimal value of the linear program

max

8<: X
v2V (G)

yv : yv + yw � 1; 8 fv; wg 2 E(G); yv � 0; 8 v 2 V (G)

9=; :
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This, in turn, is bounded above by the objective value of any feasible solution

to the dual linear program

min

8<: X
e2E(G)

xe :
X
e2�(v)

xe � 1; 8 v 2 V (G); xe � 0; 8 e 2 E(G)

9=; :

Since j�(v)j = n for all v 2 V (G), and there are 2n vertices of G, it easily

follows that xe := 1=n for all e 2 E(G) is a feasible solution to this dual linear

program having objective value 2n�1. �

We note that when n � 4 is even, the lower bound of Proposition 12 is

sharp | it is attained by the set of even cardinality subsets of N .

Already, Proposition 12 implies that (i) would automatically be achieved

if we could �nd a polytope Q0 satisfying (ii{iii). Alas, the following result

implies that if Q is a clipped cubed, then there is no polytope Q0 � [0; 1]N

satisfying (ii{iii).

Proposition 13 Let C be a clippable subset of 2N . Then any polytope Q0 such

that Q0\f0; 1gN = Q(C)\f0; 1gN has at least jCj facets that are not described
by simple bound inequalities.

Proof: In order for Q0 to have fewer than jCj facets that are not described by

simple bound inequalities, there must be a facet describing inequality (6) of

Q0 and sets S1; S2 2 C, such that x(S1) and x(S2) violate (6). That is,X
j2Si

aj > b ;

for i = 1; 2. Moreover, C3 implies that for k =2 Si, we haveX
j2Si+k

aj � b ;

and, for l 2 Si, we have X
j2Si�l

aj � b :

Therefore, we have ak < 0 for k =2 Si and al > 0 for l 2 Si. But since S1 and

S2 are distinct, this can not be the case. �
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1.5 Extreme Point Adjacency

Next, we characterize when a pair of distinct vertices of the 1-skeleton of a

clipped cube Q(C) are adjacent. Knowledge of these adjacencies enables us

to trace out \simplex method paths" on Q(C) without resorting to the linear
algebra of \pivoting". As is usual, if x1 and x2 are extreme points of Q(C) and
x1 and x2 are adjacent in G(Q(C)), then we say that x1 and x2 are adjacent

on Q(C).

Proposition 14 Let C be a clippable subset of 2N . Let x1 = x(S1) and x2 =

x(S2) be distinct extreme points of Q(C). The point x2 is adjacent to x1 on

Q(C) if and only if S2 is derived from S1 in one of the following ways:

(i) S2 = S1 + k, for some k 2 N n S1 ;

(ii) S2 = S1 � k, for some k 2 N ;

(iii) S2 = S1 + k � l for some k 2 N n S1, l 2 S1, such that S1 + k 2 C or

S1 � l 2 C ;

(iv) S2 = S1 + k + l, for some k; l 2 N n S1, such that S1 + k 2 C ;

(v) S2 = S1 � k � l, for some k; l 2 S1, such that S1 � k =2 C .

Proof: First we demonstrate, one by one, that if S2 is derived from S1 in one

of the �ve ways speci�ed in the statement of the result, then x2 is adjacent

to x1. In each case, we demonstrate adjacency on Q(C) by displaying n � 1

facet describing inequalities of Q(C) that are satis�ed as equations by x1 and

x2, and which, when written as equations, are linearly independent. We leave

the details for the energetic reader to check.

(i) S2 = S1 + k :

� The jS1j simple upper bound inequalities (2) with j 2 S1 ;

� the jN n S1j � 1 simple lower bound inequalities (1) with j 2 (N n
S1)� k .

(ii) S2 = S1�k : Since we can interchange the roles of x1 and x2, this follows
from (i).

(iii) S2 = S1 + k � l : Since we can interchange the roles of x1 and x2, there

is no loss of generality in assuming that S1 + k 2 C.
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� The jS1j � 1 simple upper bound inequalities (2) with j 2 S1 � l ;

� the jN n S1j � 1 simple lower bound inequalities (1) with j 2 (N n
S1)� k ;

� the clipping inequality (3) with S = S1 + k .

(iv) S2 = S1 + k + l :

� The jS1j simple upper bound inequalities (2) with j 2 S1 ;

� the jN n S1j � 2 simple lower bound inequalities (1) with j 2 (N n
S1)� k � l ;

� the clipping inequality (3) with S = S1 + k .

(v) S2 = S1 � k � l : Since we can interchange the roles of x1 and x2, this

follows from (iv).

Next, for the converse, we must show that the distinct extreme points

x1 = x(S1) and x2 = x(S2) are not adjacent on Q(C) if they are not covered

by the �ve cases in the statement of the result. Because we have already

veri�ed cases (i{ii), we need only consider jS14S2j � 2.

A preliminary observation which is easily veri�ed is the following:

Observation 1 The only clipping inequalities (3) that are satis�ed as equa-

tions by xi have S = Si�k for some k 2 S or S = Si+k for some k 2 N nS.

With this observation, it is easy to see that if jS14S2j � 3, then no

clipping inequality is satis�ed as an equation by both x1 and x2. But no more

than n� 3 simple bound inequalities (1{2) are satis�ed by both x1 and x2, so

we can not produce enough facets for x1 and x2 to be adjacent on Q(C).
If jS14S2j = 2, we note that we easily �nd n�2 simple bound inequalities

that are satis�ed as equations by x1 and x2. So it su�ces to show that there is

no clipping inequality that is satis�ed as an equation by x1 and x2. Without

loss of generality, we can consider just two cases.

(A) S2 = S1+k+l, for some k; l 2 NnS1, such that x(S1+k); x(S1+l) 2 Q(C)
: Here, we note that by the observation, the only sets S that produce

clipping inequalities that need be considered have the form S1 � j1 =

S2 � j2. We easily see that the only possibility is S = S1 + k and

S = S1 + l, but neither clipping inequality is valid by the hypothesis of

case (A).
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(B) S2 = S1+k�l, for some k 2 NnS1, l 2 S1, such that x(S1+k); x(S1�l) 2
Q(C) : Again, by the observation, we only consider sets S of the form

S1�j1 = S2�j2. Here, the only possibility is S = S1+k and S = S1� l,

but neither clipping inequality is valid by the hypothesis of case (B).

�

The Hirsch Conjecture is that the diameter of any polytope is bounded

by the number of its facets minus the dimension. For the clipped cube Q(C),
that would only give us a bound of jCj + n. But Naddef veri�ed the Hirsch

conjecture for polytopes with vertices in f0; 1gN. Indeed, he demonstrated

the stronger property that such polytopes always have diameter bounded by

n ([29]). Of course this applies to the clipped cube Q(C), but for these we can
easily construct short edge-paths between extreme points.

Proposition 15 Let C be a clippable subset of 2N . Let x(S) and x(T ) be arbi-

trary extreme points of Q(C). Let S0; S1; S2; : : : ; Sp be any (easily constructed!)
sequence of subsets of N satisfying

(i) S0 = S;

(ii) Sp = T ;

(iii) jSi4Si�1j = 1, for i = 1; 2; : : :p;

(iv) p = jS4T j(� n).

Let S 00; S
0
1; S

0
2; : : : ; S

0
p0
be the subsequence obtained by deleting the Si that are

not in C. Then
(i') x(S00) = x(S);

(ii') x(S0
p0
) = x(T );

(iii') x(S0
i
) is adjacent to x(S 0

i�1) on Q(C), for i = 1; 2; : : :p0;

(iv') p0 � n.

Proof: The idea is to derive paths on the clipped cube Q(C) from paths on

the cube [0; 1]N. Figure 2 illustrates the idea. The result easily follows from

Proposition 14. Figure 3 illustrates that the construction may fail if C is not

clippable. �
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Figure 2: Transforming a path on a cube to one on a clipped cube
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Figure 3: A lost path when C is not clippable

2 Indivisibility Polytopes

2.1 Dyadic Indivisibility Polytopes

For an integer k � 0, the dyadic indivisibility polytope I2kn is not so interest-

ing. It is precisely the solution set ofX
j2N :

j<k

xj � 1 ; (13)

and the simple bound inequalities (1{2).

In particular, we have the following result which is easily veri�ed.
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Proposition 16

(i) I20n = ;;
(ii) A minimal equality/inequality description of I21n is given by the equation

x0 = 1 and the simple bound inequalities (1{2) for all j 2 N � 0;

(iii) For integer ` > 1, a minimal inequality description of the full dimen-

sional I2`n is given by (13) and the simple bound inequalities (1{2) for

all j 2 N .

Additionally, adjacency of extreme points is easily characterized for I2kn.
We have the following result which is easily veri�ed.

Proposition 17

(i) For S1; S2 � N � 0, let x1 = x(0 + S1) and x2 = x(0 + S2) be distinct

extreme points of I21n. Then x1 and x2 are adjacent precisely when

jS14S2j = 1.

(ii) For integer ` > 1, let x1 = x(S1) and x2 = x(S2) be distinct extreme

points of I2`n. Then x1 and x2 are adjacent if and only if one of the

following holds:

(a) S2 = S1 + j, for some j 2 N n S1 ;

(b) S2 = S1 � j, for some j 2 N ;

(c) S2 = S1 � j1 + j2, jfj 2 Si : j < kgj = 1 for i = 1; 2, and either

fj1; j2g � fj 2 N : j < kg or fj1; j2g � fj 2 N : j � kg.

Therefore, in the sequel, we assume that in the context of indivisibility

polytopes, p is a positive integer that is not a power of 2.

2.2 Nondyadic Indivisibility Polytopes

We have the following result which is easily veri�ed.

Proposition 18 Let p be a positive integer that is not a power of 2, and

assume that n � 3. Let

Cpn :=
8<:S 2 N :

X
j2S

2j �= 0 (mod p)

9=; :

Then Cpn is clippable, so Q(Cpn) is a clipped cube.
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Proof: We verify C1{C3:

C1: 2j is not divisible by p.

C2: If p 6= 3, then we observe that f0; 1g 2 Cpn. On the other hand, if p = 3,

then we observe that f0; 2g 2 Cpn.
C3: If

P
j2S

2j �= 0 (mod p), then
P

j2S�l
2j 6�= 0 (mod p).

�

In particular, all of the results of Section 1 apply to nondyadic indivisibility

polytopes when n � 3.

2.2.1 Simple Bound Facets for Nondyadic Indivisibility Polytopes

Proposition 19 The simple lower bound inequalities describe facets of Ipn
when n � 4.

Proof: Let Lpn(j) be the face of Ipn described by (1) for some j 2 N . We

will demonstrate that any other linear inequality that also describes Lpn(j) is
just a positive multiple of (1). Suppose thatX

k2N

akxk � b (14)

describes Lpn(j). For all k 2 S � j, x(fkg) 2 Lpn(j), therefore, plugging into

(14) as an equation, we obtain

ak = b ; 8 k 2 S � j : (15)

Next, and this requires a bit of case checking, there is always a pair of

distinct elements l1; l2 2 N � j (indeed, in f0; 1; 2; 3g nfjg), so that p does not
divide 2l1 + 2l2 :

(i) for j = 0, we can take l1 = 1; l2 = 3 if p = 3` for some integer ` � 1, and

l1 = 1; l2 = 2 otherwise;

(ii) for j = 1, we can take l1 = 0; l2 = 2 if p = 3` for some integer ` � 1, and

l1 = 0; l2 = 3 otherwise;

(iii) for j = 2, we can take l1 = 1; l2 = 3 if p = 3` for some integer ` � 1, and

l1 = 0; l2 = 1 otherwise;
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(iv) for j � 3, we can take l1 = 0; l2 = 2 if p = 3` for some integer ` � 1, and

l1 = 0; l2 = 1 otherwise.

For this choice of l1; l2, by plugging x(fl1; l2g) into (14) as an equation,

we obtain

al1 + al2 = b : (16)

Combining (15) and (16), we see that b = 0, and hence (14) has the form

ajxj � 0 : (17)

Now aj � 0 since otherwise (14) would exclude the point x(fjg) 2 Ipn, and
aj 6= 0 since Lpn(j) is nontrivial, therefore, (14) can be divided by �aj to

obtain (1). �

Proposition 20 The simple upper bound inequalities describe facets of Ipn
when n � 4.

Proof: Let Upn(j) be the face of Ipn described by (2) for some j 2 N . We

will demonstrate that any other linear inequality that also describes Upn(j) is
just a positive multiple of (2). Suppose that (14) describes Upn(j). First, we
note that x(fjg) 2 Upn(j), so plugging this point into (14) as an equation, we

obtain aj = b.

Next, for any k 2 N�j, if p does not divide 2j+2k, we obtain aj+ak = b,

which implies that ak = 0.

Next, suppose that l 2 N � j and p divides 2j + 2l. Then we

choose some k 2 N � j, such that p does not divide 2j + 2k (18)

(we need to check that we can do this!). If p divides 2j + 2l, then p can not

divide 2j+2k+2l (lest it divide the di�erence which is 2k), therefore, plugging

this into (14), we obtain aj + ak + al = b. But, we have already established

that a0 = b and by the choice of k, we have ak = 0, so we conclude that al = 0.

To check (18) is always possible: If n � 4, there is some k 2 N�j (indeed,
in f0; 1; 2; 3gnfjg), so that p does not divide 2j+2k (for j � 2, p cannot divide

both 2j + 20 and 2j + 21, lest it divide the di�erence which is 1; for j � 1, p

cannot divide both 2j+22 and 2j+23, lest it divide the di�erence which is 4).

Therefore, we can conclude that ak = 0 for all k 2 N � j. Hence (14) has

the form

ajxj � aj : (19)

Certainly aj 6= 0 since Upn(j) is nontrivial. Also, we can not have aj < 0 since

the inequality must be valid for x(fkg) for k 2 N � j. Therefore, (14) is a

positive multiple of (2). �
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3 Factoring

In this section, we outline an approach to factoring a large (positive) integer

y that can make use of our results. Other approaches to factoring are quite

di�erent (e.g., Pollard methods (see [33, 32]), the elliptic curve method (see

[26, 28, 24]), the general number �eld sieve (see [7, 6, 16]), and the multiple

polynomial quadratic sieve (see [34])).

We wish to �nd a solution to

y =
X
i2N

X
j2N

2i+jx1
i
x2
j

(20)

in 0,1 variables x1
i
; x2

j
, where we choose n to be just less than the number of

bits needed to encode y. In fact, we can make n even smaller, but always at

least the number of bits needed to encode dpye, if we check that y has no

small factor (> 1). Working in a more general framework, Coppersmith, Lee

and Leung demonstrated that if y is treated as a variable, then the convex

hull of the solutions (y; x1; x2) 2Z� f0; 1gN � f0; 1gN to (20) is precisely the

solution set of:

xl
i
� 0 ; 8 i 2 N ; l = 1; 2 ;

xl
i
� 1 ; 8 i 2 N ; l = 1; 2 ;

y �
X

(i;j)2H

2i+j
�
x1
i
+ x2

j
� 1
�
; 8 H � N �N ;

y �
X
i2N

2i
X
j2N

2jx2
j
+

X
(i;j)2H

2i+j
�
x1
i
� x2

j

�
; 8 H � N �N :

So here is the idea. Treating y has �xed, we use linear programming

methods to �nd an extreme-point minimum ofX
i2N

2ix1
i
+
X
j2N

2jx2
j

subject to the above constraints. This can be done e�ciently (see [14]).

We note that y and the constraint coe�cients are quite large for problems

of practical interest, so most (all?) readily available software for large-scale

linear programming would not be appropriate. Some pivoting scheme using

exact arithmetic could be used (e.g., Edmonds' \Q-pivoting" scheme seems

particularly well suited (see [17, 18])).

Of course we really only seek a feasible integer solution, but our choice of

objective function is guided by our particular interest in factoring y when it
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is the product of a pair of large primes of comparable size. Such factorization

problems are particularly relevant to breaking public key cryptosystems like

RSA (see [27, 36, 5], for example)

It is likely that the minimizer is fractional. We can use generic partitioning

methods like branch-and-bound or Gomory cutting planes in an e�ort to �nd

an integer solution. We may key a branch-and-bound search on �xing the high-

order variables so that we can then exploit techniques that can take advantage

of knowing high-order bits of factors (see [11, 12, 13, 22]). We can use local-

search heuristics like \pivot-and-complement" to seek an integer solution (see

[2, 1]).

We can also try to exploit problem-speci�c structure to impose additional

linear inequalities that exclude this solution but preserve potential integer

solutions. For example, we may use other methods to �nd a set of numbers

P that do not divide y | e.g., trial division or sophisticated sieve methods.

Then, using techniques described in the present paper, we may start imposing

the mod p inequalities for p 2 P on the variables x1
i
and x2

j
of this linear

program.

As we have seen, for each odd p, the clipping inequalities alone remove

very little volume from the cube [0; 1]N . However, we can derive stronger

inequalities. For example, suppose that C is an arbitrary subset of 2N (possibly

the union of several clippable sets). Let (S; T; U) be a partition of N with

U 6= N . Suppose that

S [K 2 C ; 8 K � U :

Then it is easy to see that the clopping inequalityX
j2S

xj �
X
j2T

xj � jSj � 1 (21)

is valid for Q(C). Of course when U = ;, the clopping inequality is just a

clipping inequality, but the clopping inequality can cut o� much more volume

than the clipping inequalities from which it derives. The clopping inequal-

ity excludes all 2jU j extreme points of the cube of the form x(S +K) having

K � U . So, the volume that the associated clipping inequalities remove is at

most 2jU j=n!. On the other hand, the subset of [0; 1]N removed by the clop-

ping inequality is the cross product of the unit cube [0; 1]U and the simplex

cut from the unit cube [0; 1]S[T by the clopping inequality. Hence, the clop-

ping inequality removes a volume of 1=(jSj+ jT j)! from the unit cube [0; 1]N .

For example, for k 2 N , when S = fkg and T = ; (resp., T = fkg and

S = ;), the clopping inequality �xes xk at 1 (resp., 0), thus removing the
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entire (n-dimensional) volume of the cube. As far as separation goes, given

a membership oracle for C, it is easy to adapt the separation procedure for

clipping inequalities to �nd violated clopping inequalities having jU j bounded
by a polynomial in logn.

4 Divisibility Polytopes

In this section, we de�ne and investigate \divisibility polytopes". We will see

that the facial structure of these polytopes is much more complicated than

that of the indivisibility polytopes. Again, let p be a positive integer. We

de�ne the divisibility polytopes

Dpn := conv

8<:x 2 f0; 1gN :
X
j2N

2jxj �= 0 (mod p)

9=; :

That is, Dpn is the polytope of binary n-strings that encode (positive) integers

that are divisible by p.

We can write p uniquely as p = 2kq, where k is a nonnegative integer

and q is odd. Let m := n � k. For y 2 RM and z 2 RK, we consider the

point x = (y; z) to be in RN, where xj = zj for j 2 K and xj+k = yj for

j 2 M . Now, we observe that x 2 Dpn if and only if y 2 Dqd and z = 0. So

we can easily obtain an equality/inequality description of Dpn from one for

Dqd. Therefore, in the sequel, we assume that in the context of divisibility

polytopes, p is an odd positive integer.

Obviously, the simple bound inequalities (1{2) are valid for Dpn. Trivially,

the simple bound inequalities (1{2) provide a complete description of D1n. For

odd p > 1, we must do more.

Let r be any nonzero integer. Let let a 2ZN be any point satisfying

aj �= r2j (mod p) ;

for all j 2 N . Let b be any real number satisfying

b � max

8<:X
j2N

ajxj : x 2 Dpn

9=; :

By the de�nition of b, the inequalityX
j2N

ajxj � b (22)
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describes a (possibly empty) face of Dpn.

We note that we can calculate the least number b for which the inequality

(22) is valid for Dpn in time polynomial in p, n and the log jaj j. When p is

very large, we can do this by enumerating the few multiples of p. When p is

small, we can do this by solving a \group knapsack" shortest path problem

on an acyclic digraph with pn nodes. Using standard methods, we can solve

this shortest dipath problem in O(np) time. We would prefer to see O(n log p),
since it could well be that p is exponential in n and there are still an exponential

number of multiples of p that are less than n; for example, if p = O(an), with
1 < a < 2, then the number of multiples of p that are less than n is 
((2=a)n).

Proposition 21 The least number b for which the inequality (22) is valid for

Dpn is an integer multiple of p.

Proof: The extreme points of Dpn satisfyX
j2N

2jxj �= 0 (mod p) :

X
j2N

r2jxj �= 0 (mod p) :

X
j2N

ajxj �= 0 (mod p) :

The result follows. �

We refer to any inequality obtained in this manner, having b an integer

multiple of p, as an (r; p; n) inequality. If b is as small as possible so that (22)

is valid for Dpn, then (22) describes a nonempty face and we refer to (22) as

a proper (r; p; n) inequality. An elementary (r; p; n) inequality is derived by

taking an integer r that is relatively prime to p with 1 � r � p� 1, and a set

S in

�Cpn :=
8<:S 2 N :

X
j2S

2j 6�= 0 (mod p)

9=; :

Let �r := p� r. An elementary (r; p; n) inequality has the form

X
j2S

[r2j (mod p)]xj �
X

j2NnS

[�r2j (mod p)]xj � p

6664
X
j2S

�
r2j (mod p)

�
p

7775 : (23)

We do have the following.
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Proposition 22 Every elementary (r; p; n) inequality is an (r; p; n) inequality

(and hence valid for Dpn).

Proof: Clearly the variable coe�cients aj have the correct form. And the

right-hand side is obviously an integer multiple of p.

So the only thing to check is that the inequality is valid. Now the left-

hand side of (23) can not exceed
P

j2S

�
r2j (mod p)

�
on f0; 1gN . But since

the left-hand side is a multiple of p for all extreme points of Dpn, the left-

side can not be greater than the greatest multiple of p that does not exceedP
j2S

�
r2j (mod p)

�
. �

Not every elementary (r; p; n) inequality is proper. For example, the reader

can check that S := f1; 5; 7g 2 �C37;9 (i.e., x(S) is the binary encoding of 162,

which is not divisible by 37), and the associated elementary (r = 27; p =

37; n = 9) inequality has right-hand side 37, while a right-hand side of 0 is

valid.

In addition, there are facets of Dpn that are described by (r; p; n) inequal-

ities that are not elementary. For example, the reader can check that D109;11

has a facet that is described by the (r = 50; p = 109; n = 11) inequality

�139x10�15x9+47x8�31x7�70x6�35x5+37x4+73x3�18x2�9x1+50x0 � 0 ;

which is not elementary since the coe�cient of x10 is out of range.

Nonetheless, the following result indicates a central role played by the

elementary (r; p; n) inequalities.

Proposition 23 Let p be an integer greater than one, and let x 2 f0; 1gN. If
there is an r (that is relatively prime to p and satis�es 1 � r � p � 1) such

that x satis�es all elementary (r; p; n) inequalities (23), then x 2 Dpn.

Proof: Suppose that x 2 f0; 1gN is not in Dpn. That is, p does not divideP
j2N

2jxj . Or, S := fj 2 N : xj = 1g 2 �Cpn. Choose any integer r that is

relatively prime to p and satis�es 1 � r � p � 1 (e.g., r = 1). So p does not

divide r
P

j2S
2j . Hence p does not divide

P
j2S

�
r2j (mod p)

�
. So

X
j2N

�
r2j (mod p)

�
xj =

X
j2S

�
r2j (mod p)

�
> p

$P
j2S

�
r2j (mod p)

�
p

%
:

Therefore, x violates (23). �

A far simpler way to attempt to exclude the points x(S) for S 2 �Cpn is

by using the clipping inequalities (3) for all S 2 �Cpn. Unfortunately, the set
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�Cpn is not clippable. So even though the set of 0,1 valued points satisfying the

clipping inequalities (3) for all S 2 �Cpn is precisely the set of extreme points of
Dpn, we should not expect that these clipping inequalities will describe facets

of Dpn. Indeed, we show how even the elementary (r; p; n) inequalities imply

these clipping inequalities.

Proposition 24 Let p be an integer greater than one, and let S 2 �Cpn . Then

the corresponding clipping inequality (3) is obtained by choosing any r that is

relatively prime to p and satis�es 1 � r � p � 1 (e.g., r = 1), summing the

associated elementary (r; p; n) and (�r; p; n) inequalities, and then dividing by

p.

Proof: First, we demonstrate that the elementary (�r; p) inequality in the

statement of the proposition is valid for Dpn. Any common factor of p and �r

is also a factor of their di�erence r. Therefore, p and �r are relatively prime.

Next, we let

X
j2S

ajxj �
X

j2NnS

ajxj �
0@
6664
X
j2S

�
r2j (mod p)

�
p

7775+
6664
X
j2S

�
�r2j (mod p)

�
p

77751Ap (24)

be the sum mentioned in the statement of the proposition. In particular, for

all j 2 N , we have that

aj = [r2j (mod p)] + [�r2j (mod p)] :

We easily observe that aj �= 0 (mod p) and that 2 � aj � 2(p�1), so therefore
aj = p.

It only remains to determine the value of the right-hand side of the in-

equality. We observe thatP
j2S

�
r2j (mod p)

�
p

� 1 <

$P
j2S

�
r2j (mod p)

�
p

%
<

P
j2S

�
r2j (mod p)

�
p

and thatP
j2S

�
�r2j (mod p)

�
p

� 1 <

$P
j2S

�
�r2j (mod p)

�
p

%
<

P
j2S

�
�r2j (mod p)

�
p

:

Adding these inequalities together, and using that each aj = p, we obtain

jSj � 2 <

$P
j2S

�
r2j (mod p)

�
p

%
+

$P
j2S

�
�r2j (mod p)

�
p

%
< jSj :

Therefore, the right-hand side of (24) is (jSj � 1)p. The result follows. �
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Proposition 25 For odd p > 1, let d (� p � 1) be the order of 2 modulo p

(i.e., d is the smallest positive integer k so that 2k = 1). If n � pd + 1, then

the polytope Dpn is full dimensional.

Proof: Suppose that (4) is an equation satis�ed by all points of Dpn. Plugging

in x(;) = 0, which is in Dpn, we establish that b = 0.

Next, let S := f0; d; 2d; : : :; pdg. We observe that 2j �= 1 (mod p), for all

j 2 S. Therefore, since jSj = p + 1, we have x(S � k) 2 Dpn for all k 2 S.

Plugging into (4), we obtain
P

j2S�k aj = 0 for all k 2 S. This system of p+1

linear equations in p+1 variables has the unique solution aj = 0 for all j 2 S.

Next, consider any j 2 N n S. Let T be any subset of p � [2j (mod p)]

elements from S. Then 2j+
P

k2T
2k �= 0 (mod p), so we have x(T+j) 2 Dpn.

Hence, plugging into (4), we have aj+
P

k2T ak = 0, and we can conclude that

aj = 0.

Therefore, the only linear equations satis�ed by all points of Dpn are

trivial, and the result follows. �

Proposition 26 For odd p > 1, let d be the order of 2 modulo p. If n �
(p+ 1)d+ 1, then every simple lower bound (1) inequality describes a facet of

Dpn.

Proof: Let Lpn(j) be the face ofDpn described by (1) for some j 2 N . Suppose

that (14) also describes Lpn(j). First, we note that x(;) = 0 is in Lpn(j), so
b = 0. Let S be any subset of p+1 elements from f0; d; 2d; : : : ; pd; (p+1)dgnfjg.
We observe that x(S � k) 2 Lpn(j) for all k 2 S, and so, as in the proof of

Proposition 25, we conclude that ak = 0 for all k 2 S. Next, for every

k 2 N n S, let Tk be any subset of p � [2k (mod p)] elements from S. Also,

like before, we observe that x(Tk + k) 2 Lpn(j), and we can conclude that

ak = 0 for all k 2 N n S. Therefore, (14) has the form (17). Finally, since

x(Tj + j) 2 Dpn n Lpn(j), we observe that aj < 0. Therefore, (14) is just a

positive multiple of (1), and the result follows. �

Proposition 27 For odd p > 1, let d be the order of 2 modulo p. If n �
2pd+1, then every simple upper bound (2) inequality describes a facet of Dpn.

Proof: Let Upn(j) be the face ofDpn described by (2) for some j 2 N . Suppose

that (14) also describes Upn(j). Let S := f0; d; 2d; : : :; (2p� 1)d; 2pdg n fjg.
Let t := p� [2j (mod p)]. Then we have x(T + j) 2 Upn(j) for all T � S such

that jT j = t. Therefore, aj +
P

k2T
ak = b for all T � S such that jT j = t.

This system has the family of solutions ak = (b� aj)=t for all k 2 S, and it is
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unique since jSj > t. Similarly, if we instead require jT j = t + p, then we get

the family of solutions ak = (b�aj)=(t+p) for all k 2 S, and it is unique since

jSj > t+ p. Equating these solutions, we conclude that b = aj and ak = 0 for

all k 2 S.

Next, consider any i 2 (N nS)�j. Choose any subset T of S having jT j =
p�[2j+2i (mod p)]. Since x(T+j+i) 2 Upn(j), we have aj+ai+

P
k2T ak = b,

which, by earlier observations reduces to ai = 0. Therefore, (14) has the form

(19). Finally, since x(;) = 0 2 DpnnUpn(j), we observe that aj > 0. Therefore,

(14) is just a positive multiple of (2). The result follows. �

Determining which elementary (r; p; n) inequalities describe facets has

been elusive. We do have the following necessary condition.

Proposition 28 Suppose that the divisibility polytope Dpn is full dimensional

(see Proposition 25 for a su�cient condition), r is relatively prime to p and

satis�es 1 � r � p � 1, and set S 2 �Cpn. Let � be the least positive number

by which
P

j2S
r2j exceeds an integer multiple of p. If the elementary (r; p; n)

inequality (23) describes a facet of Dpn, then

r2j (mod p) � � ; 8 j 2 S ;

�r2j (mod p) � � ; 8 j 2 N n S :

Proof: Suppose that r2j (mod p) (resp., �r2j (mod p)) > � for some j 2 S

(resp., j 2 N nS). Then it is easy to see xj = 1 (resp., xj = 0) for any extreme

point of Dpn that satis�es (23) as an equation. Since we assume that Dpn is

full dimensional, we conclude that (23) does not describe a facet of Dpn. �

Toward characterizing the facets of Dpn, we describe the \basic hyper-

planes" determined by the extreme points of Dpn.

Proposition 29 Let (4) be a nontrivial equation satis�ed by n a�nely inde-

pendent extreme points of Dpn. Then there is a nonzero scalar � so that in

the equivalent equation X
j2N

(�aj)xj = �b ;

�b and �aj, j 2 N , are all integers, �b is a multiple of p, and 2l(�aj) �= 2j(�al)

(mod p) for all j; l 2 N .

Proof: Let x0; x1; : : : ; xn�1 be n a�nely independent points of Dpn that

satisfy (4). We arrange these points as rows of a matrix B, and we denote
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the columns of B by Bj , j 2 N . The hypothesis of a�ne independence

implies that any nontrivial equation satis�ed by the points x0; x1; : : : ; xn�1 is

a nonzero multiple of (4). We note that

B nonsingular

, B~� = ~0 has a nontrivial solution

, there is a nontrivial equation
X
j2N

�jxj = 0

satis�ed by the points x0; x1; : : : ; xn�1

, b = 0 :

So we consider two cases.

Case 1: Suppose that B is nonsingular. Then we let � := det(B)=b. Let
~2 := (20; 21; : : : ; 2n�1)T , and let ~k 2ZN satisfy

B~2 = p~k :

By Cramer's rule, we have

2j =
p � det(B0j � � � jBj�1j~kjBj+1j � � � jBn�1)

det(B)
:

Since p is odd, and the two determinants are integers, we have that p divides

det(B). So we conclude that �b is a multiple of p.

Letting ~a := (a0; a1; : : : ; an�1)
T , we can express (4), for the n points

x0; x1; : : : ; xn�1, as

B~a = be :

Applying Cramer's rule, we have

aj =
b � det(B0j � � � jBj�1jejBj+1j � � � jBn�1)

det(B)
;

or

�aj = det(B0j � � � jBj�1jejBj+1j � � � jBn�1) :

So, for distinct j; l 2 N , we have

�aj = det(B0j � � � jBj�1jejBj+1j � � � jBl�1jBljBl+1j � � � jBn�1)

= det(B0j � � � jBj�1j �BljBj+1j � � � jBl�1jejBl+1j � � � jBn�1) (25)

and

�al = det(B0j � � � jBj�1jBj jBj+1j � � � jBl�1jejBl+1j � � � jBn�1): (26)
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From (25{26), we see that

2j(�al)� 2l(�aj)

= det(B0j � � � jBj�1j2lBl + 2jBj jBj+1j � � � jBl�1jejBl+1j � � � jBn�1)

= det(B0j � � � jBj�1jp~kjBj+1j � � � jBl�1jejBl+1j � � � jBn�1);

the last equation being realized by adding the linear combination
P

i2Nnfj;lg
2iBi

of the columns B0; : : :Bj�1; Bj+1; : : : ; Bl�1; Bl+1; : : : ; Bn�1 to the column 2lBl+

2jBj . So we conclude that 2j(�al)� 2l(�aj) is an integer multiple of p.

Case 2: Suppose that B is singular. Then the hypothesis of linear indepen-

dence implies that for some l 2 N , the matrixeB = (B0j � � � jBl�1jejBl+1j � � � jBn�1)

is nonsingular. Furthermore, al 6= 0 in the nontrivial equation (4), otherwise

the columns B0; : : : ; Bl�1; Bl+1; : : : ; Bn�1 would be linearly dependent. So we

let � := det( eB)=al, and we easily obtain �al 2Z. Then
B~a = ~0X
j2N�l

ajB
j = �alBl

X
j2N�l

ajB
j + ale = �al(e� Bl)

eB

0BBBBBBBBBB@

a0
...

al�1
1

al+1
...

an�1

1CCCCCCCCCCA
= al(e�Bl) :

So, by Cramer's rule, we have, for j 2 N � l,

aj =
det(B0j � � � jBj�1jal(e� Bl)jBj+1j � � � jBl�1jejBl+1j � � � jBn�1)

det( eB) ;

hence

�aj =
det(B0j � � � jBj�1jal(e�Bl)jBj+1j � � � jBl�1jejBl+1j � � � jBn�1)

al

= det(B0j � � � jBj�1j �BljBj+1j � � � jBl�1jejBl+1j � � � jBn�1);
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exactly as in (25). Also, by the de�nition of �, we have (26) in this case as

well. So the present case can be completed as in Case 1.

The result follows. �

Proposition 30 Suppose that Dpn is full dimensional. Then every facet de-

scribing inequality of Dpn is an (r; p; n) inequality.

Proof: Let (14) describe a facet F of Dpn. Then there are n a�nely indepen-

dent points of Dpn that satisfy (14) as an equation. By Proposition 29, there

is a � 6= 0 so that �b and �aj , j 2 N , are all integers, �b is a multiple of p,

and 2l(�aj) �= 2j(�al) (mod p) for all j; l 2 N . We can arrange for � to be

positive, by interchanging a pair of rows in B or eB in the construction de�ning

� from the proof of Proposition 29. Therefore, the facet F is also described

by X
j2N

(�aj)xj � �b : (27)

Now, let r be the integer �al=2
l for some l 2 N for which al 6= 0. So we have

2l(�aj) �= 2lr2j (mod p). Since p does not divide 2j , we can conclude that

�aj �= r2j (mod p). So (27) is an (r; p; n) inequality. �
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