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Abstract

In this paper, we discuss the literature on production planning ap-
proaches in the process industry. Our contribution is to underline the
differences, as well as the similarities, between issues and models arising
in process environments and better known situations arising in discrete
manufacturing, and to explain how these features affect the optimiza-
tion models used in production planning. We present an overview of
the distinctive features of process industries, as they relate to produc-
tion planning issues. We discuss some of the difficulties encountered
with the implementation of classical flow control techniques, like MRP
or JIT, and we describe how various authors suggest to solve these
difficulties. In particular we focus on the concept of “recipe”, which
extends the classical Bill of Materials used in discrete manufacturing,
and we describe how the specific features of recipes are taken into
account by different production planning models. Finally,we give a
survey of specific flow control models and algorithmic techniques that
have been specifically developed for process industries.
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1 Introduction: distinctive features of the process
industry

1.1 Defining features

The APICS dictionary [9] defines process manufacturing as “production
that adds value to materials by mixing, separating, forming or chemical
reactions.” This definition provides the key elements to classify industries
as “process” or “manufacturing”. The dictionary also proposes a further
distinction between batch and continuous processing, where batch processing
is defined as “a manufacturing technique in which parts are accumulated and
processed together in a lot,” while continuous flow production is “lotless
production in which products flow continuously rather than being divided”
[9]. Earlier versions of the dictionary added that processes “... generally
require rigid process control and high capital investment” [8].

Hayes and Wheelwright ([77], [78], [79]) initiated a stream of research
that stresses relations between product characteristics and technological pro-
cesses adopted by firms. In the view of these authors, the successive pro-
duction processes required to transform raw materials into consumer goods
define a “commercial chain” linking raw material suppliers to providers of
end-products. They state ([79, pp. 278-279]):

“At the risk of oversimplification, as one moves from the up-
stream end of the commercial chain (raw material suppliers)
toward the downstream end (the ultimate consumer), product
variety increases and highly standardized commoditylike prod-
ucts evolve toward specialized consumer-oriented products. This
evolution is accompanied by important differences in the produc-
tion processes used at different points in the chain and the cost
structures associated with them.”

Hayes and Wheelwhright propose to position industries along two prin-
cipal axes, respectively associated with product structure and product life
cycle stage vs. process structure and process life cycle stage. As products
and processes mature, industries move down along these two axes. These
authors also highlight that some combinations of features (e.g., highly au-
tomated processes with broad, non standardized product lines) usually turn
out to be nonprofitable. Safizadeh et al. [124] validate this assumption
through a survey of American companies. The majority of firms their sam-
ple follow the expected patterns.



Issue Upstream Downstream
Product More standardized More specialized

Extent of product line Narrower Broader

Length of production runs Longer Shorter

Type of production process Automated, connected Labor-intensive, disconnected
Capital intensity of production Higher Lower,then higher

Breakeven utilization point Higher Lower

Typical response to market downturns Reduce prices Reduce production
Variability of profit Higher Lower

Table 1: Differences among links in the commercial chain according to Hayes
and Wheelwhright [79, p. 278, Table 9-1].

Taylor, Seward and Bolander [157] propose the “matrix” displayed in
Table 2, which is inspired by the work of Hayes and Weelwright and pro-
vides a convenient tool to emphasize some of the differences between process
industries and manufacturing industries; see also Ashayeri, Teelen and Selen
[11]. Boskma [34, p. 74] introduces a similar table classifying industries on
the basis of their production type and turnover.

Traditionally, process industries have been mostly concentrated in the
lower right part of Table 2, associated with commodity products and flow
shop layouts. We should mention, however, that this traditional positioning
has noticeably evolved in recent years, as process industries tend to adopt
market oriented strategies that lead to diversified lines of products, dis-
playing client-specific characteristics and produced according to a “make-
to-order” policy. This trend is confirmed by the observations reported in
Safizadeh et al. [124], where most off-diagonal companies belong to process
industries (batch shop or continuous flow shop). Berry and Cooper [20] de-
velop methods for measuring and diagnosing the quality of the alignment
between marketing and manufacturing strategies in process industries.

1.2 Process industry vs. discrete manufacturing

Relatively few research papers are dedicated to production management in
the process industry. Their authors usually focus on differences between
“process industry” and “discrete manufacturing” (see e.g. [64], [100], [157],
[158]) and develop new concepts to solve specific production management
problems (e.g. [63], [116], [162]).

Excellent overviews of the main issues at stake can be found in [11],



Product

Custom Low volume High volume Commodit;

Job Aerospace
shop Industrial machinery
Machine tools
Drugs
Specialty chemicals
Electrical and electronics
Process Automobile
Tire and rubber
Steel products
Major chemicals
Paper
Containers
Brewers
Oil
Flow Steel

shop Forest products

Table 2: Industry classification from Taylor et al. [157]

[64], [151], [157] or [158]. Ashayeri, Teelen and Selen [11], for instance,
mention twenty-eight features distinguishing process industries from discrete
industries. These features are listed in Table 3.

Several items could be added to Table 3. Among these are the following,
which we believe are key differences between process industries and discrete
manufacturing in terms of planning and scheduling activities.

e In process industries, raw materials and goods are often perishable;
this places specific constraints on production planning and inventory
management; on the other hand, perishability is usually not an issue
in discrete manufacturing (although many exceptions could be cited;
see [105]).

e For the purpose of long term or medium term planning, detailed rout-
ing information is often required in process industries, as products are
commonly defined by (or identified with) the succession of production
steps which they undergo; by contrast, routing information is usually
disregarded until the scheduling phase in manufacturing industries. It
is only implicitly considered in the value of leadtime parameters and



Relationship with
the market

Product type

Product assortment
Demand per product
Cost per product

Order winners

Transporting costs
New Products

The Product Process

Routings

Lay-out

Flexibility

Production equipment
Labor intensity
Capital intensity
Changeover times
Work in process
Volumes

Quality
Environmental
mands

Danger
Quality measurement

de-

Planning & control
Production

Long term planning
Short term planning
Starting point planning
Material flow

Yield variability
"Explosion’ via

By and Coproducts
Lot tracing

Process Industries

Commodity
Narrow

High

Low

Price

Delivery guarantee
High

Few

Fixed

By product
Low
Specialized
Low

High

High

Low

High

High

Sometimes
Sometimes long

To stock

Capacity

Utilization capacity
Availability capacity
Divergent + convergent
Sometimes high
Recipes

Sometimes

Mostly necessary

Discrete Industries

Custom

Broad

Low

High

Speed of delivery
Product features
Low

Many

Variable

By function
High
Universal
High

Low

Low

High

Low

Low

Hardly
Short

To order

Product design
Utilization personnel
Availability material
Convergent

Mostly low

Bill of Materials

Not

Mostly not necessary

Table 3: Differences between process industry and manufacturing industry.

From Ashayeri et al. [11]




of other aggregated parameters used for instance in master production
scheduling and in rough-cut capacity planning.

e Raw materials frequently play a very central role in production man-
agement activities for process industries. They usually fall into two
distinct classes, namely main materials on one hand and auziliary (or
secondary) materials on the other hand. Efficient management of the
main raw materials is often a top priority in process industries; we
return to this issue in Section 2.

e Sometimes, the sales mix of finished products has to be optimized due
to the existence of co-product links (see [158]).

It should also be observed that much of the above discussion focuses on
continuous process industries. Further differences emerge when one con-
siders batch process industries, which can be viewed as positioned halfway
between continuous and manufacturing industries. As a matter of fact,
Fransoo and Rutten [64] propose Table 4, where several types of industries
are positioned on a continuous axis ranging from batch process to flow pro-
cess. Dennis and Meredith [52] similarly emphasize the need to distinguish
between different types of process industries and propose seven classes of
process industries based on sixteen discriminant characteristics [53].

batch process
/ mix / flow
drugs speciality rubber major paper brewers steel oil
chemi- chemi-
cals cals

Table 4: Process industries classification. From Fransoo and Rutten. [64]

From the more specific point of view of planning and scheduling, the
following features of batch process industries should be mentioned.

e More and more process industries (even in traditional “heavy” sectors
like the steel industry) are shifting to specialties market and are no
longer basing their strategy on a “make-to-stock” approach only (see
e.g. [96]). This is especially true of batch process industries, as these
industries no longer restrict themselves to commodity products, but
also attempt to customize their products and to move toward spe-
cific market niches with higher profit margins (e.g. pharmaceutical
industries, chemical specialties).



e The rate at which new products are introduced increases steadily in
batch process industries, so that these industries commonly use key
performance indicators such as the “number of new products per year”
(see e.g. [16], [168]).

e As far as production planning is concerned, batch process industries
must cope with variable recipes and sequences of transformation pro-
cesses, as the flow of materials can change from one batch to the next.

e All materials, from raw materials to finished products, usually use spe-
ctal storage equipments that must be taken explicitly into account by
planning and scheduling systems (temperature constraints, impossi-
bility to store different products in a same tank, etc.; see [89]).

e Scheduling is often more complicated than in continuous process in-
dustries due to the broader diversity of products and, therefore, the
greater variety of production paths and greater short-term variations
in product demand.

2  Materials and information flow control models

Bertrand, Wortmann and Wijngaard [21] define production control as “the
coordination of supply and production activities in manufacturing systems
to achieve a specific delivery flexibility and delivery reliability at minimum
cost”. Fransoo [63] adapts this definition for continuous process industries
into: “the coordination of production and order delivery activities (...) in
order to maximize the profit”. It should be stressed that the shift, in these
definitions, from “minimizing cost” to “maximizing profit” is a major one.
Constraints such as the availability of raw materials, the simultaneous pro-
duction of final products and co-products or by-products, or the optimal
usage of expensive equipments, strongly influence production control, so
that demand satisfaction can no longer be enforced, as is often the case
in discrete manufacturing. Thus, it becomes necessary to select the sales
portfolio in order to maximize profit.

The above definitions subsume production and operations management
activities with different time horizons, like production planning, scheduling
and day-to-day (shop floor) control. In this section, we discuss the difficulties
faced by classical flow control techniques in a process environment and the
required adaptations with respect to discrete manufacturing.



2.1 Need for the integration of pull and push strategies

Many authors mention process industries as typical, even paradigmatic, ex-
amples of “push systems”. They base this claim on several of the main
characteristics of process industries: the major role played by raw materials
(we examine this point in greater details in Section 2.3), the technological
constraints placed by the transformation process (e.g., impossibility to store
intermediate products), the plant topologies (production lines), the mar-
ket characteristics (commodity products with high and stable or predictable
demand) and the fact that such industries are very capital intensive, with
little or no flexibility in capacity usage. Mirsky [96], for instance, describes
as follows the key problem of implementing JIT (pull) techniques in process
industries: Due to capital-intensive processes or resource constraints, ca-
pacity is fixed. But seasonality effects result in demand peaks which exceed
capacity. Thus, planning is necessary to smooth production runs, contrary
to the underlying philosophy of pull systems.

But in fact, as observed by other authors, a less extreme view may often
be closer to reality. From a market perspective, there exists a trend, already
mentioned above, according to which process industries tend to move away
from make-to-stock and toward make-to-order strategies, while offering a
more diversified, customized line of products. Under such conditions, firms
may be tempted to adopt hybrid push-pull control systems in order to reduce
in-process inventory levels while saturating bottleneck equipments. Planning
objectives for the pre-bottleneck production stages are to feed the bottleneck
with an uninterrupted stream of products, in order to keep this production
stage busy. Thus, a pull strategy is used from the bottleneck up to the
raw materials, as a way to control inventory levels. From the bottleneck
stage down to the last production stages, a push strategy is used in order
to optimize the utilization of the bottleneck.

It must be noticed, however, that such hybrid control strategies are dif-
ficult to describe or to implement rigorously (see e.g. [164]), as the push
and pull strategies impose opposite requirements on the planning system.
Decreasing demand for certain products, for instance, may temporarily re-
quire to slow down or to switch off certain equipments, contrary to the well-
established push wisdom that calls for saturating them. The dairy co-ops
supply systems are another example where integration is not easily achieved,
as the co-ops have the obligation to accept milk collected and to transform
it, independently of the demand for final products.



2.2 Need for a redefinition of basic concepts and principles
used in classical MRP-JIT flow control models

The goal of flow control models is to manage the flows of products and
related informations in order to optimize various production performance
measures. Both Material Requirements Planning (MRP) and Just-in-Time
(JIT) systems, as well as more recent Enterprise Resource Planning (ERP)
systems, are accordingly designed to manage the flow of materials, compo-
nents, tools, production processes and information. Much of the theoretical
analysis and of the practical implementations of MRP and JIT systems,
however, have focused on discrete manufacturing. As a consequence, these
methods heavily rely on concepts and principles which, if relevant for dis-
crete manufacturing, do not necessarily apply in a straightforward way in
a process environment. This is generally true, in spite of the existence of
some practical implementations of MRP-like or specific systems in process
industries (e.g. [5], [18], [38], [41], [93], [107], [113], [160]). We discuss
here some of these key concepts and principles : Bills of Material, work-in-
process reduction, role of alternate routing at the planning level, separation
of planning and scheduling, product costing, demand management

e Both JIT and (especially) MRP techniques use the concept of Bill of
Material, defined by APICS [9] as “a listing of all the subassemblies,
intermediates, parts, and raw materials that go into a parent assembly
showing the quantity of each required to make an assembly (...).” The
APICS definition further specifies that “the Bill of Material may also
be called the formula, recipe, or ingredient list in certain process indus-
tries.” Formulas or recipes, however, are quite different from discrete
BOMSs, and this difference may significantly hamper, or even prevent
the implementation of JIT/MRP systems in process industries (e.g.
[38], [41], [57]). We will come back, in Section 3, to the distinction
between discrete BOMs and process recipes, and to its impact on flow
control models.

e In manufacturing industries, value is added to the product in large part
through direct labor and reducing work-in-process is often one of the
high priorities. This helps explaining why discrete manufacturers are
so concerned with Just-In-Time and materials planning issues. On the
other hand, process manufacturers are usually more concerned about
the efficient use of equipment, in particular because of the importance
of set-up times/costs and of capital investments [74],[79, pp. 278-279].



e Most of the literature on planning models does not deal with routing
and capacity issues. It is implicitly assumed that, in a manufacturing
environment, these issues can be disregarded at the planning level.
They are only explicitly handled at the scheduling level. This assump-
tion is usually invalid in the process industry, where products are typi-
cally defined by the sequence of transformations and operations which
they undergo (i.e., by their routing).

e The dividing line between planning and scheduling issues is not al-
ways drawn unambiguously in the production management literature.
It is usually agreed, in particular, that the distinction between plan-
ning and scheduling should not be based only on the horizon length,
but should also account for production conditions. For instance, if a
production run takes many days, as is frequently the case in process
industries, then the scheduling problem may be defined on a horizon of
more than one week [63]. Similarly, when setups are time-consuming,
lot sizing issues may become crucial and cannot always be deferred to
short-term planning models. As a consequence, planning and schedul-
ing issues arising in the process industry are tightly intertwined. In
extreme cases, lot sizing (a planning issue) and job assignment (a
scheduling issue) can even merge completely into the design of pro-
duction “campaigns”. When this is the case, classical mathematical
models must be adapted accordingly. Birewar and Grossmann [23] pro-
vide an illustration of these comments. Demeulemeester and Herroelen
[51] use a graph approach to incorporate setup times and batching in
production planning and scheduling. Allen and Schuster [6] propose
an aggregation-disaggregation algorithm to reach the same objective.

e In manufacturing industries, planning is classically based on direct
costs, among which labor costs are the most important. MRP systems
also rely on direct costing procedures for planning and cost reporting.
In process industries, and especially for continuous processes, direct
costs only represent a small part of the total product costs (e.g. Moran
[100]) due to the high level of capital investment, measured by the
sales/asset ratio ([79, pp. 278-279]), and to large setup and changeovers
costs. Cost management experts debate on how to calculate the cost
of products which share common raw materials or common production
stages, and how to take investments into account in product costing
(see e.g. [40], [81], [99], [130]). Sandretto [126] promotes mathematical
programming techniques to decide which products to make in the case



of joint products. Aiello [3] highlights the benefits of a costing method
based on the analysis of the variance of the production costs across
batches, as opposed to the product costing approach.

e Demand management sometimes requires specific approaches. Pro-
duction constraints such as setup time and changeovers, which im-
pact the cycle time, must be integrated with demand management
in order to select products that maximize profit. In this context,
Fransoo [62] develops a heuristic to optimize the production cycle
time. Venkataram and Nathan [166] develop a weighted integer goal-
programming model taking into account minimum batch sizes for mas-
ter production scheduling.

e Often in process industries, as in repetitive manufacturing, the quality
of raw materials or end products can be variable. Moreover, specifica-
tions differ from one customer to another (see e.g. [57], [160]). Higher
quality products can be used to satisfy demand for lower quality ones,
and planning and scheduling have to take these aspects into account
when determining the optimal lot sizes and schedule. For example,
Gerchak et al. [67] examine this problem in the case of random yields.

For all the above reasons, MRP and JIT are not very well suited to the
needs of process industries. Schuster and Allen ([131],[133]), for instance,
document the shortcomings of an MRP system in a food processing company
(see also [38], [132]).

Nevertheless, and in spite of these obstacles, some of the underlying basic
principles of JIT models have been used in process industries to increase the
performance of supply chains and processes (e.g. [22], [39], [54]). Typically,
purchasing and quality improvement, inventory reduction, people involve-
ment and waste elimination programs can be applied in process industries
as well as in discrete manufacturing (e.g. [101]). For instance, Hougton and
Portougal [82] describe the reengineering of a production planning process
by JIT techniques in a food company whose production process consists of
packaging lines.

Some papers (see e.g. [19], [110], [141], [148], [149]) discuss the integra-
tion of MRP and JIT techniques, but none of them is oriented toward the
process industry, except for the analysis proposed by Mirsky [96].
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2.3 Key importance of raw materials management

In many industries, raw materials are managed via the Bill of Material
(BOM) data and are essentially viewed as providing a link (or, sometimes,
a barrier or frontier!) between the purchasing and production departments
(see e.g. [37]). In process industries, raw materials frequently play a more
active role for production management activities.

Raw materials consumed by process industries usually fall into two dis-
tinct classes, say main materials on one hand and auziliary (or secondary)
materials on the other hand. For instance, in the steel industry, iron ore and
coal could be viewed as main materials, whereas various additives would be
treated as auxiliary materials. In the dairy industry, milk and cream are
main materials, whereas chemical tracers and packaging components are
auxiliary materials.

In many cases, the auxiliary materials can be managed using classical
BOM-based approaches. But main materials, by contrast, display several
distinguishing features which require to manage them more carefully (see
e.g. [64], [79], [157]):

e Typically, there are very few types of main materials and they consti-
tute the key elements in the definition of the products.

e They often place the main constraints (related to capacity, availability,
price,...) on production management.

e Their cost represents a major part of the total marginal production
cost, sometimes up to 90 percent of the sales value.

e Their market is frequently highly competitive and speculative.

e Composition varies from batch to batch (e.g., sulfur and naphta con-
tents of oil, iron content of ore, fat content of milk, etc.).

e Only some of the characteristics or attributes of raw materials are
valuable and are used in the end product (e.g. the iron content of ore).

e Often, the supply flows of raw materials are not totally under control,
and deliveries are not necessarily linked to specific orders. Moreover,
the raw materials can be perishable and have to be transformed within
a short time span (say a few days) into finished products. This lack of
control over supply is for instance observed in the case of dairy co-ops
where the milk collected has to be pushed in the process. The same
problem is highly present in the fish industry and Jensson [84] develop

11



a production scheduling decision system to deal with the randomness
of fish supply.

When the “core” raw material is a scarce resource, its management be-
comes an essential but complex task and the company often delegates this
task to a cross-functional committee (see [133]). This committee is responsi-
ble for assigning raw materials to plants or production lines and for selecting
production recipes depending on the demand and on raw materials availabil-
ity. In other cases, recipes are defined by an operational manager, sometimes
assisted by ad hoc decision support systems (see e.g. [4], [12], [43], [95], [159]
and Section 3).

This implies, in particular, that decisions related to production planning,
inventory control and product definition must be more tightly interconnected
in process industries than in discrete manufacturing industries.

2.4 Need for detailed planning/scheduling of storage facili-
ties

Finally, in this section, we briefly mention some of the work that tries to
account for limited storage availability. Of course, limited storage is not
unique to process industries. Many classical planning and scheduling models,
for instance, explicitly model finite capacity buffers; see for instance [73],
[112]. Storage availability, however, often takes a special importance in the
process industries because of its highly constraining features:

e As opposed to industrial warehouses or shelf-space, where “one addi-
tional” item can often be squeezed without too much difficulty, the
capacity of tanks for liquid products (oil, juice, chemicals, ...) places
a hard constraint which cannot be violated under any circumstances.

e Different products cannot be mixed in a same tank.

e Tanks and containers may require to be cleaned when switching from
one product to another.

e As part of their processing requirements, semi-finished products may
require to be stored for some (usually, flexible) amount of time in
intermediate storage facilities.

All these characteristics translate into complex restrictions on feasible
routings, schedules and batch sizes for the mix of products produced over a
given horizon of time.
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Ballintijn [15], for instance, introduces tank allocation issues into a
mixed-integer programming model for refinery scheduling. Snyder and Ibrahim
[140] investigate tank capacity restrictions by statistical analysis and simu-
lations techniques for a large bulk storage investment analysis. Pantelides
[111] considers tank capacity and availability as elements of the resource
set in a State Task or Resource Task Network. Daellenbach [45] describes
and solves an assignment problem with storage capacity under stochastic
demand. Northrop [109] presents an application of the OPT (Optimized
Production Technology) approach to tank allocation in a brewery.

3 Bill of Material and recipes

In this section, we examine in more detail the peculiarities of the Bill of
Material (and its close relatives) in the process industries and we provide a
brief review of the models proposed in the literature.

3.1 Main features of product recipes

The Bill of Material concept has been already defined and discussed. Fur-
ther discussions of this concept in the discrete manufacturing framework are
provided in numerous references, e.g. [75], [94], [127].

In process environments, the role of the BOM is played by product recipes
or formulas. The main distinguishing features of recipes, as opposed to
classical BOMSs, can be described as follows.

e The classical description of a Bill of Material, typical of discrete as-
sembly processes, is through an acyclic oriented graph indicating the
relation between each unit of the finished product and the components
necessary to manufacture it. The graph structure converges into the
top node (associated to the final product), as all units of raw materi-
als, parts and subassemblies eventually “merge” into one unit of the
parent assembly. In process industries, product structures are often
divergent rather than convergent, reflecting e.g. the existence of split-
ting operations and the generation of co-products (or by-products) as
part of the production process. Fransoo and Rutten ([64]) conducted
a survey and analyzed the typology of BOM in the process industry.
They summarize the different types of BOMs by Figure 1. Cycles
also frequently appear, as some materials flows must revisit previous
process stages (see e.g. [127] for an example in the chemical industry).

13



Outputs

Inputs
Discrete Discrete with Process Process with
Production Production
Options Options

Figure 1: Different types of Bill of Material

e A most important feature of recipes is that they usually allow for al-
ternative ways of obtaining a certain final product. This opens the
possibility to design the product during the planning phase, or even
in the course of production, depending for instance on the availabil-
ity or on the cost of the required ingredients. Of course, alternative
process plans are also commonplace in the manufacturing industry
(e.g., in metal-cutting activities), but they usually translate into the
possibility to use various routings rather than different BOMs. Their
impact on tactical (medium-term) production planning remains quite
marginal, as the choice of routing is typically done during the schedul-
ing phase. In process industries, alternative recipes arise in one of two
ways: either a finite collection of fixed admissible recipes is established
(as in [43], [123]) or the final product is characterized by a set of at-
tribute values and any production plan yielding these attribute values
is considered admissible (e.g., the final product must contain at least
50% of cacao powder and less than 10% of fat). The latter type of
recipes leads to the formulation of blending models, in the line of the
famous diet model discussed in Dantzig [46]. We provide a review of
the literature on blending models in Section 3.3. It is crucial to notice
that different blending recipes may lead to different consumption pat-
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terns for the various ingredients, may generate different quantities of
co-products and may result in very different costs [123]. These recipes
capabilities must be validated by quality control or product design
departments (see e.g. [56]).

e Just as in discrete manufacturing, the existence of alternative recipes
also affects the available process routings. Product and process should
still be considered as different concepts. However, the distinction be-
tween them is often blurred, as production managers do not distinguish
the product specification and the way (or routing) to obtain it. For ex-
ample, the ISA SP88 standard ([47], [61], [76]) defines a recipe as “the
necessary set that uniquely defines the production requirements for a
specific product”.

e Finally, the description of product recipes is frequently complicated
by variable yields, variable concentrations, distinct unit ranges at dif-
ferent production stages (e.g. toms, liters and packaging units), etc.
(see e.g. [41], [64]). As a result, monitoring “flow conservation” and
“material balance” constitutes a non-trivial challenge for mathemati-
cal models used in production planning.

3.2 Bill of Material and operations

A basic tool used in the chemical engineering literature to deal with the
BOM is the State-Task Network (or STN), proposed by Kondili et al. [88] as
a way of representing chemical processes by two types of nodes: state nodes
representing materials and task nodes representing process activities (see
Figure 2). The State-Task Network can be called an “co-products BOM”,
since it is a natural extension of the BOM obtained by introducing operations
that consume several products and/or produce several co-products at the
same time in fixed proportions.

Pantelides [111] proposed a framework unifying the two node types, viz.
the Resource-Task Network or RTN. This framework is used extensively for

formulating short term scheduling problems in the chemical industry (see
e.g. [55], [88], [173], [174]).

3.3 Blending models and recipe optimization: a literature
classification

As explained above, production recipes are often flexible in process indus-
tries. Flexible recipes are not adequately captured by the ”co-products
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e B
State Nodes State Nodes
(materials Task Node (materials
inputs) (Operation) produced)

o NG

Figure 2: co-products BOM

BOM?” described in the previous section, as the type and rate of the prod-
ucts which are consumed and/or produced may vary. On the other hand, a
large body of literature on blending models has emerged to deal with flexible
recipes.

Generally speaking, blending models require the determination of a cheap-
est blend, or recipe, subject to a collection of constraints regarding the avail-
ability of raw materials and the target characteristics (nutrient contents,
octane grade,...) of the final product. Based on a literature review, we
propose a classification of blending models along two dimensions: the type
of industry and the hierarchical level of the model within the production
planning procedures.

e Type of industry: we found that blending models differ according
to the industrial sector in which they are used. Therefore, we classify
process industries in different classes depending on their core business.
We also decompose the oil sector into sub-sectors, depending on the
type of process where blending models are encountered.

e Degree of integration of the model. We distinguish three classes of
applications:
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— Product design and other applications: the blending model is self-
supporting and isolated from other production planning models.

— Long- or mid-term planning: the blending model is integrated in
a mathematical model for long-term or mid-term (master) plan-
ning. We group both types of models, since they were found to
be quite similar.

— Short-term planning and scheduling. As discussed in Section 2.4,
these two levels are frequently intertwined or sometimes com-
pletely merged. Therefore, we group both levels into one class.

Table 5 displays the results of this classification.

Industry Product design and Long- and mid-term Short-term  planning
other applications planning and scheduling
Food [24], [58], [66], [121], [121], [169, pp 272- [122]
[143] 279], [170]
Feed [48], [68], [104], [117], [150] [68]
[163], [171]
Oil: Gasoline- [36], [70], [71], [92], [49] , [119] [42]
blending [14]
Oil: Refining [7], [14], [42], [92], [15]
[136, pp 397-404], [80,
pp 73-75]
Oil: Pooling [2], [7], [91], [136] [14], [91]
Oil: Unloading [90]
and allocation
Oil: Overview [14], [27]
Steel industry [36], [50], [138], [145] [59], [137]
Chemical (mostly [4], [85], [95], [120] [120] [35], [159]
paint industries)
Energy [138] [114]
Agriculture [12], [48], [69], [104], [150] [68]
[117], [163], [171]
General applica- [60], [108], [144]
tions

Table 5: Classification of blending models
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4 Specialized approaches for flow control

So far, we have highlighted the differences between the planning concepts,
requirements and models in discrete manufacturing and process industries.
Here we present models and algorithms that have been proposed to tackle
specific planning and scheduling problems for the process industries. Due
to the above limitations, many new algorithms, often optimization-based,
have been developed for production planning problems arising in process
industries (see e.g. [27], [118], [136] for a presentation). Therefore, we classify
these contributions by type of algorithms used. For each approach, the
intended area of application may be quite generic or, on the contrary, very
specific to a certain industry or company context.

Mathematical progamming models and algorithms

Some authors propose to build integrated planning and scheduling mod-
els by interconnecting several classical mixed-integer linear programming
models; see e.g. Coxhead [42] for a refinery plant. Birewar and Grossmann
[23] develop linear models coupled with rounding policies for defining pro-
duction campaigns in the case of multi-products manufacturing lines. Nem-
bhard and Birge [108] propose a multiobjective nonlinear model for costly
startup optimization. Schuster and Allen [133] formulate a linear program-
ming model to allocate scarce resources in a food company. Adelman et al.
[1] use integer programming techniques to allocate fibers in a cable manufac-
turing company. Jensson [84] uses linear programming models to schedule
production in fish industries in which the randomness of raw materials is
the most difficult parameter. Allen et Schuster [6] develop an aggregation-
disaggreation procedure before using classical scheduling models. Sahinidis
and Grossmann [125] develop mixed-integer linear programming models cou-
pled with variable disaggregation to analyze strategic production planning
for chemical companies (see also Koéksalan and Siiral [87] for a drink com-
pany and Sinha et al.[139] for a steel industry).

Graph and network models

In most cases in which either raw materials are scarce resources or the
production flexibility is limited, planning and scheduling models incorporate
the issue of recipe management (product design) and describe the flow of
materials through all process stages, from raw materials to finished products.
Graph models are often used to describe these flows, and to facilitate the
modular construction of the associated optimization models. This is for
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instance the case of the process flow scheduling approach proposed first by
Bolander ([28], [29]) and further developed in [30], [31], [32], [83], [152],
[153], [154], [155], [156], of the product routing approach in [165] and of the
process train approach in [33].

Resource-Task Networks or State-Task Networks are used in [44], [51],
[88], [111], [134] to formulate and solve planning and scheduling problems in
process environments. The STN is most broadly used for planning and the
RTN for short-term scheduling. Recent papers are dedicated to these net-
work representations and focus on how to solve the huge MILP or MINLP
problems to which they give rise; e.g. [25], [26], [35], [55], [135]. Another
interesting research direction is to investigate efficient ways to model time
in such scheduling problems, e.g. by uniform discretization ([173]), or by
nonuniform discretization ([97]), or continuously ([13], [98], [128], [129],
[147]), or by event sequencing ([174]).

Optimization heuristics

Tadei et al. [146] present a partitioning algorithm and local search tech-
niques for aggregate planning and scheduling in the food industry. Stauffer
[142] develops meta-heuristics to schedule steel processes. Graells et al. [72]
and Van Bael [161] use simulated annealing to solve chemical scheduling
problems.

Expert systems and simulation techniques

Artiba and Riane [10] combine expert system techniques, simulation, op-
timization algorithms and heuristics to develop a planning and scheduling
system for batch chemical industries. Baudet et al. [17] combine discrete
events simulation techniques with meta-heuristics algorithms to schedule
job-shop plants (chemical and computer industries). Verbraeck [167] devel-
ops an expert system for scheduling in a metal transforming industry. Mor-
eira and Oliveira [102] use expert system techniques in combination with
an MRP model for short term planning in a petrochemical environment.
Nakhla [106] proposes a rule-based approach for scheduling packaging lines
in a dairy industry. Some authors (e.g.Winkler[172]) propose to combine
visualization tools and optimization techniques for solving scheduling prob-
lems.

Neural networks and fuzzy sets
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Puigjaner and A. Espuna [115], as well as Katayma [86], propose produc-
tion control tools based on neural networks for the batch process industry.
Miiller [103] uses fuzzy sets to solve production scheduling problems in the
dairy industry.

Theory of Constraints

Schuster and Allen [132] propose a “Theory of Constraints” approach to
handle scheduling problems arising in packaging lines for the food industry.
Northrop [109] presents an application of the OPT (Optimized Production
Technology) approach to tank allocation in a brewery. Both focus on optimal
usage of scarce resources.

Control theory

Control theory has been used for bottlenecks and supply chain optimiza-
tion, see e.g. [21], [131].

Statistical and probabilistic analysis

Fransoo, Sridharan and Bertrand [65], Rutten [121], Rutten and Bertrand
[123] describe probabilistic approaches for demand management in continu-
ous process industries and in the dairy industry.

The relation between methodologies and areas of application is summa-

rized in Table 6. Each cross "x” indicates that we have found paper(s)
examining the applicability of a technique to the corresponding area.

5 Conclusion

The above discussion points toward the need for a more thorough inves-
tigation of the specificities of planning models in process industries. In
particular, the integration of the scheduling phase, of a finer description of
the production process itself, and of recipe management within long term
and hierarchical planning deserve further attention.

From the brief overview done in section 4, it appears that mathematical
programming approaches provide a rather versatile tool for modelling and
solving a variety of production planning problems in the process industry.
This is especially true when such approaches are coupled with flexible and
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Math Graph TOC Heuristiq Stat & control Expert Neural
Prog STN proba theory Sys- Net-
& Algo RTN tem work

planning X X X

scheduling X X X X X

integrated plan- X X X

ning / schedul-

ing

demand X

complex mate- X

rials flow

bottleneck X X

usage

scarce resource X

storage X X

supply chain X X

Table 6: Areas of application vs. techniques

powerful modelling techniques, like graph-based representation tools of the
STN-RTN type.

Currently, we investigate how to optimize product design (and quality)
as a function of the raw materials quality by using more detailed non-linear
production process models (physico-chemical mass balances, ...).

We also investigate extensions of the STN tool to support co-product
BOM with flexible recipes (variables input proportions) and their integration
in the planning process (strategic to operational).

In these investigations, tighter integration of planning and scheduling is
obtained by considering detailed recipes at all levels of the planning process.
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