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1. Introduction

Over the last decade, the economics of research joint ventures (or RJVs) has

emerged as one of the most active fields of research in industrial economics. Prior

to that, Tirole (1988) wrote “Very little work has been done on the subject of

RJVs, which is surprising in view of their potential importance in the antitrust

area (particularly for high technology industries).” This rather sudden surge of

interest in R&D cooperation seems to have been triggered by the passage of the

National Cooperation Act in the United States in 1984, allowing firms to cooperate

in R&D provided they remain competitors in product markets. Indeed, although

a permissive antitrust attitude towards R&D cooperation has been the norm in

Europe and Japan early on, no theoretical or empirical inquiry into this important

issue was available to guide the antitrust decision process before the pioneering,

and unfortunately mostly unnoticed, work by Ruff (1969).1

More recently, following work by Katz (1986) and d’Aspremont and Jacquemin

(1988), henceforth AJ, this theoretical omission was promptly addressed by many

researchers: See DeBondt (1997) for an extensive survey. In particular, Kamien,

Muller and Zang (1992), henceforth KMZ, analyze a model related to AJ’s and

extend the analysis in a number of different directions, including a richer set of

R&D cooperation scenarios, see also Kamien and Zang (1993).2

In this literature, the main focus is on a performance evaluation of various

forms of cooperative R&D relative to noncooperative R&D for firms competing

in a product market. The comparison criteria are standard: equilibrium levels of

R&D, producer and consumer surplus, and social welfare. In most studies, R&D

1As early as 1957, Article 85 of the Treaty of Rome stipulated a block exemption of R&D

cooperation from antitrust restrictions. In fact, both in Europe and in Japan, RJVs are often

initiated in specific programs (such as ESPRIT and EUREKA in Europe and VLSI in Japan)

launched by government bodies, and heavily subsidised. The 1984 Act in the US was then seen

as a response to enhance the international competitiveness of US firms in world markets.
2An interesting new strand of the literature on RJVs is based on a mechanism design ap-

proach: see d’Aspremont, Bhattacharya and Gerard-Varet (1998, 2000).



results are imperfectly appropriable to a degree parametrized between 0 and 1,

called the spillover parameter. R&D cooperation can be realized along two distinct

(but possibly simultaneous) dimensions for firms competing in a product market.

First, firms may cartelize their R&D expenditure levels in order to maximize their

joint product market (e.g. Cournot) profits while conducting R&D in separate

labs (with the spillover parameter kept at its natural level). Second, firms may

jointly agree to internally set the spillover parameter equal to its maximal value

of 1, thereby fully sharing their R&D activity amongst the participants (while

choosing their R&D levels noncooperatively). KMZ refers to the former scenario

as an R&D cartel, to the second one as a research joint venture, and to their

simultaneous implementation as a cartelized RJV.

AJ and KMZ’s main result states that the cartelized RJV is superior to all

the other scenarios considered, including in particular the noncooperative case,

along every criterion of interest: At equilibrium, it yields the lowest price in the

product market, the highest level of final R&D and profit for each firm, and

the highest social welfare. Thus, at least for industries with nearly symmetric

firms, this result maintains that full cooperation in R&D (along both dimensions

described above) is good for everyone concerned, provided that the participating

firms indeed remain competitors in the product market. The subtle and important

issue of whether cooperation in R&D increases the likelihood of collusion in the

product market has not received much theoretical attention so far.

The analysis of AJ, KMZ, and most of the other follow-up papers relies on

a number of simplifying assumptions. The underlying two-stage game is always

symmetric, i.e., the firms are ex-ante identical. Demand and production costs are

always taken to be linear. With the exception of KMZ, R&D costs are typically

postulated to be quadratic in the level of cost reduction. Furthermore, for all

R&D scenarios considered, attention has always been restricted to symmetric

equilibrium outcomes. For most of the proposed scenarios, this assumption of ex-

post symmetry can be fully justified. However, for the R&D cartel, as Salant and

Shaffer (1998) have shown, this restriction may well result in a failure to achieve
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the global maximum of the joint payoff function. (This is due to the possible

failure of joint concavity of the total payoff in the two R&D decisions, in spite of

the assumed concavity of each payoff in own decision.) In other words, identical

firms colluding in their R&D choices and then competing in a product market

may well find it advantageous to settle for different levels of R&D, thereby ending

up as unequal rivals in the product market.

The present paper has two objectives. First, an attempt is made to generalize

and unify the previous results of this literature. In particular, the specifications

of linear demand and production costs, quadratic R&D costs, as well as the tra-

ditional separation between Cournot and Bertrand cases, are removed. This is

accomplished by representing the product market competition at the second-stage

by a function Π(·, ·), which gives a firm’s equilibrium profit in the product market

as a function of the two post-R&D unit costs. This approach requires only the

most basic assumptions on the product market primitives, which are satisfied very

broadly, in particular under all the common specifications of Cournot competition

with differentiated or homogeneous products and Bertrand competition with dif-

ferentiated products. Thus our analysis provides a unified treatment of strategic

R&D encompassing most known specifications of product market competition.

Throughout the present paper, an ancillary objective is to employ only minimally

sufficient assumptions on Π needed for our results, thereby preserving as high a

level of generality as possible, while also formally establishing the existence of a

unique symmetric subgame-perfect equilibrium for the two-stage game at hand.3

The second main purpose of this paper is to formalize the concept of an optimal

R&D cartel, from the firms’ standpoint, and provide a characterization of its

3While quite a few earlier related studies also deal with very general models (including Bran-

der and Spencer (1983), Spence (1984), Katz (1986), Suzumura (1992), Simpson and Vonortas

(1996)), they do not address the issue of existence of subgame-perfect equilibrium, or its unique-

ness, or how the failure of the latter may affect relevant comparative statics results derived from

the model. By contrast, we provide a minimal set of assumptions leading to a unified rigorous

treatment incorporating all the issues raised here, in addition to the removal of the unjustified

ex-post symmetry assumption.
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properties. In an optimal R&D cartel, participating firms choose the level of the

spillover parameter in the interval
[
β, 1

]
in addition to the (possibly asymmetric)

levels of R&D for each firm (where β is the lowest feasible spillover rate for the

industry at hand) in order to maximize joint profits. By so endogenizing the value

of the spillover rate for an R&D cooperative, one clearly captures the fullest scope

of cooperative behavior possible along the two dimensions described above. It is

natural to postulate that when contemplating R&D cooperation, firms would seek

to find the most profitable way of doing so, provided it is legal and implementable.

As a by-product of the analysis of this new issue, we further generalize the results

of AJ and KMZ by dispensing with the rather disturbing assumption of ex-post

symmetry for R&D cartels, thereby addressing the criticism raised by Salant and

Shaffer (1998, 1999). See also Long and Soubeyran (2001).

Our results may be summarized as follows. For the noncooperative R&D sce-

nario, we establish the existence and uniqueness of a symmetric subgame-perfect

equilibrium for the two-stage game, under our new more general set-up. Also, we

show that the equilibrium effective R&D level is decreasing in the spillover param-

eter, which is in accord with basic economic intuition. Keeping the assumption of

ex-post symmetry, we show that the principal result from previous studies on the

overall superiority of the cartelized RJV over all the other scenarios essentially

carries over to our framework.

The question of whether this important result remains valid without the as-

sumption of ex-post symmetry is naturally embedded in the more general issue

of optimal R&D cartel design (with endogenous spillover rate) for the firms. The

main result in our general framework establishes that the optimal R&D cartel

must either be the cartelized RJV (with spillover equal to 1), or else call for all

the R&D to be conducted by one firm only. Furthermore, with a natural weak

convexity assumption on Π, the latter case always involves, in addition, an op-

timal choice of minimal spillover (i.e. β), a somewhat surprising general result

for which we provide a natural economic interpretation. Finally, under a strong

convexity condition on the R&D cost function (beyond what is needed for the
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analysis of noncooperative R&D), firms would always find it globally optimal to

choose equal levels of R&D in a cartel, thereby leading again to the superiority of

the cartelized RJV.

Furthermore, in the specific context of Cournot competition with linear de-

mand and production costs, and quadratic R&D costs, we provide specific con-

ditions under which the optimal cartel involves a zero spillover choice (and has

only one firm conducting R&D.) Since this example fits the framework of KMZ, we

conclude that their main result (about the superiority of the cartelized RJV) relies

crucially on their ex-post symmetry restriction or on other sufficient conditions

on the primitives of the model, which we identify for the example at hand.

This paper is organized as follows. The noncooperative model is described

and its basic properties derived in Section 2. Section 3 deals with cooperative

R&D, comparing various R&D scenarios with an exogenously fixed spillover rate,

and then considers the optimal design of an R&D cartel (from the firms’ point

of view). An illustrative example is presented in Section 4, followed by a brief

conclusion in Section 5. Finally, all proofs are given in Section 6.

2. Noncooperative R&D

2.1. The Model

Consider an industry composed of two identical firms, each with initial unit (pro-

duction) cost c > 0, engaged in the following two-stage game. In the first stage,

Firms 1 and 2 simultaneously conduct process R&D, choosing autonomous R&D

expenditures x1 and x2, respectively. In the second stage of the game, upon ob-

serving x1 and x2, the two firms engage in product market competition, described

below in rather broad terms encompassing both Cournot and Bertrand cases.

Without R&D spillovers, the cost reduction corresponding to an autonomous

expenditure xi is given by f(xi), where f : [0,∞) → [0, c]. However, R&D

spillovers form a key part of this model. As in Spence (1984) and KMZ4, spillovers

4See Amir (2000) for a comparative critique of the other prevalent way to model spillovers,
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are formulated as follows: Given autonomous R&D outlays x1 and x2, the effective

R&D outlays of Firms 1 and 2 are X1 = x1 +βx2 and X2 = x2 +βx1, respectively,

where β ∈ [0, 1] is a spillover parameter. Thus, β = 0 means R&D is perfectly

appropriable while β = 1 means R&D is a pure public good.

Attention is restricted to subgame-perfect equilibria in pure strategies through-

out the paper. Thus, a pure strategy for Firm i in the two-stage game is a pair

(xi, σi) where xi ≥ 0 and σi : [0,∞)2 → [0,∞) is a map from (autonomous) R&D

outlays to product market decisions (i.e. prices or quantities).

The following assumptions are in effect throughout the paper:

(A.1) There exists a Nash equilibrium selection in the second-stage game (of

product market competition), that can be identified for every pair of first-stage

R&D decisions and, when the latter are equal, specifies a symmetric equilibrium.

Let Π : [0, c]2 → R denote the corresponding equilibrium profit function (for

the second-stage game). Here, given post-R&D unit costs c1 and c2 for the two

firms, Π(c1, c2) is the equilibrium profit of the firm whose unit cost is c1 (i.e. the

first argument).

(A.2) Π : [0, c]2 → R is twice continuously differentiable and satisfies5

(i) Π1 < 0 and Π2 > 0.

(ii) |Π1 (z, z)| > Π2 (z, z) , ∀z ∈ [0, c].

(A.3) f : [0,∞) → [0, c] is twice continuously differentiable and satisfies:

(i) f(0) = 0, f(∞) = c, f ′ > 0 and f ′′ < 0.

(ii) f ′(0) = ∞ and f ′(∞) = 0.

(A.4)(i)∀ β ∈ [0, 1], we have, with the Π terms evaluated at [c− f(x1 + βx2), c−
f(x2 + βx1)],

−Π11f
′2(x1+βx2)+Π1f

′′(x1+βx2)−βΠ12f
′(x1+βx2)f

′(x2+βx1) > 0, ∀x1, x2 ≥ 0.

through cost reductions, as in AJ.
5Throughout, a subscript i will denote the partial derivative with respect to the ith variable.
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(ii)∀ β ∈ [0, 1] and z ∈ [0, c], we have, with g
.
= f−1 (the inverse function),

∆Π(z) < g′′(z) ,

where ∆Π(z)
.
= Π11(c − z, c − z) + (1 + β)Π12(c − z, c − z) + βΠ22(c − z, c − z).

We now interpret and discuss the meaning and scope of these conditions,

emphasizing in particular their relationship to their counterparts in related work.

Assumption (A.1) allows for a broad scope of product market competition modes,

including in particular Cournot and Bertrand specifications.6 The equilibrium

selection assumption is convenient and relatively general. A clear-cut way for

(A.1) to hold is to have a unique equilibrium in the second-stage game. In the

case of Cournot competition with linear costs, Amir (1996) shows that this holds

whenever P (·) − ci is a log-concave function, where P (·) is the inverse demand

function and ci is the unit cost of Firm i, i = 1, 2. This is implied by P (·) itself

being log-concave, and is easily seen to be satisfied by most of the widely used

specifications. For Bertrand competition with differentiated products, Milgrom

and Roberts (1990) give a uniqueness argument with several illustrative examples.

However, (A.1) does not require uniqueness of the second-stage equilibrium,

but only that a particular selection be identified for all R&D choices in the first

stage. For instance, in many cases, this can take the form of a maximal or minimal

equilibrium for the second stage, according to some order on the action sets. These

extremal selections are often natural in that they have some justifying property,

such as Pareto-dominance for the firms or the consumers: See e.g. Milgrom and

Roberts (1990) and Amir and Lambson (2000).

(A.2)(i) is self-explanatory: a firm’s profits decrease with own cost, but in-

crease with rival’s cost. (A.2)(ii) says that in a symmetric duopoly, an equal

6It is worth noting that postulating Π as an equilibrium payoff function for the product

market competition also allows for the following interesting interpretation: Π represents the

overall payoff to a multi-stage game (possibly with infinite-horizon) in the product market. In

such a setting, for the two-stage game at hand, the R&D decision is a long-term decision followed

by many short-term market decisions.
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decrease in both firms’ costs raises their profits. Put differently, own cost effects

dominate rival’s cost effects on profit. These are both satisfied very broadly.

With (A.3) clearly reflecting the natural assumption of diminishing returns

in R&D along with customary Inada-type conditions, (A.4) may be viewed as

a strengthening of the same property, as we argue below. (Note that a version

of (A.4) is standard in the literature: see, e.g., p. 1134 in AJ or p. 1298-99 in

KMZ). Since g=̇f−1, g : [0, c) → [0,∞) can be thought of as the process-R&D

cost function, in the sense that it costs g(z) for a firm to (autonomously) reduce

its unit cost by z ∈ [0, c]. An alternative way to state (A.3)(i) is then that g is

twice continuously differentiable, with g(0) = 0, g(c) = ∞, g′ > 0 and g′′ > 0.

While (A.4) clearly imposes a joint restriction on f or g and Π, it is most

instructive to view it as a condition on g for given Π. Indeed, since Π is smooth

on [0, c]2, all its partials are uniformly bounded on [0, c]. Hence (A.4) typically

imposes a lower bound on the degree of concavity of f or convexity of g.7 If,

as is the case in previous models in this literature, Π12 < 0, it is sufficient for

(A.4)(i) that the first two terms have a positive sum, which is the same as Π[c −
f(x1), c−f(x2)] being concave in x1, for fixed x2. A version of the latter condition

is standard in this literature.

As an example, provided g is sufficiently convex (in the sense that g′′ or |f ′′| is

large enough), all of our assumptions here are satisfied in the most commonly used

case of Cournot competition with linear demand P (Q) = a− bQ and unit costs k1

and k2
8, and AJ’s quadratic cost function9 g(z) = γz2/2. Then (A.4)(ii) boils down

to ∆Π = 2(2− β) < 9bγ. Analogous remarks apply to Bertrand competition with

7Furthermore, the level of generality of (A.4) is enhanced by the absence of specific sign

assumptions on each of the second partials of Π. In particular, the negative complementarity

condition Π12 < 0 (or submodularity of Π, see Topkis, 1978) has a natural interpretation here

and would make it easier for both parts of (A.4) to hold, but it is not actually needed. Also,

see Athey and Schmutzler (1995, 2001).
8This leads to equilibrium profits for Firm 1 (say) given by Π(k1, k2) = (a − 2k1 + k2)2/9b.
9The AJ cost function fails to satisfy the natural requirement that g(c) = ∞, and as a

consequence, full cost reduction by both firms may well be the unique equilibrium in their

model. This drawback is outweighed by the computational advantages of the quadratic form.

8



differentiated products, linear demand qi = a − pi + bpj, 0 < b < 1, i, j = 1, 2,

i 	= j, and units costs k1, k2, which leads to equilibrium profits for Firm 1 of

Π(k1, k2) = [(2 + b)a − (2 − b2)k1 + bk2]
2, the details being left out.

Overall, we hope to have shown that this set of assumptions yields a rather

general framework (relative to the related literature), which leaves open the pos-

sibility that the second-stage game may encompass other modes of competition

(in addition to Cournot and Bertrand).

In view of Assumption (A.1) and the restriction to subgame-perfect equilibria,

the payoff function of Firm 1 (say), given R&D decisions x1, x2 ≥ 0, is

F (x1, x2) = Π[c − f(x1 + βx2), c − f(x2 + βx1)] − x1. (2.1)

By symmetry, Firm 2’s payoff is F (x2, x1). Since every Nash equilibrium of the

game with payoffs (2.1) induces a subgame-perfect equilibrium of the two-stage

game at hand and vice-versa, we will use the two equilibrium notions interchange-

ably below.

2.2. The Results

This subsection provides the main results for our noncooperative R&D model:

existence and uniqueness of a symmetric subgame-perfect equilibrium, and its

comparative statics with respect to the spillover parameter β.

Proposition 2.1. Under Assumptions (A.1)-(A.4), the two-stage game has a

unique symmetric subgame-perfect equilibrium, for every β ∈ [0, 1].

In view of Proposition 2.1, the game with payoffs (2.1) has a unique symmetric

(and possibly other asymmetric) equilibrium. As will become clear in the proof of

Proposition 2.1, both existence and uniqueness of a symmetric equilibrium follow

from the fact that Assumptions (A.1)-(A.4) lead to the reaction curve of a firm

being a (single-valued) continuous function that is decreasing at any intersection

with the diagonal.
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Denote by (xN , xN) the symmetric equilibrium R&D expenditures. The fol-

lowing comparative statics result is of independent interest and will be invoked

repeatedly in the analysis of cooperative R&D (in Section 3).

Proposition 2.2. Under Assumptions (A.1)-(A.4), each firm’s effective equilib-

rium R&D level XN = (1 + β)xN is nonincreasing in β ∈ [0, 1].

The conclusion of Proposition 2.2 is interpretable along standard lines: As β

increases, R&D becomes more and more of a public good, inducing each firm to

spend less on autonomous R&D and thus to free ride more on its rival’s R&D.

Observe that the reduction of own R&D due to an increase in the spillover level

is drastic since even effective R&D levels fall. In other words, XN decreasing in

β is a stronger statement than xN decreasing in β.

3. R&D Cooperation

Following AJ and KMZ, we consider two possible (independent) dimensions of

R&D cooperation for firms contemplating participation: (i) Whether firms coor-

dinate their R&D decisions (i.e. expenditures) by maximizing the industry (total)

profit, and (ii) whether firms engage in know-how sharing by mutually agreeing

to internally set the final spillover parameter s at some value in [β, 1], where β is

the original or natural spillover rate, a characteristic of the industry under con-

sideration (reflecting technological, locational and human factors, among others).

Put differently, with the firms remaining competitors in the product market, (i)

amounts to collusion in the R&D phase of the game, and (ii) models R&D infor-

mation sharing as an increase in the spillover rate, with s = 1 corresponding to

an integrated (or joint) lab.

In the second part of this section, we depart from the bulk of the literature

in that we consider the choice of the final spillover parameter s as one of the

design variables for firms entering an RJV agreement. Thus, while previous papers

regarded the spillover rate for an R&D cartel as being either β or 1, we endogenize
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its value here. Furthermore, we do so in the interval
[
β, 1

]
, instead of just [β, 1],

with β ∈ [0, β] representing the lowest feasible level of the spillover rate. (As

will be seen and interpreted below, optimal total profits may be highest in the

complete absence of spillovers.) However, while increasing s in the interval [β, 1]

clearly corresponds to increasing the R&D information flow across firms, choosing

s in [β, β] is not as readily interpretable, at least not within the confines of the

present model. Nonetheless, depending on the type of industry at hand, one could

think of this as a reflection of any subset of the following possibilities for the cartel

firms: (i) locating further away from each other; (ii) entering “agreements” not to

hire away each other’s scientists; (iii) camouflaging their products and processes

more intensively than before; (iv) agreeing to choose more differentiated products;

and/or (v) agreeing to choose unrelated R&D approaches or paths.10. With this

discussion to be continued after the results, we now describe the different forms

of R&D cooperation.

The joint objective of the two firms with the final spillover rate exogenously

set at s ∈
[
β, 1

]
is given by

Hs(x1, x2) = Π[c − f(x1 + sx2), c − f(x2 + sx1)]

+ Π[c − f(x2 + sx1), c − f(x1 + sx2)] − x1 − x2.
(3.1)

We will refer to this scenario as Case Cs, where C stands for coordinated or

collusive. Likewise, we refer to the noncooperative solution of Section 2 as Case

N .

10A more elaborate model may attempt to endogenize some of these possible features, e.g.

by adding an initial period to our two-stage game where firms would make the corresponding

decision(s). Such an approach may shed some light on issues of substantial current interest :

(a) economic geography issues such as the emergence of technology parks (e.g. Silicon Valley,

Route 128...), and (b) the relationship between the choice of product line and process R&D.

While our results below, treating β as a parameter reflecting a proxy measure of these decisions,

would clearly partly pave the way for such an endeavor, this is beyond the scope of this paper.
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Let Case C∗ stand for the optimal R&D cartel11, which solves

max{Hs (x1, x2) ; s ∈ [β, 1], x1 ≥ 0, x2 ≥ 0}, with β ∈ [0, β] . (3.2)

We now define another R&D cooperation scenario, the Joint Lab, to be referred

to as Case J , whereby the two firms jointly run one R&D lab at half the cost each,

and thus end up with the same final cost reduction. Letting x be the total R&D

expenditure of the joint lab (with x1 = x2 = x
2
), the joint objective of the firms is

max
x

{2Π[c − f(x), c − f(x)] − x}. (3.3)

3.1. R&D cooperation with an exogenous β

We begin with a formal proof of the equivalence between Cases J and C1, a fact

which, as suggested earlier, is rather intuitive.

Lemma 3.1. Cases J and C1 are equivalent, in the sense that they lead to the

same final cost reduction (for both firms) and the same total profit.

Given this equivalence, one may wonder about the motivation for defining Case

J . The answer is simply that (i) Case J is easier to conceptualize economically

than Case C1 (a joint lab with equal R&D cost-sharing is more concrete than

R&D collusion coupled with full sharing of know-how), (ii) the equal cost split is

directly built into Case J while Case C1 leaves the allocation of total R&D cost

indeterminate, and (iii) Case J is defined independently of β.

Some of our results require a strengthening of (A.2)(ii). Assumption (A.5)

quantifies the dependence of equilibrium profits on own versus cross cost reduc-

tions in a symmetric duopoly setting.

(A.5) |Π1(z, z)| ≥ 2Π2(z, z) , ∀z ∈ [0, c].

Clearly, (A.5) is a stronger requirement than (A.2)(ii). We now argue that

(A.5) is not as restrictive as it might appear at first. It is satisfied under Cournot

11Throughout the paper, optimal R&D cartel refers to a joint-profit maximizing cartel, and

not to a socially optimal cartel.
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competition with linear demand and costs (with strict inequality if products are

differentiated and with equality for homogeneous products, see Section 2 for the

expression of Π). For Bertrand competition with differentiated products, (A.5)

can be seen to hold if and only if the cross-demand coefficient (denoted by b in the

discussion of (A.1)-(A.3) in Section 2) is in the interval (0,
√

3−1] ≈ (0, .73],12 i.e.

as long as demand is different enough from the well-known case of homogenous

products (b = 1).

The first result deals with the comparison of R&D propensities between the

two cases of primary interest: N versus J (a detailed discussion of all the results

is given following their statement).

Proposition 3.2. Under Assumptions (A.1)-(A.5), xJ ≥ XN , for all β ∈ [0, 1].

Both AJ and KMZ imposed a symmetry restriction on Case Cβ. In other

words, they assumed the two firms jointly maximize (3.1) with s = β (the original

exogenous spillover rate), subject to the constraint x1 = x2. In an insightful

note, Salant and Shaffer (1998) pointed out that the globally optimal solution for

Case Cβ may well fail to be symmetric under the assumptions of AJ and KMZ.

This is due to the fact that concavity of each firm’s payoff in own decision need

not imply joint concavity of Hβ (x1, x2) in x1 and x2: see (3.1). (Note that with

joint concavity of Hβ in (x1, x2), the optimal solution would always involve equal

choices of R&D outlays x1 and x2 by the two firms, due to the fact that Hβ is

symmetric in x1 and x2: See Proposition 3.9 below.)

It turns out that the symmetric version of Cβ, to be denoted Case Cβ, is

useful below when comparing optimal total profits under different scenarios. Let

H∗
s denote the optimal total profit that can be obtained in Case Cs (i.e. H∗

s is the

maximum value in (3.1)). Likewise, let H
∗
s denote the optimal total profit that

can be obtained in Case Cs with the additional constraint of a symmetric choice

x∗
1 = x∗

2. Finally, let H∗
N and H∗

J be total equilibrium profit in Cases N and J .

12In their treatment of Bertand competition, KMZ give 2
3 as a lower bound for this critical

value of b. Since our model is more general, the fact that our bound is sharper indicates that

(A.5) is tight (see also the proof of Proposition 3.2 for more insight on the role of (A.5)).
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The following result generalizes KMZ’s profit comparison result.

Proposition 3.3. Under Assumptions (A.1)-(A.4), the optimal total profits for

Cases N , Cβ, Cβ, and J satisfy H∗
N ≤ H

∗
β ≤ min{H∗

β, H∗
J}.

As will be seen in the last section, the proof of Proposition 3.3 is based on

the following fact (which is of independent interest) concerning the constrained

symmetric case.

Lemma 3.4. Under Assumptions (A.1)-(A.4), H
∗
s is strictly increasing in s ∈

[0, 1].

We now turn to a welfare comparison between Cases N and J . Due to the

absence of the standard market primitives (such as consumer utility functions or

market demand) in the description of our model, a precise notion of consumer

surplus cannot be defined. Instead, we make the following natural assumption.

(A.6) Consumer surplus is nonincreasing in the firms’ unit production costs.

Furthermore, social surplus is the sum of consumer and producer surpluses.

This assumption holds in most commonly used specifications of Cournot and

Bertrand competition. In particular, it holds for the cases of linear demand re-

ported in Section 2. For Cournot competition (with homogeneous products), it

actually holds for any demand function, provided production costs are linear and

a Cournot equilibrium exists. This is because total output at equilibrium (and

hence price) depends only on total unit cost (Bergstrom and Varian, 1985).

A direct consequence of Propositions 3.2 and 3.3 is:

Corollary 3.5. Under Assumptions (A.1)-(A.6), social surplus is higher under

Case J than under Case N .

So far, we have confined our analysis of R&D cooperation to cases where the

firms always cartelize their R&D decisions in conjunction with various levels of

R&D information sharing (i.e. setting the value of the spillover rate s). Now,

14



following KMZ’s Case NJ , we consider a scenario where firms behave noncoop-

eratively in their R&D decisions (in addition to their product market decisions

as before), but enhance their R&D information sharing by setting s equal to one.

Then each firm’s R&D expenditure is xNJ = xN |β=1. We show that this scenario

lowers R&D activity and is thus harmful to consumer welfare.

Proposition 3.6. Under Assumptions (A.1)-(A.4) and (A.6), we have XNJ ≤
XN and thus lower consumer welfare in Case NJ than in Case N .

We now relate the results of this subsection to KMZ and Salant and Shaffer

(1998). As mentioned earlier, the main purposes of the present paper are to (i)

extend the main results of KMZ to a more general framework, thereby identify-

ing the critical features of the two-stage duopoly that drive the conclusions, (ii)

incorporate into the analysis the critique of Salant and Shaffer by removing the

imposed constraint of symmetric R&D choices for R&D cartels, and (iii) endog-

enize the value of the spillover parameter s in designing an optimal R&D cartel.

((ii) and (iii) form the subject of the next subsection and are discussed there.)

Propositions 3.2 and 3.3 and Corollary 3.5 form a generalization of the main

result of KMZ, which says that a joint lab yields a superior performance compared

to noncooperative R&D in all three criteria of interest: propensity for R&D, firms’

profit (or producer surplus), and consumer surplus, and thus also social welfare.

Since KMZ assumes linear demand with differentiated products, the generalization

presented here is a useful robustness check for the important policy conclusions

drawn from these models.

The antitrust implications of our theoretical conclusions are unambiguous:

Simultaneous R&D sharing and coordination of R&D decisions among firms that

compete in a product market should be permitted and encouraged, at least for

industries in which firm size is more or less homogeneous. In view of Proposition

3.3 though, the firms’ incentives for cooperation in R&D are clear, and no direct

government action should be necessary, other than providing the attending legal

framework for such cooperative arrangements. As with the rest of the related
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literature, the possibility that cooperation in R&D may pave the way for, or at

least increase the likelihood of, collusive behavior in the product market is not

considered in the present paper. This important point is raised and discussed by

Martin (1995) in a repeated-games framework.

Proposition 3.6 generalizes an auxiliary result of KMZ that nonetheless has

interesting and subtle antitrust implications. It maintains that cooperation in

the conduct of R&D (or R&D information-sharing) that is not simultaneously

accompanied by the coordination of R&D decisions (here expenditures) is detri-

mental to consumer welfare. Due to its anticompetitive nature, this partial form

of cooperation should not be permitted by antitrust authorities.

3.2. The Optimal R&D Cartel (Case C*)

Here, we investigate the optimal choice of the spillover rate by firms forming an

R&D cartel, i.e. we solve the optimization problem described in (3.2). (Note that

in (3.2) there is no symmetry restriction on the R&D outlays.) Our main result

in this subsection essentially says that firms in an RJV would always settle for

one of two possible choices when the spillover rate is endogenous: Either s∗ = 1

and x∗
1 = x∗

2 = xJ/2 (so that the joint lab is optimal), or else s∗ < 1 and then

either x∗
1 or x∗

2 must be 0 (so that one firm performs no R&D). With an additional

plausible assumption on the dependence of equilibrium profits on unit costs, the

latter case actually has s∗ = β. In an example with Cournot competition, linear

demand, and quadratic R&D costs, we fully illustrate these surprisingly general

results. We begin with an intermediate result that captures the role of interiority

of R&D decisions and is central to the main proposition below.

Lemma 3.7. In addition to Assumptions (A.1)-(A.4), let β ≤ a < b ≤ 1, and

suppose that for all s ∈ [a, b], (at least) one argmax (x∗
1, x

∗
2) in (3.1) is interior,

i.e. x∗
1 > 0 and x∗

2 > 0. Then the optimal total profit H∗
s is strictly increasing in

s ∈ [a, b].
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Lemma 3.7 essentially constitutes a generalization of Lemma 3.4 where the

same conclusion is obtained under the imposed restriction that the firms must

invest equal R&D outlays. Clearly, in Lemma 3.7, the optimal choice need not

satisfy x∗
1 = x∗

2. Considering the level of generality of the required assumptions,

the message from this result is rather interesting. It essentially says that as long

as the optimal R&D outlays are both strictly positive, the same total profit can be

obtained with lower outlays provided the spillover rate is appropriately increased.

The main result of this subsection is:

Proposition 3.8. (a) Under Assumptions (A.1)-(A.4), the optimal R&D cartel

in (3.2) must satisfy either (i) s∗ = 1 and x∗
1 + x∗

2 = xJ , or (ii) s∗ < 1 and

min{x∗
1, x

∗
2} = 0.

(b) If, in addition to (A.1)-(A.4), Π satisfies

Π11(c1, c2) + Π22(c2, c1) > 0, for all c2 > c1 in [0, c] (3.4)

then the optimal cartel satisfies either (i) s∗ = 1 and x∗
1 + x∗

2 = xJ , or (ii) s∗ = β

and min{x∗
1, x

∗
2} = 0.

Assumption (3.4) is natural and satisfied in all the standard specifications. In

particular, for both Cournot and Bertrand competition with linear demand and

differentiated products, Π is actually jointly convex in (c1, c2), a much stronger

property than (3.4). Another example is Cournot competition with quadratic

demand P (Q) = a − bQ2, Q ≤
√

a/b, leading to equilibrium profit equal to

Π(k1, k2) = 1
16

(2a + k2 − 3k1)
2/

√
b(2a − k1 − k2), which satisfies Π11 > 0 and

Π22 > 0 for all (k1, k2), again implying (3.4).

Thus the optimal design of an R&D cartel leads to two possible outcomes:

Either the firms find it jointly profitable for both to conduct R&D, in which case

a joint lab (i.e. full communication of R&D know-how, cf. Lemma 3.1) is the

optimal R&D cartel, or only one firm engages in R&D, leading to unequal market

shares in the product market, with the rival firm improving its unit cost only

through spillovers. Under (3.4), the result becomes much sharper in that only
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extremal choices of the spillover rate are possible, a rather provocative result. An

economic interpretation of this result is given in the next section in the context

of a commonly chosen example wherein a fuller characterization is possible. Fur-

thermore, some real-world and empirical aspects of these suggestive results, as

well as some possible empirical tests, are presented in light of the more explicit

findings derived there.

We now return to the discussion of the plausibility of lowering β. Even in

contexts in which none of the four possibilities given at the beginning of this sec-

tion is plausible, detailed insight into the role of the spillover rate in the design of

the best R&D cartel for the firms remains desirable for a complete understanding

of the incentives at work in an R&D cartel. In particular, we now observe that

under (3.4), if β cannot be lowered at all, then Case Cβ is preferable to the firms

than anything other than Case C1.

Corollary 3.9. In addition to Assumptions (A.1)-(A.4), and (3.4), suppose that

β = β. Then the optimal R&D cartel is either Case J or Case Cβ.

Our last result on the structure of optimal R&D cartels shows that if the

returns to R&D are sufficiently decreasing (i.e. f is concave enough or g=̇f−1

is convex enough), the firms would always find it optimal to choose equal R&D

investments, as the joint objective function (3.1) will then be jointly concave in

(x1, x2), in addition to being symmetric in (x1, x2).

Proposition 3.10. In addition to Assumptions (A.1)-(A.4), assume that for all

a ∈ [0, c]

(1 + s)−1 g′′ (·) > Π11(c− (·), a) + Π22(a, c− (·)) + |Π12(c − (·), a) + Π12(a, c − (·)|
(3.5)

Then, for each s ∈ [0, 1], the optimal R&D choices are equal and the corresponding

optimal total profit H∗
s is strictly increasing in s. In particular, the joint lab is

the optimal R&D cartel.
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4. Optimal R&D Cartel with Cournot Competition

Here we consider an example in which at the first stage the R&D cost function

is given by g(zi) = γz2
i /2 where zi ∈ [0, c] is Firm i’s autonomous cost reduction

(as in AJ, or equivalently f(xi) =
√

2
γ
xi) and at the second (product market

competition) stage, the firms are Cournot competitors with demand in the output

market given by P (q1, q2) = a − (q1 + q2). We assume that a > 2c which insures

that every subgame at the second stage has a unique Nash equilibrium, with both

firms in the market. In the subgame in which firms i and j’s post-R&D unit

costs are ci and cj, respectively, Firm i’s Nash output and profit are, respectively,

(a − 2ci + cj)/3 and Π(ci, cj) = (a − 2ci + cj)
2/9. Firm i’s profit in the overall

game given R&D expenditures xi and xj is, therefore,

F (xi, xj) =

(
a − c + 2

√
2

γ
(xi + βxj) −

√
2

γ
(xj + βxi)

)2

/9 − xi.

R&D expenditures and effective R&D expenditures in Case N and Case J are

given in the following table.13

R&D expenditure effective R&D expenditure

Case N xN = 2γ(a−c)2(2−β)2

(1+β)(9γ+2β−4)2
XN = 2γ(a−c)2(2−β)2

(9γ+2β−4)2

Case J xJ = 8γ(a−c)2

(9γ−4)2
XJ = xJ

Simple calculations establish that xJ ≥ xN and XJ ≥ XN , with both inequalities

strict for β > 0.

The joint objective of the two firms with the spillover rate s is

Hs(x1, x2) =
(
a − c + 2

√
2
γ
(x1 + sx2) −

√
2
γ
(x2 + sx1)

)2

/9

+
(
a − c + 2

√
2
γ
(x2 + sx1) −

√
2
γ
(x1 + sx2)

)2

/9 − x1 − x2.

(4.1)

The main result of this section has three parts. Part (i) shows that the optimal

R&D cartel has either no or full spillovers. Part (ii) shows that if R&D costs

13We omit these calculations, as well as the calculations showing the concavity of each firm’s

profit in own decision. For the table, we assume that 9γ ≥ 4a
c , which insures that both effective

R&D levels are interior (i.e. XN < c and XJ < c).

19



are sufficiently convex or demand is high relative to initial unit costs, then the

optimal R&D cartel is the joint lab. Part (iii) shows that if R&D costs are not

too convex and demand is low relative to initial unit costs, then the optimal R&D

cartel has no spillovers with one firm reducing its cost by c (with an expenditure

of γ
2
c2) and the other firm conducting no R&D.

Proposition 4.1. For the particular specification at hand, let (s∗, x∗
1, x

∗
2) be an

optimal R&D cartel. Then (i) s∗ = 0 or s∗ = 1. (ii) If either 9γ > 18 or a
c

> 5
2

then s∗ = 1 and (x∗
1, x

∗
2) ∈ {(xJ , 0), (0, xJ)}. (iii) If 9γ < 10 and a

c
< 5

2
then

s∗ = 0 and (x∗
1, x

∗
2) ∈ {(γ

2
c2, 0), (0, γ

2
c2)}.

The intuition behind this Proposition is best described in terms of a tension

between two conflicting effects. The first is an efficiency effect, that identical

Cournot rivals’ profits increase as the common unit cost declines (Assumption

(A.2)(ii)), thus pushing for the choice s∗ = 1. The second effect is the joint desire

for cost asymmetry: Total Cournot profits are convex in the unit costs, so that

the cartel payoff may be highest under maximal cost differentiation between the

two firms when R&D costs are not too convex. A maximal cost gap is best-

achieved under a no-spillover regime. Under this perspective, the Proposition

simply identifies specific conditions for each of the two effects to be dominant: See

Amir and Wooders (1999, 2000) for a similar analysis in a different model.

In words, Proposition 4.1 says that we should expect joint labs – or extensive

cooperation in the conduct of R&D – when the cost of R&D is high (or γ is large)

or when profitability (taken as a proxy for demand being large relative to cost)

is relatively high. When both of these conditions fail, R&D cooperation would

not involve joint R&D operations, but would rather be limited to cartelization,

or coordination of R&D decisions. (There is also an intermediate range of R&D

costs where the result is not conclusive as to whether full or no spillover is best

for the firms.)

While thought-provoking, neither of these two extreme outcomes – a fully

joint lab or cartelization of R&D decisions without any joint conduct of R&D – is

20



actually observable in reality. One might conceivably take elaborate arrangements

such as SEMATECH to be tantamount to a joint lab and minor, limited-scope

RJVs, to be reflections of Case Cβ. In the latter case, the main purpose of the

joint venture may well be its tacit coordinating role in communicating the levels

of private R&D investments to all participants, and as such would function much

like a trade association.

With this identification, our results could presumably be empirically tested.

There are several empirical studies of the variability of profitability across indus-

tries, so that relevant estimates are readily available in comparative form (Mueller,

1990). Likewise, appropriate measures of R&D costs may readily be found, e.g. as

a percentage of total production cost or as the size of R&D personnel. R&D levels

are known to be very high for instance in the chemical sector (in particular for

pharmaceutical products) and in many high-tech industries such as software, and

relatively low in some old-economy manufacturing sectors such as paper, textiles,

mining, .... The relevant questions would obviously be whether high profitability

and/or R&D costs correlates well with the depth or scope of the observed RJVs,

using the CORE database or one of its elaborations (Link, 1996, and Roller,

Siebert and Tombak, 1997).

It is widely accepted (Griliches, 1990) that the level of spillovers is an impor-

tant determinant of the levels of noncooperative R&D in a given industry14(see

Proposition 2.2). It would thus also be of interest to test whether the natural

spillover level is an important determinant of whether RJV formation takes place,

R&D cooperation being a way of internalizing the spillover externality. A related

and more ambitious test, directly relating to the results of Propositions 3.8 and

4.1, is to investigate empirically the relationship between the spillover level and

14It is well-known that natural spillover levels vary drastically across industries, and are often

inversely related to the level of patent protection. High spillovers or low effective patent protec-

tion are prevalent in low-tech mature industries (e.g. paper) and low spillovers or high effective

patent protection are prevalent in many R&D-intensive industries such as pharmaceutical drugs,

software, etc...(Griliches, 1990.)
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the extent of RJV involvement across industries.

5. Conclusion

This paper has two separate aims. First, known results on the comparative perfor-

mance (in terms of R&D levels, profits and welfare) of various R&D cooperation

scenarios and noncooperative R&D for firms competing in their product market

are generalized in two important aspects (i) a framework is developed that does

not rely on specific functional forms, yet is fully rigorous in its account of ex-

istence, uniqueness and comparative statics of equilibrium, and (ii) the implicit

assumption in previous work of ex-post symmetry, which is not justified for R&D

cartels, is removed. The latter point naturally leads to the second and principal

aim of the paper which is to allow for R&D cartel participants to also choose the

optimal level of spillover s between a minimal (industry-specific) feasible value

β and 1. It is shown that the optimal cartel essentially always sets s∗ = 1 or

s∗ = β, and, in the latter case, has all the R&D being conducted by one firm only.

An economic interpretation is provided for this rather provocative result. Condi-

tions are then given leading to s∗ = 1. In the setting of the standard specification

- linear demand for homogeneous goods, linear production costs and quadratic

R&D costs - we provide respective sufficient conditions leading to each of the two

possible outcomes. Possible empirical extensions are discussed.

6. Proofs

Proof of Proposition 2.1.

We first establish the existence of a symmetric (pure-strategy) Nash equilib-

rium for the game with payoffs given by (2.1). It is convenient to separate the

analysis into two distinct cases.

Case 1: β = 0. Then it is easy to see that Assumption (A.4)(i) simply says

that Firm 1’s payoff Π[c − f(x1), c − f(x2)] is strictly concave in x1 for each

fixed x2. Then each firm’s reaction curve is a single-valued continuous function.

22



Furthermore, from Assumption (A.3) and the boundedness of profits, it is easy to

see that there exists K > 0 such that any R&D expenditure larger than K is a

dominated strategy. So we may consider the effective strategy set as being [0, K]

for both firms. Hence, existence of a Nash equilibrium follows from Brouwer’s

fixed-point theorem in a standard way.

Case 2: β > 0. With the change of variable y = βx1 + x2, Firm 1’s payoff can

be rewritten as, with x2 ≥ 0 and y ∈ [x2,∞),

H(y, x2) , Π[c − f{β−1(y − (1 − β2)x2)}, c − f(y)] − β−1(y − x2).

It is easy to verify via direct differentiation that ∂2H(y, x2)/∂y∂x2 > 0 as a

result of Assumption (A.4)(i). Thus H(y, x2) has strictly increasing differences,

or is strictly supermodular, in (y, x2). The feasible set [x2, x2 + K] is clearly

ascending in x2. Hence, from Topkis’s Theorem (Topkis, 1978), every selection of

y∗(x2) , arg max{H(y, x2) : y ∈ [x2,∞)} is nondecreasing in x2. This is equivalent

to saying that the slopes of (every selection of) x∗
1(x2) are larger than −β−1 since

x∗
1(x2) = β−1[ y∗(x2) − x2], where x∗

1(x2) , arg max{F (x1, x2) : x1 ≥ 0}.
Applying Tarski’s intersection point theorem15 to the correspondence x∗

1 from

[0, K] to [0, K], we conclude that it has a fixed point, which is clearly a symmetric

Nash equilibrium of the original R&D game.

15As Tarski’s (1955, p. 290) statement of this theorem is purely order-theoretic, we state

Milgrom and Roberts’ (1994) version in the reals instead: Any function F : [0, K] → [0, K]

satisfying

lim sup
x↑x0

F (x) ≤ F (x0) ≤ lim inf
x↓x0

F (x)

for all x0 ∈ [0, K], has a fixed-point. In words, a function that does not have any downward

jumps must have a fixed point, even if it has upward jumps or is not monotonic. In the present

proof, the fact that the slopes (of every selection of) x∗
1(x2) are all larger than β−1 is clearly a

sufficient condition for x∗
1(x2) not to have any downward jumps.

McManus (1962) and Roberts and Sonnenschein (1976) developed earlier proofs of a special

case of this theorem geared to a Cournot oligopoly application. Also, see Amir (1996) for an

alternative proof in the Cournot case, using Topkis’s work.
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We now show uniqueness of this symmetric equilibrium, (xN , xN). Since (0,0)

is not an equilibrium (as a consequence of Assumption (A.3), 0 is not a best

response to any expenditure level), all symmetric equilibria must be interior, and

satisfy the following first-order condition (with XN = (1 + β)xN) :

−(Π1 + βΠ2)[c − f(XN), c − f(XN)]f ′(XN) = 1. (5.1)

To prove uniqueness, we show that the function

L(x)=̇ − (Π1 + βΠ2)[c − f(x), c − f(x)]f ′(x)

from the LHS of (5.1) is strictly decreasing in x at x = XN . To this end, differen-

tiate L(x) with respect to x to get:

∂L/∂x = f ′2(x)[Π11 + (1 + β)Π12 + βΠ22][c − f(x), c − f(x)]

−(Π1 + βΠ2)[c − f(x), c − f(x)]f
′′
(x).

Evaluating along the first-order solution, i.e. plugging (5.1) in, yields

f ′2(XN)[Π11+(1+β)Π12+βΠ22][c−f(XN), c−f(XN)]+f ′′(XN)/f ′(XN). (5.2)

Since z = f(XN) if and only if XN = g(z), it is easily verified (by differen-

tiating the identity z = f(g(z)) twice) that f ′(XN) = 1/g′(z) and g′′(z) =

−f ′′(XN)/f ′3(XN). Substituting these relations into (5.2) yields (for 0 ≤ z ≤ c):

1

g′2(z)
[Π11 + (1 + β)Π12 + βΠ22](c − z, c − z) − g′′(z)

g′2(z)
, (5.3)

which is negative, by Assumption (A.4)(ii). Hence the LHS of (5.1) is strictly

decreasing at XN . Together with the facts that the function L(x) is continuous

in x ∈ [0,∞), is infinite when x = 0 and zero when x = ∞ (Assumption (A.3)),

this implies that there is a unique solution to (5.1), so that there is a unique and

interior symmetric equilibrium. �

Proof of Proposition 2.2.

With XN = (1 + β)xN we show that dXN

dβ
< 0. Differentiating (5.1) with

respect to β and collecting terms gives (with the same arguments as in (5.1),
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omitted for clarity)

dXN

dβ

{
Π11f

′2 + (1 + β)Π12f
′2 + βΠ22f

′2 − Π1f
′′ − βΠ2f

′′} = Π2f
′.

Substituting (5.1) in yields

dXN

dβ

{
f ′2[Π11 + (1 + β)Π12 + βΠ22] +

f ′′

f ′

}
= Π2f

′. (5.4)

Since the term on the right-hand side of (5.4) is > 0 (from Assumptions (A.2)(ii)

and (A.3)(i)), it suffices to show that the bracketed term is ≤ 0. But this was

already done in the proof of Theorem 2.1 (see (5.2) and (5.3)). The conclusion

then follows from (5.4). �

Proof of Lemma 3.1.

The joint objective of the firms in Case C1 is obtained by setting β = 1 in

(3.1), and is

H1(x1, x2) = 2Π[c − f(x1 + x2), c − f(x1 + x2)] − (x1 + x2). (5.5)

Since this only depends on x1 +x2, setting x=̇x1 +x2 in (5.5), it follows that (5.1)

is the same as the objective for Case J , given by (3.3). It is then immediate that

both firms end up with the same final cost reduction in Cases C1 and J , and that

total profit is also the same. ✷

Proof of Proposition 3.2.

Let x0 denote the equilibrium (per-firm) R&D expenditure in Case N when

β = 0 (i.e., x0=̇xN when β = 0). From Proposition 2.2, we know that x0 =

max{xN : β ∈ [0, 1]}. Hence, to establish Proposition 3.2, it suffices to show that

xJ ≥ x0.

Since xJ and x0 are both interior (i.e. > 0) as a result of Assumption (A.3)(ii),

they satisfy the following first-order conditions:

−2(Π1 + Π2)[c − f(xJ), c − f(xJ)]f ′(xJ) = 1 (5.6)

25



and

−Π1[c − f(x0), c − f(x0)]f
′(x0) = 1. (5.7)

From Assumption (A.5), it follows that

(Π1 + 2Π2)[c − f(xJ), c − f(xJ)]f ′(xJ) ≤ 0 (5.8)

Adding up (5.6) and (5.8), then using (5.7) yields

−Π1

[
c − f(xJ) , c − f(xJ)

]
f ′(xJ) ≤ 1

= −Π1 [c − f(x0), c − f(x0)] f
′(x0).

From the proof of Proposition 2.1 (with the special case β = 0), we know that

the equation −Π1[c−f(y), c−f(y)]f ′(y) = 1 has a unique solution (which is thus

x0), and that for y ≤ x0, the LHS of this equation is ≥ 1 while for y ≥ x0, the

LHS is ≤ 1. Hence it follows from the above inequality that xJ ≥ x0. ✷

Since Lemma 3.4 implies part of Proposition 3.3, we first provide a proof of

the former.

Proof of Lemma 3.4.

In view of the symmetry constraint here, letting x1 = x2=̇x in (3.1) yields

Hs(x, x) = 2Π[c − f((1 + s)x), c − f((1 + s)x)] − 2x , x ≥ 0 (5.9)

By Assumption (A.2)(ii), this objective is strictly increasing in s ∈ [0, 1]. Hence,

the maximum value of (5.9), H
∗
s, is strictly increasing in s. �

Proof of Proposition 3.3.

We first show H∗
N ≤ H

∗
β. Recall that H∗

N is the total equilibrium payoff

corresponding to the (unique) symmetric equilibrium (xN , xN). Since H
∗
β is the

maximal total payoff that can be achieved via a symmetric choice (x, x), and since

(xN , xN) is one such feasible choice, we clearly have H∗
N ≤ H

∗
β (note that s = β

in both cases).
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That H
∗
β ≤ H∗

β follows directly from the fact that cases Cβ and Cβ have

the same objective function, but H
∗
β reflects the additional symmetry constraint

x1 = x2.

It remains only to show that H
∗
β ≤ H∗

J . From Lemma 3.1, we know that

H∗
J = H1, and from Lemma 3.4, we know that H

∗
1 is the highest value of H

∗
s for

s ∈ [0, 1]. Furthermore, H
∗
1 = H∗

1 since, with s = 1, (3.1) only depends on x1 +x2,

and not on x1 or x2 separately. Hence, H
∗
β ≤ H∗

J . �

Proof of Corollary 3.5.

From Proposition 3.2, we know that xJ ≥ xN for all β. By Assumption (A.6),

it follows that consumer surplus is higher in Case J than in Case N . Proposition

3.3 says that producer surplus is higher in Case J than in Case N . Combining

the two effects completes the proof of Corollary 3.5. ✷

Proof of Proposition 3.6.

By definition of Case NJ , XNJ is equal to XN |β=1. Hence, the fact XNJ ≤ XN

follows immediately from Proposition 2.2, and the welfare part is a direct result

of Assumption (A.6). ✷

Proof of Lemma 3.7.

The key to this argument is a judicious change of variables in the joint maxi-

mization of the total profit function Hs(x1, x2). Instead of (x1, x2), one may regard

the firms as choosing effective or final R&D expenditures (z1, z2), such that




z1=̇x1 + sx2

z2=̇x2 + sx1

or, provided s 	= 1,




x1 = z1−sz2

1−s2

x2 = z2−sz1

1−s2

(5.10)

Provided s 	= 1, the original optimization problem for Case Cs

max {Hs(x1, x2) : x1 ≥ 0, x2 ≥ 0}
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is equivalent to the transformed problem (via the bijection (5.10)):

max

{
Π[c − f(z1), c − f(z2)] + Π[c − f(z2), c − f(z1)] −

z1 + z2

1 + s
: (z1, z2) ∈ ∆s

}
,

(5.11)

where ∆s = {(z1, z2) : z1 ≥ sz2 and z2 ≥ sz1} ⊂ [0,∞)2. Hence H∗
s is equal to the

value of (5.11).

The maximand in (5.11) is strictly increasing in s while the constraint set ∆s

is contracting in s (i.e., s1 ≥ s2 ⇒ ∆s1 ⊂ ∆s2). In view of these two conflicting

effects, it cannot be concluded in general that H∗
s is increasing in s.

Nonetheless, with the additional assumption of an interior argmax on [a, b],

we now show that H∗
s is strictly increasing in s ∈ [a, b]. To this end, fix s1 ∈ [a, b]

and let (z∗1 , z
∗
2) be an interior argmax of (5.11) when s = s1. From the interiority

of the argmax, we conclude that (z∗1 , z
∗
2) ∈ ∆s1+ε, i.e., (z∗1 , z

∗
2) continues to be

feasible when s1 is replaced by s1 + ε provided ε is sufficiently small. Since the

maximand in (5.11) is strictly increasing in s, it follows that H∗
s1+ε > H∗

s1
, for

all small enough ε > 0. Since ∆s is contracting in s, it is obvious that (z∗1 , z
∗
2) is

feasible when s1 is replaced by s1− ε, thus leading (for the same reasons as above)

to H∗
s1−ε < H∗

s1
. We have so far shown that H is increasing in a neighborhood of

s1. Since the choice of s1 in [a, b] is arbitrary, we conclude that H is increasing

over all of [a, b]. �

Proof of Proposition 3.8.

(a) We know from the proof of Lemma 3.1 that if s∗ = 1, the joint objective

H1 only depends on (x1 + x2), and that then x∗
1 + x∗

2 = xJ . According to Lemma

3.7, this happens in particular if (x∗
1, x

∗
2) is interior for all s ∈ [β, 1]. Lemma 3.7

also implies that if s∗ < 1, then arg max Hs∗ cannot be interior (otherwise, taking

s > s∗, but sufficiently close to s∗ would be a better choice). So this argmax either

has z1 = s∗z2 or z2 = s∗z1, or in the original variables, x∗
1 = 0 or x∗

2 = 0.

(b) Since (i) is the same as in Part (a), we prove (ii). We know from Part
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(a) that x∗
1 = 0 or x∗

2 = 0. Assume (say) that x∗
2 = 0. If s∗ 	= β, we know, since

s∗ < 1, that the first-order condition with respect to s in (3.2) must hold:

∂Hs(x1, 0)

∂s
= −x1f

′(sx1) {Π2[c − f(x1), c − f(sx1)] + Π1[c − f(sx1), c − f(x1)]} = 0

Evaluating the second partial derivative of Hs w.r.to s

∂2Hs(x1,0)
∂s2 = x2

1[f
′2(sx1) {Π22[c − f(x1), c − f(sx1)] + Π11[c − f(sx1), c − f(x1)]}−

f ′′(sx1) {Π2[c − f(x1), c − f(sx1)] + Π1[c − f(sx1), c − f(x1)]}]

along the solution to the first-order condition yields

[
∂2Hs(x1, 0)

∂s2

]
∗

= x2
1f

′2(sx1) {Π22[c − f(x1), c − f(sx1)] + Π11[c − f(sx1), c − f(x1)]} > 0

by Assumption (3.4). This shows that Hs(x1, 0) is strictly quasi-convex in s, so

that s∗ =β or s∗ = 1. Since the latter is not the case (from Part (a)), we must

have s∗ = β.✷

Proof of Corollary 3.9. Follows directly from Proposition 3.8.✷

Proof of Proposition 3.10.

With the (further) change of variable




y1=̇f(z1)

y2=̇f(z2)
or




z1 = g(y1)

z2 = g(y2)
(with g=̇f−1)

the firms’ joint objective (5.11) can be rewritten as

G(y1, y2)=̇Π(c − y1, c − y2) + Π(c − y2, c − y1) −
g(y1) + g(y2)

1 + s
(5.12)

on ∆
′
s = {(y1, y2) : g(y1) ≥ sg(y2) and g(y2) ≥ sg(y1)}.

It can be verified that G is jointly strongly concave in (y1, y2) on ∆
′
s for ev-

ery s ∈ [0, 1], as long as (3.5) holds: To do so, simply check that (3.5) leads to

0 > G11, |G11| > G12, 0 > G22, |G22| > G12, for all s ∈ [0, 1], and hence also to

G11G22 ≥ G2
12. We claim then that any argmax (y∗

1, y
∗
2) of G must have y∗

1 = y∗
2.

For otherwise, if (a, b) is an argmax of G on ∆
′
s with a 	= b, then symmetry of

G and ∆
′
s in (y1, y2) implies that (b, a) must also be an argmax, in which case
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strict concavity of G leads to (a+b
2

, a+b
2

) ∈ ∆
′
s yielding a higher value of G than

the presumed maximum, a contradiction. Hence every argmax of G is on the

diagonal. By Lemma 3.4, this implies that H∗
s is strictly increasing in s (in the

original decision variables), and thus s = 1 or Case J is the optimal R&D cartel. ✷

Proof of Proposition 4.1.

With the change of variable z1 =
√

2
γ
(x1 + sx2) and z2 =

√
2
γ
(x2 + sx1), the

objective function in (4.1) becomes

Gs(z1, z2) =
1

9
(a − c + 2z1 − z2)

2 +
1

9
(a − c + 2z2 − z1)

2 − γ

2(1 + s)
(z2

1 + z2
2),

and the constraints x1 ≥ 0 and x2 ≥ 0 become z1 ≥
√

sz2 and z2 ≥
√

sz1.
16 Hence

the optimal R&D cartel solves

max
s∈[0,1],z1,z2

Gs(z1, z2) subject to z1 ≥
√

sz2 and z2 ≥
√

sz1.

Note that if (s∗, z∗1 , z
∗
2) is an optimal R&D cartel, then either z∗1 > 0 or z∗2 > 0

since
∂Gs(z, z)

∂z

∣∣∣∣
z=0

=
4

9
(a − c) > 0.

Let (s∗, z∗1 , z
∗
2) be an optimal R&D cartel. We show that either s∗ = 0 or

s∗ = 1. Suppose to the contrary that s∗ ∈ (0, 1). Since either z∗1 > 0 or z∗2 > 0

then Gs(z
∗
1 , z

∗
2) is strictly increasing in s. Furthermore, either z∗1 =

√
s∗z∗2 or

z∗2 =
√

s∗z∗1 , since otherwise if both z∗1 >
√

s∗z∗2 and z∗2 >
√

s∗z∗1 then there is

an s′ > s∗ such that z∗1 >
√

s′z∗2 , z∗2 >
√

s′z∗1 , and Gs′(z
∗
1 , z

∗
2) > Gs∗(z

∗
1 , z

∗
2),

contradicting that (s∗, z∗1 , z
∗
2) is an optimal R&D cartel. (In terms of the original

decision variables, if s∗ ∈ (0, 1), then one firm’s R&D expenditure must be zero.)

Since Gs(z1, z2) is symmetric in (z1, z2), we can assume without loss of gener-

ality that z∗1 =
√

s∗z∗2 . Define k∗ = z∗1 + z∗2 to be the sum of the effective R&D’s

in the optimal R&D cartel. Then z∗1 = k∗√s∗

1+
√

s∗
and z∗2 = k∗

1+
√

s∗
. If (s∗, z∗1 , z

∗
2) is an

16We have that x1 = γ
2

z2
1−sz2

2
1−s2 and x2 = γ

2
z2
2−sz2

1
1−s2 for s < 1. For s = 1 we have that

z1 = z2 =
√

2
γ (x1 + x2), which implies x1 + x2 = γ

2 z2
1 = γ

2 z2
2 .
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optimal R&D cartel, then s∗ ∈ arg maxs∈[0,1] Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
). To see this, suppose

to the contrary that s∗ /∈ arg maxs∈[0,1] Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
). Then there is an s′ ∈ [0, 1]

such that Gs′(
k∗√s′

1+
√

s′
, k∗

1+
√

s′
) > Gs∗(

k∗√s∗

1+
√

s∗
, k∗

1+
√

s∗
). Denote k∗√s′

1+
√

s′
by z′1 and k∗

1+
√

s′
by

z′2, it’s easy to see that z′1 ≥
√

s′z′2 and z′2 ≥
√

s′z′1, and hence that (s′, z′1, z
′
2) is

a feasible R&D cartel. This contradicts that (s∗, z∗1 , z
∗
2) is an optimal R&D car-

tel. Note that increasing s in Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
) corresponds to increasing z1, while

holding z1 =
√

sz2 and holding z1 + z2 fixed.

Proof of (i): We show that if s∗ ∈ arg maxs∈[0,1] Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
), then either

s∗ = 0 or s∗ = 1, and hence the optimal R&D cartel has either full or no spillovers.

Differentiating Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
) with respect to s yields

∂Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
)

∂s
=

1

2
(k∗)2γ − 2(1 −√

s)
√

s (1 +
√

s)
3 . (5.13)

Suppose that s∗ is an interior critical point of Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
). Then s∗ satisfies

γ − 2(1 −
√

s∗) = 0 by (5.13). A straightforward calculation shows that

∂2Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
)

∂s2
=

1

4
(k∗)2 8

√
s − 6s − γ − 4γ

√
s + 2

(
√

s)
3
(1 +

√
s)

4 .

Evaluating this expression at s = s∗ and replacing γ in the expression above with

2(1 −
√

s∗), we obtain

∂2Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
)

∂s2

∣∣∣∣∣
s=s∗

=
1

2
(k∗)2 1

s∗
(
1 +

√
s∗

)3 > 0.

Hence any interior critical point is a local minimum, and so s∗ ∈ arg maxs∈[0,1] Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
)

implies s∗ = 0 or s∗ = 1.

Proof of (ii): If γ > 2, then

∂Gs(
k∗√s
1+

√
s
, k∗

1+
√

s
)

∂s
=

1

2
(k∗)2γ − 2(1 −√

s)
√

s (1 +
√

s)
3 > 0

for s > 0 and hence the optimal R&D cartel has s∗ = 1.

We now show that a
c

> 5
2

implies s∗ = 1. By part (i) either s∗ = 0 or s∗ = 1,

and hence if (s∗, z∗1 , z
∗
2) is an optimal R&D cartel, then either

(z∗1 , z
∗
2) ∈ arg max

z1,z2

G0(z1, z2) subject to z1 ≥ 0 and z2 ≥ 0
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or

(z∗1 , z
∗
2) ∈ arg max

z1,z2

G1(z1, z2) subject to z1 ≥ z2 and z2 ≥ z1.

We show that if (ẑ1, ẑ2) ∈ arg maxz1,z2 G0(z1, z2) subject to z1 ≥ 0 and z2 ≥ 0, and

if (z̄1, z̄2) ∈ arg maxz1,z2 G1(z1, z2) subject to z1 ≥ z2 and z2 ≥ z1 then G0(ẑ1, ẑ2) <

G1(z̄1, z̄2), and hence s∗ = 1.

Assume without loss of generality that ẑ1 ≥ ẑ2. If ẑ1 = ẑ2 > 0 then clearly

G0(ẑ1, ẑ2) < G1(ẑ1, ẑ2) ≤ G1(z̄1, z̄2). If ẑ1 = ẑ2 = 0, then G0(ẑ1, ẑ2) = G1(ẑ1, ẑ2) <

G1(z̄1, z̄2) since
dG1(z, z)

dz

∣∣∣∣
z=0

=
4

9
(a − c) > 0.

We now consider the case where ẑ1 > ẑ2. We have that

G0(ẑ1, ẑ2) ≤ 1
9
(a − c + 2ẑ1 − ẑ2)

2 + 1
9
(a − c + 2ẑ2 − ẑ1)

2 − γ
2
ẑ2
1

= 2
9
(a − c + ẑ1)

2 − γ
2
ẑ2
1 − 1

9
(ẑ1 − ẑ2)(2a − 2c − 3ẑ1 + 5ẑ2)

≤ 2
9
(a − c + ẑ1)

2 − γ
2
ẑ2
1 − 1

9
(ẑ1 − ẑ2)(2a − 2c − 3c)

< 2
9
(a − c + ẑ1)

2 − γ
2
ẑ2
1

≤ G1(z̄1, z̄2),

where the first inequality follows from the definition of G0(ẑ1, ẑ2) and γ
2
ẑ2
2 ≥ 0,

the second inequality follows from ẑ1 ≤ c and ẑ2 ≥ 0, the strict equality follows

from 2a > 5c and ẑ1 > ẑ2, and the last inequality follows from the definition of

G1(z̄1, z̄2) and the constraint when s = 1 that z1 = z2.

Proof of (iii): By part (i) either s∗ = 0 or s∗ = 1. We show that 9γ < 4a
c

and a
c

< 5
2

implies maxz1,z2∈[0,c] G0(z1, z2) > maxz1,z2∈[0,c] G1(z1, z2), i.e., s∗ = 0.

Since 9γ < 4a
c

and a
c

< 5
2
, then 9γ < 10 and hence the objective G0(z1, z2) is

jointly strictly convex in (z1, z2) and thus it is maximized on “corners” of [0, c]2,

i.e., its maximizers are among (c, 0), (0, c), (0, 0), or (c, c). We have G0(c, 0) =

G0(0, c) = (a − c + 2c)2/9 + (a − 2c)2/9 − γ
2
c2. It is straightforward to show

that if 9γ ≤ 4a
c
, then the maximizers of G1(z1, z2, 1) are (c, 0) and (0, c). We

have G1(c, 0) = 2
9
a2 − γ

2
c2. A simple calculation establishes that a

c
< 5

2
implies

G0(c, 0) > G1(c, 0), and hence s∗ = 0. Furthermore, G0(z, z) < G1(c, 0) for z = 0

32



and z = c implies the optimal R&D cartel has (z∗1 , z
∗
2) ∈ { (c, 0), (0, c)} or, in

terms of the original decision variables, (x∗
1, x

∗
2) ∈ {(γ

2
c2, 0), (0, γ

2
c2)}. �
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