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Abstract

Based on research on the polyhedral structure of lot-sizing models over the last

twenty years, we claim that there is a nontrivial fraction of practical lot-sizing prob-

lems that can now be solved by nonspecialists just by taking an appropriate a priori

reformulation of the problem, and then feeding the resulting formulation into a com-

mercial mixed integer programming solver.

This claim uses the fact that many multi-item problems decompose naturally

into a set of single-item problems with linking constraints, and that there is now

a large body of knowledge about single-item problems. To put this knowledge to

use, we propose a classification of lot-sizing problems (in large part single-item), and

then indicate in a set of Tables what is known about a particular problem class, and

how useful it might be. Specifically we indicate for each class i) whether a tight

extended formulation is known, and its size, ii) whether one or more families of valid

inequalities are known defining the convex hull of solutions, and the complexity of the

corresponding separation algorithms, and iii) the complexity of the corresponding

optimization algorithms (which would be useful if a column generation or Lagrangian

relaxation approach was envisaged).

1CORE and INMA, Université Catholique de Louvain, Belgium

This paper presents research results of the Belgian Program on Interuniversity Poles of Attrac-

tion initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific

responsibility is assumed by the authors.

This research was also supported by the European Commission GROWTH Programme, Research Project

LISCOS, Large Scale Integrated Supply Chain Optimization Software Based on Branch–and–Cut and

Constraint Programming Methods, Contract No. GRDI–1999–10056.

1



Three distinct multi-item lot-sizing instances are then presented to demonstrate

the approach, and comparative computational results are presented. Finally we also

use the classification to point out what appear to be some of the important open

questions and challenges.

Keywords: Lot-sizing, Production Planning, Classification, Convex Hull, Extended For-

mulation, Mixed Integer Programming
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1 Introduction

Production planning problems involving lot-sizing have been an area of active research

since the seminal paper of Wagner-Whitin [56] in 1958. Work on the polyhedral structure

of the uncapacitated problem started with Barany et al. [5] and on extended formula-

tion with Bilde and Krarup [22] and Eppen and Martin [15]. Since then there has been

a considerable amount of research extending these results for the single item problem

to incorporate other important features such as backlogging, start-ups, constant and

varying capacities, etc. See Pochet and Wolsey [40] for a survey, and Pochet [35] and

Wolsey [58] for two recent tutorials. On the other hand although almost all practical

problems are multi-item, and also often multi-machine and multi-level, the polyhedral

results concerning such models are limited. See [12, 21, 30] for some notable excep-

tions. As a result the approach of choice in solving such problems has been implicitly

or explicitly some form of decomposition, namely the development of solution methods,

such as Lagrangian relaxation, column generation or branch-and-cut, that explicitly use

algorithms for optimization, or for separation of single item problems.

In two recent papers we have described ways to formulate certain constraints that

arise in practical lot-sizing models and thereby improve solution times [7], and presented

a special purpose modelling and branch-and-cut system BC-PROD designed for lot-sizing

problems [6]. Here we would like to suggest that, based on the research cited above and

the progress of commercial MIP systems, certain multi-item lot-sizing problems can now

be solved just using standard reformulations and an off-the shelf MIP solver. To achieve

this we present a simple classification of single-item lot-sizing problems, and then indi-

cate in the form of Tables our present knowledge about such problems. This knowledge

consists of extended formulations, families of valid inequalities that provide or approx-

imate the convex hull of solutions, and separation algorithms allowing one to use the

valid inequalities as cutting planes, along with their complexity. This is the knowledge

typically needed when solving the problems directly as MIPs using branch-and-cut, the

approach favoured here. For those interested in developing column generation or La-

grangian relaxation approaches, the Tables also indicate the complexity of optimization

and give references. We then indicate a few of the characteristics of multi-item problems

3



for which useful modelling results are available, and finally we show by three examples

how the classification and the corresponding reformulations can be used to obtain guar-

anteed high quality solutions using nothing but a basic MIP system. Earlier classification

schemes can be found in [8] and [23]. The former is mostly concerned with the varying

capacity single-item problem, and in distinguishing which special cost structures lead

to polynomial variants, and the latter considers very general batching and scheduling

problems.

The outline of the paper is as follows. In Section 2 we present a brief description of

three multi-item problems. Just from these descriptions, we obtain a first verbal classi-

fication as an indication of what needs to be classified formally. In Section 3 we present

the single-item classification that we have found useful. In Section 4 we present Tables

indicating the status of the most important problems concerning

i) families of valid inequalities, whether they describe the convex hull, and the complex-

ity of the separation problem for these families of inequalities

ii) the existence of tight, or “good” extended formulations giving the convex hull exactly

or approximately

iii) the complexity of optimization.

In Section 5 we extend the classification to some aspects of multi-item problems and

discuss briefly the important results available. In Section 6 we show how the Classi-

fication and Tables of Sections 3 and 4 can be used to obtain effective formulations

in practice, giving computational results for the three multi-item problems presented

earlier. Finally in Section 7 we indicate several important open problems.

2 Three Multi-Item Problems

Here we take the description of three multi-item lot-sizing problems, and use the de-

scription to derive a verbal classification of each problem, suggesting what will be the

important points in the formal classification presented later. In Section 6 we will trans-

late these verbal classifications into our formal scheme, and use this to reformulate and

solve one or more instances of each problem.
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Problem 1

This is a bottling line problem with a 30 day planning horizon. There are four products.

The line is available 16 hours per day, and only one product can be produced per day.

There are storage, set-up and start-up costs, which are all constant over time. The min-

imum production per day is 7 hours.

Classification.

i) Multi-item constraints and costs. At most one item can be produced per period.

ii) Individual item constraints and costs. When produced, each item is produced for be-

tween 7 and 16 hours, so both the upper bound and the lower bounds on production per

period are time invariant. Also the unit production and storage costs are time invariant,

and there are start-up costs.

Problem 2

This is a lot-sizing problem with ten items with sequence-dependent changeover costs

and storage costs studied by Fleischman [18]. Production is at full capacity, and at most

one item is produced per period.

Classification.

i) Multi-item constraints and costs. At most one item can be produced per period, and

there are sequence dependent set-up costs.

ii) Individual item constraints and costs. Production is all or nothing with constant

capacities. There are no unit production costs, and storage costs are nonnegative and

constant over time.

Problem 3

This is a general model for multilevel problems with assembly product structure pro-

posed in [42], involving product families consisting of one or more items, where each

family can in turn have a fixed cost, a set-up time or a resource constraint associated

with it. Instances of this problem come from the construction of bottle racks and the

production of animal feed. Instances of this problem have been tackled earlier with the
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special purpose systems bc-prod [6] and bc-opt [13].

Classification.

i) Multilevel structure. Assembly type product structure.

ii) Multi-item constraints and costs. Many items can be produced in each period, and

the capacity constraints limiting production in each period involve both production lev-

els and set-up times for families.

iii) Individual item constraints and costs. There are no individual capacity constraints,

but there are storage costs and implicit fixed costs through the families.

3 Single-Item Classification

We start by defining the basic lot-sizing problem (LS). There is a time horizon of n

periods, and in each period there is a demand to be satisfied dt, and a production limit

Ct. There is a per unit production cost pt, a fixed set-up cost ft if production takes

place in t for t = 1, . . . , n, and a cost h′t per unit of stock at the end of period t for

t = 0, . . . , n. Note that in principle a variable amount of initial stock is allowed.

3.1 The Basic Classification

There are three fields PROB − CAP − V AR. We use [x, y, z] to denote exactly one

element from the set {x, y, x}, and [x, y, z]∗ to denote any subset of {x, y, x}. Fields that

are empty are dropped.

In the first field PROB, there is a choice of four problem versions [LS, WW, DLSI, DLS]

LS: (Lot-Sizing) This is the general problem defined above.

WW : (Wagner-Whitin) This is problem LS, except that the variable production and

storage costs satisfy ht = h′t + pt − pt+1 ≥ 0 for t = 0, . . . , n− 1.

DLSI: (Discrete Lot-Sizing with Variable Initial Stock) This is problem LS with the
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restriction that there is either no production or production at full capacity Ct in each

period t.

DLS: (Discrete Lot-Sizing) This is problem DLSI without an initial stock variable.

The second field CAP concerns the production limits or capacities [C, CC, U ].

PROB − C: (Capacitated) Here the capacities Ct vary over time.

PROB − CC: (Constant Capacity) This is the case where Ct = C, a constant, for

all t.

PROB − U : (Uncapacitated) This is the case when there is no limit on the amount

produced in each period, i.e. Ct exceeds the sum of all present and future demand.

Before presenting the third parameter involving the many possible extensions, we now

present mixed integer programming formulations of the four basic variants with varying

capacities PROB − C.

3.2 Formulations

Ths standard formulation of LS as a mixed integer program involves the variables

xt the amount produced in period t for t = 1, . . . , n,

st the stock at the end of period t for t = 0, . . . , n, and

yt = 1 if the machine is set-up to produce in period t, and yt = 0 otherwise.

We also use the notation dkt ≡
∑t

u=k du throughout.
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LS − C now has the formulation

min
∑n

t=1 ptxt +
∑n

t=0 h′tst +
∑n

t=1 ftyt (1)

st−1 + xt = dt + st for t = 1, . . . , n (2)

xt ≤ Ctyt for t = 1, . . . , n (3)

x ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0, 1}n. (4)

WW − C can be formulated just in the space of the s, y variables.

min
∑n

t=0 htst +
∑n

t=1 ftyt (5)

sk−1 +
∑t

u=k Cuyu ≥ dkt for 1 ≤ k ≤ t ≤ n (6)

s ∈ Rn+1
+ , y ∈ {0, 1}n. (7)

To derive this formulation, one first uses (2) to eliminate xt from the objective function

(1). To within a constant, the resulting objective function is
n∑

t=0

(h′t + pt − pt+1)st +
n∑

t=1

ftyt =
n∑

t=0

htst +
n∑

t=1

ftyt.

Then as ht ≥ 0 for all t, it follows that once the set-up periods are fixed, the stocks will

be as low as possible compatible with satisfying the demand. Thus

sk−1 = max(0, max
t=k,... ,n

[dkt −
t∑

u=k

Cuyu]),

see [39]. It follows that the proposed formulation is valid, though its (s, y) feasible region

is not the same as that of LS − C. Specifically (s, y) is feasible in (6)-(7) if and only if

there exists (x, s′, y) feasible in (2)-(4) with s′ ≤ s.

DLSI−C can be formulated by adding xt = Ctyt in the formulation of LS−C. However

after elimination of the variables st =
∑t

u=1 xu − d1t ≥ 0 and xt = Ctyt, we obtain an

equivalent formulation just in the space of the s0 and the y variables.

minh0s0 +
∑n

t=1 f ′tyt (8)

s0 +
∑t

u=1 Cuyu ≥ d1t for 1 ≤ t ≤ n (9)

s0 ∈ R1
+, y ∈ {0, 1}n. (10)
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DLS − C can be formulated just in the space of the y variables.

min
∑n

t=1 f ′tyt (11)
∑t

u=1 Cuyu ≥ d1t for all 1 ≤ t ≤ n (12)

y ∈ {0, 1}n. (13)

Without introducing a new problem class, we say that DLS has Wagner-Whitin costs if

f ′t ≥ f ′t+1 for all t.

3.3 Complexity

Observation 1. All eight constant or uncapacitated instances PROB − [CC, U ] are

polynomially solvable. The dynamic programming algorithm of Florian and Klein [19]

solves LS − CC and the other seven problems can all be seen as special cases.

Observation 2. All four varying capacity instances PROB−C are NP -hard. All four

problems are polynomially reducible to the 0-1 knapsack problem, see [8].

The above imply that we can only reasonably hope to have complete convex hull de-

scriptions, and/or tight reformulations when CAP is selected from [U, CC].

We now consider the relationships between the different problems.

Notation. We let XPROB−CAP denote the feasible region of PROB − CAP as formu-

lated in Section 2.2 in the corresponding space of variables.

projw(Y ) denotes the projection of the solution set Y onto the space of variables w.

XDLSI−C
k = {(s, y) ∈ Rn+1

+ × [0, 1]n : sk−1 +
∑t

u=k Cuyu ≥ dkt for t = k, . . . , n}.

The following proposition states more formally the links between the different for-

mulations introduced in the previous subsection.

Proposition 1 i) projs,yXLS−C ⊆ XWW−C
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ii) projs0,yX
WW−C = XDLSI−C

iii) XWW−C = ∩n
k=1X

DLSI−C
k with XDLSI−C

1 = XDLSI−C

iv) XLS−C ⊆ XLS−CC ⊆ XLS−U if we take maxt Ct as the constant capacity.

On the other hand it is clear that in the (x, s, y) space, DLSI is a restriction of LS.

Corollary. Every valid inequality for WW − CAP in (s, y) variables is valid for LS −
CAP , and every valid inequality for DLSI−CAP in (s0, y) variables is valid for WW −
CAP . Also every valid inequality for PROB − U is valid for PROB − [C, CC].

3.4 Extensions

The third field V AR concerns extensions/variants [B, SC, ST, LB, SL, SS]∗ to one of

the twelve problems PROB − CAP considered so far.

B: (Backlogging) Demand must be satisfied, but the items can be produced later than

requested. The cumulated shortfall max{0, d1t − s0 −
∑t

j=1 xj} in satisfaction of the

demand in period t is charged at a cost of bt per unit.

SC: (Start-Up Costs) If a sequence of set-ups starts in period t, a start-up cost gt

is incurred.

ST : (Start-Up Times) If a sequence of set-ups starts in period t, the capacity Ct is

reduced by an amount STt. (ST (C)) for constant start-up times.

LB: (Minimum Production Levels) If production takes place in period t, a minimum

amount LBt must be produced. (LB(C)) denotes constant lower bounds.

SL: (Sales) In addition to the demand dt that must be satisfied in each period, an

additional amount up to ut can be sold at a unit price of ct.
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SS: (Safety Stocks) There is a lower bound St on the stock level at the end of pe-

riod t.

Now we have the three fields that describe a single item lot-sizing problem

[LS, WW, DLSI, DLS]− [C, CC, U ]− [B, SC, ST, ST (C), SL, LB, LB(C), SS]∗

where one entry is required from each of the first two fields, and any number of entries

from the third.

Example 1 i) WW−U−∅ (or just WW−U) denotes the uncapacitated Wagner-Whitin

problem.

ii) DLSI − CC − {B − ST} denotes the constant capacity discrete lot-sizing problem

with initial stock variable, backlogging and start-up times.

Again we observe that the variants are still polynomially solvable in versions PROB −
[CC, U ] − V AR provided that the start-up times or lower bounds, if any, are constant

(versions ST (C), LB(C)).

4 Knowledge about PROB − CAP − V AR

In this section we catalogue our state of knowledge about the most important poly-

nomially solvable variants. specifically we present three tables for PROB − [U, CC],

PROB − [U, CC] − B and PROB − [U, CC] − SC respectively. We also indicate the

relatively few results known for more complicated variants.

For each problem PROB−CAP−V AR we present a Table with three parts. The first

part FORMULATION deals with extended formulations whose projection is the convex

hull of XPROB−CAP−V AR. First some indication of the name of the reformulation (if

any) is given, along with the number of constraints and variables in the formulation, and

then references. The second part VALID INEQUALITIES and SEPARATION gives the

family of valid inequalites describing the convex hull, the complexity of their separation,
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and references. The third OPTIMIZATION gives the complexity of the best known

algorithm, and references. An asterisk ∗ indicates that the family of inequalities only

gives a partial description of the convex hull of solutions. A triple asterisk indicates that

we do not know of any result specific to the particular problem class.

4.1 PROB − [U, CC]

Table 1 contains results for PROB − [U, CC]. The cases [DLSI, DLS] − U have been

left blank as the results and algorithms are trivial.

LS WW DLSI DLS

FORMULATION

U SP O(n)×O(n2) WW O(n2)×O(n) − −
FL O(n2)×O(n2)

[22, 15] [39]

CC O(n3)×O(n3) O(n2)×O(n2) O(n)×O(n) O(n)×O(n)

[53] [39] [32, 39] Folklore

SEPARATION

U (l, S) (l, S)(WW ) − −
O(n log n) O(n)

[5] [39]

CC klSI∗ klSI(WW ) Mixing Gomory

− O(n2 log n) O(n log n)

[38] [39] [20, 32, 39] Folklore

OPTIMIZATION

U O(n log n) O(n) − −
[1, 16, 55] [1, 16, 55]

CC O(n3) O(n2 log n) O(n log n) O(n log n)

[19, 50] [54] [54] [54]

Table 1: Models PROB − [U, CC]
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Remarks concerning Table 1.

FL denotes the facility location reformulation from [22].

SP denotes the shortest path reformulation from [15].

(l, S) denotes the (l, S)-inequalities derived in [5].

(l, S)(WW ) denotes the subclass of (l, S)-inequalities needed for Wagner-Whitin costs

in [39].

klSI denotes the klSI-inequalities derived in [38]. A heuristic separation algorithm can

be devised for this class based on that for the subsclass klSI(WW ).

klSI(WW ) denotes a restricted subclass of klSI-inequalities, see [39].

Here mixing denotes essentially the klSI(WW )-inequalities, see [20].

Gomory indicates that Gomory fractional cuts give a tight O(n)× O(n) formulation for

DLS − CC. The basic algorithm for LS − CC, due to Florian and Klein [19], was an

O(n4) algorithm based on a shortest path over regeneration intervals. This algorithm

extends easily to LS −CC −B and also LS −CC − SC. For LS −CC Van Hoesel and

Wagelmans [50] show how the costs of the regeneration intervals can be calculated more

efficiently, leading to an O(n3) implementation.

Varying Capacities: Valid Inequalities and Separation In [34] it is shown how

flow cover inequalities [36] can be used to derive a class of valid inequalities for LS −C.

Recently a dynamic knapsack model has been studied [25, 26, 28] leading to new families

of valid inequalities for DLSI−C, WW−C and LS−C, as well as a separation heuristic.

A fully polynomial approximation scheme is given in [51].

We now consider what results are known for the most important variants, in particular

those with backlogging and start-up costs respectively.

4.2 Backlogging PROB − [U, CC]−B

The basic formulation for LS−C−B has as additional data b′t the per unit cost of back-

logging demand in period t. Its formulation requires the introduction of new variables

rt is the amount backlogged at the end of period t for t = 1, . . . , n.
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It is assumed throughout that r0 is undefined, or equivalently that r0 = 0.

LS − C −B now has the formulation

min
∑n

t=0 h′tst +
∑n

t=1 b′trt +
∑n

t=1 ptxt +
∑n

t=1 ftyt (14)

st−1 − rt−1 + xt = dt + st − rt for t = 1, . . . , n (15)

xt ≤ Ctyt for t = 1, . . . , n (16)

x, r ∈ Rn
+, s ∈ Rn+1

+ , y ∈ {0, 1}n. (17)

WW − C − B. With backlogging, the costs are said to be Wagner-Whitin if both

ht−1 = pt−1 + h′t−1 − pt ≥ 0 and bt = pt+1 + b′t − pt ≥ 0 for all t. However it is not

known if there is a simple formulation similar to that of WW − C involving just the

s, r, y variables.

DLSI − C −B has the formulation in the (s, r, y) space

s0 +
∑t

u=1 Cuyu = d1t + st − rt for t = 1, . . . , n

s ∈ Rn+1
+ , r ∈ Rn

+, y ∈ [0, 1]n.

Now the variables r1, . . . , rn (or alternatively s1, . . . , sn) can be eliminated, giving the

feasible region

s0 + rt +
∑t

u=1 Cuyu ≥ d1t for t = 1, . . . , n

s0 ∈ R1
+, r ∈ Rn

+, y ∈ [0, 1]n.

DLS − C −B is obtained from DLSI − C −B by setting s0 = 0.

The results for PROB − [U, CC]−B are given in Table 2.

Remarks concerning Table 2.

SP and FL are again shortest path and facility location like formulations.
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LS WW DLSI DLS

FORMULATION

U SP (B) O(n)×O(n2) O(n2)×O(n)

FL(B) O(n2)×O(n2) − −
[4, 37] [39]

CC RI O(n3)×O(n3) ∗ ∗ ∗ O(n2)×O(n2)∗ O(n)×O(n)

[53] [32, 53] [32] [32]

SEPARATION

U Ext(l, S)∗ Cycles O(n3)

[37] [39] − −
CC Ext(klSI)∗ FC, RC, GMix∗ GMix∗ MIR

[34, 24, 32] [32] [32]

OPTIMIZATION

U O(n log n) O(n) − −
[1, 16, 55] [1, 16, 55]

CC O(n4) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 2: Model PROB − [U, CC]−B with Backlogging

RI indicates a formulation based on regeneration intervals.

Ext(l, S) indicates a large family of inequalities including the Cycle inequalities (giving

conv(XWW−U−B)), which are in turn a generalization of the (l, S) inequalities. A simple

separation heuristic involves adding backlog variables to (l, S) inequalities so as to make

them feasible for LS − U −B.

Cycle inequalities can be separated by finding a negative cost cycle in an appropriate

graph.

In similar fashion Ext(klSI) is the family of klSI inequalities extended to be valid for

LS − CC −B.

FC denotes flow-cover inequalities, RC reduced capacity inequalities, GMIX denotes

mixing inequalities made feasible by the addition of appropriate backlog variables, and

MIR denotes mixed integer rounding inequalities.
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4.3 Start-Up Costs (SC)

The basic formulation for LS − C − SC has as additional data the start-up costs gt for

t = 1, . . . , n. It requires the introduction of new variables

zt = 1 if there is a start-up in period t, i.e. there is a set-up in period t, but there

was not in period t− 1, and zt = 0 otherwise.

The resulting formulation is

min
∑n

t=1 ptxt +
∑n

t=0 h′tst +
∑n

t=1 ftyt +
∑n

t=1 gtzt (18)

st−1 + xt = dt + st for t = 1, . . . , n (19)

xt ≤ Ctyt for t = 1, . . . , n (20)

zt ≥ yt − yt−1 for t = 1, . . . , n (21)

zt ≤ yt for t = 1, . . . , n (22)

zt ≤ 1− yt−1 for t = 1, . . . , n (23)

x ∈ Rn
+, s ∈ Rn+1

+ , y, z ∈ {0, 1}n. (24)

where we assume that y0, the state of the machine at time 0, is given as data.

The formulations of [WW, DLSI, DLS]−C − SC are obtained by just adding the con-

straints (21)-(23) and z ∈ {0, 1}n to the earlier formulations given in Section 2.

The results for PROB − [U, CC]− SC are given in Table 3.

Remarks concerning Table 3. Eppen and Martin [15] provided a first shortest path

formulation for LS − U − SC with O(n3) variables.

Again for LS − U − SC, Rardin and Wolsey [41] showed that the separation problem

for (l, R, S) inequalities can be solved by a single max flow calculation in a graph with
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LS WW DLSI DLS

FORMULATION

U SP (SC) O(n2)×O(n2) O(n2)×O(n)

FL(SC) O(n3)×O(n2) − −
[52, 57] [39]

CC O(n3)×O(n3) O(n2)×O(n2)[49]

(WW )O(n3)×O(n2) (WW )O(n2)×O(n)[45]

SEPARATION

U (l, R, S) (l, S)(SC)

O(n3) ∗ ∗ ∗ − −
[52, 57]

CC left/right, submod∗ ∗ ∗ ∗ ∗ ∗ ∗ hole/bucket∗

[11] [48]

OPTIMIZATION

U O(n log n) O(n) − −
[1, 16, 55] [1, 16, 55]

CC O(n4) ∗ ∗ ∗ ∗ ∗ ∗ O(n2)[17]

[19] WW O(n log n)[46]

Table 3: Model PROB − CAP − SC with Start-Ups

O(n3) nodes.

For WW−U−SC the (l, S)(SC) inequalities are a simple modification of the (l, S)(WW )

inequalities to include start-up variables.

In [11], O(n2) separation algorithms are given for the classes of left and right submodular

inequalities that are valid for LS − C − SC with varying capacities. Also an O(n3)

separation algorithm is given for the family of left klSI inequalities valid for LS−CC−
SC.

In [44], polynomial separation algorithms are given for several classes of hole/bucket

inequalities for DLS − CC − SC.

Formulations for DLSI − CC − ST can be obtained by viewing the set XDLSI−CC−SC
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as the union of n + 1 sets of the form XDLS−CC−SC depending on the possible values

taken by the initial stock variable s0.

4.4 Other Variants

We indicate a series of results concerning either formulations or familes of valid inequal-

ities that can be useful.

• WW−U−{B, SC}. In [2], an O(n2)×O(n) reformulation is presented generalizing

those for WW − U −B and WW − U − SC.

• LS−U −{SS, SL}. In [27], a family of valid inequalites describing the convex hull

are presented, as well as tight extended formulations in certain special cases.

• LS − CC − SC. In [11], several families of valid inequalities are presented as well

as efficient separation algorithms.

• LS − U − LB In [12], models are studied that provide relaxations of both LS −
U − LB, and also of single period relaxations of multi-item models.

• LS−CC−ST (C) For the optimization problem a dynamic programming algorithm

is presented in [43].

5 Classification of Multi-Item/Machine/Level Problems

Here we present a minimal extension of the classification scheme to deal with a limited

class of multi-item and/or multi-machine problems. We assume that there are several

items and one or more machines.

Machines {NK = #, [IM, V M ], [LT ]∗, [SB1, SB2, BB], [SET, ST, SQT, SQC]∗}
The first subfields are simple.

NK is the number of machines.

LT indicates that there are lead times.

The next subfield gives information about the time periods.
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If a machine produces more than one item, there are typically joint capacity constraints

across items. When periods are short so that only one or two items are produced by the

machine in a period, one talks of small time buckets. When more than two set-ups are

permitted per period, there are big time buckets.

The following subfield gives information about the time buckets.

SB1, SB22 indicate a small bucket model in which either at most one or at most two

set-ups are permitted per period respectively. SB1 is often referred to as a model with

mode constraints.

BB denotes a big bucket model with at least one joint capacity constraint imposing a

limit Lk
t on the amount of capacity available in each period. aik denotes the capacity

consumption rate per unit of item i.

The last subfield gives information about the capacity utilization.

SET indicates that there are also set-up times bik that reduce the capacity available.

ST indicates that there are start-up times eik .

SQT indicates that there are sequence dependent changeover times qtijk .

SQC indicates that there are sequence dependent changeover costs qcijk whether it is a

big or small bucket model.

Multi-Level Production {NL = #, [G, A, S]}.
The production structure classification is simple

NL denotes the number of levels, with ρijk
t the number of units of item i needed to pro-

duce one item of j on machine k in period t for each item j ∈ S(i), the set of successors

of i.

G denotes a general product structure

A denotes assembly structure

S denotes in series assembly structure, i.e. linear.

Finally to complete this very partial classification, we may wish to add

NT = n the number of time periods, and NI the number of items.
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5.1 MIP formulation

Introducing additional suffices i or j for items, and k for machines, we also require new

variables uijk
t to model sequence dependent changeovers. Most of the problems covered

by the above classification can now be represented by the MIP:

min
∑

i,k,t Cost(xik
t , yik

t , si
t, r

i
t, z

ik
t ) +

∑
i,j,k,t qcijk

t uijk
t

si
t−1 − ri

t−1 +
∑

k xik
t = di

t +
∑

j∈S(i) ρijkxjk
t + si

t − ri
t (25)

∑
i(a

ikxik
t + bikyik

t + eikzik
t +

∑
j �=i qt

ijkuijk
t ) ≤ Lt (26)

Constraints modelling start− ups (27)

Constraints modelling sequence− dependence, etc (28)

. . .

We note that in SB1 models, aik and eik and qtijk are zero, and the inequality (26)

reduces to

∑

i

yik
t ≤ 1 for all k, t. (29)

One possible model for SB2 has the constraints

∑
i y

ik
t ≤ 2

∑
i(y

ik
t − zik

t ) ≤ 1.

The latter constraint says that there is only one set-up per period that is not a start-up.

5.2 Known Results for Multi-Item Problems

We present a few basic results on polynomial solvability, reformulation, and valid in-

equalities. In all the special cases below, there is a single machine (NK=1).

• Multi-Level Uncapacitated Lot-Sizing in Series. {NL > 1, S}{LS − U} is polyno-

mially solvable by dynamic programming. [60]
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• Multilevel-Level Lot-Sizing. {NL > 1, G}{LS −CC −{V AR}}. Using an echelon

stock reformulation [9] leads to a formulation with a single-item lot-sizing problem

for each item.

• Multi-Item Single Mode Constant Capacity Discrete Lot-Sizing. {SB1}{DLS −
CC} reduces to a network flow problem. This is part of the folklore, see for example

[32].

• Multi-Item Single Mode Constant Capacity Discrete Lot-Sizing with Backlogging.

{SB1}{DLS−CC−B}. The convex hull of solutions is obtained using the convex

hull formulation for NI = 1 plus the mode constraints (29), see [32].

• Big Bucket Problems with Set-Up Times. {BB, SET} {LS−C}. Valid inequalities

have been proposed by Miller et al. [30, 31].

• {[BB, SB1, SB2], [SQT, SQC]∗} Formulations for sequence-dependent changeovers

for small buckets and big buckets can be found in [7, 10, 21, 57].

6 Three Problems: Reformulation by Classification

Here we show how to profit from the classification of Sections 3 and 4 to obtain a good

formulation. We then demonstrate the approach on three problem instances. In each case

we first classify the instance. Then we use the Tables to derive a strong reformulation of

the instance that is then fed into a standard MIP solver. Results obtained are compared

either with those provided by alternative formulations, or with those obtained earlier

using one or more special purpose systems.

6.1 Use of the Classification

As an illustration of how to use the classification, we consider a multi-item single level

single machine problem. Suppose that the problem is single mode with backlogging and

constant capacities, namely {NK = 1, SB1}{LS − CC −B}.

Step 1. Check to see if the costs are Wagner-Whitin, as this property is unaffected by

mode constraints. We assume that the answer is positive.
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Step 2. Check WW − CC −B in Table 2. An approximate reformulation is proposed,

but O(n3)×O(n3) appears too large.

Step 3. We can move upwards or towards the right in the Table 2 to find a relaxation.

Moving upwards from CC to U , the relaxation WW − U − B is obtained for which a

tight O(n2)×O(n) reformulation is indicated in Table 2.

Step 4. Moving right from WW to DLSI, we obtain the relaxations DLSIk −CC −B

for which a good O(n2)×O(n2) reformulation is again known for each k. However this

leads to an O(n3)×O(n3) formulation, which is again rejected as being too big.

Step 5. Decide to use the reformulation of Step 3 which has NI × O(n2) constraints

and NI ×O(n) variables, and is of reasonable size.

A similar approach has been taken in tackling the three instances treated below,

starting from the verbal classification dervied in Section 2.

6.2 Problem 1: Bottling

i) Multi-item constraints and costs. At most one item can be produced per period.

ii) Individual item constraints and costs. When produced, each item is produced for

between 7 and 16 hours, so both the upper bound and the lower bounds on production

per period are time invariant. Also the unit production and storage costs are time

invariant, and there are start-up costs.

From this, the problem can be classified as {NK = 1, SB1}{WW −CC−{SC, LB}}
with formulation
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min
∑

i,t(p
i
tx

i
t + hi

ts
i
t + f i

ty
i
t + gi

tz
i
t) (30)

si
t−1 + xi

t = di
t + si

t ∀i, t (31)

xi
t ≤ Ciyi

t ∀i, t (32)

xi
t ≥ LBiyi

t ∀i, t (33)
∑

i y
i
t ≤ 1 ∀t (34)

zi
t ≥ yi

t − yi
t−1 ∀i, t (35)

zi
t ≤ yi

t ∀i, t (36)

x, s ≥ 0, y, z ∈ {0, 1}. (37)

In Table 3 we see that the reformulation of WW − CC − {SC, LB} is blank. However

there is an O(n2)× O(n) reformulation of WW − U − SC. Also in Table 1 we see that

there is an O(n2)× O(n2) reformulation of WW − CC.

The reformulation for WW − U − SC is obtained by just adding the O(n2) inequalities

st−1 ≥
∑l

j=t dj(1− yt − zt+1 − . . .− zl) ∀t, l with t ≤ l. (38)

The reformulation for WW − CC for each item is

sk−1 ≥ C
∑n

t=k fk
t δk

t + Cµk ∀k (39)
∑t

u=k yu ≥
∑

τ∈{0}∪[k,n]�dkt
C − fk

τ �δk
τ − µk ∀k, t, k ≤ t (40)

∑
τ∈{0}∪[k,n] δ

k
t = 1 ∀k (41)

µk ≥ 0, δk
t ≥ 0, for t ∈ {0} ∪ [k, n]∀k (42)

0 ≤ yt ≤ 1 for t = 1, ..., n (43)

where fk
0 = 0, fk

τ = dkτ
C − �

dkτ
C � and [k, t] denotes the interval {k, k + 1, . . . , t}. The

additional variables δk
t indicate that sk−1 = Cfk

t (modulo C).

In Table 4 we present computational results showing the effects of the reformulations.

Instance cl-1a is the original formulation (30)-(37). Instance cl-1b is with the addition of

the inequalities (38) for WW −U −SC. Instance cl-1c has in addition the reformulation
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(39)-(43) of WW − CC for each item. The nine columns represent the instance, the

number of rows, columns and 0-1 variables, followed by the initial LP value, the value

XLP after the system has automatically added cuts, IP the optimal value, the total

number of seconds required to prove optimality, and finally the number of nodes in the

branch-and-cut tree. All runs were carried out with the default version of the XPRESS

MIP optimizer [59] version 12.50 running on a 500Mhz Pentium III under Windows NT.

instance m n int LP XLP IP secs nodes

cl-1a 511 720 120 1509.1 3549.6 4414.2 5000∗ 3.8 ×105

cl-1b 2354 720 120 3800.6 4305.1 4404.5 383 3826

cl-1c 4454 2824 120 4309.9 4310.5 4404.5 82 175

Table 4: Results for Problem 1

An asterisk ∗ indicates that the run was terminated before optimality was proved. For

formulation cl1a the best lower bound on termination was 4251.2 leaving a gap of 3.7%.

6.3 Problem Instance 2: Discrete Lot-Sizing and Sequence Dependent

Changover Costs

i) Multi-item constraints and costs. At most one item can be produced per period, and

there are sequence dependent set-up costs.

ii) Individual item constraints and costs. Production is all or nothing with constant

capacities. There are no unit production costs, and storage costs are nonnegative and

constant over time.

The problem can be classified as {NK = 1, SB1, SQC}{DLS − CC}.
As observed in [18], there is no backlogging, so demands can be normalized with

di
t ∈ {0, 1}. A basic formulation is then
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min
∑

i,t hisi
t +

∑
i,j,t qijui,j

t

si
t−1 + xi

t = di
t + si

t ∀ i, t

xi
t ≤ yi

t ∀ i, t
∑

i y
i
t = 1 ∀ t

uij
t ≥ yi

t−1 + yj
t − 1 ∀ i, j, t

x, y ∈ {0, 1}, s, u ≥ 0.

Observation 1 The reformulation of changeover variables [21, 57] indicated in Section

5.2 leads to the constraints

∑
i u

ij
t = yj

t ∀j, t
∑

j uij
t = yi

t−1 ∀i, t
∑

i y
i
0 = 1

uij
t ≥ 0 ∀i, j, t

representing the flow of a single unit passing from item set-up to item set-up over time.

Here the set-up variable yi
t is the flow through node (i, t) and uij

t is the flow from node

(i, t − 1) to node (j, t) indicating a switch from a set-up of item i in period t − 1 to a

set-up of item j in t.

Observation 2: Inclusion of start-up variables. When there are changeover vari-

ables, there are implicitly start-up variables for which we know tighter formulations.

Thus we introduce the equations

zj
t =

∑

i:i�=j

uij
t

to define the start-up variables. Switch-off variables wi
t can be defined similarly. This

means that it is possible to use results for the single item model DLS − CC − SC.

Observation 3: Reformulation of DLS − CC − SC
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From Table 3, we see that there is a tight O(n2)×O(n) reformulation under the

assumption of Wagner-Whitin costs. This consists of the inequalities

si
t−1 +

t+p−1∑

u=t

yi
u +

t+p−1∑

u=t+1

(dul − (t + p− u))zu +
l∑

u=t+p

dulzu ≥ p

for all t, l such that dl = 1, l ≥ t, where we suppose that dt1 = . . . = dtp = 1 with

t < t1 < . . . < tp = l and dτ = 0 in intervening periods in {t, . . . , l}.
In Table 5 we present computational results showing the effects of the reformulations.

Instance cl2-NTa is the initial formulation, instance cl2-NTb is the formulation with

reformulation from Observations 1, and instance cl2-NTc also includes the reformulation

of DLS − CC − SC(WW ) from Observations 2 and 3. Instances with NT = 35 and

NT = 60 periods were solved. Table 5 has the same structure as Table 4.

instance m n int LP XLP IP secs nodes

cl2-35a 3797 4110 350 27.2 34.7 2056 1800∗ 51500∗

cl2-35b 2062 5130 690 180.9 531.6 1599 1800∗ 8000∗

cl2-35c 2599 5130 690 1361.5 1361.5 1387 9 17

cl2-60c 4817 8880 1190 1453.6 1454.0 1560 17579 8117

Table 5: Results for Problem 2

Note that cl2-35a and cl2-35b are unsolved after 1800 seconds. The best lower bounds

obtained are 240.9 and 804.3 respectively.

6.4 Problem 3: Multi-Level Assembly

i) This is a multilevel problem with assembly type product structure.

ii) Multi-item constraints and costs. Many items can be produced in each period, and the

capacity constraints limiting production in each period involve both production levels

and set-up times for families.

iii) Individual item constraints and costs. There are no individual capacity constraints,

but there are storage costs and implicit fixed costs through the families.

This gives the classification {NL > 1, A}{NK > 1, BB, ST (Family)}{LS − U}.
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We now present the initial formulation from [42], except for the replacement of the

stock variables si
t by echelon stock variables ei

t, where si
t = ei

t − e
σ(i)
t and σ(i) is the

unique successor if any of item i. This gives

min
∑

i,t h̄iei
t +

∑
f,t cfηf

t (44)

ei
t−1 + xi

t = d
q(i)
t + ei

t for all i, t (45)

ei
t ≥ e

σ(i)
t for all i, t (46)

xi
t ≤Myi

t for all i, t (47)

yi
t ≤ ηf

t for all i, f, t with i ∈ F (f) (48)
∑

i∈F (f) aifxi
t +

∑
g∈V (f) βgfηg

t ≤ Cf
t ηf

t for all f, t (49)

yi
t, η

f
t ∈ {0, 1}, xi

t, s
i
t ≥ 0 for all i, f, t (50)

where q(i) is the final product containing item i, h̄i
t = hi

t −
∑

j ∈ P (i)hj
t where P (i)

is the set of immediate predecessors of item i, ηf
t is the set-up variable for family f in

period t, F (f) is the set of items in family f and V (f) is a set of families appearing in

the budget constraint of family f .

This model can also be reformulated by eliminating the yi
t variables giving

xi
t ≤Mηf

t for all i, f, t with i ∈ F (f), (51)

in place of the constraints (47)-(48).

As observed in Section 4.2, the echeleon stock formulation is such that the constraints

(45)-(47) give a model of the form LS−U . Rather than use an O(n)×O(n2) reformulation

of LS − U involving many new variables, we have used the reformulation WW − U , see

Table 1. In addition to avoid adding too many constraints, we have added only a subset

of the (l, S)(WW ) inequalities

ei
t−1 +

l∑

u=t

d
q(i)
ul yi

u ≥ d
q(i)
tl for all t, l, l − t ≤ PAR

where PAR is an integer. We denote the resulting formulation by cl3-NT-#c, where

#∈ {1, 2} is the number of the instance.
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In the model with the yi
t variables eliminated, we can do something similar, adding

the constraints

ei
t−1 +

l∑

u=t

d
q(i)
ul ηf(i)

u ≥ d
q(i)
tl for all t, l, l − t ≤ PAR,

where f(i) is any family containing item i. Clearly these inequalities are only unique

when each item belongs to just one family. We denote the resulting formulations by

cl3-NT-#b.

In Table 6 we present results for the four instances tackled in [7]. In all cases NT=16.

The two 78 item instances have each item belonging to a single family, so for these we

have used the more compact formulation cl3-78-#b. These two instances were run with

PAR=4.

The 80 item instances were run with the larger formulation cl3-80-#c, and with

PAR=8.

The columns of Table 6 contain the same information as in Tables 4 and 5, except

that the last column has been replaced by the % Gap on termination, where GAP =
BIP−BLB

BIP × 100 with BLB the value of the best lower bound.

Instance r c int LP XLP BIP Secs BLB Gap %

cl3-78-1b 7607 2688 192 10777.0 10839.9 11592.0 450 10934.0 5.7

cl3-78-2b 7618 2688 192 10464.8 10511.1 10926.0 450 10550.9 3.4

cl3-80-1c 13725 4128 288 21376.9 21551.7 25160.3 900 21869.3 13.1

cl3-80-2c 13700 4128 288 21951.6 22152.5 26377.4 900 22417.3 15.0

Table 6: Results for Problem 3

The best results obtained in [7] were gaps of 8.1,4.9,% running bc-opt on the two 78 item

instances with the echelon stock formulation (44)-(50), but with (47) replaced by (51),

and gaps of 13.5,13.8 % running bc-prod on the two 80 item instances using the original

formulation without echelon stock variables. There all four instances were run for 1800

secs on a 350 Mhz Pentium running under Windows NT.
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7 Conclusions

The three examples treated in the last section suggest that certain practical lot-sizing

problems can now be effectively tackled with nothing but appropriate tight a priori

reformulations and a commercial mixed integer programming system. Another such

example can be found in [32].

The classification scheme for single item problems introduced and detailed in Sec-

tions 2 and 3 show that there are still a number of open questions whose solution would

allow us to tackle an even larger range of lot-sizing problems. Here we list a few that we

believe are the most important or challenging.

i) DLSI − CC − B. Find a compact tight reformulation, and establish whether the

O(n2)×O(n2) formulation from [32] is tight. This question is also of importance for

WW − CC −B.

ii) DLSI − CC − SC and DLS − CC − {B, SC}. Find compact formulations and/or

strong valid inequalities.

iii) LS − CC − SS. Find formulations and valid inequalities.

iv) PROB − C. Find fast and effective separation heuristics for the dynamic knap-

sack inequalities proposed in [26].

v) NK > 1, NI = 1. Study the multi-machine single-item problem. Do the dynamic

knapsack inequalities suffice computationally? For problems with two machines, do the

recent two variable knapsack results of Agra and Constantino [3] provide useful inequal-

ities?

There are also obviously a wealth of questions when one turns to multi-item prob-

lems. Some important ones are:
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vi) {SB1} − {WW − U}. For the simplest possible single mode problem, find valid

inequalities involving multiple items.

vii) {BB − ST} − {LS − CAP}. Find valid inequalities to deal with start-up times

in big bucket models, extending the results of [30, 31].

viii) {BB − [SQC, SQT ]∗} − {PROB − CC}. Find valid inequalities for big bucket

models with sequence dependent costs and/or times.

It is also perhaps worth pointing out that there is to our knowledge still no complete

convex hull description, or compact convex hull reformulation for the basic uncapacitated

lot-sizing in series problem {NL > 1, S} − {LS − U}.

The approach advocated here also raises algorithmic questions, such as finding ways

to combine valid inequalities and tight reformulations, finding approximate, but more

compact, reformulations that are tight for many instances, or using the reformulations

with LP to solve the separation problems. Given that some reformulations provide very

good bounds, but are too large to be effective during enumeration, one could also perhaps

imagine working simultaneously with more than one formulation. Finally there is the

largely untouched question of whether the classification and reformulations can be used

to develop effective primal heuristics.
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