
Fast Fourier Transform and its applications
to integer knapsack problems

Yu. Nesterov∗

June 7, 2004

Abstract

In this paper we suggest a new efficient technique for solving integer knapsack prob-
lems. Our algorithms can be seen as application of Fast Fourier Transform to gener-
ating functions of integer polytopes. Using this approach, it is possible to count the
number of boolean solutions of a single n-dimensional Diophantine equation 〈a, x〉 = b
in O(‖a‖1 ln ‖a1‖ ln n) operations. Another application example is an integer knapsack
optimization problem of volume b, which can be solved in O(‖a‖1 ln ‖a1‖ ln n + b ln2 n)
operations of exact real arithmetics. These complexity estimates improve by a factor of
n the complexity of the traditional Dynamic Programming technique.

Keywords: Integer programming, knapsack problem, Fast Fourier Transform, Dynamic
Programming.

∗Center for Operations Research and Econometrics (CORE), Catholic University of Louvain (UCL),
34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium; e-mail: nesterov@core.ucl.ac.be.

This paper presents research results of the Belgian Program on Interuniversity Poles of Attraction
initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. The scientific
responsibility is assumed by the author.

1 Introduction

Motivation. Starting from a remarkable paper [2], algebraic methods become more and
more popular in Combinatorial Optimization (see [1], [3], [5] and the references therein).
However, the majority of the papers address mainly theoretical topics. To our knowledge,
up to now no attempt has been made to implement these ideas in an algorithmic form and
to compete with existing methods of Combinatorial Optimization. In this paper we show
that this can be done for different knapsack-type problems. Moreover, we show that the
new methods have better efficiency estimates than the standard Dynamic Programming
approach.

In this paper we use an algebraic technique, which is similar to that of [5]. Let us
illustrate it on a simple example. Denote by Z+ the set of non-negative integers. Let
a = (a(1), . . . , a(n))T ∈ Zn

+. Consider the boolean knapsack polytope

Be
a(b) = {x ∈ {0, 1}n : 〈a, x〉 = b}.

For a set Q ⊆ Rn, denote by N (Q) the number of integer points in Q (N (∅) = 0); we
call this number the integer volume of the set Q. Our problem consists of computing the
value N (Be

a(b)) for a given b ∈ Z+.
Note that in general this computation is NP-hard (since it solves the “problem of

stones”). On the other hand, consider the following generating function:

f(t) =
n∏

i=1

(1 + ta
(i)

), t ∈ R.

We leave justification of the identity

f(t) ≡
‖a‖1∑

b=0

N (Be
a(b)) tb, t ∈ R, ‖a‖1 =

n∑

i=1

|a(i)|,

as an exercise for the reader. Thus, we need to compute the coefficient for the term tb of
the polynomial f(t). However, in doing that, it is reasonable to compute also all previous
coefficients. Note that the direct computation of all these coefficients can take up to

O(n ‖a‖1)

arithmetic operations. The same complexity can be achieved by employing for above
computation the standard Dynamic Programming approach (see, for example, Section II.6
[6]). But it is easy to see that the above problem can be solved in a better way.

Indeed, it is well known that the coefficients of the product of two polynomials of degree
d can be computed by Fast Fourier Transform (FFT) in O((d + 1) ln(d + 2)) arithmetic
operations. Using this fact, we can make the following observation:

The coefficients of the product of n polynomials of degree di, i = 1, . . . , n, can
be computed by FFT in

O(d ln d ln n)

arithmetic operations, where d =
n∑

i=1
di.

2

(For the sake of completeness we prove this statement as Lemma 2 in Section 2.) Using
this result for the above polynomial f(t) we get a complexity bound of the order of

O(‖a‖1 · ln ‖a‖1 · ln n)

arithmetic operations. To our knowledge, for knapsack-type problems, this bound is the
first one with such a weak dependence on the dimension of the space of variables. We
will see later that similar complexity bounds can be obtained also for other knapsack-type
problems including optimization problems.

Contents. The paper is organized as follows. We start from description of an efficient
procedure for computing the integer volumes of knapsack polytopes (Section 2). The
complexity of all the algorithms presented in this section and later on depends only in
a logarithmic way on the number of items. In Section 3 we introduce the notion of
characteristic functions of polytopes and discuss efficient algorithms for computing the
values of these functions and their derivatives. Characteristic functions provide a bridge
to knapsack optimization problems, which are discussed in the end of this section. Using
our approach, an n-dimensional integer knapsack optimization problem of volume b can
be solved in O(‖a‖1 · ln ‖a‖1 · ln n + b · ln2 n) operations of exact real arithmetics.

Since all algorithms of this paper are based on FFT, we collect the necessary results in
Appendix. Most of these facts can be found in classical monographs (e.g. [4]). However,
usually FFT-type algorithms are given in an implicit form, from which it is difficult to
see their actual performance. In our presentation of FFT-theory everything is explicit
(the algorithms, the complexity results). Moreover, using this description, the majority
of FFT-type methods can be implemented quite straightforwardly.

Notation. In what follows we denote by

〈x, y〉 =
∑

i

x(i)y(i)

the standard inner product in the corresponding vector space. The dimension of the
column vectors x and y is always clear from the context. For given a, u ∈ Zn

+, denote by

Bu
a (b) =

{
x ∈

n∏

i=1

{0, . . . , u(i)} : 〈a, x〉 = b

}

the bounded knapsack polytope. Thus, B∞
a (b) stands for a knapsack polytope with no

upper bounds on the variables. For a polynomial f(t), we denote its degree by D(f).
Notation e is used for the vector of all ones.

Acknowledgements. The author would like to thank Didier Henrion and Jean-Bernard
Lasserre for interesting discussions, and Laurence Wolsey for careful reading and sugges-
tions on the improvement of presentation of the results.

2 Computing the volume of knapsack polytopes

Consider a finite parametric family of discrete sets R̂ ≡ {R(b)}b∈Z+ (we assume that
R(b) = ∅ for all b large enough). The generating function of this family is defined as

3

follows:

fR̂(t) =
∞∑

b=0

N (R(b)) · tb, t ∈ R.

Let us fix now some a and u from Zn
+. We can define the following parametric family of

bounded knapsack polytopes Bu
a = {Bu

a (b)}b∈Z+ . Its generating function is then

fBu
a
(t) =

∞∑

b=0

N (Bu
a (b)) · tb, t ∈ R. (2.1)

Since u is finite, this function is a polynomial of degree 〈a, u〉. It appears that the gener-
ating function of the family Bu

a admits a very compact representation.

Lemma 1

fBu
a
(t) =

n∏

i=1




u(i)∑

k=0

tka(i)


 . (2.2)

Proof:
We prove identity (2.2) by induction in dimension n. For n = 1, the zero-dimensional
knapsack polytopes will have non-zero volume only for

b = 0, a(1), 2a(1), . . . , u(1)a(1).

Since each of the corresponding volumes is equal to one, identity (2.2) follows.
Assume that (2.2) is proved for some n ≥ 1. Let us prove it for dimension n + 1. Let

a, u ∈ Zn
+. Denote

a+ = (a, a(n+1))T ∈ Zn+1
+ , u+ = (u, u(n+1))T ∈ Zn+1

+ .

Note that for any b ∈ Z+ we have

N (Bu+
a+

(b)) =
u(n+1)∑

k=0

N (Ba
u(b− ka(n+1))).

Therefore, in view of the inductive assumption, we have

fBu+
a+

(t) =
∞∑

b=0
N (Bu+

a+ (b)) · tb

=
∞∑

b=0

(
u(n+1)∑
k=0

N (Ba
u(b− ka(n+1)))

)
· tb

=
∞∑

b=0
N (Ba

u(b))
u(n+1)∑
k=0

tb+ka(n+1)

= fBu
a
(t) ·

(
u(n+1)∑
k=0

tka(n+1)

)
.

2

4

Before we present the main result on the complexity of computation of the generating
function, let us show how we can use FFT in order to compute efficiently the product of
several polynomials.

Lemma 2 Let polynomial f(t) be represented as a product of several polynomials:

f(t) =
n∏

i=1

pi(t).

Then its coefficients can be computed by FFT in

O(D(f) ln D(f) ln n)

arithmetic operations.

Proof:
Let us increase the number of factors of f(t) up to n̄ = 2m,

1
2 n̄ ≤ n ≤ n̄,

by adding the “virtual” unit factors pi(t) ≡ 1, n < i ≤ n̄, if necessary. Note that this
does not change the degree of f(t). Moreover, in the computations below we drop all
multiplications involving these added polynomials; we need them only for a convenient
description of the order of operations with non-trivial factors. Note that, by construction,

m ≤ 1 + log2 n. (2.3)

Let us compute the product f(t) in m stages. At the beginning of each stage we have
nk = 2m−k polynomials,

pk,i(t), i = 1, . . . , nk, k = 0, . . . ,m.

The polynomials of the next stage are obtained as a product of the neighbors implemented
by FFT:

pk+1,i(t) = pk,2i−1(t)pk,2i(t), i = 1, . . . , nk+1.

Note that the sum of degrees of all polynomials at each stage is equal to D(f). On the
other hand, the complexity of multiplication of two polynomials of degree d by FFT does
not exceed C · (1 + d) log2(2 + d) arithmetic operations, where C is an absolute constant
(see Lemma 4). Therefore, the total complexity of each stage can be estimated from above
as following:

C
nk+1∑
i=1

(1 + D(pk,2i−1)) log2(2 + D(pk,2i−1)))

≤ C
nk∑
i=1

(1 + D(pk,i)) log2(2 + D(pk,i)))

≤ C max
λ∈Rnk

{
nk∑
i=1

(1 + λ(i)) ln(2 + λ(i)) : 〈e, λ〉 = D(f), λ(i) ≥ −1, i = 1, . . . , nk

}

≤ C · ((1 + D(f)) ln(2 + D(f)) + nk ln 2.)

5

Note that nk ≤ n̄ ≤ 2n ≤ 2D(f). It remains to use (2.3). 2

Thus, in view of representation (2.2), we can compute the volumes of bounded knap-
sack polytopes in a very efficient way. The following statement is a direct consequence of
representation (2.2) and Lemma 2.

Theorem 1 All 〈a, u〉 coefficients of the polynomial fBu
a
(t) can be computed by FFT in

O(〈a, u〉 ln〈a, u〉 ln n)

arithmetic operations. 2

Consider now the generating function of the unconstrained knapsack polytopes:

fB∞a (t) =
∞∑

b=0

N (B∞
a (b)) · tb. (2.4)

In accordance with Lemma 1, we can represent this function in the following form:

fB∞a (t) ≡
n∏

i=1

1
1− ta

(i)
, |t| < 1. (2.5)

This representation makes the computation of the coefficients of the generating function
much easier.

Theorem 2 The coefficients of the polynomial g(t) =
n∏

i=1
(1 − ta

(i)
) can be computed by

FFT in
O(‖a‖1 ln ‖a‖1 ln n) (2.6)

arithmetic operations. Using these coefficients, the first b+1 coefficients of the generating
function fB∞a (t) can be computed in

O(b min{ln2 b, ln2 n})

arithmetic operations.

Proof:
These statements follow from Lemma 2, and Lemmas 4, 7 and 8 in the Appendix. 2

3 Characteristic functions of knapsack polytopes

Let us fix a cost vector c ∈ Rn. Then for a given finite set of points R ⊂ Rn we can
introduce the characteristic function of this set:

gR(c) =
∑

x∈R
e〈c,x〉,

6

(compare with [7]). If R = ∅, we set gR(c) ≡ 0. Note that for R = R1
⋃R2 we have

gR(c) = gR1(c) + gR2(c).

Let us define also the potential function of the set R:

ψR(c) = ln gR(c).

There is an important relation between the potential function and the support function
of the set R:

ξR(c) ≡ max
x∈R

〈c, x〉 ≤ ψR(c) ≤ ξR(c) + lnN (R).

Therefore, the potential function can approximate the support function with an arbitrarily
high accuracy:

ξR(c) ≤ µψR(c/µ) ≤ ξR(c) + µ lnN (R), µ > 0. (3.1)

Further, for a parametric family of discrete sets R̂ ≡ {R(b)}b∈Z+ , we can define an
augmented generating function:

FR̂(c, t) =
∞∑

b=0

gR(b)(c) · tb, t ∈ R.

Note that FR̂(0, t) ≡ fR̂(t).
In particular, for the parametric family of bounded knapsack polytopes

Bu
a = {Bu

a (b)}b∈Z+ ,

the augmented generating function looks as follows:

FBu
a
(c, t) =

∞∑

b=0

gBu
a (b)(c) · tb ≡

∞∑

b=0

exp(ψBu
a (b)(c)) · tb, t ∈ R.

It appears that for the augmented generating function there still exists a simple expression.

Theorem 3

FBu
a
(c, t) =

n∏

i=1




u(i)∑

k=0

ekc(i)tka(i)


 . (3.2)

Proof:
We prove representation (3.2) by induction on n. For n = 1, the knapsack polytopes
Bu

a (b) are non-empty only for

b = ka, k = 0, . . . , u.

Clearly, Bu
a (ka) ≡ {k}, 0 ≤ k ≤ u, and (3.2) follows.

Assume now that the representation (3.2) is valid for some n ≥ 1. Let us prove it for
dimension n + 1. Let a, u ∈ Zn

+ and c ∈ Rn. Denote

a+ = (a, a(n+1))T ∈ Zn+1
+ , u+ = (u, u(n+1))T ∈ Zn+1

+ , c+ = (c, c(n+1))T .

7

Note that for any b ∈ Z+ we have

Bu+
a+

(b) =
u(n+1)⋃

k=0

{(x, k) ∈ Zn × Z : x ∈ Ba
u(b− ka(n+1))}.

Therefore

g
B

u+
a+

(b)
(c+) =

u(n+1)∑

k=0

gBa
u(b−ka(n+1))(c) · ekc(n+1)

.

Thus,

F
B

u+
a+

(c+, t) =
∞∑

b=0
g
B

u+
a+

(b)
(c+) · tb

=
∞∑

b=−∞

(
u(n+1)∑
k=0

gBa
u(b−ka(n+1))(c) · ekc(n+1)

)
· tb

Let us change the order of summation in the last sum. Denote

b′ = b− ka(n+1), k′ = k.

Note that for the lattice Z2 ≡ {(b, k)}, this is a unitary change of basis. Moreover,

b = b′ + k′a(n+1), k = k′.

Therefore, in view of our inductive assumption, we conclude that

F
B

u+
a+

(c, t) =
∑
b′

u(n+1)∑
k′=0

gBa
u(b′)(c) · ek′c(n+1) · tb′+k′a(n+1)

=
(∑

b′
gBa

u(b′)(c) · tb′
)
·
(

u(n+1)∑
k′=0

ek′c(n+1)
tk
′a(n+1)

)

= FBu
a
(c, t) ·

(
u(n+1)∑
k′=0

ek′c(n+1)
tk
′a(n+1)

)
.

2

Corollary 1 The augmented generating function for the unconstrained knapsack polytope
has the following form:

FB∞a (c, t) =

[
n∏

i=1

(1− ec(i)ta
(i)

)

]−1

, |t| < min
1≤i≤n

e−c(i)/a(i)
. (3.3)

2

8

Let us show how we can use the augmented characteristic functions in order to solve
integer knapsack optimization problems. Consider the following problem:

Find f∗ = max
x∈Zn

+

{〈c, x〉 : 〈a, x〉 = b}, (3.4)

where all coefficient are integers. In other words, we need to find

f∗ = ξB∞a (b)(c).

Since f∗ is an integer value, it is enough to find its approximation with absolute accuracy
less than one. Note that

N (B∞
a (b)) ≤

n∏

i=1

(
1 +

b

a(i)

)
≤ (1 + b)n.

Thus, if we take µ < 1
n ln(1 + b), then in view of (3.1) we have

−1 + µψB∞a (b)(c/µ) < f∗ ≤ µψB∞a (b)(c/µ).

Let us estimate the complexity of finding the coefficient

gB∞a (b)(c/µ) = exp{ψB∞a (b)(c/µ)}.

This can be done in two steps:

1. Compute the coefficients of the polynomial f(t) =
n∏

i=1
(1− ec(i)/µ · ta(i)

).

2. Compute the first b + 1 coefficients of the rational function g(t) = 1
f(t) .

(3.5)

In view of Lemma 2 and Lemma 4, the first step of the scheme takes O(‖a‖1 ln ‖a‖1 lnn)
arithmetic operations. Further, in accordance with Lemmas 7 and 8, the second step takes
at most O(b ln2 n) operations. Thus, we have proved the following result.

Theorem 4 The optimal value of problem (3.4) can be found by (3.5) in

O(‖a‖1 · ln ‖a‖1 · ln n + b · ln2 n)

operations of exact real arithmetic.

9

References

[1] A.I.Barvinok and J.E.Pommersheim. An algorithmic theory of lattice points in poly-
hedra. In: “New perspectives in algebraic combinatorics”, MSRI Publications, 38
(1999), 91 - 147.

[2] M.Brion and M.Vergne. Residue formulae, vector partition functions and lattice
points in rational polytopes. J. Amer. Math, Soc., 10 (1997), 797 - 833.

[3] B.Chen. Lattice points, Dedekind sums and Ehrhart polynomials of lattice polyhe-
dra. Discrete Comput. Geom. 28 (2002), 175 - 199.

[4] D. Knuth. The Art of Computer Programming, vol 2. Addison-Wesley, Reading,
MA, 1973.

[5] J.B. Lasserre. Generating functions and duality for integer programs. To be pub-
lished in Discrete Optimization.

[6] G.L. Nemhauser and L.A.Wolsey. Integer and Combinatorial Optimization. John
Willey & Sons, 1988.

[7] Yu.Nesterov. Characteristic function of directed graphs and applications to stochas-
tic equilibrium problems. CORE Discussion Paper # 2003/13, CORE, February
2003.

10

4 Appendix: Efficiency of Fast Fourier Transform

4.1 Basic representation

Recall that j =
√−1 ≡ exp(π

2 j). We identify a complex number z ∈ C with a point on
two-dimensional real plane R2:

z ≡ (<(z),=(z)) ⇔ z = <(z) + j=(z), z̄ = <(z)− j=(z).

In estimating the complexity of the algorithmic schemes below, we always assume that
the complex numbers are stored in the above coordinate form. Thus, the complex multi-
plication

z = z1 · z2, zi ≡ (xi, yi) ∈ C, i = 1, 2,

defined by
<(z) = x1x2 − y1y2

=(z) = x1y2 + x2y1

= (x1 + y1)(x2 + y2)− x1x2 − y1y2,

(4.1)

needs three real multiplications and five real additions. In some situations, the value z2

can be seen as a part of constant data. Then we do not need to count the addition x2+y2;
hence (4.1) takes only four additions. Note that such a reduced counting is always valid
for algorithms computing linear functions of variables.

The majority of FFT-based algorithms can be derived from the spectral properties of
one of the main combinatorial objects, the permutation matrix

Pn =




0 0 . . . 0 1
1 0 0 0
0 1 0 0

. . .
0 0 . . . 1 0



∈ Rn×n.

Note that det(λIn−Pn) = λn+(−1)(−1)n+1(−1)n−1 = λn−1. Thus, Pn has the following
eigenvalues:

λk(Pn) = λk
n, k = 0, . . . , n− 1,

λn = exp(2π
n) = cos(2π

n) + j sin(2π
n).

For z ∈ C denote by πn(z) its vector of powers:

π(z) = (1, z, . . . , zn−1)T ∈ Cn.

Then
Pn · π(λ−k

n) = (λ−k(n−1)
n , 1, λ−k

n , . . . , λ
−k(n−2)
n)T

= (λk
n, 1, λ−k

n , . . . , λ
k−k(n−1)
n)T = λk

n · π(λ−k
n).

11

Defining for u, v ∈ Cn the complex inner product

〈u, v〉C =
n∑

i=i

ū(i)v(i),

we can see that

〈πn(λk
n), πn(λm

n)〉C =
n−1∑

i=0

λ(k−m)i
n =

{
0, k 6= m,
n, k = m.

For a complex matrix U , denote U∗ = ŪT . Defining now

Un =
1√
n

(πn(1), πn(λ−1
n), . . . , πn(λ1−n

n)),

we can see that
PnUn = Undiag (πn(λn)), U∗

nUn = In.

Hence, U−1
n = U∗

n and we get the following representation:

Pn = Undiag (πn(λn))U∗
n. (4.2)

4.2 Multiplying matrices Un and U ∗
n by vectors

In FFT-based algorithms the key element is fast multiplication of the matrices Un and
U∗

n by a vector. Let us show how this can be done.
Let us fix a vector p = (p(0), . . . , p(n−1))T ∈ Rn. Consider the vector

v = U∗
np =

1√
n




πn(1)T p
πn(λn)T p

. . .
πn(λn−1

n)T p


 .

Introducing the notation p(z) =
n−1∑
i=0

p(i)zi, we can see that

v(i) = p(λi
n)/

√
n, i = 0, . . . , n− 1.

Denote by Λn the spectrum of the matrix Pn:

Λn = {1, λn, . . . , λn−1
n }, |Λn| = n.

Thus, our problem consists of computing all points from the set p(Λn).
In order to do this efficiently, we use the following observation. Assume that n = 2k.

Then the value of the polynomial p at any point z can be represented as follows:

p(z) =
2k−1∑
i=0

p(i)zi =
k−1∑
i=0

p(2i)z2i +
k−1∑
i=0

p(2i+1)z2i+1

= p0(z2) + z · p1(z2),

p0 = (p(0), p(2), . . . , p(2k−2))T ∈ Rk,

p1 = (p(1), p(3), . . . , p(2k−1))T ∈ Rk.

(4.3)

12

But for any z ∈ Λn ≡ Λ2k we have

z2 = (λi
2k)

2 = (λ2
2k)

i = λi
k ∈ Λk, |Λk| = k.

Thus, in order to compute the values of the polynomial p ∈ Rn in n points of the spectrum
Λn we need to compute the values of two polynomials p0, p1 ∈ Rk in k = n

2 points of the
spectrum Λk and perform n additional complex multiplications. If n = 2m, then this
recursion can be repeated down to the unit dimension.

For a given p ∈ CN with N = 2m, let us present an explicit algorithm for computing
the vector

p(ΛN) ≡
√

N U∗
Np.

This algorithm generates m vectors vk ∈ CN , k = 1, . . . , m. Each of these vectors is used
in order to store the values of nk = 2m−k polynomials

pk,i(z), pk,i ∈ C2k
, i = 1, . . . , 2m−k,

at the points of the spectrum Λ2k . The meaning of the entries of the vector vk is as
follows:

vk = (pk,1(1), . . . , pk,nk
(1),

pk,1(λ2k), . . . , pk,nk
(λ2k),

. . . ,

pk,1(λ2k−1
2k), . . . , pk,nk

(λ2k−1
2k)).

(4.4)

Note that in order to inverse the recursion (4.3), we need to compute the values

pk,i(z) + z1/2pk,l(z), pk,i(z)− z1/2pk,l(z).

The structure (4.4) of the vector vk ensures that these values are stored in the cells shifted
one from another by n̂ ≡ 1

2N . In the scheme below, notation v[i] is used for ith cell of
the vector v.

1. for i = 1 to n̂ do { v1[i] = p(i−1) + p(n̂+i−1), v1[n̂ + i] = p(i−1) − p(n̂+i−1). }

2. for k = 1 to m− 1 do
for l = 1 to 2k do for i = 1 to nk

2 do
{

vk+1

[
(l−1)nk

2 + i
]

= vk[(l − 1)nk + i] + λl−1
2k+1vk[(l − 1)nk + nk

2 + i],

vk+1

[
n̂ + (l−1)nk

2 + i
]

= vk[(l − 1)nk + i]− λl−1
2k+1vk[(l − 1)nk + nk

2 + i].
}

(4.5)

It is easy to implement the above scheme in such a way that the number of complex
multiplications does not exceed

m−1∑

k=1

2k nk

2
=

m− 1
2

N =
N

2
log2

N

2
. (4.6)

In view of (4.1), one complex multiplication can be implemented using three real ones.
Therefore, the above estimate leads to the following statement.

13

Lemma 3 For integer n ≥ 2, define N = 2m such that
1
2N < n ≤ N.

For p ∈ Cn denote by pN ∈ CN its extension by zero elements. Then the computation of
the vector U∗

N pN by algorithm (4.5) needs at most

n log2 n (4.7)

complex multiplications. In real arithmetic, this corresponds to

3n log2 n (4.8)

real multiplications.

Let us look now at the problem of multiplying the matrix UN by a vector. Note that

√
N(UNp)(k) =

N−1∑

i=0

λ
−(k−1)i
N p(i) = p(λ1−k

N) = p(λN+1−k
N), k = 1, . . . , N.

Thus, the product UNp can be obtained from the vector U∗
Np by an appropriate permu-

tation of the entries:

UNp = ZnU∗
Np, ZN =




1 0 0 . . . 0 0
0 0 0 0 1
0 0 0 1 0

.
0 0 1 0 0
0 1 0 . . . 0 0



∈ RN×N .

Hence, its computational complexity is given also by (4.7).

4.3 Multiplication of two polynomials

Let us show that the spectral factorization (4.2) can be used to find the coefficients of
the product of two polynomials with complex coefficients. Consider two polynomials
p, q ∈ Cn. We need to compute the coefficients of the product

g(z) = p(z)q(z), z ∈ Cn.

Note that g ∈ C2n−1. Let us choose an arbitrary N ≥ 2n − 1. Consider the following
N ×N -matrix:

TN (p) =




p(0) 0 0 . . . p(2) p(1)

p(1) p(0) 0 p(3) p(2)

p(2) p(1) p(0) . . . p(4) p(3)

.

p(n−1) p(n−2) p(n−3) 0 0
0 p(n−1) p(n−2) 0 0

.

0 . . . p(n−1) . . . p(1) p(0)




=
n−1∑

i=0

p(i)P i
N . (4.9)

14

Denoting by aN the natural extensions by zeros of vector a up to dimension N , we can
see that

gN = TN (p)qN .

Note that in view of representation (4.2),

TN (p) =
n−1∑
i=0

p(i) UN diag (πN (λN))i U∗
N = UN

(
n−1∑
i=0

p(i)diag (πN (λN))i

)
U∗

N

= UN diag
(

n−1∑
i=0

p(i)πN (λi
N)

)
U∗

N .

(4.10)

Denote v =
n−1∑
i=0

p(i)πN (λi
N). It is clear that v = U∗

NpN . Therefore, we can apply the

following strategy for finding the coefficients of polynomial g(z):

1. Choose N = 2m such that 1
2N ≤ 2n− 1 ≤ N .

2. Compute vectors v = U∗
NpN and w = U∗

NqN by (4.5).

3. Compute vector u(i) = v(i)w(i), i = 1, . . . , N .

4. Compute gN = UNu = ZNU∗
Nu by (4.5).

(4.11)

A straightforward application of the estimate (4.6) leads to the following bound.

Lemma 4 The complexity of computation of the vector gN by the algorithm (4.11) does
not exceed

n · (10 + 6 log2 n) (4.12)

complex multiplications. However, if n = 2m−1, then the algorithm needs

n · (2 + 3 log2 n) (4.13)

complex multiplications.

Proof:
Indeed, in view of (4.6), Step 2 takes N log2

N
2 complex multiplications, Step 3 takes N ,

and Step 4 takes N
2 log2

N
2 multiplications. This gives

N(1 + 3
2 log2

N
2)

complex multiplications. By the choice of N in (4.11), we always have N ≤ 4n. However,
if n = 2m−1, then n = 1

2N . 2

Note that the algorithm (4.11) can be used also for multiplying the polynomials with
real coefficients. However, in this case the application of the complex machinery (4.5)
looks quite artificial. Let us show that for real polynomials there exist a more efficient
scheme.

15

Consider two real polynomials p, q ∈ Rn with n = 2k. AS in (4.3), we can represent
them as follows:

p(t) = p0(t2) + tp1(t2), q(t) = q0(t2) + tq1(t2), t ∈ R.

Let us form the coefficients p̂ = p0 + jp1 ∈ Ck and q̂ = q0 + jq1 ∈ Ck. Then

p(t)q(t) = p0(t2)q0(t2) + t · (p0(t2)q1(t2) + p1(t2)q0(t2)) + t2p1(t2)q1(t2)

= [p0(t2)q0(t2)− p1(t2)q1(t2)] + t · [p0(t2)q1(t2) + p1(t2)q0(t2)]

+(1 + t2)p1(t2)q1(t2)

= <(p̂(t2)q̂(t2)) + t · =(p̂(t2)q̂(t2)) + (1 + t2)p1(t2)q1(t2)

= <(p̂ · q̂)(t2) + t · =(p̂ · q̂)(t2) + (1 + t2)p1(t2)q1(t2),

where p̂ · q̂ denotes the complex coefficients of the polynomial p̂(z)q̂(z). From this repre-
sentation we get the following recurrence:

The coefficients of the product of two real polynomials of degree n− 1 with
n = 2k can be found from the coefficients of the product of two complex
polynomials of degree k − 1 and the coefficients of the product of two real
polynomials of degree k − 1.

(4.14)
Let us estimate the complexity of this strategy. Assume we need to multiply two real

polynomials p, q ∈ Rn. Let us choose m:

2m−1 < n ≤ 2m ≡ N1.

In accordance with (4.14), we need to multiply two complex polynomials of dimension
n1 = 1

2N1 and two real polynomials of the same dimension. Since n1 is a power of two,
in view of (4.13), the complexity of the first stage is equal to

M1 = n1 · (2 + 3 log2 n1).

In the second stage, we need to multiply two real polynomials of dimension N2 = n1 =
1
2N1, etc. Thus, we have

Nk = 2m−k+1, nk = 2m−k, Mk = nk · (2 + 3 log2 nk), k = 1, . . . m.

Note that
m∑

k=1
nk · (2 + 3 log2 nk) =

m∑
k=1

2m−k · (2 + 3(m− k))

=
m−1∑
k=0

2k · (2 + 3k) ≤ 4 + (3m− 4)2m.

Since 2m < 2n, we come to the following statement.

16

Lemma 5 Two real polynomials of size n ≥ 4 can be multiplied by the rule (4.14) in

6n log2 n (4.15)

complex multiplications. In real arithmetic, this corresponds to 18n log2 n multiplications.

Note that the estimate 18n log2 n becomes smaller than n2 for n > 125.

4.4 Multiplication of a Toeplits matrix by a vector

Let n = 2k. For p = (p(0), . . . , p(n−1))T ∈ Cn, consider the following k×k Toeplits matrix:

Bk(p) =




p(k) p(k−1) . . . p(2) p(1)

p(k+1) p(k) p(3) p(2)

.

p(n−2) p(n−3) p(k) p(k−1)

p(n−1) p(n−2) . . . p(k+1) p(k)




.

We need to compute the product Bk(p)q for some q ∈ Ck.
Let us choose an arbitrary N ≥ n. Note that the matrix Bk(p) forms a block of the

matrix TN (p) as its right-upper k × k-corner. Therefore, the entries of the vector Bk(p)q
coincide with the first k components of the vector gN = TN (p)qN , where

qN = (0, . . . , 0, q)T ∈ CN .

Using representation (4.10) of the matrix TN (p), we can justify the following algorithm.

1. Choose N = 2m such that 1
2N < n ≤ N .

2. Compute vectors v = U∗
NpN and w = U∗

NqN by (4.5).

3. Compute vector u(i) = v(i)w(i), i = 1, . . . , N .

4. Compute gN = UNu = ZNU∗
Nu by (4.5).

5. Select the first k entries of gN as components of vector Bk(p)q.

(4.16)

Lemma 6 The computational complexity of computing the vector Bk(p)q by algorithm
(4.16) does not exceed

n · (2 + 3 log2 n) (4.17)

complex multiplications. However, if n = 2m, then the algorithm needs

k · (2 + 3 log2 k) (4.18)

complex multiplications.

Proof:
Indeed, as for the scheme (4.11), we need N(1 + 3

2 log2
N
2) complex multiplications. By

the choice of N in (4.16), we always have N ≤ 2n. However, if n = 2m, then N = n. 2

17

4.5 Coefficients of a rational function

Assume that the polynomial p(z) is given by its coefficients p ∈ Cn. Our goal is to
compute the first b + 1 coefficients of the rational function

g(z) =
1

p(z)
=

∞∑

i=0

g(i)z(i).

Clearly, the sequence g satisfies the following infinite linear system:



p(0) 0 0 . . .

p(1) p(0) 0
p(2) p(1) p(0)

.

p(n−1) p(n−2) p(n−3)

0 p(n−1) p(n−2)

0 0 p(n−1)

.







g(0)

g(1)

g(2)

. . .


 =




1
0
0
. . .




However, the first b+1 coefficients of g can be found from a truncated sysem. Indeed, let
us choose N ≥ b + 1. Consider the following N -dimensional system of linear equations:




p(0) 0 0 . . . 0 0
p(1) p(0) 0 0 0
p(2) p(1) p(0) 0 0

.

p(n−1) p(n−2) p(n−3)

0 p(n−1) p(n−2)

.

0 0 p(n−1) . . . p(1) p(0)







g(0)

g(1)

g(2)

. . .

g(N−1)




=




1
0
0
. . .
0



∈ RN . (4.19)

Clearly, its solution gives us the first N coefficients of the function g(z).
Denote the low-triangular matrix of the system (4.19) by LN (p). We allow the size N

of the matrix to be smaller than n. Thus, we are interested in a fast algorithm for solving
the system

LN (p)z = w. (4.20)

For even N , the structure of the matrix LN (p) is as follows:

LN (p) =

(
LN/2(p) 0

BN/2(pN) LN/2(p)

)
,

where pN is an extension of p up to dimension N by zeros. The product of matrix L−1
N (p)

and vector w = (u, v) ∈ RN can be computed as follows:

z = L−1
N (p) · w =

(
x
y

)
, x = L−1

N/2(p) · u, y = L−1
N/2(p) · (v −BN/2(p)x).

18

Thus, in order to solve (4.20), it is necessary to implement three operations:

1. Solve the system LN/2(p) · x = u.

2. Compute the residual ∆ = BN/2(p) · x.

3. Solve the system LN/2(p) · y = v −∆.

(4.21)

Hence, we can see that the system (4.20) can be solved by a recursive procedure. Let us
estimate its efficiency.

Assume that N = 2m. Denote by MN the complexity of finding a solution to (4.20)
by a recursive procedure based on (4.21). Denote by Ck the complexity of multiplication
of matrix Bk(p) by a vector. Then, assuming that M1 = 1, we can see from (4.21) that

MN = CN/2 + 2MN/2 = CN/2 + 2(CN/4 + 2MN/4)

= CN/2 + 2CN/4 + 4MN/4 = 2m +
m∑

i=1
2i−1CN ·2−i .

In view of (4.18), Ck does not exceed k · (2 + 3 log2 k). Hence,

MN ≤ N +
m∑

i=1
2i−1(N · 2−i)(2 + 3 log2(N · 2−i))

= N + 1
2N

m∑
i=1

(2 + 3(m− i)) = N ·
(
1 + m(3m+1)

4

)
.

Since we choose N = 2m such that 1
2N ≤ b+1 ≤ N , we come to the following conclusion.

Lemma 7 The first b + 1 coefficients of the function g(z) can be computed in
b+1
2 ·

(
3 log2

2(b + 1) + 7 log2(b + 1) + 8
)

(4.22)

complex multiplications.

However, note that our estimate is exact only if b is not too big as compared with n.
If b >> n, then on the top level the recursive procedure deals with very sparse matrices
Ck. Indeed, if k ≥ n, then all elements of Ck are zeros except the upper-right n×n-corner
filled by the matrix Bn(p2n). Therefore, for k ≥ n we can bound Ck as follows:

Ck ≤ n · (2 + 3 log2 n).

Let us write down the corresponding upper bound for MN assuming that n = 2l.

MN ≤ N +
m−l∑
i=1

2i−1n · (2 + 3l) +
m∑

i=m−l+1
2i−1(N · 2−i)(2 + 3 log2(N · 2−i))

≤ N + N · (2 + 3l) + N · l · 3l+1
4 = N · (3l+4)(l+3)

4 .

Thus, we have proved the following result.

Lemma 8 If n = 2l < 1
2(b + 1), then the first b + 1 coefficients of the function g(z) can

be computed in
b+1
2 · (3 log2 n + 4)(log2 n + 3) (4.23)

complex multiplications.

19

