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Abstract

In this paper we extend the smoothing technique [7], [9] onto the problems of Semidef-
inite Optimization. For that, we develop a simple framework for estimating a Lipschitz
constant for the gradient of some symmetric functions of eigenvalues of symmetric ma-
trices. Using this technique, we can justify the Lipshitz constants for some natural ap-
proximations of maximal eigenvalue and the spectral radius of symmetric matrices. We
analyze the complexity of the problem-oriented gradient-type schemes onto the problems
of minimizing the maximal eigenvalue or the spectral radius of the matrix, which depends
linearly on the design variables. We show that in the first case the number of iterations of
the method is bounded by O(1

ε ), where ε is the required absolute accuracy of the problem.
In the second case, the number of iterations is bounded by 4

δ

√
(1 + δ)r ln r, where δ is

the required relative accuracy and r is the maximal rank of corresponding linear matrix
inequality. Thus, the latter method is a fully polynomial approximation scheme.
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1 Introduction

Motivation. Recently it was shown [7] that a proper use of structure of nonsmooth con-
vex optimization problems leads to very efficient gradient schemes, whose performance
significantly better than the lower complexity bounds derived from the black box assump-
tions [5]. However, this observation leads to implementable algorithms only if we are able
to form a computable smooth approximation for the objective function of our problem.
In this case, applying to this approximation an optimal method for minimizing smooth
convex functions (see [6], Section 2.2.1), we can easily obtain a good solution to our initial
problem. In papers [7] and [8], a special smoothing technique was developed mainly for
piece-wise linear functions. Later, in [9] it was shown that this technique on some problem
classes allows to compute approximate solutions with a required relative accuracy.

In this paper we extend the results of [7], [9] onto the problems of Semidefinite Op-
timization. For that, we justify the computable smooth approximations for two most
important nonsmooth functions of symmetric matrices, these are the maximal eigenvalue
and the spectral radius.

Contents. In Section 2 we study the smooth approximations of symmetric functions
of eigenvalues of symmetric matrices. The main question we are interested in is the
Lipschitz continuity of the gradient of such functions. We develop a simple technique which
allows to estimate the Lipschitz constant of the gradient for a special class of symmetric
functions. The value of such a function is obtained as a sum of the values of the same
univariate function as applied to all eigenvalues of the argument (see Theorem 1). The
main assumption on the univariate function is that all coefficients of its Taylor series at
zero, starting from the second one, are nonnegative. We show that the functions from this
class deliver the required good approximations for the maximal eigenvalue and the spectral
radius of symmetric matrix. In Section 3 we describe an optimal method for smooth
convex optimization, using the notation and style of [7]. This method is our main tool for
treating the applications considered in the next two sections. In Section 4 we show how
to apply the smoothing technique for minimizing the maximal eigenvalue of a symmetric
matrix dependent linearly on the design variables. We discuss the similarity between our
approach and the spectral bundle method, which is, in accordance to the present state of
art, one of the most powerful scheme for treating the problems of that type. We derive an
upper bound for the number of iterations of our gradient-type scheme, which appears to
be proportional to 1

ε , where ε is a required absolute accuracy of the approximate solution.
In Section 5 we apply the smoothing technique for minimizing the spectral radius of a
symmetric matrix dependent linearly on the design variables. The number of iterations of
the proposed gradient method is bounded by 4

δ

√
(1 + δ)r ln r, where δ is a required relative

accuracy, and r is the maximal rank of the matrix arising in corresponding linear matrix
inequality. This method is a fully polynomial approximation scheme since its complexity
does not depend on a particular problem instance. Another advantage of this method
is that it does not require to compute an eigenvalue decomposition at each iteration.
We provide the paper with Appendix, which is devoted to the necessary and sufficient
conditions for Lipschitz continuity of the gradient of convex function with respect to an
arbitrary norm introduced in the space of variables.
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Notation. In what follows we denote by Mn the space of real n × n-matrices, and by
Sn ⊂ Mn the space of symmetric matrices. A particular matrix is always denoted by a
capital letter. In the spaces Rn and Mn we use the standard inner products

〈x, y〉 =
n∑

i=1
x(i)y(i), x, y ∈ Rn,

〈X, Y 〉M =
n∑

i,j=1
X(i,j)Y (i,j), X, Y ∈Mn,

For X ∈ Sn, we denote by λ(X) ∈ Rn the vector of its eigenvalues. We assume that the
eigenvalues are ordered in a decreasing order:

λ(1)(X) ≥ λ(2)(X) ≥ . . . ≥ λ(n)(X), X ∈ Sn.

Thus, λmax(X) = λ(1)(X). Notation D(λ) ∈ Sn is used for a diagonal matrix with vector
λ ∈ Rn on the main diagonal. Note that any X ∈ Sn admits an eigenvalue decomposition

X = U(X)D(λ(X))U(X)T

with U(X) : U(X)U(X)T = In, where In ∈ Sn is the identity matrix.
Let us mention notations whose meanings are different for vectors and matrices. In

Rn, we use a standard notation for lp-norms:

‖x‖(p) =
[

n∑
i=1

|x(i)|p
]1/p

, x ∈ Rn,

where p ≥ 1, and ‖x‖∞ = max
1≤i≤n

|x(i)|. The corresponding norms in Sn are introduced by

‖X‖(p) = ‖λ(X)‖(p), X ∈ Sn,

Further, for vector λ ∈ Rn we denote by |λ| ∈ Rn a vector with entries |λ(i)|, i = 1, . . . , n.
Notation λk ∈ Rn is used for the vector with components (λ(i))k, i = 1, . . . , n. However,
for X ∈ Sn we define

|X| def= U(X)D(|λ(X)|)U(X)T ,

and notation Xk is used for the standard matrix power.

2 Smooth symmetric functions of eigenvalues

For k ≥ 1, consider the following function:

πk(X) = 〈Xk, In〉M =
n∑

i=1
(λ(i)(X))k, X ∈ Sn.

Let us derive an upper bound for its second derivative. Note that this bound is nontrivial
only for k ≥ 2.
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The derivatives of this function along a direction H ∈ Sn are defined as follows:

〈∇πk(X),H〉M = k〈Xk−1, H〉M ,

〈∇2πk(X)H, H〉M = k
k−2∑
p=0
〈XpHXk−2−p,H〉M .

(2.1)

We need the following result.

Lemma 1 For any p, q ≥ 0, and X, H from Sn we have

〈XpHXq + XqHXp,H〉M ≤ 2〈|X|p+q,H2〉M ≤ 2〈|λ(X)|p+q, λ2(H)〉. (2.2)

Proof:
Indeed, denote λ = λ(X), D = D(λ), U = U(X) and Ĥ = UT HU . Then

〈XpHXq + XqHXp,H〉M = 〈UDpUT HUDqUT + UDqUT HUDpUT , H〉M

= 〈DpĤDq + DqĤDp, Ĥ〉M

=
n∑

i,j=1
(Ĥ(i,j))2

(
(λ(i))p(λ(j))q + (λ(i))q(λ(j))p

)

≤
n∑

i,j=1
(Ĥ(i,j))2

(
|λ(i)|p|λ(j)|q + |λ(i)|q|λ(j)|p

)
.

Note that for arbitrary non-negative values a and b we always have

0 ≤ (ap − bp)(aq − bq) = (ap+q + bp+q)− (apbq + aqbp).

Thus, we can continue as follows:

〈XpHXq + XqHXp,H〉M ≤
n∑

i,j=1
(Ĥ(i,j))2

(
|λ(i)|p+q + |λ(j)|p+q

)

= 2
n∑

i,j=1
(Ĥ(i,j))2|λ(i)|p+q = 2〈D(|λ|)p+qĤ, Ĥ〉M

= 2〈Dp+q(|λ|), Ĥ2〉M = 2〈|X|p+q,H2〉M .

Thus, we get the first inequality in (2.2). The second inequality is standard. 2

Corollary 1 For any k ≥ 2 we have

〈∇2πk(X)H, H〉M ≤ k(k − 1)〈|λ(X)|k−2, λ2(H)〉. (2.3)
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Proof:
For k = 2 the bound is trivial. For k ≥ 3, in representation (2.1) we can unify the terms

in the expression
k−2∑
p=0
〈XpHXk−2−p,H〉M in symmetric pairs

〈XpHXk−2−p + Xk−2−pHXp,H〉M .

Applying to each pair inequality (2.2), we get the estimate (2.3). 2

Let f(τ) be a function of real variable τ , defined by a power series

f(τ) = a0 +
∞∑

k=1
akτ

k

with ak ≥ 0 for k ≥ 2. We assume that its domain dom f = {τ : |τ | < R} is nonempty.
For X ∈ Sn consider the following symmetric function of eigenvalues:

F (X) =
n∑

i=1

f(λ(i)(X)).

Clearly, domF = {X ∈ Sn : λ(1)(X) < R, λ(n)(X) > −R}.
Theorem 1 For any X ∈ domF and H ∈ Sn we have

〈∇2F (X)H, H〉 ≤
n∑

i=1

f ′′(|λ(i)(X)|)(λ(i)(H))2.

Proof:
Indeed,

F (X) = n · a0 +
n∑

i=1

∞∑
k=1

ak(λ(i)(X))k

= n · a0 +
∞∑

k=1
ak

n∑
i=1

(λ(i)(X))k = n · a0 +
∞∑

k=1
akπk(X).

Thus, in view of inequality (2.3),

〈∇2F (X)H, H〉M =
∞∑

k=2
ak〈∇2πk(X)H, H〉M

≤
∞∑

k=2
k(k − 1)ak〈|λ(X)|k−2, λ2(H)〉

=
n∑

i=1

∞∑
k=2

k(k − 1)ak|λ(i)(X)|k−2(λ(i)(H))2

=
n∑

i=1
f ′′(|λ(i)(X)|)(λ(i)(H))2. 2
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Let us consider now two important examples of symmetric functions of eigenvalues.
1. Squared lp matrix norm. For integer p ≥ 1 consider the following function:

Fp(X) = 1
2‖λ(X)‖2

(2p) = 1
2〈X2p, In〉1/p

M , X ∈ Sn. (2.4)

Thus, Fp(X) = 1
2(π2p(X))1/p. Therefore, in view of (2.3), for any X, H ∈ Sn we have

〈∇Fp(X),H〉M = 1
2p(π2p(X))

1
p
−1〈∇π2p(X),H〉M ,

〈∇2Fp(X)H,H〉M = 1
2p ·

(
1
p − 1

)
· (π2p(X))

1
p
−2〈∇π2p(X),H〉2M

+ 1
2p(π2p(X))

1
p
−1〈∇2π2p(X)H, H〉M

≤ (2p− 1)(π2p(X))
1
p
−1〈|λ(X)|2p−2, λ2(H)〉.

(2.5)

Let us apply Hölder inequality 〈x, y〉 ≤ ‖x‖(β)‖y‖(γ) with β = p
p−1 , γ = β

β−1 = p, and

x(i) = |λ(i)(X)|2p−2, y(i) = (λ(i)(H))2, i = 1, . . . , n.

Then, we can continue:

〈∇2Fp(X)H, H〉M ≤ (2p− 1)‖λ(H)‖2
(2p) = (2p− 1)‖H‖2

(2p). (2.6)

2. Entropy smoothing of maximal eigenvalue. Consider the function

E(X) = ln
n∑

i=1

eλ(i)(X) def= lnF (X), X ∈ Sn. (2.7)

Note that

〈∇E(X),H〉M = 1
F (X)〈∇F (X),H〉M ,

〈∇2E(X)H, H〉M = − 1
F 2(X)

〈∇F (X),H〉2M + 1
F (X)〈∇2F (X)H,H〉M

≤ 1
F (X)〈∇2F (X)H, H〉M .

Let us assume first that X º 0. Function F (X) is formed by auxiliary function f(τ) = eτ ,
which satisfies assumptions of Theorem 1. Therefore

〈∇2E(X)H, H〉M ≤
[

n∑
i=1

eλ(i)(X)

]−1 n∑
i=1

eλ(i)(X)(λ(i)(H))2 ≤ ‖H‖2∞. (2.8)

It remains to note that E(X + τIn) = E(X) + τ . Hence, the Hessian ∇2E(X + τIn) does
not depend on τ , and we conclude that the estimate (2.8) is valid for arbitrary X ∈ Sn.
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3 Optimal method for smooth convex

optimization

In the next sections we discuss two possible applications of the results presented in Sec-
tion 2. In both of them we use an optimal method for minimizing a convex function with
Lipschitz continuous gradient (see, for example, [6, 7]). For the sake of completeness, we
provide the reader with a short description of this scheme.

Let function f(x) be differentiable and convex on a closed convex set Q ⊆ E, where E
is a finite dimensional real vector space. Let us fix some norm ‖ · ‖ on E. In this section
we consider an efficient optimization scheme for solving the following problem:

min
x
{f(x) : x ∈ Q}, (3.1)

where f satisfies on Q the Lipschitz condition for its gradient:

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ Q.

Recall that the standard gradient projection method at this problem converges as O( 1
k ),

where k is the iteration counter (see, e.g. [6], Section 2.1.5).
Let us assume that the constant L > 0 is known. Then we can use in our methods

the gradient mapping TQ(x) ∈ Q, which is defined as an optimal solution to the following
minimization problem:

min
y

{
〈∇f(x), y − x〉+ 1

2L‖y − x‖2 : y ∈ Q
}

. (3.2)

If the norm ‖ · ‖ is not strictly convex, the problem (3.2) can have multiple solutions. In
this case we stick the notation TQ(x) to any of them.

Denote by d(x) a prox-function of the set Q. This means that d(x) is continuous and
strongly convex on Q with respect to the norm ‖ · ‖ with convexity parameter σ > 0, and
that d(x0) = 0, where x0 is the prox-center of the set Q:

x0 = arg min
x
{d(x) : x ∈ Q}.

In our scheme we update recursively three sequences of points {xk}∞k=0, {yk}∞k=0, and
{zk}∞k=0 from Q.

For k ≥ 0 do
1. Compute f(xk) and ∇f(xk).
2. Find yk = TQ(xk).

3. Find zk = arg min
x

{
L
σ d(x) +

k∑
i=0

i+1
2 [f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q

}
.

4. Set xk+1 = 2
k+3zk + k+1

k+3yk.

(3.3)

Note that at each iteration of this scheme we need to solve two auxiliary problems: the
computation of the gradient mapping (Step 2), and the problem

min
x
{L

σ d(x) + 〈uk, x〉},

with uk = 2
(k+1)(k+2)

k∑
i=0

(i + 1)∇f(xi) (Step 3). We assume that the exact solutions for

both problems are available.
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Theorem 2 (see [7]). Let sequences {xk}∞k=0 and {yk}∞k=0 be generated by method (3.3).
Then for any k ≥ 0 we have

(k+1)(k+2)
4 f(yk) ≤ min

x

{
L
σ d(x) +

k∑
i=0

i+1
2 [f(xi) + 〈∇f(xi), x− xi〉] : x ∈ Q

}
. (3.4)

Therefore,
f(yk)− f(x∗) ≤ 4Ld(x∗)

σ(k+1)(k+2) , (3.5)

where x∗ is an optimal solution to the problem (3.1).

In the next sections we will use the above scheme for minimizing smooth approxima-
tions of nonsmooth convex functions. The smoothing will be done by the use of spectral
functions considered in Section 2.

4 Minimizing the maximal eigenvalue of

symmetric matrix

Consider the following problem:

Find φ∗ = min
y
{φ(y) def= λmax(C + A(y)) : y ∈ Q}, (4.1)

where Q is a closed convex set in Rm and A(·) is a linear operator from Rm to Sn:

A(y) =
m∑

i=1

y(i)Ai ∈ Sn, y ∈ Rm.

Note that the objective function in (4.1) is nonsmooth. Therefore this problem can
be solved either by interior-point methods, or by general methods of nonsmooth convex
optimization (see, e.g., [6], Chapter 3). However, due to a very special structure of the
objective function, for problem (4.1) there were proposed so-called spectral bundle methods
(see [1, 2, 3, 4, 10]).

The idea of spectral bundle methods is very simple. Indeed, the subdifferential of the
function λmax(X), X ∈ Sn, has the following structure:

∂λmax(X) =

{
G =

d(X)∑
i=1

τiui(X)ui(X)T , τi ≥ 0, i = 1, . . . , d(X),
d(X)∑
i=1

τi = 1

}
,

where ui(X) are the columns of the matrix U(X) and d(X) is defined as multiplicity of
the maximal eigenvalue of matrix X. Note that the general optimization methods require
computation of a single subgradient at each test point. Consequently, at each point these
methods can employ only a single linear inequality of the type

λmax(Y ) ≥ λmax(X) + 〈G,Y −X〉M = 〈G, Y 〉M , Y ∈ Sn,

with certain G ∈ ∂λmax(X). However, in our situation we can construct a better lower
bound for the objective function. Indeed, let us fix an arbitrary r, 1 ≤ r ≤ n. Then

λmax(Y ) = max
‖x‖(2)=1

〈Y x, x〉 ≥ max
1≤i≤r

〈Y ui(X), ui(X)〉, Y ∈ Sn.
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Of course, the best model corresponds to r = n. But in this case the amount of accu-
mulated information and the complexity of generating new test points grow too quickly.
Therefore, different versions of spectral bundle methods apply different strategies for defin-
ing a reasonably small parameter r. Unfortunately, in accordance to our knowledge, up
to now there is no complexity analysis done for these schemes. So, we can compare them
only by computational results.

We are going to solve the problem (4.1) by a smoothing technique in a manner similar
to [7]. This means that we replace the function λmax(X) by its smooth approximation
fµ(X) = µE( 1

µX), defined by (2.7) and a tolerance parameter µ > 0. Note that

fµ(X) = µ ln
[

n∑
i=1

eλ(i)(X)/µ

]
≥ λmax(X),

fµ(X) ≤ λmax(X) + µ ln n.

(4.2)

At the same time,

∇fµ(X) =
[

n∑
i=1

eλ(i)(X)/µ

]−1

·
n∑

i=1
eλ(i)(X)/µ ui(X)ui(X)T . (4.3)

Similarly to the spectral bundle methods, at each test point X the gradient ∇fµ(X) takes
into account different eigenvectors of the matrix X. Since the factors eλ(i)(X)/µ decrease
very rapidly, this gradient actually depends only on few largest eigenvalues. However,
their selection is made automatically by expression (4.3). In some sense, the ranking of
importance of the eigenvalues is done in a logarithmic scale controlled by the tolerance
parameter µ.

Let us analyze now the efficiency of smoothing technique as applied to problem (4.1).
Our goal is to find an ε-solution x̄ ∈ Q to the problem (4.1):

φ(ȳ)− φ∗ ≤ ε. (4.4)

For that we will try to find an 1
2ε-solution to the smooth problem

Find φ∗µ = min
y
{φµ(y) def= fµ(C + A(y)) : y ∈ Q}, (4.5)

with µ = µ(ε), defined as
µ(ε) = ε

2 ln n . (4.6)

Clearly, if φµ(ȳ)− φ∗µ ≤ 1
2ε, then in view of (4.2) we have

φ(ȳ)− φ∗ ≤ φµ(ȳ)− φ∗µ + µ lnn ≤ ε.

Let us analyze now the complexity of finding 1
2ε-solution to problem (4.5) by the optimal

method (3.3).
Let us fix some norm ‖h‖ for h ∈ Rm. Consider a prox-function d(x) of the set Q

with the prox-center x0 ∈ Q. We assume this function to be strongly convex on Q with
convexity parameter σ > 0. Define

‖A‖ = max
h∈Rm

{‖A(h)‖∞ : ‖h‖ = 1}.
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Let us estimate the second derivative of function φµ(y). For any y and h from Rm, in
view of inequality (2.8) we have

〈∇φµ(y), h〉 = 〈∇fµ(C + A(y)), h〉 = 〈∇E( 1
µ(C + A(y))), A(h)〉M ,

〈∇2φµ(y)h, h〉 = 1
µ〈∇2E(C + A(y))A(h), A(h)〉M

≤ 1
µ‖A(h)‖2∞ ≤ 1

µ‖A‖2 · ‖h‖2.

Thus, by Theorem 4 function φµ(y) has a Lipschitz continuous gradient with the constant

L = 1
µ‖A‖2 = 2 ln n

ε ‖A‖2.

Taking now into account the estimate (3.5), we conclude that the method (3.3), as applied
to the problem (4.5), has the following rate of convergence:

φµ(yk)− φ∗µ ≤ 8 ln n‖A‖2d(y∗µ)

ε·σ(k+1)(k+2) ,

where y∗µ ∈ Q is the solution to (4.5). Hence, it is able to generate an 1
2ε-solution to this

problem (which is an ε-solution to problem (4.1)) at most after

4‖A‖
ε

√
ln n
σ d(y∗µ) (4.7)

iterations.

5 Minimizing the spectral radius of

symmetric matrix

For matrix X ∈ Sn, define its spectral radius:

ρ(X) = max
1≤i≤n

|λ(i)(X)| = max{λ(1)(X),−λ(n)(X)}.

Clearly, ρ(X) is a convex function on Sn. In this section we consider the following opti-
mization problem:

Find φ∗ = min
y∈Rm

{φ(y) def= ρ(A(y)) : y ∈ Q}, (5.1)

where Q ⊂ Rm is a closed convex set separated from the origin, and A(·) is a linear
operator from Rm to Sn:

A(y) =
m∑

i=1
y(i)Ai ∈ Sn, y ∈ Rm.

We assume that the matrices {Ai}m
i=1 are linearly independent. Hence, the matrix G ∈ Sm

with elements
G(i,j) = 〈Ai, Aj〉M , i, j = 1, . . . , m,
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is positive definite. Denote by r the maximal rank of A(y):

r = max
y∈Rm

rankA(y) ≤ min
{

n,
m∑

i=1
rankAi

}
.

We are going to solve (5.1) using a variant of smoothing technique, suggested in [9]
for solving structural convex optimization problems in relative scale. Note that in view of
our assumptions φ∗ is strictly positive.

First of all, we approximate a non-smooth objective function in (5.1) by a smooth one.
For that, we use Fp(X) defined by (2.4). Note that

Fp(X) = 1
2〈X2p, In〉1/p

M ≥ 1
2ρ2(X),

Fp(X) ≤ 1
2ρ2(X) · (rankX)1/p.

(5.2)

Consider the problem

Find f∗p = min
y∈Rm

{fp(y) def= Fp(A(y)) : y ∈ Q}, (5.3)

From (5.2) we can see that
1
2φ2

∗ ≤ f∗p ≤ 1
2φ2

∗ · r1/p. (5.4)

Our goal is to find a point ȳ ∈ Q, which solves (5.1) with relative accuracy δ > 0:

φ(ȳ) ≤ (1 + δ)φ∗.

Let us choose an integer p, which satisfies the following inequality

p(δ) def= 1+δ
δ ln r ≤ p ≤ 2p(δ). (5.5)

Assume that ȳ ∈ Q solves (5.3) with relative accuracy δ. Then, in view of (5.2) and (5.4),
we have

φ(ȳ)/φ∗ ≤ r
1
2p ·

√
fp(ȳ)/f∗p ≤ r

1
2p · √1 + δ ≤ e

δ
2(1+δ) · √1 + δ ≤ 1 + δ.

Thus, we need to estimate the efficiency of the method (3.3) as applied to the problem
(5.3). Let us introduce the norm

‖h‖G = 〈Gh, h〉1/2, h ∈ Rm.

Assuming that p(δ) ≥ 1 and using the estimate (2.6), for any y and h from Rm we obtain

〈∇2fp(y)h, h〉 = 〈∇2Fp(A(y))A(h), A(h)〉M

≤ (2p− 1)‖A(h)‖2
2p ≤ (2p− 1)‖A(h)‖2

(2)

= (2p− 1)〈A(h), A(h)〉M = (2p− 1)〈Gh, h〉

= (2p− 1)‖h‖2
G.
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Thus, in view of Theorem 4, function fp(y) has Lipschitz continuous gradient on Rm with
respect to the nowm ‖ · ‖G with Lipschitz constant

L = 2p− 1 ≤ 4p(δ). (5.6)

On the other hand, for any X ∈ Sn with rankX ≤ r, and p ≥ 1 we have

1
r‖X‖2

(2) ≤ ‖X‖2∞ ≤ ‖X‖2
(2p).

Hence, 1
2r‖y‖2

G ≤ fp(y) for any y ∈ Rm. In particular,

1
2r‖y∗p‖2

G ≤ f∗p , (5.7)

where y∗p is a solution to (5.3).
Denote x0 = arg min

y
{‖y‖G : y ∈ Q}. Since the norm ‖ · ‖G is Euclidean, we have

‖y∗p − x0‖2
G ≤ ‖y∗p‖2

G − ‖x0‖2
G < ‖y∗p‖2

G.

Combining this inequality with estimate (5.7), we get

1
2‖y∗p − x0‖2

G ≤ 1
2‖y∗p‖2

G ≤ rf∗p . (5.8)

In order to apply to the problem (5.3) method (3.3), let us choose the following prox-
function:

d(x) = 1
2‖x− x0‖2

G. (5.9)

Since, the convexity parameter σ of this function is equal to one, in view of the bounds
(5.6) and (5.8), the method (3.3) launched from the starting point x0 converges as follows:

fp(yk)− f∗p ≤ 16(1+δ)r ln r
δ·(k+1)(k+2) · f∗p . (5.10)

Hence, in order to solve problem (5.3) with relative accuracy δ (and, therefore, solve (5.1)
with the same relative accuracy), method (3.3) needs at most

4
δ

√
(1 + δ)r ln r (5.11)

iterations. Note that this bound does not depend on a particular problem instance.
At each iteration of method (3.3) as applied to the problem (5.3) with d(x) defined by

(5.9) it is necessary to compute twice a projection of a point onto the set Q with respect
to Euclidean metric ‖ · ‖G. This operation is easy in the following cases.

• The set Q is an affine subspace in Rm. Then the projection can be computed by
inverting the matrix G. An important example of such a problem is as follows:

min
y∈Rm

{
ρ

(
m∑

i=1
y(i)Ai

)
: y(1) = 1

}
.

• The matrix G and the set Q are both simple. For example, if 〈Ai, Aj〉 = 0 for i 6= j,
then G is a diagonal matrix. In this case, a projection onto a box, for example, is
easy to compute. Such a situation occurs when the matrix A(y) is parameterized
directly by its entries.
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Finally, note that the computation of the value and the gradient of function fp(y) can
be done without eigenvalue decomposition of matrix A(y). Indeed, let p = 2k satisfies
condition (5.5). Consider the following of sequence of matrices:

X0 = A(y), Y0 = In,

Xi = X2
i−1, Yi = Yi−1Xi−1, i = 1, . . . , k.

(5.12)

By induction, it is easy to see that Xk = Ap(y) and Yk = Ap−1(y). Hence, in accordance
to (2.1), (2.4), and definition of function fp(y) in (5.3), we have:

fp(y) = 1
2〈Xk, In〉2/p

M ,

∇fp(y)(i) = 2fp(y)
〈Xk,In〉M · 〈Yk, Ai〉M , i = 1, . . . , m.

Note that the complexity of computing the matrix A(y) is of the order O(n2m) arithmetic
operations. The auxiliary computation (5.12) takes

O(n3 ln p) = O
(
n3 ln ln r

δ

)

operations. After that, the vector ∇fp(y) can be computed in O(n2m) arithmetic opera-
tions. Clearly, the complexity of the first and the last computation is much lower if the
matrices Ai are sparse.

Note also, that the computation (5.12) can be performed more efficiently if the matrix
A(y) is represented in the form

A(y) = UTUT , UUT = In,

where T is a three-diagonal matrix. This representation takes O(n3) arithmetic opera-
tions.
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6 Appendix: Some properties of smooth convex

functions

In this section we present some useful inequalities for smooth convex function, whose
smoothness is measured with respect to an arbitrary norm. These facts seems to be well
known. However, in the literature they are usually proved for Euclidean norms (see, for
example, [6]).

Let E be a finite dimensional real vector space. Denote by E∗ the dual space, which
is formed by linear functions on E. Let 〈s, x〉 be a scalar product of elements s ∈ E∗ and
x ∈ E. Then, any norm ‖ · ‖ on E defines a dual norm on E∗:

‖s‖∗ = max
x∈E

{〈s, x〉 : ‖x‖ ≤ 1}, s ∈ E∗.

Thus, any x ∈ E and s ∈ E∗ satisfy Cauchy-Schwartz inequality

〈s, x〉 ≤ ‖s‖∗ · ‖x‖.

For a differentiable function f(x), x ∈ E, we write f ∈ F1,1
L (E) if f is convex and

‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ E. (6.1)

In other words, such a function has Lipschitz continuous gradient.
The proof of the following theorem almost coincide with that of Theorem 2.1.2 [6].

Theorem 3 All conditions below, holding for all x, y ∈ E, are equivalent to inclusion
f ∈ F1,1

L (E):
0 ≤ f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2 ‖ x− y ‖2, (6.2)

f(x) + 〈∇f(x), y − x〉+ 1
2L ‖ ∇f(x)−∇f(y) ‖2∗≤ f(y), (6.3)

1
L ‖ ∇f(x)−∇f(y) ‖2∗≤ 〈∇f(x)−∇f(y), x− y〉, (6.4)

0 ≤ 〈∇f(x)−∇f(y), x− y〉 ≤ L ‖ x− y ‖2, (6.5)

Proof:
Assume that f is convex and (6.1) holds. Then, for any x and y from Q we have

f(y) = f(x) + 〈∇f(x), y − x〉+
1∫
0
〈∇f(x + τ(y − x))−∇f(x), y − x〉dτ

≤ f(x) + 〈∇f(x), y − x〉+
1∫
0

τ · L‖y − x‖2dτ,

(6.6)

and (6.2) follows from the definition of convex functions. Further, let us fix x0 ∈ E.
Consider the function

φ(y) = f(y)− 〈∇f(x0), y〉.
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Note that φ ∈ F1,1
L (E) and its point of global minimum is y∗ = x0. Therefore, in view of

(6.2), we have

φ(y∗) ≤ min
x∈E

[φ(y) + 〈∇φ(y), x− y〉+ L
2 ‖y − x‖2]

= min
x∈E

[φ(y)− ‖∇φ(y)‖∗ · ‖x− y‖+ L
2 ‖y − x‖2]

= φ(y)− 1
2L ‖ φ′(y) ‖2∗ .

And we get (6.3) since φ′(y) = f ′(y)− f ′(x0).
We obtain (6.4) from inequality (6.3) by adding two copies of it with x and y inter-

changed. Applying now Cauchy–Schwartz inequality, we get (6.1). Thus, we proved the
following chain

(6.1) ⇒ (6.2) ⇒ (6.3) ⇒ (6.4) ⇒ (6.1).

Finally, we obtain (6.5) from inequality (6.2) by adding two copies of it with x and y
interchanged. At the same time, (6.2) leads to (6.5) by integration (6.6). 2

In this paper we often use the following condition

Theorem 4 Two times continuously differentiable function f belongs to F1,1
L (E) if for

any x and h from Rn we have

0 ≤ 〈∇2f(x)h, h〉 ≤ L‖h‖2. (6.7)

Proof:
Indeed, for any x and y from E we have

0 ≤ 〈∇f(y)−∇f(x), y − x〉 =
1∫

0

〈∇2f(x + τ(y − x))(y − x), y − x〉dτ ≤ L‖y − x‖2.

Hence, condition (6.5) holds and f ∈ F1,1
L (E) by Theorem 3. 2
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