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1 Introduction

Ever since the pioneering work of Krugman [9], the core-periphery model has been criticized

because it does not fit well contemporary space-economies. First, nowadays, the main

dispersion force seems to lie in the existence of urban costs, defined as the sum of housing

and commuting costs, borne by workers living in large agglomerations, and not in the

agricultural sector whose share in employment and expenditure has sharply decreased in

most industrialized countries. Second, Krugman’s model fails to recognize that economic

agglomerations typically generate higher costs to be paid by residents when the population

size rises. Yet, such costs are unavoidable once agglomeration takes the form of a city.

In this perspective, two papers are worth mentioning. Firstly, Tabuchi [15] may be

viewed as an attempt to unify urban economics à la Alonso [1] and new economic geogra-

phy. Indeed, his model allows for the interplay between commuting costs and transportation

costs in a spatial economy. Unfortunately, however, his analysis has a significant short-

coming: analytical results are available only for the two extreme cases of zero and infinite

transportation costs. Independently, Helpman [7] has introduced a housing market into an

economic geography model in which all workers are mobile. However, cities have no spatial

extension in his setting because Helpman abstracts from commuting costs. In addition, his

treatment of the model is purely numerical.

The aim of this paper is to propose a simple model of economic geography integrat-

ing both transportation and commuting costs when labor is homogeneous and mobile. As

usual, the agglomeration force finds its origin in the need to reduce transportation costs

of manufactured goods, but the main dispersion forces now stem from land consumption

and the resulting need for workers to commute. While retaining the general equilibrium

framework of monopolistic competition à la Dixit-Stiglitz [4], we introduce iceberg com-

muting costs, as in Krugman and Livas Elizondo [10] or Duranton and Puga [5], together

with the standard iceberg transportation costs of economic geography.1 The use of the

same modeling strategy for both types of spatial costs presents several advantages.

In this respect, the following results stand out. First, unlike Krugman [9], agglomer-

ation is a stable equilibrium when transportation costs are large but dispersion prevails

when they are low. Second, agglomeration is always a stable equilibrium once commuting

costs are sufficiently low. Third, whereas there always exists a sustain point (i.e. a level

of transportation costs above which agglomeration is a stable equilibrium), a break point

(i.e. a level of transportation costs above which dispersion is unstable) may not exist.

Fourth, we work with a Dixit-Stiglitz-iceberg model that is “almost” analytically solvable

by means of paper and pencil. In particular, we are able to determine the exact analytical

expressions for both the break and sustain points, thus making their comparison easier.

1Note that Tabuchi and Thisse [16] develop a similar approach using a completely different modeling
strategy: the profit-maximizing price varies with the mass of competing firms, but there is no income effect
in consumer demand (see Ottaviano et al. [12]).

2



Interestingly, we may go one step further by determining the break and sustain points in

terms of commuting costs, which are the counterpart of the standard break and sustain

points. However, a complete characterization of the set of equilibria is out of reach. Last,

we uncover a new effect: because workers save time on commuting when there is dispersion,

more labor is available for production, thus implying a larger total mass of varieties at the

symmetric equilibrium than when agglomeration prevails. This new dispersion force cap-

tures (although indirectly) the well-known idea that the formation of large agglomerations

takes resources away from private consumption because of the construction of major urban

infrastructures.

Our results thus suggest that a more integrated economy need not be more agglomerated.

Quite the opposite: we show that low transportation costs lead to the dispersion of economic

activities because this allows workers to alleviate the burden of urban costs. In accord with

what economic historians have observed (see, e.g. Bairoch [3]; Hohenberg and Lees [8]),

the agglomeration is more likely to arise when commuting costs within cities get smaller

and smaller. In this respect, it is worth noting that if the process of globalization affects

the shipping costs of commodities, it has no direct impact on workers’ commuting costs.

Globalization need not, therefore, lead to a more polarized economic space. Instead, it

might well favor a more dispersed space-economy.

The model is introduced in Section 2. The properties of the spatial equilibrium are

derived in Section 3, whereas Section 4 concludes.

2 The model

2.1 The spatial economy

Consider an economy involving two regions (labelled r = 1, 2), one industrial sector pro-

ducing a differentiated product by using labor as its sole input, and two goods (the differ-

entiated product and land). The economy is endowed with a unit mass of identical and

mobile workers, as well as with a large amount of land in each region. Each worker owns

one unit of labor. Let λ denote the fraction of workers residing in region 1 so that the mass

of workers in regions 1 and 2 is respectively given by L1 = λ and L2 = 1 − λ.2

The welfare of a worker depends on her consumption of the two goods. The first good is

supplied as a continuum of varieties of a horizontally differentiated good, produced under

monopolistic competition and increasing returns. Any variety of this good can be shipped

from one region to the other according to an iceberg transportation technology: T > 1

units of the variety must be sent from the origin for one unit to arrive at destination; T

thus accounts for all the impediments to trade.

2It would be easy to expand our setting by allowing either a fraction of the labor force to be immobile or
the workers to be heterogeneous in their perception of urban features, for each region to retain a minimum
positive population size.
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The second good is land and is perfectly immobile. Each region is formed by a city

spread along a one-dimensional space X. The amount of land available at each location

x ∈ X is equal to one. All firms located in region r are set up at the Central Business

District (in short CBD) situated at the origin x = 0 of X.

Each worker consumes one unit of land, supplies one unit of labor, and commutes to

the CBD. Hence, in equilibrium, workers are equally distributed around the CBD of region

r whose urban landscape is therefore given by [−Lr/2, Lr/2]. We assume that commuting

costs have the nature of an iceberg, thus implying that the effective labor supply by a

worker living at a distance |x| from the CBD is given by

s(x) = 1 − 2θ|x| x ∈ [−Lr/2, Lr/2]

where θ > 0 captures the efficiency loss due to commuting. For s(x) to be positive regardless

of the spatial distribution of workers, we assume θ < 1 throughout the paper. As a result,

the total effective labor supply in region r is given by

Sr =

∫ Lr/2

−Lr/2

s(x)dx = Lr(1 − θLr/2). (1)

We normalize the land rent at both city edges at zero. Then, if wr stands for the wage

rate paid to the workers by the firms at the CBD of region r, the wage net of commuting

costs earned by a worker residing at either edge is such that:

s(−Lr/2)wr = s(Lr/2)wr = (1 − θLr)wr.

Because workers are identical, the wage net of both commuting costs and land rent must be

equal across all locations. Thus, it must be that s(x)wr−Rr(x) = s(−Lr/2)wr = s(Lr/2)wr

where Rr(x) is the land rent prevailing in region r at a distance |x| < Lr/2 from its CBD.

Then, for a given distribution of workers across regions, the equilibrium land rent in region

r is given by

R∗
r(x) = θ(Lr − 2|x|)wr.

The aggregate land rent in region r is then equal to

ALRr =

∫ Lr/2

−Lr/2

R∗
r(x)dx = θL2

rwr/2.

It remains to describe how this aggregate land rent is distributed. We consider each

region as an independent jurisdiction that owns the land of its region only. This is a

reasonable assumption as long as there exists no “global government”. As a result, each

worker living in region r owns an equal share of land in her region of residence. Accordingly,

in addition to her wage, each worker receives an income ALRr/Lr = θLrwr/2 from her

land ownership.3

3Tabuchi [15] assumes absentee landlords, whereas there is global land ownership in Helpman [7].
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2.2 Consumption

Regarding the consumption of the differentiated good, each worker in region r maximizes

a CES-utility function given by

Ur =

[∫
i∈Ir

crr(i)
σ−1

σ di +

∫
i∈Is

crs(i)
σ−1

σ di

] σ
σ−1

subject to the budget constraint∫
i∈Ir

pr(i)crr(i)di +

∫
i∈Is

ps(i)T crs(i)di = (1 − θLr)wr + θLrwr/2

= (1 − θLr/2)wr

where Ir is the set of varieties produced in region r. Then, her consumption for each variety

is

crr(i) = pr(i)
−σP σ−1

r (1 − θLr/2)wr

crs(i) = ps(i)
−σT−σP σ−1

r (1 − θLr/2)wr

where the price index in region r is given by

Pr =

[∫
i∈Ir

pr(i)
1−σdi +

∫
i∈Is

ps(i)
1−σT 1−σdi

] 1
1−σ

.

It is then readily verified that her indirect utility is as follows:

Vr =
(1 − θLr/2)wr

Pr
. (2)

Workers are attracted by the region that yields the higher utility level so that their

mobility may be described by the following adjustment process:

L̇r = (Vr − V̄ )Lr

where V̄ ≡ V1L1 + V2L2. Clearly, migrations stop once Lr = 0 in one region.

2.3 Production

The labor input requirement for producing yr units of variety i is given by

lr(i) = F + vyr(i)

where F and v stand for the fixed and marginal labor inputs, respectively. Given the above

consumer demand, each firm maximizes its profit

πr(i) = pr(i)yr(i) − wr[F + vyr(i)]
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where yr(i) is given by

yr(i) = crr(i)Lr + Tcsr(i)Ls.

It is well known that firm i’s profit-maximizing price has the following form:

p∗r(i) =
σv

σ − 1
wr.

Recalling that v stands for the number of labor units needed to produce one unit of the

differentiated product, without loss of generality we may then choose the unit of this good

for v to satisfy the condition σv/(σ − 1) = 1, so that p∗r(i) = wr.

Finally, the zero-profit condition yields y∗
r(i) = σF . In what follows, we choose the

unit of labor such that σF = 1 so that the profit-maximizing output of a firm becomes

y∗
r(i) = 1. It then follows from our two normalization rules that

l∗r(i) =
1

σ
+ v =

1

σ
+

σ − 1

σ
= 1.

3 The spatial equilibrium

3.1 Preliminary results

Let Nr be the mass of firms located in region r. The labor market equilibrium condition

in region r is given by

∫ Nr

0

l∗r(i)di = Sr (3)

so that Nr = Sr. Then, we have the following relationship between the total mass of

varieties and the spatial distribution of workers.

Proposition 1. The more symmetric the spatial distribution of workers, the larger the

total mass of varieties in the economy.

Proof. Differentiating the total mass of varieties with respect to λ, we have

∂(N1 + N2)

∂λ
=

∂(S1 + S2)

∂λ
= θ(1 − 2λ)

∂2(N1 + N2)

∂λ2
=

∂2(S1 + S2)

∂λ2
= −2θ < 0.

Thus, the total mass of varieties is maximized at λ = 1/2 and declines as λ increases or

decreases from λ = 1/2.
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Intuitively, when the economy is dispersed, commuting costs are lower, thus implying

that more labor is available for the industrial sector. The fact that the total mass of

varieties varies with the spatial distribution of workers makes our model more general than

the existing ones in which the total number of varieties is constant regardless of the spatial

distribution of firms.4 More precisely, Proposition 1 shows that agglomeration generates two

types of costs for the workers: higher urban costs as well as a narrower range of varieties. It

is worth stressing that this result is obtained in the absence of any technological externality.

The market clearing conditions for the differentiated product are as follows:

c11(i)L1 + Tc21(i)L2 = 1

Tc12(i)L1 + c22(i)L2 = 1.

These equations yield the two wage equations:

wσ
1 = P σ−1

1 S1w1 + T 1−σP σ−1
2 S2w2

wσ
2 = T 1−σP σ−1

1 S1w1 + P σ−1
2 S2w2

where the price indices can be rewritten as

P1 =
[
S1w

1−σ
1 + S2(w2T )1−σ

] 1
1−σ

P2 =
[
S1(w1T )1−σ + S2w

1−σ
2

] 1
1−σ .

As in Murata [11], for any given λ, hence S1 and S2, the above four equations can be shown

to have a unique solution for {P1, P2, w1, w2}.

3.2 The interplay between transportation and commuting costs

In this model, urban costs act as a dispersion force through workers’ income, whereas trans-

portation costs generate an agglomeration force through the price index. The argument

involves three steps.

First, let ω ≡ w1/w2 and ε ≡ S1/(S1 + S2). For any given value of ε, ω is implicitly

determined from either of the two wage equations by means of the following expression:

ε =
1

1 + ω1−2σ−ω1−σT 1−σ

1−ω−σT 1−σ

.

Murata [11] shows that ε is strictly increasing in ω over the interval for which ε ∈ (0, 1),

so that there exists an inverse function ω(ε), which is also strictly increasing.

4In a special, but analytically solvable, version of the economic geography model with vertical linkages,
Ottaviano and Robert-Nicoud [13] show that the total mass of varieties is larger at the core-periphery
equilibrium than at the symmetric equilibrium.
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Second, we determine the relative utility across regions:

V2[λ, ε(λ), ω(ε(λ))]

V1[λ, ε(λ), ω(ε(λ))]
=

1 − θ(1 − λ)/2

1 − θλ/2

w2/P2

w1/P1

=
1 − θ(1 − λ)/2

1 − θλ/2︸ ︷︷ ︸
U(λ)

[
ε(λ) + (1 − ε(λ))T 1−σω(ε(λ))σ−1

ε(λ)ω(ε(λ))1−σT 1−σ + (1 − ε(λ))

] 1
1−σ

︸ ︷︷ ︸
T (λ)

where

ε(λ) =
S1(λ)

S1(λ) + S2(λ)
=

λ(2 − θλ)

2 − θ[λ2 + (1 − λ)2]

is viewed as a function of λ, which is such that

∂ε(λ)

∂λ
> 0.

Clearly, U(λ) integrates the impact of urban costs and T (λ) that of transportation costs.

Note that the value of T (λ) depends on the mass of varieties produced in each region. As

shown by (1) and (3), Nr depends itself on Sr, which in turn depends on the value of θ.

Last, because ω(ε) is strictly increasing in ε and ε(λ) strictly increasing in λ, it is readily

verified that:

dU(λ)

dλ
> 0

dT (λ)

dλ
< 0.

Since T = (w2/P2)/(w1/P1), a decrease in T means that region 1 becomes relatively more

attractive. Therefore, the two foregoing inequalities imply that a rise in the population

of region 1 strengthens both the dispersion force - associated with urban costs - and the

agglomeration force - generated by transportation costs. As expected, the equilibrium share

of workers located in region 1 is the outcome of these two opposite forces.

3.3 Symmetry

To start with, we focus on the symmetric configuration λ = 1/2. Clearly, this configura-

tion is always a spatial equilibrium. To study its stability, we derive the elasticity of the

indirect utility in one region with respect to the number of workers in that region. Totally

differentiating Vr and evaluating the resulting expression at λ = 1/2, we obtain

dVr

Vr
= − θLr/2

1 − θLr/2

dLr

Lr
+

dwr

wr
− dPr

Pr
r = 1, 2. (4)

Let

Z ≡ 1 − T 1−σ

1 + T 1−σ
∈ (0, 1). (5)
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Then, the wage equations imply

( σ

Z
− 1

) dwr

wr

∣∣∣∣
λ=1/2

= (σ − 1)
dPr

Pr

∣∣∣∣
λ=1/2

+
dSr

Sr

∣∣∣∣
λ=1/2

r = 1, 2. (6)

Similarly, totally differentiating the price indices yields(
1 − σ

Z

)
dPr

Pr

∣∣∣∣
λ=1/2

= (1 − σ)
dwr

wr

∣∣∣∣
λ=1/2

+
dSr

Sr

∣∣∣∣
λ=1/2

r = 1, 2. (7)

Solving (6) and (7) for dwr/wr and dPr/Pr , we get

dwr

wr

∣∣∣∣
λ=1/2

=
Z

σ(Z + 1) − Z

dSr

Sr

∣∣∣∣
λ=1/2

r = 1, 2 (8)

dPr

Pr

∣∣∣∣
λ=1/2

= − σZ

(σ − 1)[σ(Z + 1) − Z]

dSr

Sr

∣∣∣∣
λ=1/2

r = 1, 2 (9)

where

dSr

Sr

=
1 − θLr

1 − θLr/2

dLr

Lr

r = 1, 2 (10)

from (1). Inserting (8), (9), and (10) into (4), we have the elasticity of the indirect utility

at λ = 1/2:

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

=
4 − 2θ

4 − θ

[
(2σ − 1)Z

(σ − 1)[σ(Z + 1) − Z]
− θ

2(2 − θ)

]
. (11)

This expression will allow us to prove the following property.

Proposition 2. The symmetric equilibrium is stable if and only if

Ω(Z) ≡ (2σ − 1)Z

(σ − 1)[σ(Z + 1) − Z]
<

θ

2(2 − θ)
≡ Γ(θ).

Proof. It follows immediately from (11) that

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

< 0 ⇐⇒ (2σ − 1)Z

(σ − 1)[σ(Z + 1) − Z]
<

θ

2(2 − θ)
.

Noting that ∂Ω(Z)/∂Z > 0, ∂Z/∂T > 0 and ∂Γ(θ)/∂θ > 0, we are able to derive

the analytical expression for the break point in terms of transportation costs, called the

T -break point, at which the symmetric equilibrium becomes unstable.
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Proposition 3. If θ ∈
(
0,min{ 4

σ+1
, 1}

)
, then there exists a unique T -break point given by

T b =

{
(2σ − 1)[1 − (σ − 1)Γ(θ)]

(2σ − 1) + (σ − 1)Γ(θ)

} 1
1−σ

(12)

and the symmetric configuration is a stable equilibrium if and only if T < T b. However,

there exists no T -break point and the symmetric equilibrium is always stable regardless of

transportation costs if and only if σ > 3 and θ ∈
[

4
σ+1

, 1
)
.

Proof. We know ∂Ω(Z)/∂Z > 0 and Z ∈ (0, 1). This implies Ω(Z) ∈
(
0, 1

σ−1

)
. Thus, if

Γ(θ) ∈
(
0, 1

σ−1

)
or, equivalently as θ < 1, if θ ∈

(
0,min{ 4

σ+1
, 1}

)
, we have a unique value

of Z that satisfies

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

= 0 (13)

(or Ω(Z) = Γ(θ)). Since ∂Z/∂T > 0, there exists a unique value of T , denoted by T b, such

that (13) holds. Solving (13) for T , we have the desired expression for T b. In addition,

T < T b implies

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

< 0

so that the symmetric configuration is stable; and vice versa.

If σ > 3 and θ ∈
[

4
σ+1

, 1
)
, we have

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

< 0

for all transportation costs T ∈ (1,∞). In this case, there exists no T -break point so that

the symmetric configuration is always a stable equilibrium.

When varieties are fairly close substitutes (σ > 3), the benefit of a better access to

all varieties is small. Hence, when commuting costs are sufficiently large (θ > 4/(σ +

1)), the symmetric configuration is always stable, unlike what we observe in the standard

core-periphery model. By contrast, when one of these two conditions does not hold, the

symmetric configuration may become unstable. Indeed, despite the fact that the whole

range of varieties in the economy shrinks when workers are agglomerated (Proposition 1),

they benefit from the access to a wider array of local varieties. When transportation costs

are high (T ≥ T b), the net benefit of having all varieties locally produced is sufficiently

large to outweigh the higher urban costs that workers must bear by being agglomerated.

As shown by Proposition 3, this is so if varieties are sufficiently differentiated (σ ≤ 3), or

if commuting costs are sufficiently low (θ ≤ 4/(σ + 1)), or both.
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Alternatively, we can derive the break point in terms of commuting costs, which we call

the θ-break point.

Proposition 4. If σ > 3, or if both σ ≤ 3 and

T < T ≡
[
(2σ − 1)(3 − σ)

5σ − 3

] 1
1−σ

∈ (1,∞),

then there exists a unique θ-break point given by

θb =
4(2σ − 1)Z

(σ2 + 2σ − 1)Z + σ(σ − 1)
(14)

and the symmetric configuration is a stable equilibrium if and only if θ > θb. If both σ ≤ 3

and T ≥ T , there exists no θ-break point and the symmetric equilibrium is always unstable

regardless of commuting costs.

Proof. Solving

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

= 0

(or Ω(Z) = Γ(θ)) for θ, we get the foregoing expression for θb. Since θb is increasing in Z

and Z ∈ (0, 1), it follows that θb belongs to
(
0, 4

σ+1

)
. If σ > 3, then θb < 1 regardless of

the value of T . Because

Lr

Vr

dVr

dLr

∣∣∣∣
λ=1/2

< 0

when θ > θb, the symmetric configuration is stable; and vice versa.

By contrast, when σ ≤ 3, there exists a single value

Z =
σ(σ − 1)

−σ2 + 6σ − 3
∈ (0, 1]

such that θb < 1 if and only if Z < Z. Using (5) then yields the upper bound T on T .

Hence, there is no θ-break point if and only if T ≥ T . Finally, when σ ≤ 3 and T < T , it

is readily verified that the θ-break point is unique and given by θb < 1.

Note that (14) is the reciprocal relationship of (12). In addition, at the border value

σ = 3, the domain
[

4
σ+1

, 1
)

is empty whereas T goes to infinity. Accordingly, Proposition

4 may be viewed as the counterpart of Proposition 3 in terms of commuting costs.

11



3.4 Agglomeration

We now come to the case of an agglomeration (λ = 1). Then, the price indices yield the

relationship

P2 = TP1.

Similarly, from the wage equations, we have

w2 = T
1−σ

σ w1.

These two relationships imply that the ratio of indirect utilities is given by

V2

V1

∣∣∣∣
λ=1

=
T

1−2σ
σ

1 − θ/2
. (15)

Using this relationship, the sustainability of agglomeration as a spatial equilibrium can be

obtained under the following conditions.

Proposition 5. Agglomeration is a spatial equilibrium if and only if T > (1 − θ/2)
σ

1−2σ .

Proof. From (15), we have

V2

V1

∣∣∣∣
λ=1

< 1 ⇐⇒ T > (1 − θ/2)
σ

1−2σ .

The analytical expression of the T -sustain point may then be obtained as follows.

Proposition 6. The T -sustain point is given by

T s = (1 − θ/2)
σ

1−2σ (16)

and agglomeration is a stable equilibrium if and only if T > T s.

Proof. Because

V2

V1

∣∣∣∣
λ=1

= 1

must hold at the T -sustain point, we obtain the desired expression.

This proposition confirms the numerical simulations provided by Helpman [7]. In fact,

our result is even stronger than Helpman’s because the array of varieties available in the
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agglomeration is narrower than what it is under dispersion. Our result can be understood as

follows. Workers are willing to bear the high urban costs associated with their agglomeration

within a single city as well as the consumption of a narrower range of varieties because

buying varieties from the other region is very expensive.

In the same vein, the θ-sustain point is derived below.

Proposition 7. If T ∈ (1, 2
σ

2σ−1 ), then there exists a unique θ-sustain point given by

θs = 2(1− T
1−2σ

σ ) (17)

and agglomeration is a stable equilibrium if and only if θ < θs. If T ∈ [2
σ

2σ−1 ,∞), then

agglomeration is sustainable for all commuting costs.

Proof. Solving V2/V1 = 1 for θ, we get the foregoing expression. Because θs must be smaller

than 1, we get the second part of the claim.

Note that (17) is the reciprocal of (16) so that Proposition 7 is the reciprocal of Propo-

sition 6 in terms of commuting costs.

3.5 Break point versus sustain point

As in Fujita et al. [6], the sustain point does not coincide with the break point in our model.

It is, therefore, worthwhile to examine the relative magnitude of these points.5

Proposition 8. Assume that a T -break point exists. Then, the T -sustain point is smaller

than the T -break point.

Proof. Consider the ratio of the T -sustain and T -break points. Taking the limit of this

ratio when θ tends to zero, we have

lim
θ→+0

T s

T b
= 1.

We now show that the ratio decreases as θ rises from 0. Differentiating the ratio with

respect to θ yields

sgn

{
∂

∂θ

(
T s

T b

)}
= sgnΦ(θ, σ)

where Φ(θ, σ) ≡ −8σ2+(σ+1)(3σ−1)θ. We know that θ must be lower than min {4/(σ + 1), 1}
for a T -break point to exist. Clearly, Φ(θ, σ) is increasing in θ. Because both Φ( 4

σ+1
, σ) =

5Note that Robert-Nicoud [14] analyzes the relative magnitude of these two points for a family of
economic geography models. Unfortunately, our model does not belong to this family, thus implying that
we cannot use his results.
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−4(2σ − 1)(σ − 1) < 0 and Φ(1, σ) = −5σ2 + 2σ − 1 < 0, it must be that Φ(θ, σ) < 0 for

all θ < min {4/(σ + 1), 1}. Thus, T s/T b < 1 for all θ ∈ (0,min {4/(σ + 1), 1}).

Proposition 9. When they exist, the θ-sustain point is larger than the θ-break point.

Proof. Assume that σ ≤ 3 or that σ > 3 and θ ∈ (0, 4/(σ+1)). Then, for any admissible θ,

there exists a break point in terms of transportation costs. In turn, Proposition 8 implies

that T b > T s for any admissible θ. From Propositions 4 and 7, it follows that θb and θs are

increasing in T . By construction, θb is the reciprocal of (12), whereas θs is the reciprocal

of (16). Consequently, it must be that θs > θb for any T . Indeed, θs ≤ θb would imply

T b ≤ T s for some θ, thus contradicting Proposition 8.

Consider now the case where σ > 3 and θ ∈ [4/(σ + 1), 1). The curve (14) is always

strictly below the horizontal line at θ, whereas the curve (17) intersects this line once

because T s always exists and is unique. Hence, it must be that θs > θb for any T .

The foregoing results are somewhat reminiscent of those derived in standard models of

economic geography. However, there are major and striking differences. First, in accord

with Helpman’s [7] simulations, agglomeration is a stable equilibrium when transportation

costs are sufficiently large. However, as in Anas [2], a steady decrease in transportation

costs always leads to the dispersion of the industry. Second, agglomeration is always a

stable equilibrium once commuting costs are low enough. Furthermore, once transportation

costs take low values, agglomeration necessarily arises provided that commuting costs are

themselves sufficiently low. Note also that agglomeration may even arise under intermediate

or large commuting costs when transportation costs are sufficiently large.

[Insert Figure 1 about here]

Third, whereas there always exists a T -sustain point, a T -break point may not exist in

our model. In Figure 1a, drawn for σ ≤ 3, a T -break point exists because the curve θb(T ),

given by the function (14), intersects once the horizontal line at θ = 1. By contrast, in

Figure 1b drawn for σ > 3, this curve has a horizontal asymptote at θ = 4/(σ + 1) < 1.

Hence, it does not intersect the horizontal line at θ = 1, implying that there exists no

T -break point as long as 4/(σ + 1) ≤ θ < 1. Consider now the curve θs(T ) defined by the

function (17). In both figures, this curve intersects the horizontal line at θ = 1, so that a T -

sustain point always exists. More surprisingly maybe, the existence of a θ-break point and

of a θ-sustain point is not guaranteed. Hence, the relationship between transportation costs

and commuting costs is not necessarily one-to-one over the domain (T, θ) ∈ (1,∞)× (0, 1).

Last, unlike Fujita et al. [6] and others, we have been able to derive the explicit analytical

expressions for both the T-break and T-sustain points. Note that we can also determine
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the θ-break and θ-sustain points (when they exist). This will allow us to describe below

the interplay between these two types of costs in the formation of the space-economy.

Observe that agglomeration is sustainable in the region below θs(T ), whereas dispersion

is a stable equilibrium in the region above θb(T ). As a result, in the region situated between

the two curves, there exist at least three stable equilibria. Unfortunately, as mentioned

in the introduction, we have not been able to provide a full characterization of the set of

equilibria. This is why, in the next section, we appeal to numerical solutions.

3.6 The set of equilibria: numerical examples

The market outcome is driven by three main parameters: (i) the commuting cost, θ >

0, (ii) the elasticity of substitution between differentiated goods, σ > 1, and (iii) the

transportation costs, T > 1. In order to illustrate the role of the four points discussed in

the foregoing, we impose the restriction σ ≤ 3, which implies that θ may take any value in

(0, 1).

Figure 2 is depicted for θ = 0.200 and σ = 2.5 so that T s = 1.068 and T b = 1.074.

Transportation costs take three possible values: T = 1.090, T = 1.072 (which will be

selected in the next experiment on commuting costs) and T = 1.050. In the first case (Figure

2a), there are three equilibria, but dispersion is unstable while full agglomeration within a

single city is the only stable equilibrium as T is larger than T b. In the second (Figure 2b),

there exist five equilibria: the two (mirror) equilibria involving partial agglomeration in

two cities of unequal size are unstable, whereas the other three equilibria, corresponding to

dispersion or full agglomeration, are stable because the value of T belongs to [T s, T b]. In

the last case (Figure 2c), the only equilibrium involves two cities of equal size and is stable,

T being smaller than T s. Such a pattern concurs with what Krugman [9] have obtained in

the core-periphery model, except that the sequence of configurations is reversed.

In Krugman [9], the only cost generated by the formation of an agglomeration is related

to the provision of the manufactured goods to the – by assumption – immobile farmers

residing in the periphery. Here, agglomerating firms give rise to specific costs, i.e. higher

urban costs and a narrower range of varieties, which workers are willing to bear provided

that shipping the manufactured goods between regions is expensive. Hence, when trans-

portation costs are low, workers are better off by being dispersed. Accordingly, we may

conclude that the interplay of agglomeration and dispersion forces changes with the nature

of the forces at work.

[Insert Figure 2 about here]

Figure 3 is depicted for T = 1.072 (which has been chosen above) and σ = 2.5 so that

θb = 0.189 and θs = 0.205. Commuting costs are allowed to take the following values:
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θ = 0.220, θ = 0.200 (which has also been selected in the foregoing experiment) and

θ = 0.180. In the first case (Figure 3a), the only stable equilibrium involves two cities of

equal size. In the second (Figure 3b), there exist five equilibria in which dispersion and

full agglomeration are the only ones that are stable as long as θ belongs to [θb, θs]. In the

last case (Figure 3c), full agglomeration is the only stable equilibrium. Again, a pattern

similar to the one derived in the core-periphery model emerges. However, the role of the

two spatial costs is reversed: low commuting costs instead of high transportation costs foster

agglomeration, and vice versa.

[Insert Figure 3 about here]

4 Concluding remarks

This paper has provided a simple and unified treatment of the interactions between the

transportation costs of goods and the commuting costs borne by workers. This is best

shown by comparing the values of workers’ welfare reached at each of the two equilibrium

configurations. Indeed, we have

V A = (NA)
σ

σ−1 V D = (ND)
σ

σ−1

(
1 + T 1−σ

2

) 1
σ−1

where the superscript A (resp. D) stands for agglomeration (resp. dispersion). Conse-

quently, by being agglomerated, workers save on the transportation costs of the differen-

tiated product, but have access to a narrower range of varieties. By contrast, by being

dispersed, workers have access to a broader range of varieties, but must then bear the cost

of shipping the varieties produced in the other city. The equilibrium outcome shows how

the market solves this trade-off.

Using a Dixit-Stiglitz-iceberg framework, we have also been able to determine the four

threshold values corresponding to the break and sustain points, and to uncover the relation-

ships between them. Our analysis makes it clear that what really matters for the structure

of the space-economy is not just the level of economic integration, but the interplay between

transportation costs and urban costs.

It is worth noting that our model has proven to be easy to handle, while retaining

most general equilibrium effects. This suggests that it can be used as a building-block in a

more general setting, such as growth models with infinitely-lived consumers or overlapping

generations. This, in turn, should permit the study of the long-run impact of urban and

transportation costs on the structure, size and number of cities in a dynamic context.
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Figure 1: Break and sustain points.

Figure 1a: T -break, T -sustain, θ-break, and θ-sustain points (σ ≤ 3).
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Figure 1b: T -break, T -sustain, θ-break, and θ-sustain points (σ > 3).
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A: Agglomeration is a stable equilibrium

D: Dispersion is a stable equilibrium
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Figure 2: Real wage differentials (θ = 0.200 and σ = 2.5).
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Figure 2a: Real wage differential for T = 1.090
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Figure 2b: Real wage differential for T = 1.072
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Figure 2c: Real wage differential for T = 1.050
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Figure 3: Real wage differentials (T = 1.072 and σ = 2.5).
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Figure 3a: Real wage differential for theta= 0.220
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Figure 3b: Real wage differential for theta= 0.200
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Figure 3c: Real wage differential for theta= 0.180
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