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Abstract 
 
This paper introduces and investigates the concept of repetitive risk aversion. The risk 
aversion of an increasing and concave utility function is repetitive if the fear of ruin, which 
measures agent’s aversion to risking his entire income, is also increasing and concave. This 
is shown to be equivalent to the behaviorally meaningful condition that the risk premium is 
increasing at a non-increasing rate with the size of the bet. We find an additional 
justification for mixed risk aversion, which is known to be stronger than standard (and thus 
proper) risk aversion, in terms of this concept. We discuss several economic applications 
of repetitive risk aversion.   
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1. Introduction 

 

We introduce and investigate the concept of repetitive risk aversion. The risk aversion of 

an increasing and concave utility function is repetitive if the fear of ruin, which measures 

agent’s aversion to risking his entire income, is also increasing and concave. We show that 

this is equivalent to the behaviorally meaningful condition that the risk premium is 

increasing at a non-increasing rate with the size of the bet. 

 

The main motivation for this concept comes from the fact that in applications the 

assumption of decreasing absolute risk aversion (DARA) is often too week to obtain 

unambiguous comparative static results. We show that repetitive risk aversion is stronger 

than decreasing absolute risk aversion and has several economic applications. It is, 

however, not generally comparable to decreasing or increasing relative risk aversions. It is 

well accepted by now that DARA is also not sufficient for obtaining plausible behavior in 

models which unlike the Arrow-Pratt theory involve more than one risk. Additional 

restrictions need to be imposed so as to refine the set of vN-M utility functions. Thus, Pratt 

and Zeckhauser (1987) require the utility function to satisfy proper risk aversion (an 

undesirable risk must always remain undesirable in the presence of an independent 

undesirable risk). Similarly, Kimball (1993) introduces a stronger restriction, namely that 

of standard risk aversion (every risk that has negative interaction with a small reduction in 

wealth must also have a negative interaction with any undesirable, independent risk). More 

recently, Caballé and Pomansky (1996) propose mixed risk aversion, which is stronger 

than standard (and thus proper) risk aversion and equivalent to the condition that the 

marginal utility or the first derivative of the utility function is completely monotone over 

the interval ),0( ∞ .2 We show that the concept of repetitive risk aversion can also be seen 

as a step further in this refinement strategy and provide an additional justification for 

mixed risk aversion in terms of this concept. In the concluding section of their paper, 
                                                 
2 This condition was introduced originally by Pratt and Zeckhauser (1987) as a sufficient condition for proper 
risk aversion. A real valued function )(wf defined on ),0( ∞  is completely monotone if and only if its 

derivatives )(wf n  of all orders exist and ,0)()1( ≥− wf nn  for all 0>w  and L,2,1,0=n  . 
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Caballé and Pomansky (1996) also propose the refinement that the absolute risk aversion 

of the utility function is completely monotone. We show below that this too follows from 

infinitely repetitive risk aversion.   

 

The paper is organized as follows. In the next section, we introduce the concept of 

repetitive risk aversion and establish its basic properties. In Section 3, we show that 

infinitely repetitive risk aversion implies both mixed risk aversion and completely 

monotone absolute risk aversion. Section 4 discusses some economic applications of 

repetitive risk aversion and draws the conclusion. 

 

2. Repetitive Risk Aversion  

 

As in Aumann and Kurz (1977), consider an agent with vN-M utility function u  which is 

smooth (i.e. its derivatives of all orders exist) with ,0  allfor   0)(  and  0)( ≥<′′>′ wwuwu  

and 0)0( =u . Suppose the agent is considering a bet in which he risks his entire wealth w  

against a possible gain of a small amount x . The probability p  of ruin would have to be 

very small in order for him to be indifferent between such a bet and retaining his current 

wealth .w  Moreover, the more unwilling he is to risk ruin, the smaller p  will be. Thus p  

is an inverse measure of agent’s aversion to risking ruin, and a direct measure of boldness; 

obviously p  tends to zero as the potential winnings x  shrink. Thus, boldness is the 

probability of ruin per dollar of potential winnings for small potential winnings, i.e., it is 

the limit of xp /  as .0→x  More formally, let 
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and as ,0→x  this tends to ).(/)( wuwu′  Therefore, )(/)( wuwu ′  is the fear of ruin at 

wealth level .w  Additional interpretations of this concept can be found in Aumann and 

Kurz (1977). 

 

Let ).(/)()(1 wuwuwu ′≡  Since, unlike the Arrow-Pratt model, the amount risked or the 

size of the bet is also increasing with wealth, the fear of ruin must be increasing. Indeed, 

,0)))(/()()((1)( 2
1 >′′′−+=′ wuwuwuwu  since .0)( <′′ wu  Thus, the only question that 

remains is whether it is increasing at a non-increasing rate, i.e., whether .0)(1 ≤′′ wu   

 

We introduce the following definition. The risk aversion of an increasing and concave 

utility function u  is repetitive if the fear of ruin is also increasing and concave. 

 

 Let .))(/()()()( 2wuwuwuwR ′′′−≡ Then, given an increasing and concave utility function 

,u  0)(1 ≤′′ wu  if and only if ,0)( ≤′ wR  i.e., repetitive risk aversion is equivalent to the 

condition that .0)( ≤′ wR   Let )0(),( >wpx  denote the solution to equation (1) and let 

+= wwpz ),(  ).,( wpx  Then, the risk premium .),()1(),( wwpzpwp −−≡π  Clearly, 

,01))(/)((1)/)1((/ >−′′=−−= zuwudwdzpdwdπ  since wz >  and u  is strictly 

concave. Thus the risk premium is increasing with the size of the bet. The implication that 

0/ >dwdπ (which however does not depend on the repetitiveness of the risk aversion) 

also means that the risk premium is increasing with wealth ,w  which may appear to be 

counterintuitive. But it is not. The explanation is that, unlike the Arrow-Pratt model, the 

size of the bet is also increasing with, and equal to, the amount of wealth. Differentiating 

once more and rearranging, 
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Since, as seen from equation (1), x  can be made as close to zero as desired by choosing 

the probability p of the unfavorable outcome to be sufficiently small, 0/ 22 ≤dwd π  for 

all p  if and only if .0)( ≤′ wR  Thus repetitive risk aversion is equivalent to the condition 

that the risk premium is increasing at a non-increasing rate with the amount risked or the 

size of the bet. 

 

If ,0)( =′ wR  i.e. the repetitive risk aversion is constant, then ),( wpπ  is linear in w . 

Furthermore, by integrating twice both sides of the equality 0)( =′ wR  and using strict 

concavity of u  and ,0)0( =u  we obtain αwawu =)(  with 10 << α  and ,0>a  i.e., the 

relative risk aversion is constant. Thus, constant repetitive risk aversion is equivalent to 

constant relative risk aversion.  However, no further comparison between repetitive and 

relative risk aversions is possible and as seen below 0)( <′ wR  does not imply either 

decreasing or increasing relative aversion. For now, we provide an example in which the 

repetitive risk aversion is indeed not constant, i.e., .0)( <′ wR   One such utility function is   

10 with )( <<+= ααwwwu . 

 

We offer an additional interpretation of RRA, which follows from a geometric 

interpretation of the fear of ruin. As shown in Fig. 1, the fear of ruin )(1 wu  is equal to the 

length of the subtangent at w , i.e., the length of the segment ].,[ wa 3 Since 

),()(  and  )(1)( 11 wRwuwRwu ′=′′+=′  it follows that risk aversion (or concavity) of u  

implies that the length of the subtangent is increasing and RRA implies that it is increasing 

at a non-increasing rate. Risk aversion )0)(( ≤′′ wu  and RRA )0)(( ≤′ wR  can be therefore 

viewed as increasingly stringent refinements of the first derivative )(wu′  or the marginal 

utility of wealth. Our analysis below (see the first column of Table 1) confirms this 

intuition. 

 

                                                 
3 For definition and more details concerning the early and classic concept of subtangent see, for example, 
Blakey (1962).  
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We note some basic implications of RRA of a utility function ,u  that is, 
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The necessary condition )(/)(2)(/)( wuwuwuwu ′′′−≥′′′′−  for this inequality, which is a 

unique characteristic of RRA, is stronger than the requirement of decreasing absolute risk 

aversion, i.e. ).(/)()(/)( wuwuwuwu ′′′−≥′′′′−  The relative magnitudes of  

)(/)( and  )(/)( wuwuwuwu ′′′′′−′′′−  are known to play an important part in many 

applications. For example, Drezè and Modigliani (1972, Theorem 3.1) implicitly use the 

condition  ),(/)(2)(/)( wuwuwuwu ′′′−≥′′′′′−  which is necessary for RRA but not for 

decreasing absolute or relative risk aversions, to sign the precautionary saving effect when 

preferences admit a separable representation between initial and future consumption. 

Similarly, Sinclair-Desgagné and Gabel (1997) use this condition to characterize the 

optimal audit rule.   

 

RRA is however not generally comparable to non-increasing relative risk aversion, that is 
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Since u is concave, that is, )(xu′  is non-increasing in ,0)0(  and  =ux =′ )(/)( wuwu  

∫ ≥′′
w

wdxxuwu
0

.)())(/1(  Therefore, inequalities (2) and (3) are not generally comparable. 

We provide an example of a utility function such that .0)(but    0)( >′<′ wRwrr  Let 

.1),1/()( 2
1 <<+= ααwwwu  It is seen that 0)( <′ wrr  for w  sufficiently large but 

0)( >′ wR  for all w . A convenient utility function for which 0)( <′ wR  but 0)( >′ wrr  is 

not easy to find. Inequalities (2) and (3) suggest that such a utility function must be such 
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that the fear of ruin )(/)( wuwu ′  is very high compared to w  and the absolute risk aversion 

)(/)( wuwu ′′′−  is very low compared to the absolute prudence ).(/)( wuwu ′′′′′−   

 

3. Infinitely Repetitive and Mixed Risk Aversions  

 

Besides the obvious requirement of risk aversion (or concavity), both Pratt (1964) and 

Arrow (1971) also emphasized the property of DARA so as to obtain plausible 

comparative static results about the relation between wealth and risk taking by an investor. 

Pratt and Zeckhauser (1987) introduced afterwards the family of proper utility functions 

which constitute a strict subset of the functions satisfying DARA. The purpose of this 

section is to show that RRA can also be viewed as part of this process of refining the set of 

risk averse utility functions.      

 

Let u denote the set of all smooth utility functions u, which satisfy  ,0)(,0)0( >′= wuu and 

0)( ≤′′ wu  for all ],0[ ∞∈w .  Let T  denote the operator uuuT ′= /)( . Then RRA of ∈u  u 

is equivalent to )(uT ∈  u. Let ))(()(1 uTTuT nn =+ , and L,2,1),( == nuTu n
n  with the 

convention that .1 TT =  We introduce the following definitions: 

 

A vN-M utility function u ∈  u satisfies ∈)(T if  k)( uRAR n u for all ,,,2,1 nk L=   where  

RAR n)(  means repetitive repetitive  times)( nL risk aversion.4 

 

By definition nkRARRAR kn ,,2,1 allfor    implies )()( L=  and .)1( RARRRA =  Table 1 

below summarizes the implications and the relationship between these increasingly 

stronger concepts of decreasing risk aversion. The arrows indicate what implies what. The 

proofs can be seen from the proof of Theorem 1 below. 

 
                                                 
4 Without having said it, we have been following the convention that decreasing means non-increasing unless 
specifically stated to be strictly decreasing. 
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In order to assure the reader that these definitions are not vacuous, we note that the class of 

utility functions ,10 and 0,)( ≤<>= αα awawu  which are most commonly used in 

financial economics, satisfy RAR n)(  for all n ≥  1, i.e., infinitely repetitive risk aversion. 

 

The convexity of absolute risk aversion means that the higher the wealth, the smaller the 

reduction in risk premium of a small risk for a given increase in wealth. It is a natural 

condition and known to be sufficient for risk vulnerability (Gollier and Pratt (1996)).5  It is  

easily seen that RRA joint with decreasing prudence is a sufficient condition for convexity 

of absolute risk aversion as well as for the substitutability of independent risky assets (see 

Gollier (2001, Proposition 35).  However, as noted earlier, some even more stringent 

refinements of the set of vN-M utility functions have been considered in the literature, 

namely mixed risk aversion (see Caballé and Pomansky (1996); and Pratt and Zeckhauser 

(1987) who show that mixed risk aversion is a sufficient condition for properness). We 

show that the infinitely repetitive risk aversion implies mixed risk aversion, which by 

definition is equivalent to the condition that the first derivative of the utility function is 

completely monotone over the interval ).,0( ∞   

 

Theorem 1: A vN-M utility function u ∈  u satisfies infinitely repetitive risk aversion only 

if its first derivative u′  is completely monotone on ( ∞,0 ). 

 

Caballé and Pomansky (1996) also propose the refinement that the absolute risk aversion 

of the utility function is completely monotone. We show that this too follows from 

infinitely repetitive risk aversion. 

 

Corollary 1: A vN-M utility function  u ∈  u satisfies infinitely repetitive risk aversion  

only if its absolute risk aversion uu ′′′−  is completely monotone on ( ∞,0 ). 

 

                                                 
5 Risk vulnerability means that adding an unfair background risk to wealth makes risk averse individuals 
more risk averse. 
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Note that the absolute risk aversion is completely monotone for the class of utility 

functions 10,)( ≤<= ααawwu . Another example is the class of utility functions that 

have the first derivative 10,)(
1

≤<=′
+− α
αwewu .6 

 

A function f  is operator monotone on L,2,1for   0)((-1) if ),0( 1-n =≥∞ nwf n . 

Theorem 1 and Corollary 1 can be thus rephrased as follows: if u  satisfies infinitely 

repetitive risk aversion then u  and  -logu′  are both operator monotone on ( ∞,0 ).7  

 

Proof of Theorem 1: Let fDn  denote the nth derivative of f, i.e. ).()( wfwfD n

n

dw
dn =  

A little reflection on Table 1 and the fact that uuu ′= /1  show that we need to prove only 

the following: 

 

Given any u ∈  u, let 2≥m  be some integer. Then, ( ) 0)(1 ≤′− uuDnn  for each n with 

mn ≤≤2  implies 0)()1( ≥′− uDnn for each n with mn ≤≤2 . 

 

The proof for this assertion has two parts: 

 

Claim 1: If ,2with  each for  0)/()1( mnnuuDnn ≤≤≤′−  then 0)/()1( 1 ≤′′′−− − uuDnn  for 

each n with .2 mn ≤≤  

 

The claim is clearly true for .2=n  From induction in n  and the identity  

                                                 
6 The integral of  

α+−=′
1

)( wewu  exists because it is bounded above by the integrable function  we−  over 
the interval ∞,0[ ). 
7 Operator monotone functions have been widely used in matrix analysis (see e.g. Bhatia (1996)). Very few 
functions have been identified to be operator monotone, a canonical example is the familiar class of functions 

10,)( ≤<= ααwwf . It is known that if f is operator monotone on ( ∞,0 ), then f has a Taylor 

expansion n

n
n xaxf )1()(

0
−= ∑

∞

=
 in which the coefficients na  are positive for all odd n  and negative for 

all even n . Clearly, the first derivative of an operator monotone function is completely monotone. 
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it is seen that it also holds for all n  with  mn ≤≤2 . 

  

Next, define )(log)( xuxf ′−= . Then )/()( 1 uuDxfD nn ′′′−= −  and )()( xfexu −=′ . 

 

Claim 2: If 0)()1( ≤− xfDnn  for ,2 mn ≤≤ then 0)()1( ≥′− xuDnn  for mn ≤≤2 .  

This claim follows from the following two identities 
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and induction in n  after noting that the claim is true for .2=n   

 

Claims 1 and 2 together complete the required proof. 

 

Proof of Corollary 1: If u satisfies infinitely repetitive risk aversion, then as seen from the 

proof of Theorem 1 and Table 1, ,2each  for  0)1( 1 ≥≤− nuDnn  i.e. 1u′  is completely 

monotone. Claim 1 in the proof of Theorem 1 proves that if  ,2for   0)1( 1 ≥≤− nuDnn  

then  1)1( −− nn D  0)/( ≤′′′− uu  for 2≥n  which proves that uu ′′′− / is completely 

monotone. 

 

Note that the complete monotonicity of the first derivative of the utility function and/or of 

 its absolute risk aversion is a necessary but not sufficient condition for infinitely repetitive 
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 risk aversion.8 

 

How successful is this refinement strategy? As noted earlier, infinitely repetitive risk 

aversion is satisfied by the class of functions 1.0 and 0,)( ≤<>= αα awawu  The 

question is therefore whether this is the only class with this property? This is an 

interesting, but a difficult question. The complete answer is not known, but a partial 

answer is as follows: 

 

Note, first that the operator uuuT ′→ /:  has one and only one fixed point, namely 

.)( wwu = 9 

 

Theorem 2: If a vN-M utility function u ∈u satisfies infinitely repetitive risk aversion, 

then the successive iterates ,with ,1,0, 01 uunTuu nn ===+ L converge pointwise to the 

fixed point of T , i.e., wwunn =∞→ )(lim  for all .0≥w  

 

Proposition 3: The successive iterates L,1,0,1 ==+ nTuu nn  and 0u ∈  u, converge to the 

fixed point in a finite number of iterations if and only if 0u  belongs to the family  

0,)( >= aawwu α , .10 ≤<α  

 

Proof of Theorem 2: Since u ∈u satisfies infinitely repetitive risk aversion, nu  ∈u for 

each .0  allfor   0  and  0 i.e.,  ,0 ≥≤′′>′≥ nuun nn  

 

(a) For each ,1≥n  since )(1 wun−′  is non-increasing in )(/)()(, 11 wuwuwuw nnn −− ′= , 

 ∫ =≥′′= −−

w

nn uwdzzuwu
0

11 ).0)0( using()()(/1(  

                                                 
8 The utility function  ),1/()( wwwu +=  for example, does not even satisfy RRA but its first derivative and 
absolute risk aversion are both completely monotone. 
9 Clearly, if u  is a fixed point of  uuTuuT ′== /then  ,  implies .1=′u  
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(b) Since ,0   and  / 111 ≤′′′= −−− nnnn uuuu  it is seen from differentiation of nu that 1)( ≥′ wun  

for each .1  and  0 ≥≥ nw  

 

(c) Since nnn uuu ′=+ /1  and as shown in (b) 1≥′nu , for each )(, wun n  is non-increasing in 

w for .1≥n  

 

(d) In view of (c), let )(lim)( wuwv nn ∞→
= . Then, in view of (a), .)( wwv ≥  

 

Since for each )(  and  )(, 1 wuwuw nn +  converge to the same limit ),(/)()(1 wuwuwu nnn ′=+  

1)(lim =′
∞→

wunn
 if 0)( >wv , i.e., if .0>w  This means that if )( then  ,0 wuw n′>  is bounded, 

i.e., there exist m and 0n  such that mwun ≤′ )(  for 0nn ≥ . Hence the set 

}1,:)({ ≥≥′ nwyyun  is bounded, since )(wun′  is non-increasing in w. Therefore, by the 

dominated convergence theorem 

 

∫ ′=−
y

w
nnn dzzuwuyu )()()(  

converges to ∫ −=
y

w

wydz1 . Thus, .0for    )()( >≥−=− wywywvyv  However, since 

== )0(,each  for   0)0( vnun 0)0(lim =
∞→ nn

u . This means that yyvyunn
==

∞→
)()(lim  for each 

.0≥y  This completes the proof. 

 

Proof of Proposition 3: The proof of “if” part is obvious. We prove the “only if” part. It is 

easily seen that 

1
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 for .0≥n   
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If the convergence is in finite iterations, then 0=′′nu  for some finite n. If 0=n , then by 

integration .0;)( >= aawwu  If 1=n , then again by integration, and from the fact that 

1

1

−

−

′
=

n

n
n u

u
u , we obtain 0,)( >= aawwu α  and .10 <<α  Similarly, if 2≥n , then  

0,
1

)1(
2 >−=− aaaeu x

n

α
α  and 10 << α . 

  

But this means that 2−nu  is not concave, which contradicts that 2−nu ∈  u. Hence 1≤n , and 

0,)( >= aaxxu α  and .10 ≤<α This completes the proof. 

 

Theorem 2 and Proposition 3, reduce our question to the following: does infinitely 

repetitive risk aversion imply that the successive iterates  ,0,1 ≥=+ nTuu nn u0 ∈u, 

converge in a finite number of iterations? 

 

4. Conclusions 

 

We have already referred to some economic applications of repetitive risk aversion in the 

text. Besides the original application in Aumann and Kurz (1977), another application can 

be found in Chander and Wilde (1998) and Chander (2000) who show that in an optimal 

scheme the agent’s decision to evade income tax is equivalent to risking his entire income 

against a possible gain in terms of lower tax payment and then characterize the optimal tax 

function by imposing repetitive risk aversion. In all these applications, neither decreasing 

absolute risk aversion nor decreasing relative risk aversion is sufficient for obtaining the 

required characterizations. Another important application is to the Arrow-Debreu portfolio 

problem in that repetitive risk aversion is a sufficient condition under which  the option to 

invest in a complete set of Arrow-Debreu securities raises the marginal value of wealth, 

that is the first derivative of the maximal expected utility or the value function (see Gollier 

(2001, Propositions 34 and 54). Finally, the canonical class of utility functions  
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1,0 and 0,)( ≤<>= αα awawu  that mirror the infinitely repetitive risk aversion are also 

the ones most commonly used in financial economics. 

   

We have shown that the concept of RRA can be viewed as a part of the process for refining 

the set of risk averse utility functions and found an additional justification for mixed risk 

aversion, which is known to be a sufficient condition for proper risk aversion, in terms of 

this concept.         
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