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1 Introduction

The OLG model is a standard tool for modelling dynamic economic behavior over

discrete infinite time. Models of this profuse literature can be divided in two streams

depending on whether households are life-cyclers or altruists, leaving positive be-

quests. For the macroeconomic analysis of fiscal policy, these two dominant models

leads to opposite conclusions.

In OLG models with capital accumulation and life-cyclers, such as the one ini-

tially developed by Diamond (1965), the balanced growth path may be dynamically

inefficient. Then there is a case for fiscal policy such as public debt or pay-as-you-go

social security.

In dynastic OLG models with altruistic preferences (see Barro (1974)), the bal-

anced growth path is efficient and there is no case for fiscal policy. Indeed, altruists

exactly offset the positive or negative shocks on their income and on those of their

dynasty. Barro’s model turns out to be a model with infinitely-lived decision units,

namely, the dynasties, whose members are linked through operative parental altru-

ism. Then, the dynasty is the effective decision maker, since it is as long-lived as

the government. Any individual belonging to any particular dynasty can observe

the government’s budget constraint and undo any redistribution, be it financed by

current taxes (pay-as-you-go policies) or by future taxes (public debt policies).

Everything works as if on the one hand any model, which considers finite horizon

as a reasonable feature of decision-making, should not consider altruistic transfers

and, on the other hand, any model with altruistic transfers would end up with an

infinite time horizon and yield neutrality of any public transfer policy.

In this paper, in order to solve this dilemma, we implement the concept of family

altruism which is aimed at bridging the gap between Barro (1974) and Diamond

(1965) models.

In most of the literature,1 models of dynastic altruism consider that altruism links

all the descendants of an individual into a single infinitely-lived entity. Models of

pure life-cyclers feature another extreme view on private intergenerational linkages,

according to which parents and children are fully distinct economic units. In figure

1, we represent these links in the two polar canonical cases:

1See the survey of Michel, Thibault and Vidal (2005).
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Figure 1: Diamond Case (left side) vs Barro Case (right side)

For all date t, each generation Gt live two periods and, eventually, the straight

arrows represent intergenerational private transfers and dashed boxes symbolize the

relevant decision unit.

Recently, Mankiw (2000) gives facts which persuade economists that neither

the Diamond model nor the Barro model is adequate for analyzing fiscal policy.

These models are inconsistent with the empirical findings that consumption tracks

current income and with the numerous households near zero wealth. In addition, the

Diamond model is inconsistent with the great importance of bequests in aggregate

wealth accumulation (see also Arrondel, Masson and Pestieau (1997)). Moreover

in the Barro model there exists a complete harmony among all generations. As

Becker and Tomes (1986) put it, this is at odd with the observation of strategic

behavior between parents and children. Following Becker (1991), one can imagine a

less drastic approach to modelling economic relations between parents and children.

The model of family altruism considers that a family is neither a dynasty nor

an isolated household. Each individual starts a new family when he becomes adult.

In turn, the individual’s children start a new family, when adult themselves, and

so on. In this setting, a family unit has a two-period lifetime. Each period there

appear as many families as the number of young individuals and there disappear

as many families as the number of dying old individuals. Individuals are members

of two family units: the family founded by their parents and their own household.

They play a different role in these two families. They belong the the former during

their childhood and their adulthood and to the latter when adult and old. In the

former, they make no decision, being completely passive when young and being only

a descendant when adult. But in the latter they are full-fledged decision makers.

Family altruism are the sentiments between the two successive households. This

is implemented by assuming that any individual values three objects: his first-period
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consumption, his second-period consumption and his offspring’s adult disposable

income. A standard approach of taking into account children is the joy of giving

formulation in which only the gift matters (see Abel and Warshawsky (1988) or

Andreoni (1989)). In this formulation the amount and structure of bequests are

not related to children’s relative affluence but rather to parental views on what is

good for their children, or to the pleasure they derive from giving. So, our specifi-

cation of preferences seems more adequate to implement family altruism and leads

to interesting new properties. The altruist determines the starting position of his

grown-up children: indeed, by making a transfer to his offspring, he helps them to

get off to a good start. As a corollary, this specification2 also captures the idea that

parents care about their children’s income and not about the use of this income by

their children. In particular, parents let their children use the bequest as they like

in their respective families and they let them cope with taxes and transfers resulting

from policies conducted after they die. Figure 2 represents the family structure of

the family altruism concept.

Gt

Gt+1

Gt+2

?

?

Figure 2: The Family Altruism Case

In such a setting, the altruist’s action irons out the inequalities between the

children’s opportunities. Grand children are likely to benefit from this action but

inequalities between them will be smoothed by their own parents.

Figure 1 and 2 tell us the following. In the Diamond model, life cycles are strictly

unrelated to one another. In the Barro model, life cycles are embedded inside one

another. In the family altruism model, they are hitched to one another.

The aims of this paper are to analyze the dynamical properties and to focus

2Some growth models with human capital use a similar concept of altruism. For example, the

preference of an altruist in Glomm and Ravikumar (1992) depends on the quality of schools of

his children. This variable is directly linked to the adult disposable income of his children. This

problem with family altruism has been studied in Lambrecht, Michel and Vidal (2005).
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on fiscal policy conclusions of the OLG model with family altruism. Such a study

allows us to differentiate our model from the two dominant OLG models developed

by Diamond (1965) and Barro (1965) or from a mix of these standard models (Michel

and Pestieau (1998, 1999) or Mankiw (2000)).

We first characterize the intertemporal equilibrium of our model using the key

concept of “desired wealth”, i.e. the wealth parents want for their children, which

can be different from their effective wealth if altruism is not operative. We show

how this feature, which is specific to family altruism, is articulated to savings and

capital accumulation.

We also study in detail the dynamics of capital accumulation of the model with

family altruism. Surprisingly enough, its monotonicity rests on fewer assumptions

when altruism is operative than when it is not. The limits of the dynamics are also

studied. Contrary to the Diamond model, an infinite limit of the capital intensity

is possible. In the same way, a poverty trap in the economy without altruism can

vanish with altruistic individuals.

Then, we examine the steady states of our model. In particular, we focus on the

existence and multiplicity of equilibria with operative bequest motive. Interestingly,

contrary to the Barro model, there may exist more than one steady state with

positive bequests and there may exist a steady state with positive bequests which

is inefficient.

The assessment of redistributive policies like public pensions or public debt goes

through the examination of their impact on the total income of the family unit.

Public pensions impact only inside the family. Taxpayers and pensions beneficiaries

belong to the same decision unit. Thus, we show that, as in the Barro model,

neutrality holds because family income remains unchanged. On the opposite, public

debt extends beyond the family unit and thus modifies the pool of incomes of family

members. Hence, as in Diamond model, public debt is not neutral.

As O’Driscol (1977) or Asso and Barucci (1988) remind us, Ricardo himself was

convinced that, theoretically, there were no difference between taxes and public

debt but that, in practice, people never think about the duration of taxes. Contrary

to models with dynastic altruism, our model with family altruism supports these

views.3

3Ricardo (1820) underlined the limitation of the altruists’ capacity to see throughout the whole
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To summarize our findings, the model with family altruism yields some new and

surprising conclusions about fiscal policy and capital accumulation which places it

halfway between the model with pure life-cyclers (Diamond (1965)) and the one

with dynastic altruists (Barro (1974)).

The remainder of the paper is organized as follows. In section 2 we set up the

model. In section 3 we establish results about the existence of an intertemporal

equilibrium. The dynamics of capital are studied in Section 4. In section 5 we focus

on the existence and the properties of steady states. In section 6 we show that the

concept of family altruism leads to interesting fiscal policy conclusions. Section 7

concludes.

2 The model with family altruism

We consider an OLG model in which agents live two periods. In period t, Nt agents

are young and supply one unit of labor. Nt grows at rate n. The income ωt of each

of the Nt young agents includes a bequests xt in addition to his wage income wt. He

consumes ct and saves st:

ct + st = wt + xt = ωt (1)

In period t+1, when he is old, his income is the return on his savings: Rt+1st, where

Rt+1 is the gross rate of return. He allocates this income to consume dt+1 and to

give a non-negative bequest xt+1 to his 1 + n children.

Rt+1st = dt+1 + (1 + n)xt+1 with xt+1 ≥ 0 (2)

His preferences depend on three quantities: consumption when young, ct, consump-

tion when old, dt+1, and the income of his children (including bequest), ωt+1:

wt+1 + xt+1 = ωt+1 (3)

future: “It would be difficult to convince a man posseded of 20,000 pounds, or any other sum,

that a perpetual payment of 50 pounds per annum was equally burdensome with a single tax of

1000 pounds. He would have some vague notion that the 50 pounds per annum would be paid by

posterity, and would not be paid by him; but if he leaves his fortune to his son, and leaves it charged

with this perpetual tax, where is the difference whether he leaves him 20,000 pounds with the tax,

or 19,000 pounds without it ? This argument of charging posterity with the interest of our debt, or

of relieving them from a portion of such interest, is often used by otherwise well informed people,

but we confess we see no weight in it.”
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We assume that these preferences are represented by a utility function which is

additively separable:

U(ct, dt+1, ωt+1) = u1(ct) + u2(dt+1) + γu3(ωt+1) (4)

Expliciting the parameter γ > 0 allows to discuss, for a given function u3, the

effects of a change in the degree of altruism and to obtain the standard Diamond

(1965) model for γ=0. The three functions ui, i = 1, 2, 3, are twice continuously

differentiable on the set IR?
+ of real positive number and verify for all positive e:

u′i(e) > 0, u′′i (e) < 0. We also assume lime→0 u
′
i(e) = +∞ and lime→+∞ u′i(e) = 0.

The standard arbitrage condition over the life cycle is:

u′1(ct) = Rt+1u
′
2(dt+1) (5)

The optimal choice of xt+1 under the constraint xt+1 ≥ 0 can be equivalently for-

mulated in terms of the children wealth ωt+1wt+1 + xt+1 and leads to

ωt+1 = max{wt+1, ω̃t+1} (6)

where ω̃t+1 is the unique positive solution of

(1 + n)u′2(Rt+1st + (1 + n)wt+1 − (1 + n)ω̃t+1) = γu′3(ω̃t+1) (7)

Equation (7) is the arbitrage condition between the second period consumption of

the old and the desired wealth of the children when ignoring the restriction xt+1 ≥ 0.

To study the dynamical properties of the OLG model with family altruism, the

concept of “desired wealth” ω̃t+1 is very useful for dynamic analysis.

In period 0, there are N−1 agents who are old. Each of these agents holds a

fraction s−1 = K0/N−1 of the initial capital stock K0 and receives the return R0s−1.

He allocates this income to consume d0 and leave a bequest x0 to each of his 1 + n

children. He maximizes u2(d0) + γu3(ω0) subject to R0s−1 = d0 +(1+n)x0, x0 ≥ 0,

and ω0 = w0 + x0. The preceding analysis also applies to these choices. Thus

the behavior of the first N−1 old is characterized by the conditions (6) and (7) for

t = −1.

The production side of the economy is standard. There is a representative firm

which maximizes profits. The production function F̃ (K,L) is homogeneous of degree

one with respect to capital K and labor L. With a constant depreciation rate δ of
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capital, the sum of the production and the capital stock after depreciation F (K,L) =

F̃ (K,L)+(1−δ)K is homogenous of degree one. Then we have F (K,L) = Lf(K/L),

with f(k) = F (k, 1) where k = K/L is the capital intensity. The function f is

continuous on IR+ and twice continuously differentiable on IR?
+. We assume that for

all positive k: f(k) > 0, f ′(k) > 0 and f ′′(k) < 0.

For given prices, wage wt and gross returnRt, the maximum of profits: F (Kt, Lt)−

wtLt − RtKt is obtained (with positive production) if (and only if) the marginal

products are equal to the prices, i.e.:

wt = F ′
L(Kt, Lt) = f(kt)− ktf

′(kt) ≡ w(kt) and Rt = F ′
K(Kt, Lt) = f ′(kt) (8)

From these relations we can define an intertemporal equilibrium the model with

family altruism.

3 The intertemporal equilibrium

Given the initial capital stock K0, an intertemporal equilibrium with perfect fore-

sight is a sequence of prices {wt, Rt}
+∞
t=0 , quantities for individual variables {ct, st, dt,

xt}
+∞
t=0 , and aggregate variables {Lt, Kt, Yt, kt}

+∞
t=0 such that all agents behave opti-

mally and all markets clear.

The stock K0 is given and equal to N−1s−1 by definition of s−1. At each period

t ≥ 1, the capital stock results from the savings of the preceding period Kt =

Nt−1st−1. The labor supply is Nt and the labor market equilibrium implies Lt = Nt.

The capital intensity is kt = Kt/Nt, and the prices verify (8). Total production is

Yt = Ntf(kt) and the good market equilibrium results from the individual budget

constraints and the firm’s allocation of incomes: Yt = wtNt +RtKt.

We shall show that at equilibrium all individual variables can be written as

functions of the capital intensity. Let us first show this property for ω̃t+1, the

solution of equation (7). According to (8), since st = (1 + n)kt+1 we have:

Rt+1st + (1 + n)wt+1 = (1 + n)(kt+1f
′(kt+1) + w(kt+1)) = (1 + n)f(kt+1)

Hence, ω̃t+1 which is the solution of (1+n)u′2((1+n)f(kt+1)−(1+n)ω̃t+1) = γu′3(ω̃t+1)

is a function of kt+1 and can be equivalently defined by:

f(kt+1)− ω̃t+1 =
1

1 + n
u′−1

2 (
γu′3(ω̃t+1)

1 + n
) ≡ ψ(ω̃t+1) (9)
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From the assumption on u, u′i are one-to-one decreasing functions from IR?
+ onto

IR?
+. This implies that ψ(ω̃) and ω̃ + ψ(ω̃) are one to one increasing functions from

IR?
+ onto IR?

+; and they are continuously differentiable. Thus equation (9) defines

ω̃t+1 as a function ω̃ of kt+1:

ω̃t+1 = ω̃(kt+1) (10)

The function ω̃ is increasing and differentiable on IR?
+, and it verifies:

0 < ω̃(k) < f(k) and ω̃′(k) =
f ′(k)

1 + ψ′(ω̃(k))
> 0 (11)

At each period t, knowing ω̃t = ω̃(kt), we obtain from (6):

ωt = ω(kt) = max{w(kt), ω̃(kt)} (12)

We can now calculate xt = ω(kt) − w(kt), ct = ωt − st = ωt − (1 + n)kt+1, and

dt = f ′(kt)(1 + n)kt − (1 + n)xt.

The dynamics of the capital intensity, (1+n)kt+1 = st, is given at equilibrium by

the savings decisions which result from condition (5). By substitution, we obtain:

u′1(ωt − (1 + n)kt+1) = f ′(kt+1)u
′
2((1 + n)(f(kt+1)− ωt+1))

or equivalently:

ωt = (1 + n)kt+1 + u′−1

1 [f ′(kt+1)u
′
2((1 + n)(f(kt+1)− ωt+1))] (13)

Since the right hand side of (13) is decreasing with respect to ωt+1 = max{w(kt+1),

ω̃(kt+1)}, it can also be written as follows:4

ω(kt) = (1 + n)kt+1 +min{g0(kt+1), g1(kt+1)} (14)

where functions g0 and g1 are:

g0(k) = u′−1

1 [f ′(k)u′2((1 + n)(f(k)− w(k))] (15)

g1(k) = u′−1

1 [f ′(k)u′2((1 + n)(f(k)− ω̃(k))] (16)

We have shown that:

4We can equivalently use equation (13) with ωτ = ω(kτ ) = max{w(kτ ), ω̃(kτ )} at τ = t and

τ = t + 1. Equation (14) uses explicitly the functional forms g0 and g1 which apply respectively

when bequest are zero or are positive.
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Proposition 1 The intertemporal equilibrium

Given k0 = K0/N0, an intertemporal equilibrium with perfect foresight is uniquely

determined by a sequence of capital intensity {kt}
+∞
t=0 which verifies for all t ≥ 0 the

dynamic equation (14).

The functional form g0 with zero bequest at date t + 1 corresponds to the dy-

namics in the Diamond (1965) model without altruism (i.e. γ = 0). In reference to

the Diamond model, the variables of the model without altruism are noted by the

upper-script D. Thus, the equilibrium dynamics in the Diamond model is:

w(kDt ) = (1 + n)kDt+1 + g0(k
D
t+1) (17)

4 Dynamics of the capital intensity

For the dynamics with perfect foresight in the Diamond model to be well-defined

it is sufficient that for all positive kDt , equation (17) admits a unique solution kDt+1.

Let us first study the limits of the left hand side of equation (17). The limit when

k goes to +∞ of (1 + n)k + g0(k) is +∞, since g0(k) is positive. For the limit

when k goes to 0, since the limit of f(k) − w(k) = kf ′(k) is zero,5 the limit of

f ′(k)u′2((1 + n)(f(k)− w(k)) is +∞, and the limit of g0(k) is zero. Thus we have:

lim
k→0

(1 + n)k + g0(k) = 0 and lim
k→+∞

(1 + n)k + g0(k) = +∞ (18)

These limit properties imply that for any positive kDt , there exists at least one

value of kDt+1 solution of (17). In order to obtain a unique value of kDt+1 solution of

(17), one needs an additional assumption. The following condition is a sufficient

condition for the dynamics in the Diamond model are well defined.

Assumption 1 Determinacy of the dynamics in the Diamond model

The function (1 + n)k + g0(k) is strictly increasing.

The relevance of this assumption has been underlined by de la Croix and Michel

(2002). They exhibit conditions under which Assumption 1 is satisfied. For example,

it is the case when the elasticity of u′2 is greater or equal to one.

5No assumption on f at k = 0 is necessary. We have with the mean value theorem for derivatives

(with 0 < θ < 1): f(k) − f(0) = kf ′(θk) > kf ′(k) > 0 and taking the limit when k goes to 0, we

obtain limk→0 kf ′(k) = 0. The limit of f ′(k) is either finite and positive or +∞. In both cases,

limk→0 f ′(k)u′2((1 + n)(f(k)− w(k)) = +∞.
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We now study the dynamics of the capital intensity in the model with family

altruism. Since the dynamics in the Diamond model are well defined, we can compare

the two dynamics.

Proposition 2 Dynamics of capital intensity

(i) Under Assumption 1, for all positive k0, there exists a unique intertemporal

equilibrium with perfect foresight starting at k0.

(ii) The dynamics of the capital intensity are monotonic.

(iii) For all t, the dynamics verify kt ≥ kDt where k
D
t is the solution of the

dynamics in the economy without altruism starting at the same initial level k0.

Proof: (i) The existence for all kt of at least one solution kt+1 of equation (14)

results simply from the limit value of the right hand side. Indeed we have 0 ≤

limk→0 min{g0(k), g1(k)} ≤ limk→0 g0(k) = 0 and limk→+∞(1+n)k+min{g0(k), g1(k)}

= +∞ since g0(k) and g1(k) are non negative.

The function g1(k) is strictly increasing; indeed its derivative g ′1 is equal to

[f ′′u′2 + f ′u′′2(1 + n)(f ′ − ω̃′)]/u′′1 and from (11), f ′ − ω̃′ is positive.

With Assumption 1, (1+n)k+min{g0(k), g1(k)} is a strictly increasing function

of k. This implies the uniqueness of kt+1 solution of (14) for given kt.

(ii) Since ω(kt) is also an increasing function of kt, the dynamics are monotonic.

(iii) Let us show kt ≥ kDt by induction. This is true at t = 0 since kD0 = k0.

Assume that it is verified at t: kt ≥ kDt . Then, according to (14) we have: ω(kt) ≥

w(kt) ≥ w(kDt ) = (1 + n)kDt+1 + g0(k
D
t+1)

But ω(kt) = (1+n)kt+1 +g0(kt+1) and the function (1+n)k+g0(k) is increasing

(Assumption 1). This implies kt+1 ≥ kDt+1. QED

The intuition that the capital stock is larger in the economy with family altruism

than in the model without altruism is simple. Any agent willing to leave a bequest

has to save more; this of course increases the capital stock.

Since the equilibrium dynamics are monotonic, they converge either to +∞, or

to zero, or to a finite positive limit which is a steady state. We now focus on the

two first cases while the study of steady states will be treated in section 5.

In the Diamond model, an infinite limit of the capital intensity is excluded (see,

for example, Jones et Manuelli (1992)). In addition it may exist a poverty trap, i.e.,

an equilibrium dynamics which converge to zero (see Galor and Ryder (1989)).

10



The introduction of the assumption of altruism allows to increase the capital

intensity. Therefore, unlike the model without altruism, the model with family

altruism can converge to +∞. In the same way, a poverty trap in the economy

without altruism can vanish with altruistic individuals (for illustrating examples see

Lambrecht, Michel and Thibault (2000)).

We can notice that our dynamic study has been conducted without restriction on

whether the economy is in a regime with positive or zero bequest. In the next section,

we refine this “general” study by exploring the long run regime of the economy.

5 The long run regime

In general, there are several steady states in the Diamond economy (see Galor and

Ryder (1989)). Each of these states is potentially a steady state in an economy with

altruism, when altruism is weak enough for the equilibrium bequest to be zero (see

Thibault (2000) for dynastic altruism). We consider this point in the case of family

altruism.

Steady states of the Diamond model are solutions of: w(k) = (1 + n)k + g0(k).

Such a value of kD is a steady state (with zero bequests) of the economy with family

altruism if and only if ω̃(kD) ≤ w(kD). By definition, ω̃(kD) is the value of ω such

that the increasing function

(1 + n)u′2[(1 + n)f ′(kD)kD + (1 + n)w(kD)− (1 + n)ω]− γu′3(ω)

is equal to zero. Thus the inequality ω̃(kD) ≤ w(kD) is equivalent to

(1 + n)u′2[(1 + n)f ′(kD)kD] ≥ γu′3(w(k
D)) (19)

This condition is simply an upper bound on the degree of altruism γ (different

for different steady states kD). Using this condition, we prove in Appendix A the

following proposition:

Proposition 3 Existence of steady states

The steady states with zero bequest in the economy with family altruism are the

steady states of Diamond model which satisfy (19). If such a steady state kD does

not satisfy (19), then there exists a steady state in the economy with family altruism

which is larger than kD.
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We now focus on the steady states of the economy with family altruism and

positive bequests. According to the previous result, when the largest Diamond

steady state does not satisfy (19), the model with family altruism has a steady

state with positive bequests. In the Barro model, the modified Golden Rule is the

unique equilibrium with positive bequests. With family altruism there may exist

more than one steady state with positive bequests and there may exist a steady

state with positive bequests which is inefficient (i.e. over-accumulation of capital).

But such an inefficient steady state is excluded if the the Golden Rule capital stock

k̂, i.e., such that f ′(k̂) = 1 + n, satisfies the following condition:

u′1[ω̂ − (1 + n)k̂] > (1 + n)u′2[(1 + n)(f(k̂)− ω̂)] (21)

where ω̂ is the solution of: (1 + n)u′2[(1 + n)(f(k̂)− ω̂)] = γu′3(ω̂).

Indeed we prove in Appendix B the following proposition:

Proposition 4 Steady states with positive bequests

A multiplicity of steady states with positive bequests can exist but no more than

one with over-accumulation of capital. A sufficient condition for excluding over-

accumulation of capital is that the golden rule capital stock k̂ satisfies (21).

The property of no more than one steady state with positive bequest and over-

accumulation needs no assumption. The condition which excludes inefficiency holds

if the degree of altruism is not too large. Indeed, the solution ω̂(γ) of (1+n)u′2[(1+

n)(f(k̂) − ω̂)] = γu′3(ω̂) is an increasing function of γ. It increases from 0 to f(k̂)

when γ increases from 0 to +∞. But the condition (21) is equivalent to ω̂ < ω̄,

where ω̄ equalizes to zero the decreasing function of ω, u′1[ω − (1 + n)k̂] − (1 +

n)u′2[(1 + n)(f(k̂) − ω)], which decreases from +∞ to −∞ when ω increases from

(1 + n)k̂ to f(k̂). Then the condition (21), equivalent to ω̂(γ) < ω̄, determines an

upper-bound γ̄ on γ.6

Without additional assumptions, there can be many steady states with positive

bequests. There is an analogy with the possibility of several steady states in the

Diamond model. Galor and Ryder (1989) exhibit a production function which illus-

trates this case, in which multiplicity is linked to non-concavity of the wage function.

6In the particular case where for all ω we have u′3(ω) ≤ u′1(ω) there exists no steady state with

positive bequest in over accumulation when γ ≤ 1. Indeed, at a steady state with positive bequest

we have: u′1(c) = Ru′2(d) = R
1+n

u′3(ω) ≤
γR
1+n

u′1(ω) and c = ω − s < ω implies f ′(k) = R >

(1 + n)/γ ≥ 1 + n when γ ≤ 1. Any steady state then verifies k < k̂ = f ′−1(1 + n).
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In the model with family altruism, when bequests are positive, the wealth ω̃(k) is

simply linked to the production (equation (9)) and not to the wage. Irregularities

then result from the utility functions and in the example of Appendix we show that

there exists a concave utility function u3 leading to as many steady states with

positive bequests as we want.7

6 Fiscal policies

We now study fiscal policies under the assumption of operative altruism. In the

general case, the government budget constraint combines public spending (Gt) and

previous debt reimbursement8 at time t (RtBt−1), on the one hand, taxes collected

on the young (Ntτ
1
t ) and on the old Nt−1τ

2
t (positive or negative) and new debt issue

on the other (Bt):

Gt +RtBt−1 = Ntτ
1

t +Nt−1τ
2

t +Bt

Since individual preferences do not depend on public expenditures and since we

focus on purely redistributive fiscal policies, we set Gt = 0. The total amount of

taxes Tt is equal to the sum of the taxes bearing on young and old at time t:

Tt = Ntτ
1

t +Nt−1τ
2

t

Thus the government budget constraint writes :

RtBt−1 = Tt +Bt

A pay-as-you-go pension system is a special case of this government budget

constraint with, for all t, Bt = 0 and Ntτ
1
t = Nt−1 (−τ

2
t ). Let bt = Bt/Nt and

tt = Tt/Nt = τ 1
t + (1 + n)−1 τ 2

t , then time t new bonds issue per head of young

individuals are given by :

bt = (1 + n)−1Rtbt−1 − tt (22)

Let us sketch quickly the amendments to the model without public debt. The

introduction of governmental taxes modifies the individuals’ constraints as follows:

ct + st = wt + xt − τ 1

t = ωt

7With a CES utility function, the steady state is unique (see Lambrecht, Michel and Thibault

(2000)).

8Bonds are assumed to have a single period maturity.
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Rt+1st − τ 2

t+1 = dt+1 + (1 + n)xt+1

ωt+1 = wt+1 + xt+1 − τ 1

t+1

The individuals’ first-order conditions remain unchanged. The representative

firm’s behavior is unaffected.

Governmental bonds compete with private physical capital. If bonds are to be

exchanged in equilibrium, they must bear the same return than physical capital. In

equilibrium we now have :

st = (1 + n) kt+1 + bt

In the model without public debt, ωt+1 solves (1 + n)u′2 (dt+1) = u′3 (ωt+1) , with

dt+1 = Rt+1 (1 + n) kt+1 − (1 + n) (ωt+1 − w (kt+1)) and is an increasing function of

capital intensity kt+1. In the model with public debt, it solves (1 + n) u′2 (dt+1) =

u′3 (ωt+1) with dt+1 = Rt+1st− τ
2
t+1− (1 + n) xt+1. Using the modified xt+1 = ωt+1−

w (kt+1)+τ
1
t+1 and st = (1 + n) kt+1+bt, as well as the government budget constraint

(22), this expression of dt+1 can be rewritten as follows :

dt+1 = (1 + n) [f (kt+1) + bt+1 − ωt+1]

Consequently equation (9) becomes: f (kt+1) + bt+1 − ωt+1 = ψ (ωt+1) and the

young disposable income can be written as a function ω̃ of kt+1 and bt+1 from:

ωt+1 + ψ (ωt+1) = f (kt+1) + bt+1 (23)

The function ω̃ has the following properties:

ω̃′
k =

f ′

1 + ψ′
> 0 and ω̃′

b =
1

1 + ψ′
∈ (0, 1)

With respect to the model without policy, public debt modifies the allocation

between the old’s consumption ψ (ωt+1) and the young’s income ωt+1 because the

size of the ”cake” to be divided in each period is now f (kt+1) + bt+1

We now turn the the dynamics of capital intensity. The equation (13) describing

the motion of capital intensity becomes

ω̃ (kt, bt) = (1 + n) kt+1 + bt+1 + g1 (kt+1, bt+1) ≡ G (kt+1, bt+1) (24)

with: g1 = u′−1
1 [f ′ (kt+1)u

′
2 ((1 + n) (f (kt+1) + bt+1 − ω̃(kt+1, bt+1)))].

It is interesting to note that in the equilibrium dynamics (equation (24)), the

level of public debts matters but not the taxes or the transfers. In the economy with
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family altruism, the two policies of public debt and intergenerational transfers are

not equivalent, although they are equivalent in the Diamond economy (Buiter and

Kletzer (1998)) and in the Barro economy (since both are neutral).

The property of non-equivalence can be explained by considering the family

income of one period which is equal to the sum of the income of the old agent and

the income of his 1 + n children, i.e. in period t+ 1:

Ωt+1 = Rt+1st + (1 + n)wt+1

This income finances the consumption of the old dt+1 and the income of the

young (1 + n)ωt+1. This income is modified by a change in debt policy, because

st = (1 + n)kt+1 + bt is modified. Then, the optimal arbitrage in period t + 1

between dt+1 and ωt+1, i.e. the solution of maximizing u2(dt+1) + γu3(ωt+1) subject

to dt+1 + (1 + n)ωt+1 = Ωt+1, is also modified.

It is also interesting to note that the same arbitrage applies when there is a

second period additional income of the old. For example, if there is a supply of θ

units of labor in the second period of life, the family income in period t+ 1 is:

Ωt+1 = Rt+1st + θwt+1 + (1 + n)wt+1

The second period of life income of the young will occur in period t + 2 and does

not enter in the family income of period t+ 1. It will enter the young’s own family

income of period t+ 2 together with taxes and transfers of period t+ 2.

Note finally that if we want explicitly to introduce an additional income in the

last period of life, this additional income must be correlated with the capital accu-

mulation. In other words, we cannot work in an exchange economy framework. As

a result, there are not many papers dealing with non ad-hoc ways of introducing

an additional income in the last period of life linked to the capital stock. However

according to Decreuse and Thibault (2001)9, our next fiscal policy results are ro-

bust to the introduction of an additional income in the last period of life as in the

Diamond’s framework.

9Recently, by contrast to Diamond (1965), Decreuse and Thibault (2001) consider a very simple

OLG model in which agents work during their second period of life. They assume that there is

an age-specific labor productivity which is related to the age-earnings profile studied in labor eco-

nomics. The authors exhibit sufficient conditions ruling out dynamic inefficiency (or, equivalently

the non-neutrality of public debt) if age-specific labor productivity is sufficiently strong.
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Proposition 5 Determination of the intertemporal equilibrium

Given initial conditions k0 and b−1 = 0, the intertemporal equilibrium {kt+1}
+∞

t=0

with unconstrained bequests is determined by the sequence of public debt levels (per

young, {bt}
+∞

t=1
), or, equivalently, by the sequence of total taxes (per young, {tt}

+∞

t=0
).

As long as bequests are unconstrained, the intertemporal equilibrium does not depend

on the allocation of taxes between the young and the old.

Proof: Equation (24) only involves capital intensities and debt levels. The equiva-

lence between tax levels tt and debt levels bt in determining the equilibrium comes

from the budget constraint bt = (1 + n)−1Rtbt−1 − tt. At each period t, given the

debt level bt−1, choosing tt implies the debt level bt. Alternatively, choosing a debt

level bt implies a tax level tt. QED

From this proposition it is straightforward to deduce the following result:

Proposition 6 Neutrality of a pay-as-you-go pension system

A special case of the preceding proposition is obtained with no debt, i.e. with

pay-as-you-go pension system. In that case, proposition 5 means that there is no

effect on the equilibrium

Proof: Pay-as-you-go policies are equivalent to bt = 0. Thus the dynamics are

unchanged with respect to the absence of fiscal policy. QED

The interpretation of this result is that transfers inside the family completely off-

set public transfers. Any increase in the taxes levied on the young is compensated

by an increase in the old’s bequest. Indeed, as you can see in Figure 3, public inter-

generational transfers (the broken arrows) generated by the pay-as-you-go pension

system are neutralized inside the family unit by private intergenerational transfers

(the straight arrows).

Gt

Gt+1

Gt+2

µ

µ

?

?

Figure 3: Neutrality of PAYG Social Security – The Family Altruism Case
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This feature is thus common to the family altruism model and the dynastic

altruism model. Indeed, Figure 4 explains intuitively why a pay-as-you-go pension

system is neutral in the Barro’s framework but not in the Diamond’s one.

Gt

Gt+1

Gt+2

µ

µ

?

Gt

Gt+1

Gt+2

?
¸

¸

Figure 4: PAYG Social Security – Diamond (left side) vs Barro (right side)

Let us focus now on the effects of public debt in our model with family altruism:

Proposition 7 The effects of public debt

An increase public debt bt+1 in period t+1 increases consumption of the genera-

tion born in t, ct and dt+1 and reduces the capital stock in all the following periods.

Proof: We first compute dkt+1/dbt+1. We have:

g′1k = [f ′′u′2 + f ′u′′2 (1 + n) (f ′ − ω̃′
k)]u

′′−1

1 > 0

G′
k = (1 + n) + g′1k > 0

g′1b = f ′u′′2u
′′−1

1 (1 + n) (1− ω̃′
b) > 0

G′
b = 1 + g′1b > 0

Hence, dkt+1/dbt+1 = −G′
b/G

′
k < 0. The dynamics are monotonic : thus the capital

stock is reduced in all the following periods. Then we compute ∂ct/∂bt+1, the effect

on consumption at time t, with ct = ω̃ (kt, bt)− (1 + n) kt+1 and ∂dt+1/∂bt+1, the ef-

fect on consumption at time t+1, with dt+1 = (1 + n) [f (kt+1) + bt+1 − ω̃ (kt+1, bt+1)].

Then:
∂ct
∂bt+1

= − (1 + n)
dkt+1

dbt+1

> 0

Since u′1(ct) = f ′(kt+1)u
′
2(dt+1) we have:

u′′1
∂ct
∂bt+1

= f ′u′′2
∂dt+1

∂bt+1

+ f ′′u′2
∂kt+1

∂bt+1

Then: f ′u′′2
∂dt+1

∂bt+1

=
∂kt+1

∂bt+1

(−(1 + n)u′′1 − f ′′u′2) < 0, and ∂dt+1/∂bt+1 > 0. QED
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This is in line with the conventional view of public debt. This view distinguishes

between short run effects and long run effects. In the short run, each household

spends more on consumption goods. This leads to an increase in aggregate demand

for output and to an increase in national income. However capital accumulation is

reduced by substitution of government bonds to firm assets. Precisely, our propo-

sition shows that the increase in debts at some date increases the consumption of

the old generation at the current period and decreases the capital stock available

for production.

Intuitively, public debt is not neutral in our setting because, according to Figure

5, public intergenerational transfers (the broken arrows) generated by the public debt

can not be neutralized inside the family unit by private intergenerational transfers

(the straight arrows).

Gt

Gt+1

Gt+2

?

?

>

R

Figure 5: Non Neutrality of Public Debt – Family Altruism Case

The non-neutrality result of public debt in the family altruism model is a common

feature with the Diamond model. Indeed, Figure 6 explains intuitively why a public

debt policy is neutral in the Diamond’s framework but not in the Barro’s one.

Gt

Gt+1

Gt+2

µ

R

Gt

Gt+1

Gt+2

?

?

3

R

Figure 6: Public Debt – Diamond (left side) vs Barro Case (right side)

Then, family altruism is the first concept of altruism which leads to fiscal policy

conclusions that are less clear-cut than those obtained in the canonical macrody-

namic models with pure life-cyclers (Diamond (1965)) and the ones of the dynastic
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altruism (Barro (1974)) and the ones with warm glow altruism (Andreoni (1989)).In-

deed, this concept allows to differentiate the effect of a public debt policy and of a

pay as you go social security.

7 Conclusion

We studied an amended formulation of the altruistic transfer motive in the frame-

work of an OLG model. The idea of the family altruism used in this paper is that

altruistic parents care only about their children income and not about the use of

this income made by the children. Models with human capital (see e.g. Glomm and

Ravikumar (1992)) have used this particular specification of altruism of the adult

disposable income. In this paper, we translate it to a model with physical capital.

Altruism Family Diamond joy of giving

à la Barro altruism model altruism

Horizon of

foresight Infinite One period One period One period

Neutrality of a pay

as you go pension Yes Yes No No

Neutrality of

a public debt Yes No No No

Uniqueness of

the steady state Yes No No No

Possibility of existence

of equilibrium with

overaccumulation No Yes Yes Yes

Unlimited

growth Yes Yes No Yes

Table 1: Barro vs Family altruism vs Diamond vs Joy of giving

It is convenient to summarize our results by systematically comparing them with

those of the Barro and the Diamond model. As it is shown in the table 1, the family

altruism model has two common points with the Barro model: the neutrality of

pay-as-you-go pensions and the possibility of unlimited growth. With respect to the

Diamond model, it has four common points: the one-period horizon of foresight, the

non-neutrality of public debt, the possibility of multiple steady states and, finally,

the possibility of existence of an equilibrium in over-accumulation. We also compare
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these results with the conclusions of the joy of giving model. For this model, the

only difference with the Diamond model in Table 1 is the possibility of unlimited

growth.

In the light of our findings, the family formulation of altruism might act as

filling in a gap between the life-cycle model and Barro’s dynastic model of altruism

which are the two benchmarks of the economic analysis of intertemporal choices

and dynamics. Throughout our analysis, the concept of desired wealth revealed how

central it was. At the level of decision-making, it suitably summarizes the altruist’s

possibly constrained bequest choice. At the level of the intertemporal equilibrium, it

proved to be quite useful in establishing the monotonicity of the dynamics. Finally

note that the introduction of the assumption of altruism allows to increase the

capital intensity. Therefore, a poverty trap in the Diamond economy can vanish

with individuals motivated by family altruism or by joy of giving.
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Appendix A: Proof of Proposition 3

Consider a steady state kD of the economy without altruism (γ = 0). Then

in the economy with family altruism (γ > 0) we show that: (i) Inequality (19) is

verified and kD is a steady state with zero bequest. (ii) Inequality (19) is not verified

and there exists a steady state larger than kD (may be +∞).

22



(i) As seen, if kD verified (19), it is a steady state with zero bequest of the

economy with family altruism.

(ii) If kD is not a steady-state of the economy with family altruism there are two

possibilities. If it exists a Diamond equilibrium larger than kD which satisfies (19)

this equilibrium is an equilibrium of model with family altruism. In the converse

case, since the largest steady state kDmax of the economy without altruism does not

verified (19) we have:

(1 + n)u′2[(1 + n)f ′(kDmax)k
D
max] < γu′3(w(k

D
max)) (20)

This inequality implies that ω̃(kDmax) > w(kDmax) and that, if kt = kDmax, then

kt+1 > kt. Indeed,

ωt = ω̃(kDmax) > (1 + n)kDmax + g0(k
D
max) ≥ (1 + n)kDmax +min{g0(k

D
max), g1(k

D
max)}

and ωt = (1 + n)kt+1 +min{g0(kt+1), g1(kt+1)} imply that kt+1 > kDmax.

Thus the equilibrium dynamics {kt}
+∞
t=0 starting at k0 = kDmax is increasing. Ei-

ther it goes to +∞ or it converges to a steady state. When it converges to a finite

limit, bequests at the steady state are necessarily positive because it is not a steady

state of the economy without bequest. When it converges to +∞, we may say that

+∞ is a “steady state” of the economy with family altruism, and, for large t, be-

quests are necessarily positive (zero bequests imply a decrease in k for large t).

Appendix B: Proof of Proposition 4

We show that: (i) There can exists a multiplicity of steady state with positive

bequests. (ii) There exists no more than one steady state with positive bequests

and over-accumulation of capital. (iii) All the steady states with positive bequests

are efficient if the condition (21) is verified.

(i) Assume that U(c, d, ω) = ln ct + β ln dt+1 + γu3(ω) and f(kt) = kαt with

α ≤ 1/2 such that 1 + β < α(1 − α)/(1 − 2α). For all positive p, we show in

Appendix C that it exists a concave function u3 such that the model with family

altruism experiences at least p equilibria with positive bequests.

(ii) According to (13), a steady state verifies if it exists:

h(ω, k) ≡ u′1[ω − (1 + n)k]− f ′(k)u′2[(1 + n)(f(k)− ω)] = 0

This condition defines a curve C1: ω = ω1(k) such that:

ω′
1(k) = −

h′k(ω, k)

h′ω(ω, k)
=
−(1 + n)u′′1 − f ′′u′2 − (1 + n)f ′2u′′2

−u′′1 − (1 + n)f ′u′′2
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and if f ′(k) ≤ 1 + n, then ω′
1(k) > f ′(k). But a steady state with positive bequests

also verifies ω = ω̃(k), i.e. (k, ω) belongs to the curve C2 defined by f(k) = ω̃+ψ(ω̃);

and we have (relation (11)) ω̃′(k) < f ′(k). Since the two curves C1 and C2 verify

ω̃′(k) < ω′
1(k) for all k ≥ k̂, they cannot intersect more than once.

(iii) Moreover, the two curves C1 and C2 do not intersect (in over-accumulation

of capital) when ω̃(k̂) < ω1(k̂). The value of ω̂ = ω̃(k̂) is determined by (1+n)u′2[(1+

n)(f(k̂)− ω̂)] = γu′3(ω̂) and ω1(k̂) > ω̂ is equivalent to (21).

Appendix C: Steady states with positive bequests

Assume that U(c, d, ω) = ln ct + β ln dt+1 + γu3(ω) and f(kt) = kαt with α ≤ 1/2

such that 1 + β < α(1− α)/(1− 2α). For all positive p, we will show that it exists

a concave function u3 such that the model with family altruism experiences at least

p equilibria with positive bequests.

Step 1: Characterization of equilibria with positive bequests.

With our utility specification the function ψ and g1 of equation (9) and (16) are:

Ψ(ω) =
β

γu′3(ω)
and g1(k) =

(1 + n)k1−α

αγu′3(ω)

Then, since f(k) = kα = ω +Ψ(ω) we have k = (ω +
β

γu′3(ω)
)1/α.

Therefore, the ω which are equilibria with positive bequests must satisfy :

ω = (1 + n)(ω +
β

γu′3(ω)
)1/α + g1((ω +

β

γu′3(ω)
)1/α)

ω > (1− α)(ω +
β

γu′3(ω)
)

Hence, any ω which satisfies the two following conditions is an equilibrium with

positive bequests:

ω
1−α

α (1 +
β

γωu′3(ω)
)

1

α (1 +
1

αβ + αγωu′3(ω)
)−

1

1 + n
= 0 (25)

γ >
(1− α)β

αωu′3(ω)
(26)

Step 2: Construction and variation of pairs (ω̄,σ̄).

For all positive µ, we can define ω̄ and σ̄ such that:

ω̄ = (1 + n)
α

α−1 (1 +
α

(1− α)µ
)

1

α−1 (1 +
1

β(α + (1− α)µ)
)

α

α−1
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σ̄ =
µ(1− α)β

αγω̄
=

µ(1− α)β

αγ(1 + n)
α

α−1

(1 +
α

µ(1− α)
)

1

1−α (1 +
1

β(α+ (1− α)µ)
)

α

1−α

It is obvious to show that ω̄ increases with respect to µ.

Since σ̄ = f(µ) = A ∗ B(µ)
1

1−α ∗ C(µ)
α

1−α where A = [(1 + n)
α

1−αβ]/γ, B(µ) =

[µ(1− α))/α]1−α + [µ(1− α)/α]−α, and C(µ) = 1 + 1/[β(α + (1− α)µ)] we have:

f ′(µ) =
A

1− α
B′(µ)B(µ)

α

1−αC(µ)
α

1−α +
αA

1− α
B(µ)

1

1−αC ′(µ)C(µ)
2α−1

1−α

Hence f ′(1) has the sign of B ′(1) + αB(1)C ′(1)/C(1).

Since B(1) = αα−1/(1− α)α, B′(1) = αα−1(1− 2α)/(1− α)α, C(1) = (1 + β)/β

and C ′(1) = (α− 1)/β, f ′(1) has the sign of (1− 2α)(1+β)+α(α− 1). Hence f ′(1)

is negative. Thus it exists κ > 0 such that ∀ µ ∈]1− κ, 1 + κ[ f ′(µ) < 0.

Step 3: Existence of u3 to obtain p equilibria with positive bequests.

Let p be a positive integer. According to step 2 we can construct an increasing

sequence of real numbers µ1, µ2,..., µp such that:

∀ i ∈ 1, ..., p 1 < µi < 1 + κ and f ′(µi) < 0

For each µi we construct the pair (ω̄i, σ̄i) studied in step 2.

Since ω̄1, ω̄2,..., ω̄p are distinct, it exists a differentiable decreasing function

u′3:IR
+ → IR+ such that

∀ i ∈ 1, ..., p v′(ω̄i) = σ̄i

The function u′3 can be decreasing because ∂ω̄i/∂µi > 0 and f ′(µi) < 0 implies

∂σ̄i/∂µi < 0. Since u′3(ω) is integrable (because continuous) we can construct a

differentiable function u3(ω) such that its derivative is the function u′3(ω). And,

since u′3 is a decreasing function, u3 is a concave function.

By construction, for all i we have ω̄iu
′
3(ω̄i) = [µi(1− α)β]/(αγ).

Then, since µi > 1, ω̄i satisfies (26).

Moreover, substituting ω̄iu
′
3(ω̄i) by [µi(1−α)β]/(αγ) in (25), we can easily check

that ω̄i also satisfies (25).

Therefore, we have constructed a concave function u3 such that the p ω̄i’s verify

(25) and (26). Hence, according to step 1, our model has at least p equilibria with

positive bequests.
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