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Abstract

This paper analyzes the properties of three capacity games in an oligopolis-

tic market with Cournot players. In the first game, capacity and the operation

of that capacity is determined simultaneously. This is the classic open-loop

Cournot game. In the second game capacity is decided in the first stage and

the operation of that capacity is determined in the second stage. The first stage

decision of each player is contingent on the solution of the second-stage game.

This is a two-stage, closed-loop game. We show that when the solution exists,

it is the same as the solution in the first game. However, it does not always

exist. The third game has three stages with a futures position taken between the

capacity stage and the operations stage and is also a closed-loop game. As with

the second game, the equilibrium is the same as the open-loop game when it

exists. However, the conditions for existence are more restrictive once a futures

market is added. When both games have an equilibrium, the solution values are

identical. The results are very different from games with no capacity stage as

studied by Allaz and Vila (1993), which have been used to argue that futures

markets can ameliorate market power.



1 Introduction

One of the important questions in the theory of oligopolistic markets is the role of

futures markets in mitigating market power. The literature on this subject typically

examines the effect of futures markets on production levels in oligopolistic markets

without explicit capacity decisions. By adding a capacity decision for each player

before the futures decision, we increase the realism of the game for capital-intensive

industries in a commodity business and derive results that are different from those in

the literature.

Understanding the effects of futures markets has taken on new importance given

the problems in the California electricity market. Here the use of futures markets by

the regulated electricity purchasers was restricted to 20% of expected sales and the

problems in that market in 2000 were partially blamed on the lack of an active futures

market that could have locked in lower rates on much of the capacity.

The original work on the potential of futures markets to mitigate market power is

by Allaz (1992) and Allaz and Vila (1993). They wrote two of the early papers on this

and derived the remarkable result that with Cournot players oligopolistic producers

increase production just from the existence of a futures market. This result has intu-

itive appeal: the futures position fixes the price for a portion of the production and

reduces the quantity that is subject to lower prices from increased production. This

increases the marginal revenue in the spot market for any production level, thereby

increasing the equilibrium quantity. In fact, they show that as the number of periods

increases, the equilibrium in a duopoly converges to the competitive equilibrium.

Their work has led to a growing literature with articles confirming or negating the

result. None of these articles have addressed the effect of capacity decisions on the

extent to which futures decisions can alter production decisions. In the next section

we survey the literature illustrating both sides of the debate on the effect of futures

markets.

1



Next we examine the open-loop Cournot game where capacity and production

decisions are made simultaneously. We then develop closed-loop games without and

with a futures market. In closed-loop games the capacity decision of each player is

made knowing how this decision affects the production decision of the other player,

while taking the capacity decision of the other player as given. Our first closed-loop

game determines capacity in the first stage, followed by the operation of the capac-

ity in the second stage. This is different from the standard open-loop game where

the capacity and production decisions are made simultaneously and each player sees

the other player’s capacity and production decisions fixed. Our main results in this

section are that an equilibrium might not exist, but if it exists, it is the same as the

open-loop equilibrium where the capacity and production decisions are made simul-

taneously.

The last game has a futures stage between the capacity stage and the production

stage. This is a three-stage closed-loop game. Here the capacity decisions are made

knowing their effects on futures decisions, which are made knowing their effects on

the spot game. The futures market plays a complex role. An equilibrium might not

exist, but if it exists, it is the same as the open-loop equilibrium. The difference from

the previous game is that there exist parameters for which the game without futures

has an equilibrium but the game with futures does not. The underlying mechanisms

are different from the Allaz and Vila model. In their model, increasing the futures

position of a player decreases production by the other player. However, in the game

with a capacity stage, both players operate at capacity and the marginal value of the

capacity is the cost of capacity. Thus, increasing the futures position of a player only

decreases the marginal value of the other player’s capacity, not its production. We

show that this property reproduces the single-stage Cournot solution. We illustrate

the results with an example.

We conclude with a discussion of the realism of this result. For example, this

model is deterministic. Adding uncertainty, or the equivalent load duration curve can

have an important impact.
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2 Literature review

Some of the literature on the effects of futures markets on spot markets is generic to

all markets while the rest of the literature can be grouped along two different dimen-

sions. The first dimension is Bertrand versus Cournot models with supply-function

equilibria falling in between. The second is electricity markets versus traditional

commodity markets.

2.1 Cournot electricity markets

Powell (1993) notes that the generators in the British market have a monopoly on the

ability to offer contracts for differences, which are essentially futures contracts. This

allows them to charge a premium for these contracts when the regional electricity

companies are risk averse. He argues for a standard futures contract to mitigate this

power. Green (1999) shows that the effect of a futures market depends on the con-

jectural variation player i assumes about player −i. He shows that a Cournot player

does not enter into futures contracts and a Bertrand player does contract for all of its

production at marginal cost. His results differ from Allaz and Vila because he solves

the open-loop game where the futures and production decisions are made simultane-

ously, thus the conjectural variation is 0 in the Cournot case. Because Allaz and Vila

solve a two-stage, closed-loop game, the conjectural variation is greater than zero

while still being Cournot.

Gans, Price, and Woods, (1998) reaffirm the Allaz and Vila results. However,

they note that contracts can be used to restrict entry, leading to higher prices in the

long run. Their paper provides an example that clearly illustrates the phenomenon.

Newbery (1998) shows the reverse can be true if generators use contracts to block

new entrants. This is in the vein of the literature that starts with the paper by Spence

(1977) where an incumbent builds in one stage and the entrant invests in the next.

Harvey and Hogan (2002) start from Allaz and Vila’s recognition that both play-

ers are worse off after they take their futures position and note that the two-stage
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game has the payoffs of the prisoner’s dilemma game with the game repeated indefi-

nitely. It is well known that in practice, when the prisoner’s dilemma game repeated

for a large number of periods, the players cooperate in the early periods. They argue

that the players learn to cooperate without colluding by avoiding the futures market.

A counter argument is that if the players are risk averse, they enter the futures market

for managing risk and then have the same second-stage spot game.

Using data from the beginning of the restructured markets in Australia, Wolak

(2000) finds that a higher level of contracts induces increased production. He also

notes that at high enough levels, contracts can lead to production levels with negative

prices.

Joskow and Tirole (2002), look at the effects of the allocation of transmission

rights on the electric grid. They conclude that if producers in importing regions or

consumers in exporting regions own financial rights, market power is aggravated.

The converse is that if producers in exporting regions and consumers in importing

regions hold rights, market power is mitigated. Kamat and Oren (2002) examine the

effects of zonal pricing with and without transmission constraints. They reproduce

the Allaz and Vila results when the transmission constraints are not binding and show

that binding constraints mitigate the effect of forward markets.

2.2 Bertrand electricity markets

Haskel and Powell (1992) show that in a contract market that is based on price offers,

the market clears with price equal to marginal cost. Thus, a futures market cannot

lead to increased production.

2.3 Other commodities and experiments

Le Coq and Orzen (2002) do laboratory experiments with students to test the extent

to which futures markets affect spot markets. They find that a futures market leads

to increased production, but not to the extent that theory would predict. Adding a
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futures market is not as effective as increasing the number of players because the

students behaved more competitively than theory would predict.

Goering and Pippenger (2002) show that for durable commodities the optimal

strategy for a monopolist is to buy in forward markets even at a premium to the spot

price. This commits the monopolist to not flood the market with the durable good it

produces, an example of which is metals. The commitment not to flood the market

makes it possible for customers to buy more, knowing the value of their purchases

will not be eroded. The monopolist has to pay a premium because the seller has the

risk of being squeezed.

Mahenc and Salanie (2002) show that in a Bertrand market with partially differ-

entiated products the optimal strategy is to take a long position in the product market.

This raises the spot price and increases the profits for both players. Since prices are

strategic complements, both players have an incentive to buy rather than sell futures,

and, unlike Allaz and Vila, there is no prisoner’s dilemma game. They note that

this behavior was observed in coffee markets in 1977. They also show that the less

differentiated the good, the higher the spot price

2.4 Capacity expansion

Wu, Kleindorfer, and Sun (2002) have a capacity-expansion model in electric power

with options. They did not characterize the existence of the solution or its properties

with and without the options market.

Murphy and Smeers (2003) look at the capacity-expansion game as a two-stage

game without a futures market in the context of electricity markets. They are able

to show that the equilibrium is unique if it exists and that it does not always exist.

They show that the two-stage, closed-loop formulation leads to greater capacity than

an open-loop, single-period formulation. This is because each player sees the other’s

production decisions change in response to its increase in capacity. In some ways

this is an alternative approach to imputing conjectural variation while retaining the

Cournot formulation.
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The next section contains a simplified version of the model in Murphy and Smeers

in that we use a deterministic demand level without a load duration curve. The model

has a capacity game followed by a production game.

3 Model definition and an example

3.1 Model definition

3.1.1 Cost structure

Assume that generation units can be entirely characterized by their investment and

variable operations cost. For a given utilization rate (see Stoft (2002) for a discus-

sion), these costs can be expressed in $/Mwh. We let

νi be the per unit production cost,

ki be the per unit capacity cost

3.1.2 Demand curve

We consider a single time period and let

p = α− q (1)

be the demand curve in that period.

3.1.3 Variables

The most complex model considered in this paper, the three-stage closed-loop game,

assumes that agents build some capacity in a first stage, trade on the forward market

in a second stage and on the spot market in the third stage. Because the model is fully

deterministic there is no need to distinguish between forward and futures contracts

and we use these terms interchangeably. We let

xi be the capacity invested by player i

yi be the forward position, and

zi be the spot generation.
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This decomposition implies that y is traded in the futures market and z − y in the

spot market. This is the decomposition assumed in Allaz-Vila. It has different possi-

ble interpretations in electricity markets. In a standard market design interpretation,

y would be traded in the day ahead market and z − y in real time. In a pure bilat-

eral system, y would correspond to OTC contracts and z − y would be the trade in

real time. Assuming again the most complex three-stage model, profit accruing at

different stages of the decision process can be computed as follows.

Let −i index the player that is not i. The profit accruing to agent i in the spot

market, or third stage, is equal to

[α− (zi + z−i)](zi − yi)− νizi (2)

By arbitrage the spot and forward prices are equal. The sale in the forward market

therefore induces a revenue of [α− (zi + z−i)]yi. There is no cost in trading forward

and the forward revenue is equal to the forward profit. Thus the cumulative second-

and third-stage profit in the second stage is the operating profit and equal to

[α− (zi + z−i)]zi − νizi. (3)

Player i incurs a cost −kixi for building capacity in the first stage. This is also its

first-stage profit since there is no revenue in the first stage. The cumulative three-stage

profit aggregated in the first stage is thus equal to

[α− (zi + z−i)]zi − νizi − kixi. (4)

3.2 An example

The following example is used throughout the paper to illustrate the results.

3.2.1 Demand

To parameterize the linear demand model, assume a demand of 30 000 Mwh in some

hour when the price is $30/Mwh. We write

30 = α− β 30 000
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We consider both low and high values of the long term price elasticity.

In the case with low demand elasticity assume the long-term elasticity is

.1
(
|pq
dq
dp
| = .1

)
at the point (30,30 000). The values for α and β can be calculated

as follows

30
30 000β

= .1 or β =
30

3 000
= .01

From 30 = α − (.01)(30 000) we get α = 330. We now want to convert this ex-

pression into p′ = α′ − q′. Suppose we measure quantities in units of 10 Mwh. The

reference point becomes (300,3 000) (price is $ 300 for 10 Mwh and demand is 3 000

10 Mwh). β becomes 1 as 300
3 000 = .1 We rewrite the demand system as

p′ = α′ − q′

with α′ = 3300

With a higher-long term elasticity of .9, and using the same argument, we measure

quantities in units of 30Mwh and rewrite the system p′ = α′ − β′q′. The reference

point becomes 900, 1000, and the value of the elasticity at that point implies β′ = 1.

From p′ = α′ − q′ we get α′ = 1900.

3.2.2 Technology

The following investment and fuel cost figures are taken from Stoft (2002).

Investment cost ($/Mwh) Fuel cost ($/Mwh)

Coal 14.10 11.77

Advanced combustion cycle 7.36 20.78

Expressing everything in 10Mwh for dealing with the small price elasticity and round-

ing up we select investment and fuel costs equal to
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K1 = Kcoal = $150/10Mwh

ν1 = νcoal = $100/10Mwh

K2 = Kgas = $75/10Mwh

ν2 = νgas = $200/10Mwh

Expressing everything in 30Mwh for dealing with the large elasticity and rounding

up in the same way, we select the alternative assumption

K1 = Kcoal = $450/30Mwh

ν1 = νcoal = $300/30Mwh

K2 = Kgas = $225/30Mwh

ν2 = νgas = $600/30Mwh

4 The single-stage game

The open-loop game without a futures market is the simplest of the three games

considered in this paper. It is the one where agent i simultaneously decides both its

investment and sales. The most natural interpretation of this game is one where both

agents build capacity and immediately sell all the output of that capacity forward.

There is no spot market.

With the standard Cournot assumption, the Nash equilibrium (x∗i , x
∗
−i) is ob-

tained in the game when x∗i solves

max
xi≥0

[
α− (xi + x∗−i)

]
xi − (νi + ki)xi, i = 1, 2.

4.1 Equilibrium conditions

The solution to the game exists and is unique. In order to streamline the compar-

ison of the three games (single, two, and three stages), we concentrate on the case
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where the single stage game has a single strictly positive equilibrium. Solving the

optimization problem of each individual player, one obtains

α− 2xi − x−i − (νi + ki) = 0

α− xi − 2x−i − (ν−i + k−i) = 0. (5)

This can be solved to give

xi =
1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
i = 1, 2. (6)

The price of electricity is equal to

α− xi − x−i =
1
3
[
α+ (νi + ki) + (ν−i + k−i)

]
. (7)

The unit profit of player i is

1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
(8)

and the total profit

1
9
[
α− 2(νi + ki) + (ν−i + k−i)

]2
. (9)

This solution has xi strictly positive iff

α− 2(νi + ki) + (ν−i + k−i) > 0 i = 1, 2. (10)

The following is a trivial observation in this game.

Proposition 1 zi = xi, i = 1, 2 in the open-loop game.

4.2 Illustration

We here verify that our test example has a strictly positive equilibrium.
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Case 1. Small price elasticity

The small long-term elasticity implies α′ = 3300. We have (recall that units are in

10 Mwh)

x1 = 1
3(3300− 2 � 250 + 275)

= 1
3 3075 = 1025

x2 = 1
3(3300− 2 � 275 + 250)

= 1
3 3000 = 1000.

Converting to the more usual Mw and Mwh units, installed capacities are respec-

tively 10250 and 10000 Mw for players 1 and 2 respectively. The total production is

equal to 20250 Mwh and the price is 3300-2025 = $1275/10 Mwh or $127.5/Mwh.

This equipment produces in base since there is a single time period and the price of

electricity is $127.5/Mwh.

Case 2. Large long term elasticity

Taking the large long-term price elasticity (α′ = 1900) and recalling that p′ = α′−q′

corresponds to units of 30 Mwh, we get

x1 = 1
3

[
1900− 2 � 750 + 825

]
= 408 or 12250Mw

x2 = 1
3

[
1900− 2 � 825 + 750

]
= 333 or 1000Mw

Converting again in the standard Mw and Mwh units, investments are respectively

12250 and 1000 Mw for players 1 and 2 and the electricity price is $38.6/Mwh.

5 A two-stage investment/spot model without a forward

market

We now consider the case of a two-stage game, namely one where players invest in

merchant plants and trade on the spot market. There is no forward market in this

model. The Spanish market is an example where there is neither a bilateral nor a

futures market. The equilibrium of this model is analyzed by working backward.
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5.1 Equilibrium conditions

Let xi be the capacities inherited from the investment stage. The equilibrium condi-

tions of the spot market are obtained when each agent solves the following optimiza-

tion problem, which is (2), with yi = 0,

max
0≤zi≤xi

[α− (zi + z−i)]zi − νizi. (11)

Here again, the existence and uniqueness in the equilibrium of the spot market are

easily established. They are obtained as the solution of the following complementar-

ity system.

α− 2zi − z−i − νi + ωi = λi i = 1, 2

xi − zi ≥ 0 λi ≥ 0 (xi − zi)λi = 0 (12)

zi ≥ 0 ωi ≥ 0 ziωi = 0

Let z(x) be the solution of these equilibrium conditions as a function of the capacities

x inherited from the first investment stage. It is easy to see that z(x) is single valued

and continuous in x. Note that z(x) is not continuously differentiable in x.

In order to simplify the presentation, we limit the discussion to the case where

the equilibrium satisfies 0 < zi ≤ xi, that is, the two producers are active at the

equilibrium. Making this simplification, the equilibrium of the spot market satisfies

one of the three following possible conditions.

(i) 0 < zi < xi; i = 1, 2

(ii) 0 < zi < xi; 0 < z−i = x−i (13)

(iii) 0 < zi = xi; 0 < z−i = x−i

We now find the equilibrium in the investment game that accounts for the behavior

of the players in the spot market. This is commonly referred to as a subgame-perfect

equilibrium or closed-loop equilibrium (Fudenberg and Tirole (2000)). Remaining in

the simple Cournot framework, we state
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Definition 1 A closed-loop equilibrium of the two-stage game x∗, z∗(x) satisfies the

following conditions

(i) z∗(x) is a Nash equilibrium of the spot market (second-stage game) for every

feasible x

(ii) x∗ is a Nash equilibrium of the capacity market game (first-stage game) where

the payoffs of the agents are

Πi(xi;x−i) = Πi[xi, z∗i (x);x−i, z
∗
−i(x)], i = 1, 2. (14)

If there exists a closed-loop equilibrium x∗, z∗(x), then there exists a feasible neigh-

borhoodN(x∗) of x∗ (intersection of a ball centered on x∗ and the feasible set x ≥ 0)

such that

• z∗(x) is a Nash equilibrium in the spot market for all points x, x ∈ N(x∗)

• x∗ is a Nash equilibrium of the capacity market with payoffs Πi(xi, x−i); i =

1, 2, defined as in (14) in that feasible neighborhood N(x∗).

x∗, z∗(x) is a local equilibrium if x∗, z∗(x) is an equilibrium in a feasible neighbor-

hood around x∗. This is restated as

Definition 2 A local closed-loop equilibrium of the two-stage game is a closed-loop

equilibrium of the game where x is restricted to a non-empty full dimensional subset

of the capacity space.

We now extend Proposition 1 to the two-stage game. As a first step, we show that

the cases (i) and (ii) of (13) cannot hold at equilibrium. This is done in Lemmas 1

and 2.

Lemma 1 Assume there is a closed-loop equilibrium of the two-stage game. Then

case (i) of (13) cannot hold at this equilibrium.
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Proof. Suppose

0 < z∗i < x∗i i = 1, 2.

The system (12) reduces to

α− 2z∗i − z∗−i − νi = 0 i = 1, 2 or z∗i =
1
3
[α− (2νi − ν−i)]

There exists a ball centered on x∗ such that for all x in that ball, z∗(x) = z∗ is the

best response. Therefore (x∗, z∗(x∗)) is a local equilibrium of the capacity game.

For this equilibrium the profit of i before paying for capacity is

1
9
[
α− (2νi − ν−i)

]2
.

After paying for capacity, the profit is

1
9
[
α− (2νi − ν−i)

]2 − kix∗i . (15)

However, (15) cannot be a local maximum of the payoff of player i with respect to xi

because we can reduce xi to improve the payoff.

Lemma 2 Suppose there exists an equilibrium of the two stage game. Then, condi-

tion (ii) of (13) cannot hold at this equilibrium.

Proof. Assume

0 < z∗i < x∗i and z∗−i = x∗−i.

The system (12) reduces to

z∗i = 1
2(α− x∗−i − νi)

z∗−i = x∗−i

Set

zi(x) = 1
2(α− x−i − νi)

z−i(x) = x−i.

It is trivial, to verify that there exists a ball centered on x∗ such that for all x in

that ball z(x) is the best response. Using the same argument as in Lemma 1, having

x∗i > z∗i implies that one can always decrease xi by a small amount and achieve a

higher profit. Therefore, this is not a local equilibrium and hence not an equilibrium.
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Proposition 2 A closed-loop equilibrium of the two-stage game, if it exists, satisfies

z∗i = x∗i , i = 1, 2.

Proof. This immediately derives from Lemmas 1 and 2, and the assumption of exis-

tence of the closed-loop equilibrium.

Proposition 2 immediately allows us to infer the equivalence of the open and closed-

loop equilibrium when the latter exists.

Theorem 1 The closed-loop equilibrium of the two-stage game, if it exists, is identi-

cal to the open-loop equilibrium of the single-stage game.

Proof. Let xci and zci , i = 1, 2 be the closed-loop solution of the two-stage game. By

Proposition 2, this equilibrium, if it exists, satisfies zci = xci , i = 1, 2. This implies

α− 2xci − xc−i − νi = λci ≥ 0, i = 1, 2.

Consider a decrease of xi from xci while keeping x−i equal to xc−i. Note that as

xci decreases, λci increases. Thus, zi = xi, i = 1, 2 satisfies the spot equilibrium

conditions (12). This implies that the first-stage objective function of i is equal to

Πi(xi;xc−i) ≡ (α− xi − xc−i − νi)xi − kixi

when xi is decreased with x−i = xc−i. Note that Πi(xi, xc−i) is concave in xi. Be-

cause xc is a closed-loop equilibrium, Πi achieves a maximum at xci given x−i = xc−i.

One has

α− 2xci − xc−i − νi − ki ≥ 0

and hence

λci ≥ ki > 0.

Because λci > 0, there exists a neighborhood of xc such that for x in that neigh-

borhood, zi = xi, i = 1, 2 satisfies the system (12) and hence remains the spot

equilibrium in that neighborhood. Adapting the above reasoning to variations of xi
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in excess of xci one finds λci = ki. Therefore, the closed-loop equilibrium of the

two-stage game xc, if it exists, satisfies the same conditions (4), as the open-loop

equilibrium and hence is identical to it.

We now turn to the question of the existence of the equilibrium in the two-stage

game. It is well known from game theory (see Fudenberg and Tirole (2000)) that ex-

istence is not guaranteed in general. An easily verifiable condition on investment cost

allows one to guarantee the existence of this equilibrium for our particular problem.

Theorem 2 Suppose we limit the capacity space x to points such that z(x) > 0; then

there exists a closed-loop equilibrium if ki ≤ 2k−i, i = 1, 2.

Proof. Because of Theorem 1, we know that a closed-loop equilibrium of the two-

stage game, if it exists, is identical to the open-loop equilibrium of the single-stage

game. We, therefore, identify sufficient conditions for the open-loop equilibrium to

also be a closed-loop equilibrium. The open-loop equilibrium x∗ satisfies α− 2x∗i −
x∗−i − νi = λ∗i = ki.

a) Let xi < x∗i . Then one can check that the second-stage equilibrium z∗(x) remains

z∗(x) = x. Because of the optimality properties of the equilibrium of the

single-stage game, there cannot be a higher profit for player i when xi < x∗i .

(b) Let xi > x∗i . As xi is increased, three possibilities can occur

(i) λi becomes zero before λ−i becomes zero

(ii) λ−i becomes zero before λi becomes zero.

(iii) λi becomes zero exactly when λ−i becomes zero

We successively consider the three cases in (b).

(i) λi = 0 before λ−i = 0. Let x̃i be the value of xi for which λi reaches 0. One

has

α− 2x̃i − x∗−i − νi = 0 or x̃i = 1
2(α− x∗−i − νi)

α− x̃i − 2x∗−i − ν−i > 0 or α− 1
2α+ 1

2x
∗
−i − 2x∗−i +

1
2νi − ν−i > 0.
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That is,

1
2
α− 3

2
x∗−i +

1
2
(νi − 2ν−i) > 0

or equivalently

α+ (νi − 2ν−i) > 3x∗−i.

Replacing x∗−i by its equilibrium value found in the single stage game (relation

(6)), we obtain that

α+ (νi − 2ν−i) > α− 2(ν−i + k−i) + (νi + ki)

or 2k−i > ki.

Therefore case (i) occurs iff 2k−i > ki. Suppose this inequality holds. One has

α− 2zi − x∗−i − νi = 0 with zi < xi for xi > x∗i . This implies that λ−i never

reaches 0, which in turn implies that z−i = x∗−i and the profit Πi is constant

for xi > x∗i . Therefore, choosing xi > x̃i cannot improve the profit of player

i. Summing up, assuming 2k−i > ki, i = 1, 2, neither player can increase its

profit by increasing xi with respect to the open-loop solution. This open-loop

equilibrium is thus also a closed-loop equilibrium.

(ii) λ−i = 0 before λi. Using the same steps as in (i), ki > 2k−i which violates the

assumption that 2k−i ≥ ki.

(iii) xi = x̃i simultaneously makes λi and λ−i equal to 0. One thus has ki = 2k−i
and

α− 2x̃i − x∗−i − νi = 0 and α− x̃i − 2x∗−i − ν−i = 0. (16)

Let x′i = x̃i + ε, ε > 0. z−i = x∗−i and zi = x̃i < x′i are the equilibrium in the

spot market by (16). Thus,

Πi(x′i, x
∗
−i) = Πi(x̃i, x∗−i)− kiε < Πi(x̃i, x∗−i).

By the optimality of x∗i , in the range x∗i ≤ xi ≤ x̃i and the concavity of the

profit function in this range
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Πi(x∗i , x
∗
−i) > Πi(xi, x∗−i) ≥ Πi(x̃i, x∗−i) > Πi(x′i, x

∗
−i)

which shows that it does not pay to increase xi beyond x∗i .

Consider now the case where ki > 2k−i. Define ˜̃xi as the point where λ−i becomes

zero, as in case (b) (ii) of Theorem 2. We first note that ˜̃xi satisfies α− ˜̃xi − 2x∗−i −
ν−i = 0 or after substitution of the value of x∗−i,

˜̃xi = x∗i + k−i. Following the

reasoning of Theorem 2, the open-loop equilibrium can fail to be a closed loop equi-

librium only if i has an incentive to invest xi beyond the point ˜̃xi where λi > 0

and λ−i = 0. We explore this situation. Because λ−i = 0, z−i < x−i and the

second-stage equilibrium implies for xi > ˜̃xi as long as λi > 0.

α− 2xi − z−i − νi = λi > 0

α− xi − 2z−i − ν−i = 0

with z−i(xi) = 1
2(α − xi − ν−i) < x∗−i. Replacing z in Πi(x, z) by this expression

while keeping zi = xi in expression (14), the profit becomes

Πi(xi;x∗−i)] =
[
α− xi − 1

2(α− xi − ν−i)− νi
]
xi − kixi

= 1
2 [α− xi + (ν−i − 2νi)]xi − kixi.

(17)

An optimum of Πi(xi;x∗−i) for xi > ˜̃xi can occur only if the derivative of

Πi(xi, x∗−i) at ˜̃xi is positive. Assume it is positive. What we ultimately need is

that the optimal objective function value of player i for xi > ˜̃xi is larger than the

optimum at the open-loop equilibrium. We thus compute the optimal xi ≥ ˜̃xi that

equates the derivative of Πi(x;x∗−i) to zero and verify that this optimal xi falls in the

region where (17) is a valid expression of the profit of i. Let
˜̃̃
xi be this value; it is

equal to

˜̃̃
xi =

1
2
[
α+ ν−i − 2νi − 2ki

]
=

1
2
(
α+ ν−i

)
− (νi + ki).

Replacing xi by
˜̃̃
xi in (17) we obtain

Πi(
˜̃̃
xi;x∗−i) =

1
8
[(α+ ν−i)− 2(νi + ki)]2. (18)
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In order for
˜̃̃
xi to be an optimal response of player i to x−i = x∗−i, we need to find

the condition that guarantees that

(a) (18) is indeed the correct expression of Πi(
˜̃̃
xi, x

∗
−i), that is,

˜̃̃
xi ≥ ˜̃xi and zi = xi

when xi = ˜̃̃
xi.

(b) 1
8

[
(α+ ν−i)− 2(ν−i + ki)

]2
> 1

9

[
(α− 2(νi + ki) + ν−i + k−i

]2
.

We take up these two questions in the following lemma.

Lemma 3 Suppose

ki >
1
4
[
α+ ν−i − 2(ki + νi)

]
> 2k−i,

then

Πi(
˜̃̃
xi, x

∗
−i) =

1
8
[
(α+ ν−i)− 2(νi + ki)

]2

is the profit of player i.

Proof. We first find the condition for
˜̃̃
xi ≥ ˜̃xi = x∗i + k−i. We need

1
2
[
α+ ν−i − 2(ki + νi)

]
− 1

3
[
α+ ν−i + k−i − 2(ki + νi)

]
> k−i

or

1
4
[
α+ ν−i − 2(ki + νi)

]
> 2k−i.

Consider now the conditions that guarantee zi = xi for xi = ˜̃̃
xi. One has zi = xi if

α− 2xi − z−i(xi)− νi ≥ 0

or after replacement of z−i(xi)

α

2
− 3xi +

ν−i
2
− νi ≥ 0.

The maximal value of xi, xmi , that satisfies this condition is

xmi =
α+ ν−i − 2νi

3
.
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One thus needs that
˜̃̃
xi ≤ xmi or

3
2
(α+ ν−i)− 3(νi + ki) < (α+ ν−i)− 2νi

that can be rewritten as

1
2
(α+ ν−i)− ν−i − ki < 2ki

or

1
4
[
(α+ ν−i)− 2(ki + νi)

]
< ki

which completes the lemma.

We now turn to condition (b) for
˜̃̃
xi to be an optimal response of player i to

x−i = x∗−i. Recall from (9) that the profit at x∗i , x
∗
−i is equal to

1
9

[α− 2(νi + ki) + (ν−i + k−i)]
2 .

The equilibrium exists if the following inequality is true and might not exist when the

inequality is reversed.

1
9
[
α− 2(νi + ki) + ν−i + k−i

]2
>

1
8
[
α+ ν−i − 2(ki + νi)

]2
.

Taking the square root of both sides we get

3
2
√

2
[α+ ν−i − 2(ki + νi)]− α+ 2(νi + ki)− ν−i < k−i

which reduces to (
3√
2
− 2

)
[α+ ν−i − 2(ki + νi)] < 2k−i. (19)

It is now possible to infer a condition for x∗i not to be the optimal response of player

i to x−i = x∗−i.

Lemma 4 Let

ki >
1
4
[
α+ ν−i − 2(ki + νi)

]
>

(
3√
2
− 2

) [
α+ ν−i − 2(ki + νi)

]
> 2k−i

(20)

then
˜̃̃
xi is the optimal response to x−i = x∗−i, not x∗i .
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Proof. the result follows from the combination of Lemma 3 and relation (19).

Consider the case where the condition of Lemma 3 that guarantees zi = xi when

xi = ˜̃̃
xi is violated. It might still be possible to find a response of player i that is

better than x∗i . We now explore this case.

Say
˜̃̃
xi ≥ xmi , we now have to calculate the profits at xmi and compare with the

profits in the open-loop solution. Here

zi = xmi =
1
3
(α+ ν−i − 2νi)

and

Πi(xmi , x
∗
−i) = (α− 2

3α+ νi
3 + ν−i

3 − νi − ki)
(
α+ν−i−2νi

3

)
= 1

9(α− 2νi + ν−i − 3ki)(α+ ν−i − 2νi)

Thus, if
˜̃̃
xi > xmi , the equilibrium exists if

(α− 2νi + ν−i − 3ki)(α+ ν−i − 2νi) < [α− 2(νi + ki) + ν−i + k−i]2.

This condition can be restated after some manipulation as

(ki − 2k−i)[α− 2(νi + ki) + ν−i] < 2k2
i + k2

−i. (21)

The following theorem summarizes the necessary and sufficient conditions for

the equilibrium to exist.

Theorem 3 Suppose we limit the capacity space x to points such that z(x) > 0.

Suppose also that ki > 2k−i for some i.

A closed loop equilibrium exists if (19) is violated and (21) holds true.

A closed loop equilibrium does not exist if (20) holds or

1
4
[α+ ν−i − 2(ki + νi)] > ki

and (21) is reversed.
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An important special case is when both players have identical costs. The proper-

ties of this game follow directly from this corollary.

Corollary 1 When ki = k−i and νi = ν−i, the closed-loop equilibrium exists and is

equal to the open-loop equilibrium.

6 The three-stage game: the capacity game with a

forward market

We now turn to the more complex game of a merchant plant that can contract part of

its production in the forward market, trading the rest in the spot market. Given the

value of having a futures market to reduce market power from the Allaz Vila results,

in this section we develop the corresponding results for a capacity game that precedes

taking a futures position. The definitions of the (local) closed-loop equilibrium of the

two-stage game can be readily extended to the three-stage game after introducing

some additional notation. Specifically, we let z be the vector of total production

in the spot market, y the amount traded forward and x the installed capacity. The

three-stage game can be solved backward as follows. A spot-price equilibrium z is a

vector-valued function z(x, y) where zi solves

max
0≤zi≤xi

{
Πs
i (x, y; zi, z

∗
−i) = [α− (zi + z∗−i)](zi − yi)− νizi

}
for i = 1, 2.

Assuming that this equilibrium solution exists and is unique, one can write, using (3),

Πf
i (x; y) = Πs

i [x, y; z(x; y)].

A forward equilibrium y is then a vector-valued point-to-set map y(x) (we shall see

that y(x) need not be unique) where yi(x) solves

max
yi

Πf
i (x; yi; y

∗
−i) i = 1, 2.

Assuming that this equilibrium solution exists, we define, using (4) and the above

expressions

Zi(x) = zi[x; y(x)] i = 1, 2.
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We show that even though y(x) is not unique, Zi(x) is unique. We can thus define

Πi(xi, x−i) =

{α− [Zi(xi, x−i) + Z−i(xi, x−i)]− νi}Zi(xi, x−i)− kixi i = 1, 2.

The capacity equilibrium solution, if it exists, is a vector x∗ where x∗i solves

max
0≤xi

Πi(xi, x∗−i) i = 1, 2.

We therefore extend Definition 1 as follows.

Definition 3 A closed loop equilibrium of the three-stage game x∗, y∗(x), z∗(x, y)

satisfies the following conditions

• (i) z∗(x, y) is a Nash equilibrium of the spot market (third-stage game) for

every feasible x, y,

• (ii) y∗(x) is a Nash equilibrium of the forward market (second stage game) for

every feasible x,

• (iii) x∗ is a Nash equilibrium of the capacity market (first stage-game).

We now proceed to examine the different stages of this equilibrium.

6.1 The spot market equilibrium for given forward positions

Let yi, i = 1, 2 be the forward position of the two agents. The equilibrium conditions

on the spot market can be written as

α− 2zi − z−i − νi + yi + ωi = λi i = 1, 2

(xi − zi) ≥ 0 λi ≥ 0 (xi − zi)λi = 0 i = 1, 2 (22)

zi ≥ 0 ωi ≥ 0 ziωi = 0 i = 1, 2.

Note that yi can be either positive or negative, corresponding to selling or buy-

ing in the futures market. Assume there exists an equilibrium x∗, y(x∗), z[x∗; y(x∗)].
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Then the equilibrium z∗ = z[x∗, y(x∗)] of the spot market satisfies one of the follow-

ing conditions

(i) 0 < z∗i < x∗i i = 1, 2

(ii) 0 < z∗i < x∗i 0 < z∗−i = x∗−i

(iii) 0 = z∗i < x∗i 0 < z∗−i < x∗−i (23)

(iv) 0 = z∗i < x∗i 0 < z∗−i = x∗−i

(v) 0 < z∗i = x∗i 0 < z∗−i = x∗−i

We again exclude cases (iii) and (iv) where one agent is driven out of the spot market

in order to shorten the discussion.

We extend Propositions 1 and 2 to the case of the three-stage game, that is, we

prove that if a closed-loop equilibrium exists, it satisfies zi = xi, i = 1, 2 and find

conditions for the existence of this equilibrium. The following lemmas are analogous

to those proved in Section 5.

Lemma 5 An equilibrium, if it exists, cannot satisfy case (i) of (23).

Proof. Let x∗, y∗ = y(x∗), z∗ = z[x∗; y(x∗)] be the equilibrium and assume that it

satisfies condition (i) of (23). The equilibrium conditions are

α− 2z∗i − z∗−i − νi + y∗i = 0

α− z∗i − 2z∗−i − ν−i + y∗−i = 0

0 < z∗i < x∗i i = 1, 2

Replacing νi + ki by νi − y∗i in the expression of the solution of the single-stage

(open-loop) equilibrium (6),

z∗i = z∗i (y
∗) =

1
3
[α− 2(νi − y∗i ) + (ν−i − y∗−i)]. (24)

There exists a neighborhood N(y∗) of y∗ such that (24) satisfies 0 < zi(x∗, y) < x∗i
and hence remains an equilibrium of the spot market. Inserting these expressions in
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Πs
i [x
∗, y, z],

Πf
i [x
∗, y] =

1
9
[α− 2(νi − yi) + (ν−i − y−i)]2. (25)

Using the first order equilibrium condition,

y∗i =
1
5
[α− (3νi − 2ν−i)]

and z∗i = 2
5 [α− (3νi − 2ν−i)]. Thus, there exists a neighborhood N(x∗) of x∗ such

that

y∗(x) = y∗ and Z∗(x) = z∗[x, y∗(x)] = z∗ are the best responses to any x in N(x∗).

For any x in N(x∗)

Πi(x) =
2
25

[
α− (3νi − 2ν−i)

]2 − kixi.

Because x∗i > z∗i and y∗i does not depend on x, Πi(x) increases by slightly decreasing

x from x∗i which contradicts the assumption that x, y∗(x), Z∗(x) is an equilibrium.

We now rule out case (ii).

Lemma 6 An equilibrium, if it exists cannot satisfy case (ii) of (23).

Proof. Let x∗, y(x∗), z[x∗, y(x∗)] be an equilibrium satisfying case (ii). One has

α− 2z∗i − x∗−i − νi + y∗i = 0 0 < z∗i < x∗i
α− z∗i − 2x∗−i − ν−i + y∗−i = λ∗−i 0 < z∗−i = x∗−i.

If it is an equilibrium, it is also a local equilibrium. Keeping x fixed at x∗ and letting

y move around y(x∗), we find the following solution to the system

zi = 1
2(α− x∗−i − νi + yi)

λ−i = α− 2x∗−i − ν−i + y−i − 1
2(α− x∗−i − νi + yi)

= α
2 − 3

2x
∗
−i − 1

2(2ν−i − νi) + 1
2(2y−i − yi).

We consider the impact of a modification of yi on the payoff of player i in the forward

market given y∗−i fixed. The spot price is equal to

α− zi − x∗−i = α− 1
2
(α− x∗−i − νi + yi)− x∗−i =

1
2
(α− x∗−i + νi − yi).
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The corresponding profit accruing to player i in the forward market, that is, after

taking into account forward positions, is equal to

(α− zi − x∗−i − νi)zi = 1
2(α− x∗−i − νi − yi)1

2(α− x∗−i − νi + yi)

= 1
4 [(α− x∗−i − νi)2 − y2

i ].

By assumption, y∗i maximizes player i’s payoff for given y∗−i and x∗. This implies

that y∗i must be zero. Player i’s medium term payoff on the forward market is thus
1
4 [(α − x∗−i − νi)]2. This implies that the profit achieved on the capacity market is
1
4 [(α − x∗−i − νi)]2 − kix

∗
i . Reducing x∗i by a small amount to xi < x∗i , yi = 0

remains the optimal strategy on the futures market and z∗i remains unchanged and

strictly less than xi. This reduction improves player i’s payoff in the capacity market

which was therefore not optimal. This proves the lemma.

6.2 Characterization of the closed-loop equilibrium

Using these two lemmas, Proposition 3 extends Proposition 2 to the three-stage game.

Proposition 3 A closed-loop equilibrium of the three-stage game, if it exists, satisfies

zi = xi, i = 1, 2.

With this result it is clear that the spot-market equilibrium zi = xi is unique assuming

a capacity market equilibrium.

Our next goal is to generalize Theorem 1 and to again show that if an equilib-

rium of the three-stage game exists, then it is the open-loop equilibrium. As with the

two-stage game, we also find that this equilibrium exists only under the conditions

in Theorem 1. We analyze this more complex case by partitioning the space of in-

vestment variables into different subsets where we further characterize equilibrium

properties.

In the subsequent lemmas we treat cases where zi < xi. Although this cannot

occur at equilibrium, this can be a property of a disequilibrium point that is relevant

to showing an equilibrium does not exist. We thus have to establish the nature of the

forward and spot-market equilibria for all possible xi > 0.
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Specifically, we first consider the case where the investment variables satisfy

α − 2xi − x−i − νi > 0, i = 1, 2. (This is the case where both players use all

of their generation capacity in the spot market). Lemma 7 characterizes the equilib-

rium in the forward market for that case. We then turn to the situation where one of

the above inequalities is violated. This corresponds to the case where one of the play-

ers has invested in too much capacity in the sense that its marginal operating profit

(marginal revenue – operating cost) on the spot market is negative when both capac-

ities are fully used. Lemmas 8 and 9 show that the other player realizes that there is

an overinvestment at the tentative equilibrium; it takes advantage of the situation and

uses the forward market to drive the over-built player out of the forward market.

Lemma 7 Let (xi, x−i) satisfy

α− 2xi − x−i − νi > 0 i = 1, 2

then

yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) < 0, i = 1, 2

is a closed-loop equilibrium of the forward market.

Proof. Take x given and let ỹi = ỹi(x), i = 1, 2 for this given x. One has

α− 2xi − x−i − νi + ỹi = 0, i = 1, 2

and hence zi = xi is an equilibrium on the spot market.

We want to prove that any yi ≥ ỹi is the best response of player i to a futures

position y−i ≥ ỹ−i of player −i. Suppose yi > ỹi, one has

α− 2xi − x−i − νi + yi = λi > 0

α− xi − 2x−i − ν−i + y−i = λ−i ≥ 0

and zi = xi remains an equilibrium on the spot market. Taking yi > ỹi therefore

maintains the profit of player i, whatever y−i ≥ ỹ−i is selected by player −i.
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Take yi < ỹi, y−i ≥ ỹ−i. zi becomes smaller than xi and one can write the equilib-

rium conditions of the spot market as

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − νi + y−i = λ−i > 0.

This implies

zi =
1
2
(α− x−i − νi + yi)

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.

The optimum of the profit of player i is achieved for yi = 0 with a payoff equal to
1
4(α− x−i − νi)2. This is the global optimum of player i if and only if

0 = yi < ỹi = −(α− 2xi − x−i − νi) < 0 which is a contradiction.

Therefore, yi < ỹi cannot be the best response of player i to y−i ≥ ỹ−i. Thus ỹi(x),

i = 1, 2 is a closed-loop equilibrium of the forward market and any yi ≥ ỹi(x),

i = 1, 2 is also a closed-loop equilibrium of the forward market.

We now examine the case of overbuilding by player i. Consider now what hap-

pens when one of the relations

α− 2xi − x−i − νi > 0 i = 1, 2

is violated. Let

α− 2xi − x−i − νi < 0 and α− xi − 2x−i − ν−i > 0.

This case corresponds to case (ii) of Theorem 2 in the game without a futures market.

The analysis is more complicated with a futures market because we have to analyze

the resulting futures positions of the players.

Lemma 8 shows that player −i can always drive player i out of the forward

market by selecting y−i large enough.
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Lemma 8 For a given (xi, x−i), if α−2xi−x−i−νi < 0 and α−xi−2x−i−ν−i > 0,

then yi = 0 is the optimal response of player i to any y−i ≥ max ỹ−i(x).

Proof. We first show that zi < xi when yi = 0. Suppose player −i takes a position

ȳ−i ≥ ỹ−i(x).
We first claim that the equilibrium in the spot market is

α− 2z−i − x−i − νi = 0

α− zi − 2x−i − ν−i + ȳ−i = λi > 0.

To see this, first note that, because α− 2xi−x−i− νi < 0, there exists some zi < xi

(that we assume > 0) that solves α − 2zi − x−i − νi = 0. Note that the definition

of ỹ−i(x) implies α − xi − 2x−i − ν−i + ỹ−i(x) = 0 and hence any zi < xi and

y−i > ỹ−i(x) satisfies α − zi − 2x−i − ν−i + y−i = λ−i > 0, which shows that

zi < xi and z−i = x−i is the equilibrium.

Consider the reaction of player −i to y−i > 0. Because y−i ≥ ỹ−i(x), α −
xi − 2x−i − ν−i + y−i > 0, α − zi − 2x−i − ν−i + y−i > 0 for all zi < xi.

Therefore, z−i = x−i whenever y−i ≥ ỹ−i(x), whatever the position of player i

on the forward market. Consider the following strategies of player i, keeping in

mind that y−i ≥ ỹ−i(x) implies z−i = x−i, whatever i does on the forward market.

Because the shape of the objective function depends on the value of yi, we treat two

cases:

(i) yi ≥ ỹi(x) = −(α− 2xi − x−i − νi) > 0

(ii) yi ≤ ỹi(x) = −(α− 2xi − x−i − νi) > 0

Note first that player i’s payoff in case (i), remains constant at (α−xi−x−i−νi)xi for

all yi ≥ ỹi(x). Therefore player i cannot improve its payoff by selecting yi ≥ ỹi(x)

and the optimum in case (ii) is a global optimum.
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Player i’s payoff in case (ii) can be computed as follows. Because yi ≤ ỹi(x),

zi ≤ xi and zi solves

α− 2zi − x−i − νi + yi = 0

α− zi − 2x−i − ν−i + y−i = λ−i > 0.

As in Lemma 7, the optimal response of player i is

zi =
1
2
(α− x−i − νi + yi) < xi

and

Πf
i (x; yi, y−i) =

1
4
[
(α− x−i − νi)2 − y2

i

]
.

The maximum profit is achieved for yi = 0 with the player i payoff equal to 1
4(α −

x−i − νi)2. This will be the global optimum of player i’s payoff if one has both

0 = yi < ỹi(x) = −(α− 2xi − x−i − νi) > 0

and

1
4
(α− x−i − νi)2 > (α− xi − x−i − νi)xi.

The first condition is true by assumption. To verify the second condition, first note

that it can be rewritten

(α− x−i − νi)2 − 4(α− x−i − νi)xi + 4x2
i > 0

or

(α− 2xi − x−i − νi)2 > 0

which is always satisfied.

The optimal reaction of player i is thus yi = 0 when player −i selects y−i ≥ ȳ−i
and α− 2xi − x−i − νi < 0. Note that this solution is unique by the strict concavity

of the objective function in this range. This proves the lemma.
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The difference between this result and the result of Allaz and Vila is that player

−i operates at capacity and does not change its spot position in response to player i’s

actions. We now show that the best response of player −i is y−i ≥ ỹ−i(x). Thus,

given (xi, x−i), we have the equilibrium in the futures market (even though this is

not an equilibrium in the capacity market).

Lemma 9 Suppose α − 2xi − x−i − νi < 0 and α − xi − 2x−i − ν−i > 0. Then

y−i ≥ ỹ−i(x) is the optimal reaction of player −i to yi = 0.

Proof. With yi = 0, define z̃i such that α− 2z̃i − x−i − νi = 0. Because α− 2xi −
x−i − νi < 0, z̃i is smaller than xi. We consider three cases because the shape of the

objective function of player−i depends on whether the spot decisions are at capacity.

We examine the following strategies of player −i on the forward market.

(i) y−i is selected to guarantee z−i = x−i.

(ii) y−i is selected to optimize the payoff in the range where zi < xi, z−i < x−i.

(iii) y−i is selected to optimize the payoff in the range where zi = xi, z−i < x−i.

We successively consider these three cases and compute the resulting payoff for

player −i.

(i) Player −i uses the futures market to guarantee the full utilization of its capacity

and it takes y−i ≥ ˜̃y−i(x) where ˜̃y−i(x) is defined by

α− z̃i − 2x−i − ν−i + ˜̃y−i(x) = 0.

This amounts to selecting

y−i ≥ ˜̃y−i(x).
The equilibrium on the spot market associated with yi = 0, y−i ≥ ˜̃y−i(x) is

zi = z̃i and z−i = x−i. The payoff for player −i is

(α− z̃i − x−i − νi)x−i =
1
2
(α− x−i − νi)xi.
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(ii) Let y−i = ˜̃y−i(x) − ε−i where ε−i is small enough to guarantee that zi does

reach xi and z−i does not hit zero. zi and z−i then solve the system

α− 2zi − z−i − νi = 0

α− zi − 2z−i − ν−i + y−i = 0

We can solve for zi and z−i as a function of y−i, as in Lemma 5. Setting yi = 0

in relation (25), the payoff for −i is

Πf
−i[x; 0, y−i] =

1
9
[
α− 2(ν−i − y−i) + νi

]2
.

The derivative of Πf
−i with respect to y−i is 4

9 [α− 2(ν−i − y−i) + νi]. At ˜̃y−i,
when z−i reaches x−i, this derivative is equal to

4
9
[
α− (2ν−i + νi) + 2˜̃y−i] =

4
9
x−i > 0.

Because Πf
−i[x; 0, y−i] is concave in y−i, and its derivative at ˜̃y−i(x) is pos-

itive, it is still increasing at that point. Thus, the optimum of Πf
−i[x; 0, y−i]

cannot be y−i < ˜̃y−i(x). This implies that y−i = ˜̃y−i − ε−i is not the best

response by player −i.

(iii) The following elaborates on the same concavity argument to prove that de-

creasing y−i to the level where zi reaches xi or z−i reaches 0 cannot maximize

Πf
−i[x; 0, y−i]. There is obviously no gain for player −i to further decrease

y−i if z−i hits zero before zi reaches xi since its payoff is then exactly zero.

Consider the alternative case where zi hits xi and z−i is still positive. This

occurs for some z−i that satisfies

α− 2xi − z−i − νi = 0

or z−i = α− 2xi − νi.

Consider decreasing y−i further to check the possibility of the resulting price

increasing profits. We show that this cannot happen. Let z−i = z−i + ε. The

corresponding profit of player −i is

(α− xi − z−i − ε− ν−i)(z−i + ε).
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The derivative of this expression at ε = 0 (for z−i = z−i) is equal to 3xi +

(2νi − ν−i)− α. This expression is positive because it is equal to

2(−α+ 2xi + x−i + νi) + (αi − xi − 2x−i − ν−i)

which is positive by assumption.

The conclusion is that it cannot pay to further decrease yi beyond the point

where zi = xi. y−i ≥ ỹ−i(x) thus guarantees the maximal profit of player −i
when yi = 0.

This completes the proof of the lemma.

We now characterize the solution when player i has excess capacity.

Lemma 10 Let (xi, x−i) satisfy α−2xi−x−i−νi < 0 and α−xi−2x−i−ν−i > 0

and ỹ−i(x) = −(α− xi − 2x−i − ν−i). Then yi = 0, y−i ≥ ỹ−i(x) is a closed-loop

equilibrium of the forward market. At that equilibrium zi < xi.

Proof. The result is a combination of Lemmas 8 and 9 after noting that ỹ−i(x) =

−(α− xi − 2x−i − ν−i) ≥ −(α− z̃i − 2x−i − ν−i) = ˜̃y−i(x).
Lemma 10 has an immediate interpretation. If a player develops its generation

capacity up to a point where its marginal revenue is negative when both capacities

are operated at their maximums, then the equilibrium on the forward market forces

this player to operate below capacity. In short it has effectively invested too much.

We now show that this cannot be an equilibrium.

Lemma 11 There cannot be any equilibrium of the capacity game with a forward

market such that α− 2xi − x−i − νi < 0 and α− xi − 2x−i − ν−i > 0.

Proof. Assume such an equilibrium exists. The equilibrium on the forward market is

yi = 0 and y−i ≥ ȳ−i with the corresponding spot equilibrium zi = 1
2(α − x−i −

νi), z−i = x−i. This spot equilibrium satisfies zi < xi and hence cannot be an

equilibrium by Proposition 3.
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We now explore whether one can have an equilibrium of the capacity game with

a forward market such that α − 2xi − x−i − νi < 0, i = 1, 2. This corresponds to

case (ii) in the game with no forward market. The situation is easily clarified with the

following lemma.

Lemma 12 An equilibrium of the capacity game with a forward market cannot sat-

isfy α− 2xi − x−i − νi < 0, i = 1, 2.

Proof. If such an equilibrium exists, it satisfies zi = xi, i = 1, 2 by Proposition 3.

Because the marginal revenue of both player is negative at this point, this cannot be

an optimal position for either of them. Therefore, this is not an equilibrium.

On the basis of the above, we conclude that an equilibrium of the capacity game

with a forward market, if it exists, satisfies α − 2xi − x−i − νi > 0, i = 1, 2 and

zi = xi, i = 1, 2. We infer the following proposition.

Proposition 4 An equilibrium of the capacity game with a forward market, if it ex-

ists, satisfies αi − 2x∗i − x∗−i − νi ≥ 0, i = 1, 2.

Proof. The result is immediately derived from lemmas 11 and 12.

We can then prove the extension of Proposition 2 to the three-stage game.

Proposition 5 An equilibrium of the capacity game, if it exists, is the open-loop equi-

librium.

Proof. Assume an equilibrium of the three-stage game exists. By Proposition 4,

one has α − 2xi − x−i − νi ≥ 0, i = 1, 2. α − 2xi − x−i − νi is also the marginal

operating profit accruing to player i from its operation on the forward and spot market

(both players select yi such that zi = xi). The optimality of player i’s action in the

capacity game implies that the marginal operating profit is equal to ki. We therefore

need α−2xi−x−i−νi−ki = 0, i = 1, 2. These are the conditions for the open-loop
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equilibrium. We thus conclude that if an equilibrium of the three-stage game exists,

it is the open-loop equilibrium.

This means that the capacity game sets capacities at the same level as in the open-

loop game. Thus, the futures market cannot be used to expand production in the spot

market. Through the capacity game, the players see the destructive competition that

results from the futures game and they block this possibility when setting capacity

levels.

6.3 Existence of the closed-loop equilibrium

In the game without a futures market, existence is not guaranteed and depends on the

values of the parameters. We now develop the corresponding results for the three-

stage game. We take the open-loop capacities at equilibrium

x∗i =
1
3
[
α− 2(νi + ki) + (ν−i + k−i)

]
i = 1, 2

and show when they are the capacity equilibrium of the three-stage game. We first

note that player i never gains if it reduces its capacity with respect to x∗i , given x−i

remaining at x∗−i. The only way the open-loop equilibrium may fail to be a first-

stage equilibrium of the three-stage game is if one player can benefit from increasing

its investment with respect to x∗i , x−i unchanged at x∗−i. In order to explore this

possibility, we increase xi. Let xi = x∗i + εi while keeping x−i = x∗−i.

Consider first the range of values of xi that keep α−2xi−x∗−i−νi > 0, i = 1, 2.

We know that the equilibrium of the forward market is to select yi, i = 1, 2 so that

zi = xi, i = 1, 2. Because of the optimality properties of the open-loop equilibrium,

we can conclude that player i has no interest in increasing or decreasing xi as long as

one remains in the region α− 2xi − x−i − νi > 0, i = 1, 2.

In order to assess whether x∗i is really the optimal choice of player i, we need to

explore what happens when a player leaves the region α − 2xi − x−i − νi > 0 for

either i = 1, 2. Consider the two possible cases
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(i) xi = x∗i + εi with α− 2xi − x∗−i − νi = 0 and α− xi − 2x∗−i − ν−i > 0

(ii) xi = x∗i + εi with α− xi − 2x∗−i − ν−i = 0 and α− 2xi − x∗−i − νi > 0

Case (i) is handled by the following lemma.

Lemma 13 Suppose ki < 2k−i, then xi = x∗i is the best reaction of player i to

x−i = x∗−i.

Proof. Set xi = x∗i + εi. Simple replacement in α − 2xi − x∗−i − νi = 0 and

α − xi − 2x∗i − ν−i > 0 shows that case (i) holds if and only if 2k−i > ki. I f so

α− 2xi − x∗−i − νi = 0 for εi = ki
2 .

We know from the above that it is never optimal for i to select xi ≤ x∗i + ki
2

strictly larger than x∗i . Consider now xi > x∗i + ki
2 such that α− 2xi− x∗−i− νi < 0

and α−xi− 2x∗−i− ν−i > 0. From Lemma 10 we know that the associated forward

and spot equilibrium satisfies yi = 0, zi < xi. This cannot be an optimal position for

i since it can always be improved by slightly decreasing xi.

Consider now xi ≥ x∗i + k−i such that α − 2xi − x∗−i − νi < 0 and α − xi −
2x∗−i − ν−i ≤ 0. This is an optimal position for i if there exists a forward and spot

equilibrium that gives a higher profit than the single-stage equilibrium. Assume such

an equilibrium. It cannot satisfy zi = xi, i = 1, 2 because this would give a negative

marginal revenue to player i even before incurring investment costs. It cannot satisfy

zi < xi, z−i = x−i because i could improve its position by decreasing xi. It must

thus satisfy zi = xi and z−i < x−i. Redoing the reasoning of case (ii) in Lemma 8,

this implies y−i = 0 and z−i = α−xi−ν−i
2 . Replacing in α − 2xi − z−i − νi the

marginal revenue of i is

1
2
[
α− 3xi − (2νi − ν−i)

]
which is equal to

1
2
[
− (α− xi − 2x∗−i − ν−i) + 2(α− 2xi − x∗−i − νi)

]
.
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By definition, this expression is negative at xi = x∗i + k−i. It can only decrease

when xi increases. The marginal revenue of player i is thus negative before incurring

investment costs and this cannot be an optimal position.

Case (ii) is treated in Lemma 14.

Lemma 14 Let ki > 2k−i and(
3√
2
− 2

) [
α+ ν−i − 2(ki + νi)

]
− 2k−i ≤ 0. (26)

Then xi = x∗i is the best reaction of player i to x−i = x∗−i.

Proof. Following the reasoning of Lemma 12, we can easily verify that case (ii)

occurs if and only if ki > 2k−i. We know that selecting xi such that x∗i < xi ≤
x∗i + k−i would imply zi = xi, z−i = x∗−i which cannot be an optimal payoff of

player i in that range of xi.

Consider now xi > x∗i + k−i such that α − 2xi − x∗−i − νi > 0 and α − xi −
2x∗i − ν−i < 0. From Lemma 10 we know that the associated forward and spot

equilibrium satisfies y−i = 0, z−i < x−i and that yi is selected such that zi = xi.

These conditions are analyzed in the preliminaries to Lemma 3 where we considered

conditions that guarantee that (18) is indeed the current expression of Πi(
˜̃̃
xi, x

∗
−i).

Because the equilibrium of the forward market guarantees that zi = xi for xi ≥ ˜̃xi =

x∗i + k−i, we conclude by reproducing the reasoning of Lemma 3 that the condition

1
4
[α+ ν−i − 2(ki + νi)] > 2k−i

implies that

Πi(
˜̃̃
xi, x

∗
−i) =

1
8
[(α+ ν−i)− 2(νi + ki)]2.

As in Lemma 4 that (26) in the assumptions guarantee that player i cannot improve its

position with respect to the open loop profit by moving into a range where z−i < x−i.

Consider now zi ≥ x∗i + ki
2 > x∗i + k−i. We then have α− 2xi − x∗−i − νi < 0

and α−xi−2x∗−i−ν−i < 0. These conditions have been encountered in Lemma 13

where they do not lead to an optimal position for player i.
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Lemma 14 points to an interesting differentiation between the two and three stage

games. In the game without a futures market, when setting capacity, player i satisfies

α− 2xi − z−i − νi ≥ 0

as long as xi ≤ xmi . This condition guarantees that zi = xi in the spot market.

With a futures market the condition for zi = xi in the spot market becomes

α− 2xi − z−i − νi + yi ≥ 0. (27)

Lemma 10 guarantees that the equilibrium of the forward market when α − 2xi −
x−i − νi > 0 and α − xi − 2x−i − ν−i < 0 is achieved for yi large enough and

y−i = 0 and that (27) indeed holds. Thus the spot market equilibrium condition does

not put an added condition on the existence or non existence of an equilibrium as it

did in the game without a futures market.

We can conclude with the following theorem:

Theorem 4 A closed-loop equilibrium of the three-stage game exists if one of the

following conditions holds

(i) ki < 2k−i, i = 1, 2

(ii) For ki > 2k−i for some i, if (26) holds, then the open-loop equilibrium is also

the closed-loop equilibrium of the three-stage game.

The solution does not exist when the inequality (26) is reversed.

The proof derives from applying Lemmas 13 through 14 to both players.

From this we can see that adding a futures game did not change the equilibrium

with respect to the two-stage game. However, the game with a futures market has

no equilibrium for a larger set of parameter values than the game without a futures

market because the condition on the spot-market equilibrium is no longer needed.
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6.4 Illustration

In testing for the existence of an equilibrium for a given set of parameters, the solution

has to be checked for conditions z1 = x1, z2 < x2, and
˜̃̃
x1 > x∗1 + k2. So that

k1 > 2k1, we modify the capital costs by adding 1 to k1 in both cases.

Condition Low-elasticity case High-elasticity case˜̃̃
x1 1499 500

λ1 (no futures) -598.5 201.5

Condition (26) 214.0 -328.9˜̃̃
x1 − x∗1 − k2 > 0 400 133.7

Table 1: Evaluation of conditions for the existence of an equilibrium

From this table we see that in the high-elasticity case
˜̃̃
x1 is not high enough forz2 <

x2. Thus, the equilibrium exists with and without a futures market. With the low-

elasticity case, λ1 < 0 and the equilibrium does not exist when there is no futures

market. However, the equilibrium does exist when there is a futures market. Thus,

for a reasonable parameter set, adding a futures market can lead to disequilibrium in

the market.

In the low-elasticity case, by setting the capacity and operating costs for player

1 to 555 and 100 respectively and 75 and 200 for player 2, the equilibrium does not

exist in the case without a futures market.

7 Conclusion

By adding a capacity game we provide the players with the foresight to avoid the

prisoners’ dilemma game of Allaz and Vila. Thus, we can see that the futures mar-

ket may not be the panacea for eliminating oligopolistic profits in the long run. The

implications are that market monitoring in electricity markets needs to be vigilant de-

spite the creation of futures markets. In addition to not increasing compeptitiveness,
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a futures market can result in no equilibrium for a larger set of parameter values than

without a futures market.

In this paper, we do not have a load duration curve, which is necessary to rep-

resent one of the critical features of electricity markets. Adding a load curve also

represents the situation of deterministic costs and uncertain demand. Clearly, in the

time periods where capacity is not binding, a futures market can increase production

as described by Allaz and Vila and the solution is different from the open-loop game.

This and other differences will be explored in future work.
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