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Abstract

Likelihoods and posteriors of instrumental variable regression models with strong endo-
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space. This may seriously affect inference based on Bayesian credible sets. When approx-
imating such contours using Monte Carlo integration methods like importance sampling or
Markov chain Monte Carlo procedures the speed of the algorithm and the quality of the
results greatly depend on the choice of the importance or candidate density. Such a density
has to be ‘close’ to the target density in order to yield accurate results with numerically
efficient sampling. For this purpose we introduce neural networks which seem to be natural
importance or candidate densities, as they have a universal approximation property and are
easy to sample from. A key step in the proposed class of methods is the construction of a
neural network that approximates the target density accurately. The methods are tested on
a set of illustrative models. The results indicate the feasibility of the neural network approach.
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1 Introduction

There exist classes of statistical and econometric models where the conditional distributions of
parameters of interest have known analytical properties such that one may construct regular
Bayesian credible sets which are elliptically shaped. As a consequence, conditional Bayesian
inference may be performed in a standard way. However, the joint and marginal distributions
of the parameters have no known analytical properties nor elliptically shaped credible sets. So,
it is not trivial to perform inference on the joint distribution. This may have strong effects
on the measurement of uncertainty of forecasts and of certain policy measures. For instance, in
labor market models it is important to know whether a certain credible set of the policy effects of
training programs has a strongly asymmetric shape. In models of international financial markets,
used for hedging currency risk, knowledge of a strongly non-elliptical credible set is important
for the specification of an optimal hedging decision under risk. For details on such models we
refer to e.g. Angrist and Imbens (1994) and Bos, Mahieu and Van Dijk (2000) and the references
cited there.

A second issue is that one may have great difficulties trying to simulate random drawings
from such a class of non-elliptical joint distributions. This feature is useful for inference on
such nonlinear functions of parameters of interest as impulse responses, see Strachan and Van
Dijk (2004). Even if it is relatively easy to simulate (pseudo-) random drawings from the con-
ditional distributions, multi-modality and/or high correlations may cause the Gibbs sampler to
be extremely inefficient or even yield erroneous results.

A canonical case is the example given by Gelman and Meng (1991), where the conditional
distributions are known to be normal and thus it is easy to perform conditional inference and it
is easy to simulate random drawings from the conditional distributions; however the joint density
is not known in terms of analytical properties. This class of conditionally normal distributions
contains bimodal joint distributions that are not trivial to sample from, as the Gibbs sampler
may seriously suffer from the fact that the two modes are far apart.

A first contribution of this paper is that we extend this analysis to the case of linear mod-
els with reduced rank. We focus on the class of instrumental variable (IV) regression models
with possibly endogenous regressors. Traditionally, these models are used as a special case of
structural equation systems. More recently, these models are applied to uncover local average
treatment effects, see Angrist, Imbens and Rubin (1996). Under certain weak priors the condi-
tional posterior distributions in the IV regression model are Student t, that is, at least if they are
proper. This class of models may exhibit reduced rank of the parameter matrix which may be
due to varying degrees of identification, endogeneity and quality of instruments.1 In the presence
of weak instruments the posterior may display highly non-elliptical contours.

When approximating such non-standard contours using Monte Carlo integration methods like
importance sampling or Markov chain Monte Carlo procedures2 the speed of the algorithm and
the quality of the results greatly depends on the choice of the importance or candidate density.
Such a density has to be ‘close’ to the target density in order to yield accurate results with

1We note that reduced rank occurs also in cointegration models where one determines the number of stable
economic relations; and in factor models where the number of common factors needs to be determined; or in errors
in variables models. A more detailed analysis is in progress and will be reported in a later paper.

2The theory of Markov chain Monte Carlo (MCMC) methods starts with Metropolis et al. (1953) and Hastings
(1970). An important technical paper on MCMC methods is due to Tierney (1994). Well-known econometric
studies are provided by Chib and Greenberg (1996) and Geweke (1999). Indirect independence sampling methods
such as importance sampling (IS) have also been successfully applied within Bayesian inference. Importance
sampling, see Hammersley and Handscomb (1964), has been introduced in Bayesian inference by Kloek and Van
Dijk (1978) and is further developed by Van Dijk and Kloek (1980,1984) and Geweke (1989).
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numerically efficient sampling.
A second contribution of this paper is that we introduce a class of neural network sampling

methods which allow for sampling from a target (posterior) distribution that may be multi-
modal or skew, or exhibit strong correlation among the parameters. That is, a class of methods
to sample from non-elliptical distributions.

Neural network sampling algorithms consist of two main steps, which are summarized as
follows. In the first step a neural network is constructed that approximates the target density
reasonably well. In the second step this neural network is embedded in a Metropolis-Hastings
(MH) or importance sampling (IS) algorithm.

With respect to the first step we emphasize that an important advantage of neural network
functions is their ‘universal approximation property’. That is, neural network functions can
provide approximations of any square integrable function to any desired accuracy, see Gallant
and White (1989). As an application of Kolmogorov’s general superposition theorem, the neural
network approximation property is further explored by Hecht-Nielsen (1987). Proofs concerning
neural network approximations for specific configurations can be found in Gallant and White
(1989), Hornik et al. (1989), and Leshno et al. (1993). Stinchcombe (1988,1989) shows that
it is the presence of intermediate layers with sufficiently many parallel processing elements that
is essential for feedforward networks to possess universal approximation capabilities, and that
sigmoid activation functions are not necessary for universal approximation. This approximation
property implies that the algorithm can handle certain non-elliptical target distributions, like
multi-modal, extremely skew, strongly correlated or fat-tailed distributions.

In the second step this neural network is used as an importance function in IS or as a
candidate density in MH. In a ‘standard’ case of Monte Carlo integration, the MH candidate
density function or the importance function is uni-modal. If the target (posterior) distribution
is multi-modal then a second mode may be completely missed in the MH approach and some
drawings may have huge weights in the IS approach. As a consequence the convergence behavior
of these Monte Carlo integration methods is rather uncertain. Thus, an important problem is the
choice of the candidate or importance density especially when little is known a priori about the
shape of the target density. Given a reasonably accurate approximation of the neural network
constructed in the first step, an important advantage is that neural networks are relatively easy
to sample from. This depends, of course, on the specification of the network.

The proposed methods are applied on a set of illustrative examples of conditionally normal
distributions and posterior distributions in an instrumental variable regression model. Our results
indicate that the neural network approach is feasible in cases where a ‘standard’ MH, IS or Gibbs
approach would fail or be rather slow.3

The outline of the paper is as follows. In section 2 we consider the shape of posterior densi-
ties in a simple IV regression model for simulated data; it is shown that the shapes of Bayesian
credible sets depend on the quality of instruments and the level of endogeneity. In section 3 we
discuss how to construct a neural network approximation to a density, how to sample from a
neural network density, and how to use these drawings within the IS or MH algorithm. Section
4 shows the feasibility of our approach in a simple example of a bivariate conditionally normal
distribution. Section 5 illustrates our algorithms in examples of IV regressions with simulated
data. Conclusions are given in section 6 and some derivations are given in the appendix.

3We are indebted to two anonymous referees who suggested to make use of more sophisticated Monte Carlo
methods like bridge sampling and to use other flexible approximating densities involving Hermite polynomials.
This is an area of further research as we indicate in our conclusions
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2 On the shape of posterior densities and Bayesian credible sets

in instrumental variable regression models with several de-

grees of identification, endogeneity and instrument quality

As we mentioned in the introduction, there exist several models in which the conditional posterior
distributions of parameters of interest have known properties but the joint does not. In this
section we consider a class of such models, instrumental variable (IV) regression models with
possibly endogenous regressors.

First, we give an example of a well-known IV regression. Consider the stylized wage regression
popular in empirical labor studies:

y1 = β y2 + γ x1 + u1, (1)

where y1 is the log of hourly wage, y2 denotes education and x1 captures work experience – all in
deviations from their mean values. The structural parameter of interest is β, the rate of return
to schooling. However, in order to make inference on β, one should take into account that y2

is possibly endogenous: y2 and u1 may be highly correlated owing to the omission of a variable
measuring (unobservable) ability, which is expected to be highly correlated with education. The
problem is that potential instruments for y2 are hard to find as these variables must be correlated
with education but uncorrelated with unobserved ability. Angrist and Krueger (1991) suggest
using quarter of birth as a dummy variable, as this seems uncorrelated with ability and affects
years of schooling weakly, through a combination of the age at which a person begins school
and the compulsory education laws in a person’s state. Staiger and Stock (1997) show that
inference on the rate of return to schooling can be greatly affected by the weak quarter of birth
instruments.

In the sequel of this section we consider the joint, conditional and marginal posterior distri-
butions of the parameters in a simple IV regression model with a weak prior. We show how the
shapes of the posterior distributions depend on the varying degrees of identification, endogeneity
and quality of instruments. In section 5 we use our neural network sampling methods to generate
random drawings from some of the joint densities that are shown in this section.

The model

We consider the following possibly overidentified Instrumental Variables (IV) model, which is also
known as the incomplete simultaneous equations model (INSEM). Following Zellner, Bauwens
and Van Dijk (1988), let:

y1 = y2β + ε (2)

y2 = Xπ + v (3)

where y1 is a (T × 1) vector of observations on the endogenous variable that is to be explained,
y2 is a (T × 1) vector of observations on the explanatory endogenous variable, X is a (T × k)
matrix of weakly exogenous variables; β is a scalar structural parameter of interest, π is a (k×1)
vector of reduced form parameters. We further assume that the rows of the matrix of error
terms U ≡ (ε v) are independently normally distributed with the (2 × 2) covariance matrix Σ
with elements σij (i, j = 1, 2). We note that (2)-(3) may be further interpreted as an errors in
variables model, see e.g. Zellner, Bauwens and Van Dijk (1988).
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In the derivations we use the following notation: the symbols ε, v and U denote ε = y1 − y2β,
v = y2 −Xπ and U = (ε v) = (y1 − y2β y2 −Xπ), i.e. functions of the parameters β and π (and
the data y1, y2, X) instead of the real error terms. The matrix MA denotes the T ×T projection
matrix MA ≡ I − A(A′A)−1A′.

The joint posterior of (β, π)

A kernel of the likelihood function is given by:

L(β, π, Σ|y1, y2, X) ∝ |Σ|−T/2 exp

[

−1

2
tr(Σ−1U ′U)

]

. (4)

We specify the following non-informative prior density:

p(β, π, Σ) ∝ |Σ|−h/2 with h > 0. (5)

From the likelihood (4) and the prior (5) we obtain the joint posterior density of the parameters
(β, π, Σ):

p(β, π, Σ|y1, y2, X) ∝ |Σ|−(T+h)/2 exp

[

−1

2
tr(Σ−1U ′U)

]

. (6)

Using properties of the inverted Wishart distribution (see Zellner (1971) and Bauwens and Van
Dijk (1990)), Σ is integrated out of the joint posterior in (6), resulting in the joint posterior for
(β,π):

p(β, π|y1, y2, X) ∝ |U ′U |−(T+h−3)/2. (7)

Choosing h = 3 in the prior density kernel (5) leads to the following joint posterior of (β, π):

p(β, π|y1, y2, X) ∝ |U ′U |−T/2 = |(ε v)′(ε v)|−T/2 (8)

=

∣

∣

∣

∣

(y1 − y2β)′(y1 − y2β) (y1 − y2β)′(y2 − Xπ)
(y2 − Xπ)′(y1 − y2β) (y2 − Xπ)′(y2 − Xπ)

∣

∣

∣

∣

−T/2

(9)

Although this function may seem to be a regular one, there is an asymptote at π = 0. For π = 0
the posterior density kernel in (9) reduces to the constant ((y′

1y1)(y
′
2y2) − (y′1y2)

2)−T/2, so that
for π = 0 the conditional posterior density of β is improper.

Although improper on R
k+1, the posterior in (9) can be made proper by restricting β and/or

π to a certain area. In that case it depends greatly on the data y1, y2 and X, whether the
asymptote at π = 0 still dominates the analysis.

For illustrative purposes, the posterior kernel in (9) is calculated for simulated data sets from
(2) - (3) with k = 1, T = 100, β = 0, σ11 = σ22 = 1 for nine cases. Three different cases of
identification (or quality of instruments) are considered: non identification/irrelevant instruments
(π = 0); weak identification/weak instruments (π = 0.1); strong identification/good instruments
(π = 1). These cases are combined with three cases of endogeneity, i.e. three different values of the
correlation ρ ≡ σ12/

√
σ11σ22 between the error terms ε and v: strong (ρ = 0.99), medium (ρ =

0.5) and no (ρ = 0) degree of endogeneity. For the non-identified case with strong endogeneity
the simulated data are shown in Figure 1. In this case with k = 1 we have a (T × 1) vector of
instruments which we denote by x. Notice the high correlation between y1 and y2 and that y2

and x look like uncorrelated white noise series.
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Figure 1: Scatter plots of simulated data in the case of no identification (π = 0) and strong
endogeneity (ρ = 0.99)

Figure 2 shows contour plots of the joint posterior kernel of β and π in (9) for our nine
simulated data sets. The posterior kernels are normalized over the displayed range. The contour
plots reveal that there are three typical shapes of the graph of the joint posterior of β and π:
bell-shape, multimodality and elongated ridges.

Note that in the three cases of simulated data sets with strong instruments (π = 1), the
contour plots do not show a ridge at π = 0. The reason is that the value of the joint posterior
kernel for π = 0 is relatively very small as compared to the value of the joint posterior kernel at
its mode (β̃, π̃) with β̃ = y′1x/y′2x, π̃ = y′2x/x′x.4 If we consider the contour plot of the posterior
kernel raised to the power 1/20, so that the contour plot also shows the contours for much lower
values of the posterior kernel, we observe also in this case of strong identification the presence
of multimodality or an elongated ridge around the line π = 0; see Figure 3. So, even in the
presence of good instruments and no/medium endogeneity the contours are, strictly speaking,
not elliptical. However, if one restricts the region of integration to a certain bounded area the
influence of these tiny ridges on inference is negligible; then one may for practical purposes
consider the joint posterior distribution of β and π as elliptical.

4The ratio between the posterior kernel in (9) at its mode and its value for π = 0 is:

[

1 −

r2
y2,x + r2

y1,x − 2ry1,xry2,xry1,y2

1 − r2
y1,y2

]−T/2

where ry2,x ≡ y′

2x/
√

y′

2y2 x′x, etc. In our simulation example with β = 0 we have ry1,x ≈ 0, so that the ratio is
determined by r2

y2,x (quality of instrument) and r2
y1,y2

(level of endogeneity). The stronger the instruments and
the stronger the endogeneity, the smaller the ratio and the (relatively) lower is the ridge at π = 0. Note that a
relatively low ridge at π = 0 does not immediately imply elliptical contours, see e.g the multimodal posterior in
the case of a simulated data set with weak instruments (π = 0.1) and strong endogeneity (ρ = 0.99) in Figure 2.
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Figure 2: Contour plots in the π × β plane: joint posterior kernel of π and β in (9) in IV model
for nine simulated data sets; three cases of identification (π = 0, 0.1, 1 corresponding to no,
weak, strong identification) are combined with three levels of endogeneity (ρ = 0.99, 0.5, 0
corresponding to strong, medium, no endogeneity)
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Figure 3: Contour plots in the π × β plane: joint posterior kernel of β and π in (9) raised to the
power 1/20 in IV model for three simulated data sets; the case of strong identification (π = 1)
combined with three levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to strong, medium,
no endogeneity)

2.1 Weak and strong structural inference: The conditional and marginal pos-

terior of β

In appendix A the conditional posterior density of β given π and the marginal posterior density
of β are derived. We summarize the results in two propositions:

Proposition 1: In the IV regression model (2)-(3) with prior (5) the conditional posterior
density of β given π (with π 6= 0) is a Student t density with mode β̂ ≡ (y′2Mvy2)

−1(y′2Mvy1),
scale s2

β̂
(y′2Mvy2)

−1 and (T − 1) degrees of freedom:

p(β|π, y1, y2, X) =
c

√

s2
β̂
(y′2Mvy2)−1

[

1 +
1

T − 1

(β − β̂)2

s2
β̂
(y′2Mvy2)−1

]−T/2

(10)

where (T −1)s2
β̂
≡ (y1−y2β̂)′Mv(y1−y2β̂) and c is a constant that only depends on T . Moments

are finite up to the order T − 1. For π → 0 the conditional posterior variance of β tends to ∞ as
in this case y′2Mvy2 → 0 (if π = 0 then v ≡ y2 − xπ = y2). For π = 0 the conditional posterior
density of β does not exist or, in other words, is an improper uniform distribution on (−∞,∞).
For π 6= 0 HPD regions are elliptical.

Proposition 2 (Drèze (1976, 1977)): In the IV regression model (2)-(3) with prior (5) the
marginal posterior density of β is proportional to the ratio of two Student t kernels:

p(β|y1, y2, X) ∝ [(y1 − y2β)′(y1 − y2β)]−(T−1)/2

[(y1 − y2β)′MX(y1 − y2β)]−(T−k−1)/2
. (11)

This density is known as the 1-1 ratio or poly t density. Structural inference on β depends on
the level of identification. Moments exist up to the order of overidentification (k − 1).
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Corollary 2: (i) Given a few weak instruments the marginal posterior of β with kernel specified
by (11) may be bimodal;
(ii) Given strong instruments the marginal posterior of β has a bell-shaped graph;
(iii) Many possibly irrelevant instruments give a bell-shaped marginal posterior of β.

So, the marginal posterior density of β tends to a bell shaped function as long as the number
of instruments k becomes large enough. This seems to be a paradoxical result: the presence of
many (possibly irrelevant) instruments gives a bell-shaped function. In other words, even if the
quality of the instruments is poor, a large quantity still yields a bell-shaped marginal posterior
of β. This result appeared in an informal way in Maddala (1976), commenting on Drèze (1976).

Figure 4 shows the marginal posterior of β in (11) for our nine simulated data sets. The
posterior kernels are normalized over the displayed range. Notice the bimodality in the case of
the weak instrument and strong endogeneity. Also note the bell-shape in the cases with a strong
instrument.

Figure 5 shows the marginal posterior kernel of β in (11) for the simulated data set cor-
responding to the case of weak identification and strong endogeneity if independent series of
standard Gaussian noise are added to the set of instruments. Clearly the graph of the marginal
posterior kernel tends to a bell-shape if many irrelevant instruments are added to the model.

2.2 Impossible restricted reduced form inference: The conditional and marginal

posterior of π

In appendix A the conditional posterior density of π given β and the marginal posterior density
kernel of π are derived. We summarize the results in two propositions:

Proposition 3: In the IV regression model (2)-(3) with prior (5) the conditional posterior den-
sity of π given β is a Student t density with mode π̂ ≡ (X ′MεX)−1(X ′Mεy2), scale s2

π̂(X ′MεX)−1

and (T − k) degrees of freedom:

p(π|β, y1, y2, X) = c2 |s2
π̂(X ′MεX)−1|−1/2 ×

×
[

1 +
1

T − k
(π − π̂)′(s2

π̂(X ′MεX)−1)−1(π − π̂)

]−T/2

(12)

where (T − k)s2
π̂ ≡ (y2 − Xπ̂)′Mε(y2 − Xπ̂) and c2 is a scaling constant that only depends on T

and k. For all values of β this density exists. Moments are finite up to the order T − k. HPD
regions are elliptical.

Proposition 4 (Kleibergen and Van Dijk (1994, 1998)): In the IV regression model
(2)-(3) with prior (5) the marginal posterior density of π is proportional to the ratio of a product
of two Student t kernels in the numerator and one Student t kernel in the denominator:

p(π|y1, y2, X) ∝
[(y2 − Xπ)′(y2 − Xπ)]−(T−1)/2 (π′X ′M[y1 y2] Xπ)−(T−1)/2

(π′X ′My2Xπ)−(T−2)/2
(13)

= [(y2 − Xπ)′(y2 − Xπ)]−(T−1)/2 ×

×(π′X ′My2Xπ)−1/2

(

π′X ′My2Xπ

π′X ′M[y1 y2] Xπ

)(T−1)/2

(14)
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Figure 4: Marginal posterior kernel of β in (11) in IV model for nine simulated data sets;
three cases of identification (π = 0, 0.1, 1 corresponding to no, weak, strong identification) are
combined with three levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to strong, medium,
no endogeneity)
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Figure 5: Marginal posterior kernel of β in (11) in IV model for simulated data with weak
identification (π = 0.1) and strong endogeneity (ρ = 0.99) after adding 1, 2, 15 or 75 irrelevant
(i.i.d. N(0,1)) instruments, respectively

This density is known as the 2-1 poly t density. Reduced form inference on π is not possible, as
this is not a proper density. When π tends to zero then an asymptote occurs (because of the term
(π′X ′My2Xπ)−1/2).

Notice that the result that the marginal posterior of π is not a proper density does not depend
on the quality or quantity of the instruments nor on the endogeneity in the data. So, forecasting
is not possible when using the restricted reduced form, unless the region of integration of π is
truncated, the effect of which is not known a priori. However, it may occur that the data are
such that the asymptote will not be noticed in the computations; this may happen if the mode of
the joint posterior of (β, π) occurs far away from π = 0. Figure 6 shows the marginal posterior of
π in (14). Notice that each plot reveals an asymptote at π = 0; however, for the cases of strong
identification the spike near π = 0 is very narrow and relatively far away from the bell-shaped
part of the graph.

Only if the restriction that y2 is not an endogenous regressor is imposed on the model be-
forehand, i.e. ρ ≡ σ12/

√
σ11σ22 = 0, we obtain a proper marginal density of π. Specifying the

non-informative prior density p(β, π, σ11, σ22) ∝ σ
−1/2
11 σ

−1/2
22 , and integrating out σ11 and σ22 us-

ing properties of the inverted Gamma distribution (see Zellner (1971)) yields the joint posterior
of β and π:

p(β, π|y1, y2, X) ∝ [(y1 − y2β)′(y1 − y2β)]−T/2[(y2 − Xπ)′(y2 − Xπ)]−T/2 (15)

The posterior distributions of β and π are independent Student t with T − 1 and T − k degrees
of freedom, respectively.

We summarize the results on the joint, conditional and marginal distributions in two tables.
Table 1 gives an overview of the possible shapes of the joint posterior kernel of β and π in a
simple IV regression model with k = 1 instrument for different cases of simulated data.5 Table
2 gives an overview of the classes of conditional and marginal densities in IV regression models.

5We have repeated the experiment with a different seed of the random number generator. In four of the nine
cases bimodality only showed up in the contour plot in one of the two simulations; this is denoted with ‘possibly
bimodality’.
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Figure 6: Marginal posterior kernel of π in (13) in IV model for nine simulated data sets;
three cases of identification (π = 0, 0.1, 1 corresponding to no, weak, strong identification) are
combined with three levels of endogeneity (ρ = 0.99, 0.5, 0 corresponding to strong, medium,
no endogeneity). Note that each figure reveals an asymptote at π = 0.
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Table 1: Shape of the posterior density kernel of β and π in the IV regression model (2)-(3) with
one instrument with weak prior (5) for nine situations

Degree of endogeneity
strong medium no

Level of no ridges and ridges and ridges
identifi- possibly bimodality possibly bimodality
cation/ weak ridges and ridges and ridges and
Quality bimodality possibly bimodality possibly bimodality
of instru- strong nearly elliptical elliptical
ments elliptical

Table 2: Classes of posterior densities in IV models with weak prior (5)

Conditional density Marginal density
Student t, 1-1 poly t (Drèze (1976)),

β improper i.e. ratio of two Student t kernels:
for π = 0 improper for small k

2-1 poly t (Kleibergen and
Student t, Van Dijk (1994,1998)), i.e. ratio of product

π proper of two Student t kernels in numerator and
for all β one Student t kernel in denominator:

improper

3 Approximating with and sampling from neural networks

Consider a certain distribution, for example a posterior distribution, with density kernel p(θ)
with θ ∈ R

n. In the case of the IV regression model in the previous section we considered
θ = (β, π′)′. Suppose the aim is to investigate some of the characteristics of p(θ), for example
the mean and/or covariance matrix of a random vector θ ∼ p(θ). The approach followed in this
paper consists of the following steps:

1. Find a neural network approximation nn : R
n → R to the target density kernel p(θ).

2. Obtain a sample of random points from the density (kernel) nn(θ).

3. Perform importance sampling or the (independence chain) Metropolis-Hastings algorithm
using this sample in order to obtain estimates of the characteristics of p(θ).

Consider a 4-layer feed-forward neural network with functional form:

nn(θ) = eG2 (CG1(Aθ + b) + d) + f, θ ∈ R
n, (16)

where A is H1×n, b is H1×1, C is H2×H1, d is H2×1, e is 1×H2 and f ∈ R. The integers H1

and H2 are interpreted as the numbers of cells in the first and second hidden layer of the neural
network, respectively. The vector functions G1 : R

H1 → R
H1 and G2 : R

H2 → R
H2 are defined

12



by

G1(v) = (g1(v1), · · · , g1(vH1))
′ and G2(z) = (g2(z1), · · · , g2(zH2))

′, v ∈ R
H1 , z ∈ R

H2

(17)
where g1 : R → R and g2 : R → R are the activation functions.

A neural network is used because of its well-known universal approximation property, see
e.g. Gallant and White (1989) and Hornik et al. (1989). Stinchcombe (1988) poses a sufficient
condition for universal approximation capabilities for hidden layer activation functions other
than sigmoid; for example, this condition is satisfied by continuous probability densities. In the
following sections, three specifications of (16) will be used:

Type 1 neural network: A standard three-layer feed-forward neural network (in the notation
of (16): H2 = 1, e = 1, f = 0 and g2 is the identity g2(x) = x, x ∈ R). As activation function g1

in (17), we take the scaled arctangent function:

g1(x) =
1

π
arctan(x) +

1

2
, x ∈ R. (18)

The reason for choosing the arctangent function is that it can be analytically integrated infinitely
many times; the scaling is merely done because it is common practice to use activation functions
that take values in the unit interval. We show in subsection 3.2.1, that this property makes the
neural network, in the role of a density kernel, easy to sample from.

Type 2 neural network: A simplified four-layer network of which the second hidden layer
consists of only one cell (H2 = 1, e = 1, f = 0) and with g2 the exponential function:

g2(x) = exp(x), x ∈ R. (19)

In this case, the activation g1 in (17) is taken to be a piecewise-linear function plin, defined as:

plin(x) =







0 x < −1/2
x + 1/2 −1/2 ≤ x ≤ 1/2

1 x > 1/2
, x ∈ R. (20)

With these activation functions, the neural network function can be analytically integrated
(once). We show in subsection 3.2.2, that this property makes Gibbs sampling, see Geman
and Geman (1984), possible. To allow for easy sampling it is sufficient to specify a function g2

which is positive valued and has an analytical expression for its primitive that is analytically
invertible; see subsection 3.2.2. Another example of such a function is the logistic function.

Type 3 neural network: A mixture of Student t distributions:

nn(θ) =
H
∑

h=1

ph t(θ|µh, Σh, ν), (21)

where ph (h = 1, . . . , H) are the probabilities of the Student t components and where t(θ|µh, Σh, ν)
is a multivariate t density with mode vector µh, scaling matrix Σh, and ν degrees of freedom:

t(θ|µh, Σh, ν) =
Γ((ν + n)/2)

Γ(ν/2)(πν)n/2
|Σh|−1/2

(

1 +
(θ − µh)′Σ−1

h (θ − µh)

ν

)−(ν+n)/2

. (22)
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Table 3: Motivation of the particular neural network specifications

specification special properties consequences of special
of nn(θ) of nn(θ) properties of nn(θ)

Type 1 - Activation g1 is analytically integrable ⇒ - Direct sampling from
(3-layer) infinitely many times. nn(θ) is possible.

- Activation g1 is piecewise-linear.
- Gibbs sampling

- Activation g2 is positive valued and ⇒ from nn(θ) is
Type 2 analytically integrable, and its primitive possible.
(4-layer) is analytically invertible.

- Activation g2 is the ⇒ - Auxiliary variable Gibbs
exponential function. sampling from nn(θ) is possible.

Type 3 - nn(θ) is a mixture of ⇒ - Direct sampling from
(4-layer) multivariate t densities. nn(θ) is possible.

Note that this mixture of t densities is a four-layer feed-forward neural network (with parameter
restrictions) in which we have, in the notation of (16), H2 = H (the number of t densities),
H1 = Hn, activation functions

g1(x) = x2 and g2(x) = x−(ν+n) Γ((ν + n)/2)

Γ(ν/2)(πν)n/2
, x ∈ R,

and weights eh = ph |Σh|−1/2 (h = 1, . . . , H), f = 0 and:

A =







Σ
−1/2
1
...

Σ
−1/2
H






, b =







−Σ
−1/2
1 µ1
...

−Σ
−1/2
H µH






, C =













ι′n/ν 0 · · · 0

0 ι′n/ν
...

...
. . . 0

0 · · · 0 ι′n/ν













, d = ιH ,

where ιk denotes a k × 1 vector of ones. Notice that (θ − µh)′Σ−1
h (θ − µh) is the sum of the

squared elements of Σ
−1/2
h (θ − µh).

The reason for this choice is that a mixture of t distributions is easy to sample from, and
that the Student t distribution has fatter tails than the normal distribution.

Table 3 gives an overview of the reasons for which we have chosen these particular specifica-
tions. The implications shown in this table will be clarified in the sequel of this paper. Through-
out this paper we use the term ‘neural network’ to denote the classes of functions described
above; it should be mentioned here that in part of the literature, see e.g. Hastie, Tibshirani
and Friedman (2001), such methods are also denoted by ‘adaptive basis function methods’ or
‘dictionary methods’, in which a search mechanism is used in order to construct a linear combi-
nation of (nonlinear) basis functions that are chosen from a (possibly infinite) set or ‘dictionary’
of candidate basis functions.

In the next subsections we discuss the three steps of our approach: construction of a neural
network, sampling from it, and using the sample in IS or MH.
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3.1 Constructing a neural network approximation to a density

First, we discuss a procedure to obtain a Type 1 or Type 2 neural network approximation.
Second, we describe a method to construct a Type 3 neural network.

3.1.1 Constructing a Type 1 (3-layer) or Type 2 (4-layer) neural network approx-
imation

We suggest the following procedure to obtain a Type 1 or Type 2 neural network approximation
to a certain target density kernel p(θ). First we draw a set of random uniform points θi (i =
1, . . . , N) in the bounded region to which we restrict the random variable θ ∈ R

n to take its values.
Then we approximate the target density kernel p(θ) with a neural network by minimizing the
sum of squared residuals:

SSR(A, b, c, d) =
N
∑

i=1

(

p(θi) − nn
(

θi
∣

∣A, b, c, d
))2

, (23)

where we use the notation c instead of C, as in our Type 1 and 2 networks this is a (1 × H1)
vector. We choose the smallest neural network, i.e. the one with the least hidden cells, that still
gives a ‘good’ approximation to the target distribution. One could define a ‘good’ approximation
as one with a high enough squared correlation R2 between p and nn at the points θi (i = 1, . . . , N).

After that, we check the squared correlation R2 between the neural network and the target
density kernel for a (much) larger set of points than the ‘estimation set’. If this R2 is also high
enough, then we say that the approximation is accurate and the estimation set is large enough.
In that case the network does not only provide a good approximation to the target density in the
points θi (i = 1, . . . , N) but also in between. Otherwise, we increase the number of points N and
start all over again. For example, we make the set twice as large. This process continues until the
set is large enough to allow the neural network to ‘feel’ the shape of the target density accurately.

In the case of our Type 1 (three-layer) neural network, we also have to deal with the problem
that the neural network function is not automatically non-negative for each θ. In order to try to
prevent this we add a penalty term to (23). It should be mentioned that, since a neural network
can have a surface that looks like a bed of nails, one should be very careful when checking the
non-negativity. For example, one can look for the (global) minimum of nn(θ) by running a
minimization procedure starting with several initial values. Notice that if the minimum of nn(θ)
is a small negative value, one can subtract this negative value from the network’s constant d, so
that nn(θ) becomes non-negative for each θ.

In our Type 2 (simplified four-layer) neural network the exponential function, or any positive
valued function g2, implies that non-negativity is automatically taken care of.

3.1.2 Constructing a Type 3 (mixture of t) neural network approximation

We suggest the following procedure to obtain a Type 3 neural network approximation – an adap-
tive mixture of t densities (AdMit) – to a certain target density kernel p(θ).

First we compute the mode µ1 and scale Σ1 of the first Student t distribution in our mixture
as the mode of the target distribution µ1 = argmax p(θ) and Σ1 as the negative inverse Hessian
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of log p(θ) evaluated at its mode µ1. Then we draw a set of points θi (i = 1, . . . , N) from the
‘first stage neural network’ nn(θ) = t(θ|µ1, Σ1, ν), with small ν to allow for fat tails.6 After that
we iteratively add components to the mixture by performing the following steps:

Step 1: Compute the importance sampling weights w(θi) and scaled weights w̃(θi):

w(θi) =
p(θi)

nn(θi)
and w̃(θi) =

w(θi)
∑N

i=1 w(θi)
(i = 1, . . . , N).

In order to determine the number of components H of the mixture we make use of a simple
diagnostic criterium: the coefficient of variation, the standard deviation divided by the
mean, of the IS weights w(θi) (i = 1, . . . , N). If the relative decrease in the coefficient of
variation of the importance sampling weights caused by adding one new Student-t compo-
nent to the candidate mixture is small, e.g. less than 10%, then we stop: the current nn(θ)
is our Type 3 neural network approximation.7 Otherwise, go to step 2.

Step 2: Add another t distribution with density t(θ|µh, Σh, ν) to the mixture with µh = argmax w(θ) =
argmax{p(θ)/nn(θ)} and Σh the negative inverse Hessian of log w(θ) = log p(θ)− log nn(θ)
evaluated at its mode µh. Here nn(θ) denotes the latest mixture of (h− 1) Student-t den-
sities obtained in the previous iteration of the procedure. An obvious initial value for the
maximization procedure for computing µh = argmax w(θ) is the point θi with the highest
weight w(θi) in the sample {θi|i = 1, . . . , N}. The idea behind this choice of µh and Σh

is that the new t component should cover a region where the weights w(θ) are relatively
large: the point where the weight function w(θ) attains its maximum is an obvious choice
for the mode µh, while the scale Σh, the negative inverse Hessian of log w(θ) evaluated at
its mode µh, is the covariance matrix of the local normal approximation to the distribution
with density kernel w(θ) around the point µh.

If the region of integration of the parameters θ is bounded, it may occur that w(θ) attains
its maximum at the boundary of the integration region; in this case the negative inverse
Hessian of log w(θ) evaluated at its mode µh may be a very poor scale matrix; in fact this
matrix may not even be positive definite. In that case µh and Σh are obtained as estimates
of the mean and covariance matrix of a certain ‘residual distribution’ with density kernel:

res(θ) = max{p(θ) − c nn(θ), 0}, (24)

where c is a constant; we take max{., 0} to make it a (non-negative) density kernel. These
estimates of the mean and covariance matrix of the ‘residual distribution’ are easily obtained
by importance sampling with the current nn(θ) as the candidate density, using the sample
θi (i = 1, . . . , N) from nn(θ) that we already have. The weights wres(θ

i) and scaled weights

6Throughout this paper we use Student t distributions with ν = 1. There are two reasons for this. First,
it enables the methods to deal with fat-tailed target (posterior) distributions. Second, it makes it easier for the
iterative procedure by which the Type 3 neural network approximation is constructed to detect modes that are
far apart. One could also choose to optimize the degree of freedom of the Student t distributions and/or allow for
different degrees of freedom in different Student t distributions. This is a topic for further research.

7Notice that nn(θ) is a proper density, whereas p(θ) is merely a density kernel. So, the Type 3 neural network
does not provide an approximation to the target density kernel p(θ) in the sense that nn(θ) ≈ p(θ), but nn(θ)
provides an approximation to the density of which p(θ) is a kernel in the sense that the ratio nn(θ)/p(θ) has
relatively little variation.
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w̃res(θ
i) (i = 1, . . . , N) are:

wres(θ
i) =

res(θi)

nn(θi)
= max{w(θi) − c, 0} and w̃res(θ

i) =
wres(θ

i)
∑N

i=1 wres(θi)
, (25)

and µh and Σh are obtained as:

µh =
N
∑

i=1

w̃res(θ
i)θi Σh =

N
∑

i=1

w̃res(θ
i)(θi − µh)(θi − µh)′.

There are two issues relevant for the choice of c in (24) and (25). First, the new t density
should appear exactly at places where nn(θ) is too small (relative to p(θ)), i.e. the scale
should not be too large. Second, there should be enough points θi with w(θi) > c in order
to make Σh nonsingular. A procedure is to calculate Σh for c equal to 100 times the average
value of w(θi) (i = 1, . . . , N); if Σh is nonsingular, accept c; otherwise lower c.

Step 3: We now choose the probabilities ph (h = 1, . . . , H) in the mixture

nn(θ) =
H
∑

h=1

ph t(θ|µh, Σh, ν),

by minimizing the (squared) coefficient of variation of the importance sampling weights.
First we draw N points θi

h from each component t(θ|µh, Σh, ν) (h = 1, . . . , H). Then we
minimize E[w(θ)2]/E[w(θ)]2, where:

E[w(θ)k] =
1

N

N
∑

i=1

H
∑

h=1

ph w
(

θi
h

)k
(k = 1, 2)

with

w
(

θi
h

)

=
p(θi

h)
∑H

h=1 ph t
(

θi
h|µh, Σh, ν

) .

Step 4: Draw a sample of N points θi (i = 1, . . . , N) from our new mixture of t distributions:

nn(θ) =
H
∑

h=1

ph t(θ|µh, Σh, ν) (26)

and go to step 1; in order to draw a point from (26) we first use a drawing from the U(0, 1)
distribution to determine which component t(θ|µh, Σh, ν) is chosen, and then draw from
this multivariate t distribution.

It may occur that one is dissatisfied with diagnostics like the weight of the 5% most influential
points or the coefficient of variation of the IS weights corresponding to the final candidate density
resulting from the procedure above. In that case one may start all over again with a larger number
of points N . The idea behind this is that the larger N is, the easier it is for the method to ‘feel’
the shape of the target density kernel, and to specify the t distributions of the mixture adequately.

Note that an advantage of the Type 3 network, as compared to the Type 1 and 2 networks,
is that its construction does not beforehand require the specification of a certain bounded region
where the random variable θ ∈ R

n takes its values.
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3.2 Sampling from a neural network density

In the following subsections we discuss sampling from Type 1 and Type 2 networks. In the
previous subsection we already remarked that sampling from a Type 3 network, a mixture of t
densities, only requires a draw from the U(0, 1) distribution to determine which component is
chosen, and a draw from the chosen multivariate t distribution.

3.2.1 Sampling from a Type 1 (3-layer) neural network density

Suppose the joint density kernel of a certain θ ∈ R
n is given by a standard three-layer feed-forward

neural network function with an activation function that is analytically integrable infinitely many
times. Since the neural network function is a linear combination of these activation functions,
the neural network function itself is integrable infinitely many times.

Hence, the marginal and conditional distribution functions can be evaluated analytically, so
that sampling a random vector θ from the density kernel nn(θ) is easily done by drawing U(0, 1)
variables and numerically inverting the distribution function; it seems that taking a few steps
of the bisection method followed by the Newton-Raphson method works well in practice. In our
Type 1 network the activation function is given by the scaled arctangent function in (18), which
is analytically integrable infinitely many times. The integrals of the arctangent are given by the
following theorem.

Theorem 1: The n-th integral Jn(x) (n = 1, 2, . . .) of the arctangent function

Jn(x) ≡
∫

· · ·
∫

arctan(x)dx · · · dx x ∈ R

is given by
Jn(x) = pn(x) arctan(x) + qn(x) ln(1 + x2) + rn(x), x ∈ R, (27)

where pn and qn are polynomials of degree n and n − 1, respectively:

pn(x) = pn,0 + pn,1 x + · · · + pn,n−1 xn−1 + pn,n xn

qn(x) = qn,0 + qn,1 x + · · · + qn,n−1 xn−1

The coefficients pn,k (k = 0, 1, . . . , n) and qn,k (k = 0, 1, . . . , n − 1) are given by:

pn,k =











(−1)(n−k)/2

(n−k)!k! if n − k is even

0 if n − k is odd

qn,k =











(−1)(n−k+1)/2

2(n−k)!k! if n − k is odd

0 if n − k is even

(28)

The polynomial rn (of degree at most n − 1) plays the role of the integrating constant.

Proof: By induction; see Hoogerheide, Kaashoek and Van Dijk (2004).8

This implies that the cumulative distribution function of θ ∼ nn(θ) where nn is our Type
1 neural network function and where each element θi is restricted to a certain interval [θi, θ̄i]

8For a particular value of n the validity of Theorem 1 can also be verified by the online Mathematica integration
program of Wolfram Research, Inc. on http://integrals.wolfram.com
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(i = 1, . . . , n), is given by:

CDFθ(θ̃1, . . . , θ̃n) =

(

1

2

H
∑

h=1

ch + d

)

(θ̃1 − θ1) · · · (θ̃n − θn)

+
H
∑

h=1

ch

πah1ah2 · · · ahn

1
∑

D1=0

· · ·
1
∑

Dn=0

(−1)D1+···+Dn Jn

(

n
∑

i=1

ahiθi,Di + bh

)

. (29)

where we define θi,0 = θ̃i and θi,1 = θi (i = 1, 2, . . . , n), the upper and lower bounds of the
integration intervals; the primitive Jn(·) is given by (27) in Theorem 1.

The marginal distribution functions CDFθj (θj) (j = 1, . . . , n) are now obtained by taking

θ̃i = θ̄i ∀i = 1, . . . , n; i 6= j in (29). The conditional CDF of θj given θj+1, . . . , θn is simply
derived by substituting

∑n
i=j+1 ahiθi + bh for bh and treating the neural network as a function of

the j-dimensional vector (θ1, . . . , θj)
′.

3.2.2 Sampling from a Type 2 (4-layer) neural network density

Suppose the joint density kernel of a certain θ ∈ R
n is given by the Type 2 neural network with

g2 the exponential function and g1 the piecewise-linear function plin in (20). It is fairly easy to
perform Gibbs sampling from this distribution, as one can divide the (bounded) domain of each
θi (i = 1, . . . , n) into a finite number of intervals on which the conditional neural network density
is just the exponent of a linear function; the obvious reason for this is that a linear combination
of piecewise-linear functions of θi is itself a piecewise-linear function of θi. Therefore we can
analytically integrate the conditional neural network density, and draw from it by analytically
inverting the conditional CDF. Note that the three properties of g2 mentioned below formula
(20) are used here explicitly. A more detailed description of this procedure can be found in
Hoogerheide, Kaashoek and Van Dijk (2004).

It is also possible to use a different method to draw from a four-layer neural network density:
auxiliary variable Gibbs sampling. Using this method, we do not have to restrict ourselves
to the piecewise-linear function plin when specifying the activation function g1. It allows for
well-known activation functions such as the logistic and scaled arctangent functions. Auxiliary
variable Gibbs sampling is a Gibbs sampling technique, developed by Damien et al. (1999).
The method is based on work of Edwards and Sokal (1988). In this method, a vector of latent
variables u is introduced in an artificial way in order to facilitate drawing from the full set of
conditional distributions of θ.

In the case of our Type 2 neural network the vector of latent variables u is (H × 1) where
conditionally on θ the uh (h = 1, . . . , H) are independently drawn from uniform distributions:

uh|θ ∼ U

(

0, exp

[

ch plin

(

n
∑

i=1

ahiθi + bh

)])

, h = 1, . . . , H. (30)

The elements θi (i = 1, . . . , n) are drawn conditionally on u and θ−i, the set of all other elements
of θ, from the uniform distribution on the interval [θi,LB(u, θ−i), θi,UB(u, θ−i)], where:

θi,LB(u, θ−i) = max







θi, max
1≤h≤H







1

ahi





log(uh)

ch
− 1

2
−





n
∑

j=1,j 6=i

ahjθj + bh









∣

∣

∣

∣

∣

∣

chahi > 0, 0 <
log(uh)

ch
< 1

}}

, (31)
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θi,UB(u, θ−i) = min







θ̄i, min
1≤h≤H







1

ahi





log(uh)

ch
− 1

2
−





n
∑

j=1,j 6=i
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where [θi, θ̄i] is the interval to which θi (i = 1, . . . , n) is a priori restricted. The derivations of
these conditional distributions are given in Hoogerheide, Kaashoek and Van Dijk (2004).

3.3 Importance sampling and Metropolis-Hastings

Once we have obtained a sample of random drawings from the neural network density nn(θ), we
use this sample in order to estimate those characteristics of the target density p(θ) that we are
interested in. Two methods that we can use for this purpose are importance sampling and the
Metropolis-Hastings algorithm. A discussion of importance sampling can be found in Bauwens et
al. (1999). The Metropolis-Hastings (MH) algorithm was introduced by Metropolis et al. (1953)
and generalized by Hastings (1970).
Note that in the case of a four-layer neural network we need Gibbs sampling in order to obtain
the sample, so that the consecutive drawings are not independent. This case can be dealt with
using a Metropolis-Hastings within Gibbs algorithm, in which a MH step is considered after each
time an element θi is drawn from its conditional neural network distribution. So, we have the
following eight ‘neural network based’ algorithms at hand:

• Neural Network Importance Sampling (NNIS) and Neural Network Metropolis-Hastings
(NNMH) in which IS or MH is performed using random vectors that are (directly) drawn
from a 3-layer neural network;

• Gibbs Neural Network Importance Sampling (GiNNIS) and Gibbs with Auxiliary Variables
Neural Network Importance Sampling (GiAuVaNNIS) in which IS is performed using ran-
dom vectors that are drawn from a 4-layer neural network by Gibbs sampling (possibly
with auxiliary variables);

• Gibbs Neural Network Metropolis-Hastings (GiNNMH) and Gibbs with Auxiliary Variables
Neural Network Metropolis-Hastings (GiAuVaNNMH) in which Metropolis-Hastings within
Gibbs is performed using random vectors that are drawn from a 4-layer neural network by
Gibbs sampling (possibly with auxiliary variables);

• IS or MH using random vectors that are (directly) drawn from an Adaptive Mixture of t
distributions (AdMit-IS or AdMit-MH).

Table 4 gives an overview.

4 Example I: Neural Network sampling methods applied to a

bivariate conditionally normal distribution

In this section we consider an illustrative bivariate distribution in order to show the feasibility
of the neural network approach and to compare the performance of the different neural network
based methods. In the notation of the previous section we have θ = (X1, X2)

′.

20



Table 4: Overview of neural network based sampling algorithms

Importance Metropolis-
sampling Hastings

Type 1 (3-layer)
neural network: NNIS NNMH
direct sampling

Type 2 (4-layer)
neural network: Gi(AuVa)NNIS Gi(AuVa)NNMH

(auxiliary variable)
Gibbs sampling

Type 3
neural network

(adaptive mixture AdMit-IS AdMit-MH
of t densities):
direct sampling

Let X1 and X2 be two random variables, for which X1 is normally distributed given X2 and
vice versa. Then the joint distribution, after location and scale transformations in each variable,
can be written as (see Gelman and Meng (1991)):

p(x1, x2) ∝ exp

(

−1

2

[

Ax2
1x

2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2

]

)

, (33)

where A, B, C1 and C2 are constants. We consider the symmetric case in which A = 1, B = 0,
C1 = C2 = 3, with conditional distributions

X1|X2 = x2 ∼ N

(

3

1 + x2
2

,
1

1 + x2
2

)

X2|X1 = x1 ∼ N

(

3

1 + x2
1

,
1

1 + x2
1

)

. (34)

For the Type 1 and 2 networks, we restrict the variables X1 and X2 to the interval [-2.5,7.5],
i.e. we only consider the region

{(X1, X2)| − 2.5 ≤ X1 ≤ 7.5,−2.5 ≤ X2 ≤ 7.5} . (35)

This restriction does not affect our estimates, as the probability mass outside this region is
negligible.

The contourplots of the neural network approximations9 are given by Figure 7, together
with the contourplot of the target density. These contourplots confirm that the three classes
of neural networks are able to provide reasonable approximations to the target density. Figure
8 illustrates how the AdMit procedure iteratively constructs an approximating (mixture of t)
candidate density in four steps.

After we have constructed neural network approximations, we sample from these networks
and use the samples in IS or MH. Many diagnostic checks have been developed for assessing the

9We constructed a Type 1 network with H = 50, R2 = 0.9966 on its training set of 1000 points, and R2 = 0.9936
on its test set of 5000 points. We obtained a Type 2 network with H = 13, R2 = 0.9944 on its training set of
1000 points, and R2 = 0.9756 on its test set of 5000 points. We also constructed a mixture of four t distributions
with a sample of 1000 IS weights with coefficient of variation equal to 0.840 (and in which the 5% most influential
points have 11.6% weight).
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Figure 7: Contour plots: conditionally normal bivariate distribution in (34) (left), and its Type
1 (second), Type 2 (third), and Type 3 (right) neural network approximation
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Figure 8: Illustration of the AdMit procedure for constructing a Type 3 (mixture of t) neu-
ral network approximation to a target (posterior) density: in four steps a candidate density is
constructed; the cross denotes the point at which the weight function p(x1, x2)/nn(x1, x2) corre-
sponding to the displayed candidate density nn(x1, x2) attains its maximum. For the four shown
candidate densities the coefficient of variation of the importance sampling weights is 4.01, 1.39,
0.93, 0.87, respectively.

convergence of the IS or MH method; see e.g. Geweke (1989) for the IS method and Cowles and
Carlin (1996) and Brooks and Roberts (1998) for MCMC methods. Here we use the following
simple heuristic rule to obtain estimates of the means with a precision of 1 decimal: for each
algorithm we construct two samples, and we say that convergence has been achieved if the
difference between the two estimates of E(X1) and the difference between the two estimates
of E(X2) are both less than 0.05.10 The results are in Table 5. Note that the eight neural
network sampling algorithms all yield estimates of E(X1) and E(X2) differing less than 0.05
from the real values. The table shows numerical standard errors and the corresponding relative
numerical efficiency (RNE), see Geweke (1989). The numerical standard errors are estimates of
the standard deviations of the IS estimators of E(X1) and E(X2). The RNE is the ratio between
the IS estimator’s estimated variance and (an estimate of) the variance that an estimator based
on direct sampling would have (with the same number of drawings). The RNE is an indicator of
the efficiency of the chosen importance function; in the ideal case where target and importance
density coincide the RNE equals one, whereas a very poor importance density will have an RNE
close to zero.

The total weight of the 5% most influential points is below 15% for the three IS algorithms

10The number of drawings required may depend on an initial value such as the seed of the random number
generator; for each algorithm the experiment has been repeated several times and the results are robust in the
sense that in most cases convergence had been reached after the reported number of drawings.
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and the values of the RNE are rather high, confirming the quality of the importance density.
The rather high MH acceptance rates above 50% indicate the quality of the neural network as a
candidate density in MH.

If we look at the computing times (on an AMD AthlonTM 1.4 GHz processor) required for
generating the samples, we conclude that AdMit-IS and AdMit-MH are the winners in this
example. In AdMit-IS or AdMit-MH the construction of the network, the sampling, and the
IS or MH require altogether 2.0 seconds, whereas the other methods take much more time to
construct a network and to generate an adequate sample.

The NNIS and NNMH algorithms are relatively slow, as relatively many hidden cells (H =
50) are required to provide a reasonable Type 1 neural network approximation, which makes
optimization rather time consuming; also sampling from a Type 1 network is rather slow as
this requires a numerical method, such as the Newton method, in order to perform the inverse
transformation method. Quicker optimization methods for the Type 1 and 2 neural networks are
a topic for further research.

The GiAuVaNNIS and GiAuVaNNMH algorithms are slightly slower than the GiNNIS and
GiNNMH methods; although drawing a point takes more time in the latter methods, the intro-
duction of the auxiliary variables increases the serial correlation in the Gibbs sequence in such a
way that many more drawings are required to reach convergence.

Table 5: Neural network based sampling results for the conditionally normal bivariate distribution
in (34)

real NNIS NNMH GiNNIS GiNNMH GiAuVa GiAuVa AdMit AdMit
values NNIS NNMH IS MH

E(X1) 1.459 1.487 1.504 1.472 1.433 1.468 1.477 1.464 1.467
(num. std. error) (0.019) (0.015)

[RNE] [0.896] [0.649]
E(X2) 1.459 1.450 1.434 1.444 1.490 1.454 1.436 1.459 1.458

(num. std. error) (0.019) (0.016)
[RNE] [0.885] [0.619]
σ(X1) 1.234 1.239 1.247 1.233 1.229 1.239 1.237 1.236 1.245
σ(X2) 1.234 1.239 1.235 1.223 1.244 1.233 1.234 1.242 1.235

ρ(X1, X2) -0.760 -0.764 -0.766 -0.755 -0.757 -0.758 -0.757 -0.759 -0.759
total time 257.0 s 257.0 s 66.5 s 79.9 s 81.3 s 85.6 s 2.0 s 2.0 s

time construction NN 225.2 s 225.2 s 62.6 s 62.6 s 62.6 s 62.6 s 1.1 s 1.1 s
time sampling 31.8 s 31.8 s 3.9 s 17.3 s 18.7 s 23.0 s 0.9 s 0.9 s

drawings 5000 5000 10000 40000 80000 80000 10000 10000
time/draw 6.4 ms 6.4 ms 0.39 ms 0.43 ms 0.23 ms 0.29 ms 0.09 ms 0.09 ms
5% weights 6.3 % 7.2 % 7.2 % 12.9 %

coeff. var. weights 0.382 0.239 0.251 0.840
acc. rate 84.6% 90.0 % 92.7 % 52.7 %

serial corr. X1 0.15 0.65 0.73 0.90 0.92 0.45
serial corr. X2 0.14 0.67 0.72 0.84 0.86 0.45

5 Example II: Neural Network sampling methods applied to pos-

terior distributions in a simple IV regression model

In this section we consider posterior distributions in IV regression models in order to compare
the performance of the Type 3 (mixture of t) neural network sampling method (AdMit) with
some other sampling methods.
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First, consider the joint posterior of π and β in (9) for the data set simulated from the model
(2) - (3) with π = 0.1 (weak identification) and ρ = 0.99 (strong endogeneity) truncated to the
region

{(π, β)| − 0.25 ≤ π ≤ 0.25,−10 ≤ β ≤ 10} . (36)

Figure 2 shows its contourplot on this region (36).
The contourplot of the Type 3 neural network approximation11 is given by Figure 9, together

with the contourplot of the target density. This contourplot confirms that this class of neural
networks is able to provide reasonable approximations to a wide class of (possibly multi-modal)
target densities.

In this example the Gibbs sampler failed: the Gibbs sequence remained in one of the two
ridges for at least 100 million drawings, yielding a scatter plot like in Figure 9. Of course, one can
draw from the other ridge by choosing a different initial value (in or close to the other ridge), but
it is not a trivial issue how to weight the results from the two ridges, i.e. one has to determine
which part of the posterior probability mass is contained in each of both ridges.
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Figure 9: Contourplots in the π × β plane: joint posterior of π and β in IV model for simulated
data set with π = 0.1, ρ = 0.99 (left), and its Type 3 neural network approximation (middle);
scatter plot of sample obtained by Gibbs sampler (right)

Second, we consider the joint posterior of π = (π1, π2)
′ and β in (9) with k = 2 instruments

for T = 50 simulated data from the model (2) - (3) with π1 = π2 = 0.1 (weak identification) and
ρ = 0.99 (strong endogeneity) truncated to the region

{(π1, π2, β)| − 0.5 ≤ πi ≤ 0.5 (i = 1, 2),−10 ≤ β ≤ 10} . (37)

Figure 10 shows the shape of a credible set on this region (37), together with the shapes of credible
sets in similar models with T = 50 simulated data from the model (2) - (3) with π1 = π2 = 0 (no
identification) and π1 = π2 = 1 (strong identification). Note that the same shapes that showed
up in the 2-dimensional distributions (ridges, bimodality and nearly elliptical shapes) also occur
in these 3-dimensional distributions.

We construct a Type 3 neural network approximation, a mixture of 15 Student t distributions,
and use 1000000 drawings from it in IS and MH; see Table 6.

We compare its performance (in the same computing time) with IS using a unimodal im-
portance density, the Student t distribution with ν = 1 degree of freedom. In order to give the
unimodal density a fair chance, we first take 4 steps in which the mode and scale are updated as
the estimated mean and covariance matrix of the target distribution in the previous step. The

11We constructed a mixture of 8 Student t distributions with a sample of 50000 IS weights with coefficient of
variation of 2.1.
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Figure 10: Credible sets for parameters π1, π2, β in IV model (2) - (3) for simulated data sets
from this model with strong endogeneity (ρ = 0.99) and no (π1 = π2 = 0), weak (π1 = π2 = 0.1)
or strong (π1 = π2 = 1) identification, respectively.

results are in Table 6. If we compare the numerical standard errors, AdMit-IS gives estimates of
E(π1), E(π2) and E(β) with standard errors that are 1.9, 1.9 and 3.3 times as small, respectively.
Also notice the huge differences between the RNEs (especially for the estimate of E(β)) in the
two IS methods.

We also compare the performance of AdMit-IS with the random walk (RW) Metropolis-
Hastings algorithm with candidate steps from a Student t distribution with ν = 1 degree of
freedom. Again, we first take 4 steps in which the scale is updated as the estimated covariance
matrix of the target distribution in the previous step. The results are in Table 6. We have
repeated the RW MH algorithm 5 times: the standard deviations of the estimates of E(π1),
E(π2) and E(β) are 3.5 10−4, 3.9 10−4 and 0.0130, respectively; the AdMit standard errors are
2.2, 2.5 and 2.0 times as small as these standard deviations.

The Gibbs sampler failed in this example: the Gibbs sequence remained in one of the two
ridges for 25000000 drawings (taking 1039 s).

We conclude that in this example the AdMit approach outperforms three competing algo-
rithms.

Finally, consider the joint posterior of π and β in (9) for the data set simulated from the model
(2) - (3) with k = 1 instrument with π = 1 (strong identification) and ρ = 0 (no endogeneity),
truncated to the region

{(π, β)| − 0.5 ≤ π ≤ 1.5,−10 ≤ β ≤ 10} . (38)

Figure 2 shows its contourplot, which shows an elliptical shape.
We construct a Type 3 neural network approximation, a mixture of 2 Student t distributions.

Again, we use a simple heuristic rule to obtain estimates of the means with a precision of 2
decimals: for each algorithm we construct two samples, and we say that convergence has been
achieved if the difference between the two estimates of E(π) and the difference between the two
estimates of E(β) are both less than 0.005.12 The results are in Table 7.

12The number of drawings required may depend on an initial value such as the seed of the random number

25



Table 6: Sampling results for the non-elliptically shaped posterior distribution in the IV regres-
sion (2) - (3) with k = 2 instruments for simulated data with π = (0.1, 0.1)′ (weak identification),
ρ = 0.99 (strong endogeneity)

real AdMit AdMit adaptive adaptive
values IS MH t1 IS RW MH

E(π1) 0.0199 0.200 0.195 0.0203 0.0206
(num. std. error) (1.57 10−4) (3.0 10−4)

[RNE] [0.3622] [0.0032]
E(π2) 0.0157 0.0158 0.0153 0.0161 0.0165

(num. std. error) (1.56 10−4) (2.9 10−4)
[RNE] [0.3586] [0.0034]
E(β) 0.6404 0.6357 0.6531 0.6039 0.6121

(num. std. error) (0.0065) (0.0215)
[RNE] [0.2211] [0.00067]
σ(π1) 0.0946 0.0945 0.0943 0.0948 0.0946
σ(π2) 0.0935 0.0934 0.0934 0.0936 0.0935
σ(β) 3.0643 3.0745 3.0713 3.0506 3.0816

total time 921 s 921 s 1030 s 1138 s
time construction NN 598 s 598 s
time adapting scale 83 s 83 s

time sampling 323 s 323 s 947 s 1055 s
drawings 1 106 1 106 30 106 50 106

time/draw 0.32 ms 0.32 ms 0.03 ms 0.02 ms
5% weights 27.3 % 99.999 %

coeff. var. weights 1.47 21.6
acc. rate 32.5 % 2.3 %

serial corr. π1 0.66 0.994
serial corr. π2 0.66 0.994
serial corr. β 0.72 0.996

We compare AdMit’s performance with the Gibbs sampler, the random walk MH algorithm
with candidate steps from a t1 distribution with scale matrix equal to the negative inverse Hes-
sian of the log-posterior kernel evaluated at its mode, and IS/MH with a t1 or normal candidate
density around the mode of the target distribution. In this case of an elliptical (posterior) target
distribution the methods using a unimodal candidate density all perform well. Although the neu-
ral network approach is feasible in this example, it is slower than several competing algorithms.
This stresses that different sampling methods dominate in different cases; the neural network
approach is especially useful for target densities with non-elliptical contours. The development
of strategies to determine which method should be used in which situation is a topic for further
research.

generator; for each algorithm the experiment has been repeated several times and the results are robust in the
sense that in most cases convergence had been reached after the reported number of drawings.
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Table 7: Sampling results for the elliptically shaped posterior distribution in the IV regression
(2) - (3) with k = 1 instruments for simulated data with π = 1 (strong identification) and ρ = 0
(no endogeneity)

real AdMit AdMit Gibbs RW MH RW MH IS MH IS MH
values IS MH adaptive t1 t1 normal normal

E(π) 0.908 0.908 0.911 0.910 0.908 0.907 0.908 0.911 0.909 0.909
(num. std. error) (0.004) (0.004) (0.001)

(RNE) (0.691) (0.691) (0.910)
E(β) -0.028 -0.025 -0.029 -0.029 -0.029 -0.027 -0.025 -0.032 -0.026 -0.027

(num. std. error) (0.004) (0.004) (0.002)
(RNE) (0.668) (0.668) (0.863)
σ(π) 0.089 0.093 0.089 0.091 0.090 0.090 0.093 0.088 0.087 0.087
σ(β) 0.106 0.105 0.102 0.104 0.105 0.106 0.105 0.105 0.102 0.102

ρ(π, β) 0.017 0.041 -0.013 0.086 0.021 0.041 0.041 0.015 -0.019 -0.020
total time 20.8 s 20.9 s 0.03 s 0.64 s 1.28 s 0.03 s 0.11 s 0.11 s 0.12 s

time construction NN 20.7 s 20.7 s
time adapting scale 0.64 s

time sampling 0.05 s 0.16 s 0.03 s 0.64 s 0.64 s 0.03 s 0.11 s 0.11 s 0.12 s
drawings 1000 2500 1000 40000 40000 1000 2500 4000 4000

time/draw 0.05 ms 0.06 ms 0.03 ms 0.02 ms 0.02 ms 0.03 ms 0.04 ms 0.03 ms 0.03 ms
5% weights 11.1 % 11.1 % 7.5 %

coeff. var. weights 0.797 0.797 0.163
acc. rate 58.6 % 39.0 % 38.0 % 60.5 % 93.5 %

serial corr. π 0.40 -0.02 0.85 0.85 0.38 0.11
serial corr. β 0.39 -0.04 0.85 0.85 0.36 0.14

6 Conclusion

In this paper we have shown that the shape of Bayesian credible sets is often non-elliptical
in instrumental variable regression models with weak instruments and/or strong endogeneity.
Structural inference is possible but the credible sets may indicate large uncertainty. Unless one
uses a truncated region of integration, implied reduced form inference is not possible due to an
improper posterior. This has important implications for forecasting and policy analysis.

In order to accurately approximate the shape of such non-elliptical credible sets we have in-
troduced a class of neural network sampling algorithms. In these algorithms neural network func-
tions are used as an importance or candidate density in importance sampling or the Metropolis-
Hastings algorithm. Neural networks are natural importance or candidate densities, as they have
a universal approximation property and are easy to sample from. We have shown how to sample
from three types of neural networks. One can sample directly from a certain 3-layer network.
Using a 4-layer network one can, depending on the specification of the network, either use a
Gibbs sampling approach or sample directly from a mixture of distributions. A key step in the
proposed class of methods is the construction of a neural network that approximates the target
density accurately. The methods have been tested on an illustrative example; the 4-layer network
specified as the mixture of t distributions performed the best among the proposed sampling pro-
cedures. In another experiment concerning a bimodal posterior distribution in an IV regression
for a simulated data set the approach using a mixture of t distributions provided (in the same
computing time) more accurate results than IS with a unimodal importance density or a random
walk Metropolis-Hastings algorithm, whereas the Gibbs sampler failed in this example. These
results indicate the feasibility and the possible usefulness of the neural network approach. We
emphasize that it is naive to expect one sampling method to dominate in all practical cases.
We emphasize that one needs to develop a strategy in which a sophisticated network is specified
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for complex, non-elliptical densities, while in a relatively simple case of near-elliptical contours
a unimodal density or a bimodal mixture may be sufficiently accurate as a candidate density.
Clearly, more work is needed in this area and will be reported in future work.

We end this paper with some remarks on how to apply and to extend the proposed techniques.
First, one may use these results in model selection and model averaging and investigate the effect
of using accurate non-elliptical credible sets instead of naive or asymptotic sets.

Second, one may consider other ways of specifying and estimating neural networks. We
mention here the following possible extensions. One may pursue the construction of well-behaved
neural networks with other activation functions which are more smooth than the piecewise-linear
one. We noted in section 2 that it is possible to perform auxiliary variable Gibbs sampling from
a 4-layer neural network density with a logistic function or scaled arctangent instead of the
piecewise-linear function. One may also investigate the effects of substituting the exponential
function in the second hidden layer by a different function such as the logistic function. One may
also, as a first step, transform the posterior density function to a more regular shape. This line
of research is recently pursued by e.g. Bauwens, Bos, Van Dijk and Van Oest (2004) in a class of
adaptive direction sampling methods using radial-basis functions (ARDS). A combination of ADS
and neural network sampling may be of interest. In practice, one encounters cases where only part
of the posterior density is ill-behaved. Then one may combine the neural network approach for the
‘difficult part’ with a Gibbs sampling approach for the regular part of the model. In recent work
Richard (1998) and Liesenfeld and Richard (2002) constructed an efficient importance sampling
technique where the estimation of the parameters of the importance function is done in a sequence
of optimization steps. Another area of further research is to consider different flexible candidate
density functions involving Hermite polynomials, see e.g. Gallant and Tauchen (1993) and the
references cited there. Also, more sophisticated Monte Carlo methods like bridge sampling, see
e.g. Meng and Wong (1996) and Frühwirth-Schnatter (2004), may be explored in combination
with neural networks. We intend to report on this in future work.

Third, more experience is needed with empirical econometric models like the models of local
average treatment effects, see Imbens and Angrist (1994) or the business cycle models as specified
by Hamilton (1989) and Paap and Van Dijk (2003), or stochastic volatility models as given by
Shephard (1996), and dynamic panel data models; see Pesaran and Smith (1995).

Fourth, the neural network approximations proposed in this paper may be useful for modelling
such processes as volatility in financial series, see e.g. Donaldson and Kamstra (1997), and for
evaluating option prices, see Hutchinson, Lo and Poggio (1994). We intend to report on this in
future research.

A Derivation of the conditional and marginal posterior densities

of the structural parameter β and the reduced form parameter

π in a simple IV regression

In order to derive the conditional posterior density for β from the joint density kernel (8) we
apply the following decomposition13 to the determinant |(ε v)′(ε v)|:

|(ε v)′(ε v)| = |v′v||ε′Mvε|. (39)

It follows that
p(β, π|y1, y2, X) ∝ |(y1 − y2β)′Mv(y1 − y2β)|−T/2|v′v|−T/2. (40)

13This decomposition is Theorem A.3.2 (p. 594) of Anderson (1984) with A11 = ε′ε, A12 = A′

21 = ε′v,A22 = v′v.
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We rewrite the sum of squares:

(y1 − y2β)′Mv(y1 − y2β) = (T − 1)s2
β̂

+ (β − β̂)′y′2Mvy2(β − β̂) (41)

where we define β̂ ≡ (y′2Mvy2)
−1(y′2Mvy1), and (T − 1)s2

β̂
≡ (y1 − y2β̂)′Mv(y1 − y2β̂), the sum of

squared residuals in a regression of Mvy1 on Mvy2, which are – by the definition of the ‘residual
maker’ Mv and Frisch-Waugh – the residuals in a regression of y1 on y2 and v.
It follows from (41) that the joint posterior density kernel in (40) can be written as:

p(β, π|y1, y2, X) ∝
[

(T − 1)s2
β̂

]−T/2
[

1 + 1
T−1

(β−β̂)2

s2
β̂
(y′

2Mvy2)−1

]−T/2

|v′v|−T/2 (42)

It immediately follows from (42) that the conditional distribution of β given π is the (univariate)
Student t distribution with mode β̂, scale s2

β̂
(y′2Mvy2)

−1 and (T − 1) degrees of freedom with

density given by (10).

It follows in an analogous fashion like (39)-(42) that the joint posterior density kernel can be
written as:

p(β, π|y1, y2, X) ∝
[

(T − k)s2
π̂

]−T/2 × (43)

×
[

1 +
1

T − k
(π − π̂)′(s2

π̂(X ′MεX)−1)−1(π − π̂)

]−T/2

|ε′ε|−T/2

where π̂ ≡ (X ′MεX)−1(X ′Mεy2) and (T − k)s2
π̂ ≡ (y2 − Xπ̂)′Mε(y2 − Xπ̂), the sum of squared

residuals in a regression of Mεy2 on MεX, which are the residuals in a regression of y2 on X and
ε, so that the conditional distribution of π given β is (k-dimensional) Student t with mode π̂,
scaling s2

π̂(X ′MεX)−1 and (T − k) degrees of freedom with density given by (12).

We obtain the marginal posterior density of β by dividing the joint posterior density of (β, π) in
(43) by the conditional density of π given β in (12):

p(β|y1, y2, X) =
p(β, π|y1, y2, X)

p(π|β, y1, y2, X)
∝
[

(T − k)s2
π̂

]−T/2 |ε′ε|−T/2

|s2
π̂(X ′MεX)−1|−1/2

= |X ′MεX|−1/2
[

(T − k)s2
π̂

](T−k)/2 |ε′ε|−T/2, (44)

Recall that (T −k)s2
π̂ is defined as the sum of squared residuals in a regression of y2 on X and ε:

(T − k)s2
π̂ = (MXy2)

′MMXεMXy2 = (MXε)′MMXy2MXε
y′2MXy2

ε′MXε
(45)

where we have again used a decomposition like (39). The term (MXε)′MMXy2MXε in (45) is the
sum of squared residuals in a regression of ε on X and y2, which is equal to

(My2ε)
′MMy2X

My2ε = (My2y1)
′MMy2X

My2y1, (46)

as ε ≡ y1−y2β and My2y2 = 0. From (45) and (46) we have (T−k)s2
π̂ ∝ (ε′MXε)−1. Substituting

(T − k)s2
π̂ ∝ (ε′MXε)−1 and |X ′MεX| ∝ ε′MXε

ε′ε
, (47)
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where the latter immediately follows from a decomposition like (39), into (44) yields the marginal
posterior density kernel of β in (11), the ratio of two Student t kernels.

We obtain the marginal posterior density of π by dividing the joint posterior density of (β, π) in
(42) by the conditional density of β in (10):

p(π|y1, y2, X) =
p(β, π|y1, y2, X)

p(β|π, y1, y2, X)
∝

[

(T − 1)s2
β̂

]−T/2
|v′v|−T/2

|s2
β̂
(y′2Mvy2)−1|−1/2

= |y′2Mvy2|−1/2
[

(T − 1)s2
β̂

]−(T−1)/2
|v′v|−T/2. (48)

In a similar way like the derivation of (47) it can be derived that:

(T − 1)s2
β̂
∝

v′M[y1 y2]v

v′My2v
and |y′2Mvy2| ∝

v′My2v

v′v
. (49)

Since My2 y2 = M[y1 y2] y2 = 0 we have My2v = −My2Xπ, M[y1 y2] v = −M[y1 y2] Xπ, so that
substituting (49) into (48) yields the marginal posterior density kernel of π in (13)-(14), the
ratio of a product of two Student t kernels in the numerator and one Student t kernel in the
denominator
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[16] Frühwirth-Schnatter (2004), S.: “Estimating marginal likelihoods for mixture and Markov
switching models using bridge sampling techniques”, Econometrics Journal 7, 143-167.

[17] Gallant, A.R. and H. White (1989): “There exists a neural network that does not make
avoidable mistakes”, in Proc. of the International Conference on Neural Networks, San
Diego, 1988 (IEEE Press, New York).

[18] Gallant, A.R. and G . Tauchen (1993): “A Nonparametric Approach to Nonlinear Time
Series Analysis: Estimation and Simulation”, in New Directions in Time Series Analysis
Part II, ed. by D. Brillinger, P. Caines, J. Geweke, E. Parzen, M. Rosenblatt, M.S. Taqqu.
Springer-Verlag, New York.

[19] Gelman, A. and X. Meng (1991): “A Note on Bivariate Distributions That Are Conditionally
Normal”, The American Statistician, 45, 125-126.

[20] Geman, S. and D. Geman (1984): “Stochastic Relaxation, Gibbs Distributions and the
Bayesian Restoration of Images”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721-741.

[21] Geweke, J. (1989): “Bayesian inference in econometric models using Monte Carlo integra-
tion”, Econometrica, 57, 1317-1339.

[22] Geweke, J. (1999): “Using Simulation Methods for Bayesian Econometric Models: Inference,
Development, and Communication”, Econometric Reviews, 18(1), 1-73.

[23] Hammersley, J. and D. Handscomb (1964): Monte Carlo Methods. Chapman and Hall,
London.

[24] Hastie, T., R. Tibshirani and J. Friedman (2001): The Elements of Statistical Learning,
Springer-Verlag, New York.

[25] Hastings, W.K. (1970): “Monte Carlo Sampling Methods using Markov Chains and their
Applications”, Biometrika, 57, 97-109.

31



[26] Hecht-Nielsen, R. (1987): “Kolmogorov mapping neural network existence theorem”, in
Proc. IEEE First International Conference on Neural Networks, San Diego, 1987, 11-13.

[27] Hobert, J.P. and G. Casella (1996): “The Effect of Improper Priors on Gibbs Sampling
in Hierarchical Linear Mixed Models”, Journal of the American Statistical Association,
91(436), 1461-1473.

[28] Hoogerheide, L.F. and H.K. van Dijk (2001): “Comparison of the Anderson-Rubin test for
overidentification and the Johansen test for cointegration”, Econometric Institute report
2001-04, Erasmus University Rotterdam.

[29] Hoogerheide, L.F., J.F. Kaashoek and H.K. van Dijk (2002): “Functional Approximations
to Posterior Densities: A Neural Network Approach to Efficient Sampling”, Econometric
Institute report 2002-48, Erasmus University Rotterdam.

[30] Hoogerheide, L.F., J.F. Kaashoek and H.K. van Dijk (2004): “Neural network based ap-
proximations to posterior densities: a class of flexible sampling methods with applications
to reduced rank models”, Econometric Institute report 2004-19, Erasmus University Rot-
terdam.

[31] Hornik, K., M. Stinchcombe, and H. White (1989): “Multilayer feedforward networks are
universal approximators”, Neural Networks, Vol. 2, 359-366.

[32] Hutchinson, J., A. Lo and T. Poggio (1994): “A Nonparametric Approach to the Pricing and
Hedging of Derivative Securities Via Learning Networks”, Journal of Finance, 49, 851-889.

[33] Imbens, G.W. and J.D. Angrist (1994): “Identification and Estimation of Local Average
Treatment Effects”, Econometrica 62, 467-475

[34] Kleibergen, F.R., and H.K. Van Dijk (1994): “On the Shape of the Likelihood/Posterior in
Cointegration Models”, Econometric Theory, 10(3-4), 514-551.

[35] Kleibergen, F.R., and H.K. Van Dijk (1998): “Bayesian Simultaneous Equations Analysis
using Reduced Rank Structures”, Econometric Theory, 14(6), 701-743.

[36] Kloek, T., and H.K. Van Dijk (1978): “Bayesian estimates of equation system parameters:
an application of integration by Monte Carlo”, Econometrica, 46, 1-19.

[37] Kolmogorov, A.N. (1957): “On the representation of continuous functions of many variables
by superposition of continuous functions of one variable and addition”, American Math-
ematical Monthly Translation, Vol. 28, pp 55-59. (Russian original in Doklady Akademii
Nauk SSSR, 144, 953-956)

[38] Leshno, M., Lin, V.Y., Pinkus, A. and Schocken, S. (1993): “Multilayer Feedforward Net-
works With a Nonpolynomial Activation Function Can Approximate Any Function”, Neural
networks, Vol. 6, 861-867.

[39] Liesenfeld, R. and J.-F. Richard (2002): “Univariate and Multivariate Stochastic Volatility
Models: Estimation and Diagnostics”, Discussion paper, University of Tubingen.

[40] Maddala, G.S. (1976): “Weak Priors and Sharp Posteriors in Simultaneous Equation Mod-
els”, Econometrica 44, 345-351.

32



[41] Meng, X.-L. and W. H. Wong (1996): “Simulating ratios of normalizing constants via a
simple identity: A theoretical exploration”, Statistica Sinica 6, 831-860.

[42] Metropolis, N., A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller (1953):
“Equations of State Calculations by Fast Computing Machines”, Journal of Chemical
Physics, 21, 1087-1091.

[43] Paap, R. and H.K. van Dijk (2003): “Bayes Estimates of Markov Trends in Possibly Coin-
tegrated Series: An Application to US Consumption and Income”, Journal of Business &
Economic Statistics, 21, 547-563.

[44] Pesaran, M.H. and R. Smith (1995): “Estimation of Long-Run Relationships from Dynamic
Heterogeneous Panels”, Journal of Econometrics, 68, 79-113.

[45] Richard, J.-F. (1998): “Efficient High-dimensional Monte Carlo Importance Sampling”,
Discussion paper, University of Pittsburgh.

[46] Ritter, C. and M.A. Tanner (1992): “Facilitating the Gibbs Sampler: The Gibbs Stopper
and the Griddy-Gibbs Sampler”, Journal of the American Statistical Association, 87, 861-
868.

[47] Shephard, N. (1996): “Statistical aspects of ARCH and stochastic volatility”, in Time Series
Models with Econometric, Finance and Other Applications, ed. by D.R. Cox, D.V. Hinkley
and O.E. Barndorff-Nielson, Chapman and Hall, London.

[48] Staiger, D. and J.H. Stock (1997): “Instrumental Variable Regression with Weak Instru-
ments”, Econometrica, 65, 557-586.

[49] Stinchcombe, M. (1989): “Universal Approximation Using Feedforward Networks with Non-
sigmoid Hidden Layer Activation Functions”, in Proceedings of the International Joint Con-
ference on Neural Networks, Washington DC, IEEE Press, New York.

[50] Stinchcombe, M. (1990): “Approximating and Learning Unknown Mappings Using Mul-
tilayer Feedforward Networks with Bounded Weights”, in Proceedings of the International
Joint Conference on Neural Networks, San Diego, IEEE Press, New York.

[51] Strachan, R.W. and H.K. van Dijk (2004): “Improper priors with well defined Bayes Fac-
tors”, Econometric Institute report 2004-18, Erasmus University Rotterdam.

[52] Tanner, M.A. and W.H. Wong (1987): “The Calculation of Posterior Distributions by Data
Augmentation” (with discussion), Journal of the American Statistical Association, 82, 528-
550.

[53] Tierney, L. (1994): “Markov Chains for Exploring Posterior Distributions”, Annals of Statis-
tics, 22, 1701-1762.

[54] Van Dijk, H.K., and T. Kloek (1980): “Further experience in Bayesian analysis using Monte
Carlo integration”, Journal of Econometrics, 14, 307-328.

[55] Van Dijk, H.K., and T. Kloek (1984): “Experiments with some alternatives for simple
importance sampling in Monte Carlo integration”, in Bayesian Statistics 2, ed. by J. M.
Bernardo, M. Degroot, D. Lindley, and A. F. M. Smith, Amsterdam, North-Holland.

33



[56] Van Dijk, H.K. (2003): “On Bayesian structural inference in a simultaneous equation
model”, in Econometrics and the philosophy of economics, ed. by B.P. Stigum, Princeton
University Press, Princeton, New Jersey.

[57] Zellner, A. (1971): An introduction to Bayesian inference in econometrics. Wiley, New York.

[58] Zellner, A., L. Bauwens and H.K. van Dijk (1988): “Bayesian Specification Analysis and
Estimation of Simultaneous Equation Models Using Monte Carlo Methods”, Journal of
Econometrics 38, 39-72.

34


