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Abstract

This paper presents a spatial model to study imperfect competition
with congestion. The model is used to examine the price and wage set-
ting of subcenters of a city. Residents live in a city while they shop and
work in subcentres. Each subcenter offers one differentiated product and
one differentiated workplace. Shopping and commuting from the city to
the subcenter requires the use of transport infrastructure that can be con-
gested. We show the existence of a Nash equilibrium in prices and wages
and analyse the welfare impacts of congestion charging and infrastructure
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with imperfect competition.
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1 Introduction
This paper presents a model to study imperfect competition with congestion.
We use this model to study the price and wage setting as well as the equilibrium
number of differentiated shopping and workplace subcentres. Urban residents
live and work in the center, while they also work and buy differentiated goods
in subcenters. The shopping centers hire workers with differentiated disutilities
of work and import intermediate goods from the center. Shoppers, workers
and trucks share the same congested road infrastructure from the center to
each of the shopping centers. There is only one producer per subcentre and
he maximizes profit. He makes decisions on the price of his differentiated good
variety and on the wage he needs to offer to attract workers. Lowering his price
attracts more customers but also generates many more effects in this model.
More customers means more congestion by shoppers, forces the firm to hire more
workers and this requires higher wages. In addition, more workers also create
more congestion and more customers also require more deliveries by trucks that
have also become more expensive because of congestion.
We analyse the non-cooperative equilibrium in prices for this type of economy

using a general equilibrium setting and a logit representation for the differen-
tiated goods. The existence and welfare effects of equilibria with and without
congestion are analysed. The effect of congestion and infrastructure charging
policies on the price and wage setting and on the equilibrium number of sub-
centers is studied too.
Our model can be compared to three strands of the literature: the imperfect

competition literature, the literature on congestion pricing with imperfect com-
petition and the literature on the endogenous location of shopping centers. Our
model uses the logit model to represent differentiated goods. Compared to the
traditional models of imperfect competition (surveyed in [8]), our model offers
two additional features. First, it examines imperfect competition in a general
equilibrium framework as the labour market and the delivery of intermediate
goods are explicitly modelled. Second, our model introduces congestion. Both
elements will be shown to have an important effect on the imperfect equilibrium
outcome. Introducing a general equilibrium framework and a differentiated job
market offers much more complexity as firms compete on two markets rather
than one. The equilibrium mark-up and the equilibrium number of firms are
shown to be increasing in the product and job heterogeneity parameters. Con-
gestion adds another component to the equilibrium mark-up because conges-
tion acts as a disincentive to cut prices. The welfare economics of the number
of firms also changes as we now have two market imperfections that interact.
Congestion (and market power) can be relieved by having congestion pricing,
by having more subcentres but also by having larger road infrastructure. The
three strategies are to some extent substitutes.
The interplay between congestion and imperfect competition has already

been covered in the case of homogenous goods for a monopoly by [7], and for
a duopoly by [6].They show that the optimal congestion charge is smaller than
the Pigouvian charge and that the homogenous good case can lead to multiple
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equilibria in the case of a duopoly. We generalise this literature in three ways.
First we use a general equilibrium framework with shopping, commuting and
delivery trafffic where the three types of traffic are influenced by the strategy
of the monopsonist firm. Second we study the case of differentiated rather than
homogenous goods and finally we allow for any number of competitors on the
market.
Fujita and Thisse ([5] p. 221) survey shopping center models. These models

study the endogenous location of shops and employment centers as well as con-
sumers in a linear or homogenous space. Shopping centres may exist because of
search costs or when they offer sufficiently differentiated products. Our model
has a different focus: the location of consumers is given (they reside in the city
center), the possible locations of subcenters are given ex-ante and every subcen-
ter has only one producer that offers a given variety of the good. This means
that we do not aim to study the origin, location or composition of subcenters,
instead we limit ourselves to the study of the properties of the competition
between different subcenters.
In the model interpretation we follow in this paper, we have residents that

live in the city center but shop at and commute to subcenters. This is not neces-
sarily the most common urban structure (see [1]). Our generic model allows an
alternative interpretation. In this alternative interpretation, households choose
a subcenter to reside in (they ”shop” for a residence) and they work in the city
and in another subcenter.
In sections 2 and 3 we develop the model structure. In sections 4 and 5 we

study the equilibrium and the optimum without congestion. In sections 6 and
7, we deal with the equilibrium and optimum with congestion. In section 7 we
discuss the potential and interaction of three types of policies: road congestion
charging, limiting the number of subcenters by a levy per subcenter and ex-
tending the capacity of the roads. Section 8 concludes with a simple numerical
illustration.

2 The model setting
We consider a center, and n subcenters. Residents are located in the center and
consume a differentiated good and a homogeneous good. They supply differen-
tiated labor as well as homogeneous labor. Each resident is active and provides
the same amount of work. The homogeneous good is produced competitively
in the center using homogeneous labor and requires no transport costs. We
focus our attention on the production and the consumption of the differentiated
good. There are n differentiated goods with subcenter i producing the quantity
Di.such thatD =

P
i=1...nDi In each subcenter, one producer offers one variety

of the good (e.g. due to increasing returns to scale), hires heterogeneous labor,
uses the homogeneous good as intermediary input and sells his product at the
factory gates. We denote by ti the travel time between the center and subcenter
i (distance divided by speed) per trip. Households commute to subcenter i to
supply labour with a travel time of αwti, where αw denotes the number of trips
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per unit of labour. Households also make shopping trips to subcenter j with a
travel time αdtj , per unit of differentiated good, where αd denotes the number
of shopping trips per unit of consumption, for i, j = 1, ..n. These two trips are
treated as independent (trip chaining is not considered here). The intermediary
(homogenous) goods needed in the subcenters are transported from the center
to the subcenter with a travel time per unit of intermediary good of αhti, where
αh denotes the number of freight trips per unit of production. We first neglect
congestion; in this case transportation cost ti is independent of the number of
drivers using the road. Later, we treat congestion by recognizing that the trans-
portation cost increases with the number of cars and trucks and decreases with
road capacity.

2.1 The production possibilities

There are N households who all work and each household supplies a fixed
amount, (1 + θ) units of labour time. The production of one unit of the differ-
entiated good requires one unit of labour time. The remaining labour time of
the household θ is devoted to the production of the homogeneous good. Each
worker household consumes one unit of the differentiated good, the rest of his
income is spent on the homogenous good.
We assume linear production technologies. The homogeneous good is pro-

duced using labour in a one to one ratio (one unit of the homogeneous good is
produced during one unit of time). The homogeneous good is either consumed
directly or used as input for the differentiated good and for the transport ser-
vices (fixed and variable input). The production of the differentiated good in
subcenter i requires a fixed set-up cost F (in the form of inputs of the ho-
mogeneous good) per subcenter and an intermediate input equal to c1 units
of the homogeneous good per unit of the differentiated good. Moreover, each
subcenter requires some road infrastructure. The production of this road infras-
tructure requires K units of the homogeneous good. The total consumption of
the homogeneous good is denoted by G.
We can present the total production possibilities of the economy by compar-

ing the net inputs and the total uses of the homogeneous good. We have the
following identity for the supply and the demand for labour:

(1 + θ)N = D + c1D + nF +
¡
αw + αd + αh

¢ X
i=1...n

tiDi + nK +G, (1)

where the LHS represents the total supply of labour. The first term in the RHS
represents the direct use of labour in the production of the differentiated good
(D with D = N)) while the remaining terms represent the use of the homoge-
neous good as input into the production of the differentiated good (c1D+ nF ),
to pay for the transportation costs

¡
αw + αd + αh

¢P
i=1...n tiDi and to pay for

the infrastructure cost nK. The remaining production of the homogeneous good
(G) is used as the final consumption good by the household..
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The total consumption of the homogeneous good, G, is residual and given
by:

G = θN − c1D −
¡
αw + αd + αh

¢ X
i=1...n

tiDi − n (F +K) .

In the symmetric case (considered in most of this paper), ti = t, i = 1...n
and the average individual consumption of homogeneous good g (n) wkere there
are n subcenters, is given by:

g (n) = θ − c1 −
¡
αw + αd + αh

¢
t− n (F +K) /N . (2)

Note that at least one center (center 1) is sustainable provided that:

g(1) = θ − c1 −
¡
αw + αd + αh

¢
t− (F +K) /N > 0 .

2.2 Market structures and taxes

The homogenous good is produced competitively in the center. The wage in
this industry is normalized to one. As the market is competitive and marginal
cost is equal to one, the price of the homogenous good is also one (in this case,
the transport cost is not incurred by the producers of the homogeneous good).
As a consequence, the value of time is one1 and the transport cost equals the
travel time, ti.
The price of the differentiated good i is denoted by pi and the wage offered

by firm i producing the differentiated good i is denoted by wi, i = 1...n. The
government finances the public infrastructure input by imposing a head-tax T
and a fixed levy on the firms S : nK = NT + nS.

2.3 Household preferences

The household consumes the homogeneous good (at the city center) and one unit
of the differentiated good in one of the n subcenters. Each household supplies θ
units of labour in the city center for the production of the homogeneous good and
one unit of labour in one subcenter for the production of the differentiated good.
As labour supply is fixed, and as the quantity of the differentiated good is also
fixed, the consumption of the homogeneous good is the residual. We consider
that each household chooses a single place of employment (besides the city
center) and a single shopping destination (besides the city center). Therefore
the only choice of interest for the household is the choice of the employment
location (where the differentiated good is produced) and the choice of the type
of differentiated good to consume (where to shop).
The direct utility function of a household who supplies one unit of labour

to the differentiated industry i and buys one unit of the differentiated good of
type k is:

1One unit of time allows the production of one unit of the homogeneous good, which has
a price equal to one, so the opportunity cost of one unit of time spent on the road is one.
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Vik = gik + ehk − eβi − βθ, (3)

where gik represents the consumption of the homogenous good (whose marginal
utility is one), ehk is the direct utility of the consumption of one unit of the
differentiated good k, eβi is the disutility of labour in sub-center i and β is the
disutility of labour in the center.
We assume that households have an equal share of the total profit,

P
l=1...n πl

and that the profit share is small. As a consequence, consumers take the profits
as given and the owner of a differentiated firm does not take into account the
impact of his pricing policy on his utility as a consumer or as a worker.2 The
household budget constraint is

(wi − αwti) + θ +
1

N

X
l=1...n

πl = (pk + αdtk) + gik + T. (4)

According to identity (4), the revenue from supplying labour to subcenter i
minus the commuting cost plus the revenue from supplying labour to the center,
plus the share in total profits is equal to the cost of consumption, including
shopping cost, plus the cost of the homogeneous good plus the head tax. By
substitution of the budget constraint in (3), we get the indirect utility function:

Uik = (wi − αwti)− eβi + θ (1− β) + ehk − ¡pk + αdtk
¢
+
1

N

X
l=1...n

πl − T. (5)

To recognize the fact that the jobs in the differentiated industry are hetero-
geneous, we model the disutility of labour, eβi as a random variable:eβi = βi − µwεi, (6)

where µw > 0 is a scale parameter that measures employment heterogeneity
and εi are i.i.d. double exponentially distributed.3 The idiosyncratic terms εi
express the match values between the employments and the workers.
Similarly, the goods produced in the subcenter are differentiated from the

shoppers perspectives. We assume that:ehk = hk + µdεk, (7)

where µd > 0 is a scale parameter and εi are i.i.d. double exponentially dis-
tributed.4

2This way we avoid one of the major problems in general equilibrium with imperfect
competition. For a survey see [3]

3The c.d.f. of the double exponential is F (x) = exp [− exp (−x)].
4For symmetric distributions (such as for normal), this formulation is the same as ehk =

hk−µdεk. Later on, we use double exponential distribution which lead to the Logit model with
the specification (7). The specification ehk = hk + µdεk, with double exponential distribution
leads to the reverse Logit, which is subtantiallly less tractable (see, [9]), and therefore not
considered here.
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We consider the symmetric case: βi = β, i = 1..n (the centers are on
average equally attractive from the worker perspective), hk = h, k = 1..n (all
differentiated goods have the same gross benefit), and ti = t, i = 1...n (all
subcenter are equally far away). In this case, the conditional indirect utility (5)
reduces to:

Uik = Ω+ wi − pk + µwεi + µdεk, (8)

where:

Ω = − (αwt+ β) + θ (1− β) + h− αdt+ (1 /N )
X

i=1...n

πl − T. (9)

Note that this model requires information on the distribution of the match
values (εi and εk). The precise value of the match value of a given household
is unknown. In other words, the individuals are statistically independent and
nothing changes in the model at the aggregate level if the match values were
to change over time. As a consequence, the households are allowed to modify
their employment choice and the shopping choices over time provided that this
will not change the expected demand addressed to each firm and the expected
number of workers hired by each firm.

2.4 Profits of firms

Recall that Di denotes the demand addressed to Firm i (with
Pn

i=1Di = N), wi
the wage offered by Firm i and pi the price charged by Firm i for one unit of the
differentiated good. In the symmetric case, the marginal cost of intermediate
inputs is c = c1+αht, i = 1...n (in the non-symmetric case, it is ci = c1+αhti,
i = 1...n), and the marginal production cost is c+ wi. The profit of Firm i is:

πi (w, p) = (pi − wi − c)Di − (F + S) , (10)

where w = (w1, ..., wn) and p = (p1, ..., pn) are the wage and the price vectors.

3 Household choices

3.1 The labour market choices

When a household is choosing in which subcenter i to work, all the terms¡
−pk + µdεk

¢
are identical and therefore do not affect their choice of employ-

ment. Given the choice of location k for shopping, the utility of working in i
becomes (see 8):

Ui|k = Ωk + wi + µ
wεi,

where Ωk = Ω− pk + µdεk.
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The probability that a worker chooses to commute to subcenter i is
Pwi|k = Pr ob

©
Ui|k ≥ Uj|k , j = 1...n

ª
. Note that the choice probabilities are

independent of k and can be written as Pwi , with

Pwi = Pr ob {wi + µwεi ≥ wj + µwεj, j = 1...n} .

Using the fact that εi are double exponentially distributed:

Pwi =
exp

³
wi
µw

´
P

j=1...n
exp

³
wj
µw

´ , i = 1...n. (11)

Therefore, the choice probabilities for the labor market have a logit type. Note
that all the workers will select the job which offers the largest wage if the
heterogeneity parameter µw is zero. Otherwise, a worker may accept a reduced
wage in order to work for a firm which best fits his preferences. The average
expected number of workers in subcenter i is: NPwi .

3.2 Consumer choices

When a household is choosing in which subcenter k to shop, all the terms
(wi + µ

wεi) connected with the choice of employment are identical and therefore
do not affect their choice. In this case, we can rewrite the conditional utility of
shopping in k given the choice of workplace i as (see 8) :

U
k|i = Ωi − pk + µdεk,

where Ωi = Ω + wi + µwεi. The probability that a household located in the
center patronizes subcenter k is P dk|i = Pr ob

©
Uk|i ≥ Ul|i , l = 1...n

ª
. As before,

the choice probability P dk|i is independent of the choice i and denoted by P
d
k .

We have P dk = Pr ob
©
−pk + µdεk ≥ −pl + µdεl, l = 1...n

ª
. With the double

exponential distribution, we get:

P dk =
exp

³
−pk
µd

´
P

l=1...n

exp
³
−pl
µd

´ , k = 1...n. (12)

3.3 Market clearing conditions

Recall that every household consumes one unit of the differentiated good and
that the production of every unit of the differentiated good requires one unit of
labour (provided by one household). Assuming that the labour market clears
(wages are flexible), the fraction of workers which decides to work at subcenter i
must be equal to the fraction of shoppers which patronize subcenter i, whatever

8



the wages and the prices, Thus Pwi = P
d
i , where P

w
i is given by (11) and P di is

given by (12). We get a relation between the price pi and the wage wi set by
Firm i:

exp
³
wi
µw

´
P

j=1...n
exp

³
wj
µw

´ = exp
³
−pi
µd

´
P

j=1...n
exp

³
−pj
µd

´ . (13)

Therefore, the demand for the differentiated product sold in subcenter i is
Di = NP

d
i = NP

w
i .

4 Equilibrium without congestion

4.1 The profit function

We look for a symmetric Nash equilibrium in prices and wages between firms
(or subcenters). The strategic variables of subcenter i are wi and pi. Given the
market clearing condition (13), the choice of wi determines the choice of pi and
vice-versa.
Consider subcenter i which takes all other wages and prices as given. Since

the LHS of (13) is strictly increasing in wi and the RHS of this equation is strictly
decreasing in pi, there is a one to one relation between wi and pi,the other prices
and wages being fixed. Let pi = fi(wi). Note that fi(wi) = f(wi, w−i, p−i)
where w−i and p−i are the vectors w and p with the ith component missing.
We shall use the following result:

dfi(wi)

dwi
= −

Pw
i (1−Pw

i )
µw

Pd
i (1−Pd

i )
µd

= − µ
d

µw
< 0. (14)

This expression is negative since when a firm raises its wage, it increases the
number of workers hired. In order to be able to sell the additional production,
a firm needs to reduce its prices. The price reduction needs to be larger when
µd is larger because then the consumers are more loyal to their ideal product.
Conversely, the price reduction is smaller when µw is larger, since in this case
the workers are more loyal to their preferred workplace and less amenable to
changing jobs for a wage increase.
Given the relation between price and wage of Firm i, the profit of subcenter

i only depends on a single strategic variable (we select the wage as the strategic
variable). In this case πi(wi, w−i, fi (wi) , p−i) = eπi(wi, w−i, p−i) with:

eπi(wi, w−i, p−i) = [fi(wi)− wi − c]NPwi − (F + S) , (15)

where we use the identity Di = NPwi , and where c = c
1 + αht.

9



4.2 Short-run equilibrium

Subcenters are competing in wages and prices in a non-cooperative Nash game.
We wish to find the candidate symmetric equilibrium in prices and wages de-
noted by (pe, we). As shown above, the subcenters compete in either wage or
price. We consider here that the strategic variable is the wage, wi.
The best reply of subcenter i to the wages and prices set by the other sub-

centers is:

deπi(wi, w−i, p−i)
dwi

=

½µ
dfi(wi)

dwi
− 1
¶
+ (fi(wi)− wi − c)

(1− Pwi )
µw

¾
NPwi = 0.

(16)

Note that at the symmetric candidate equilibrium Pwi = P di = 1/n and
recall that dfi(wi) /dwi = −µd /µw Therefore (16), set at the symmetric candi-
date equilibrium, leads to:

−
µ
µd

µw
+ 1

¶
+ (pe − we − c) (n− 1)

nµw
= 0

We prove in Appendix A that the candidate equilibrium is a Nash equilibrium.
Therefore:

Proposition 1 In the absence of congestion, there exists a unique symmetric
Nash equilibrium in prices and wages given by:

pe = c+ we +
¡
µd + µw

¢ n

(n− 1) . (17)

The equilibrium markup pe−(c+ we) is increasing with product heterogene-
ity and with job heterogeneity. The role of product heterogeneity is well known
(see [8]. The role of job heterogeneity is new: more job heterogeneity means that
workers are also interested in other dimensions than the wage they earn (such
as the proximity of the gym facility or the charms of the boss) so that wage
differences become less important and this increases the profit margin. Interest-
ingly, both types of heterogeneity work in the same direction and are additive.
As in the standard model, the markup decreases when more firms compete in
the market. However, the markup remains bounded away from zero as n→∞,
as in the symmetric monopolistic competition models à la Chamberlin.

4.3 Long-run equilibrium

The equilibrium profit (see (15)) at the symmetric equilibrium is

πe = [pe − we − c] N
n
− (F + S)

or after substitution of the equilibrium price levels (see Proposition 1):
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πe =
¡
µd + µw

¢ N

(n− 1) − (F + S) .

The profit is a decreasing function of the number of subcenters: further entry
drives profits to zero.
In the long run, we assume that there is free entry or exit of subcenters. The

long run equilibrium is such that the profit of each subcenter is zero (we neglect
integer problems). The long-run nf number of subcenters is:

nf = 1 +
¡
µd + µw

¢ N

F + S
> 1. (18)

At the free entry equilibrium, the consumption gf of the homogeneous good
is:

gf = g (1)−
¡
µd + µw

¢ (F +K)
(F + S)

,

where g (1) is given by equation (2). Less homogeneous good is consumed when
the product differentation and/or the job heterogeneity increases since both
factors increase profit margins and with free entry, also the number of firms.
In this case, a larger number of firms increases the resource cost needed to
produce the differentiated good, n (F +K), and therefore decreases the amount
of residual consumption of the homogeneous good.

5 Optimum without congestion

5.1 The welfare function

We now compute the first-best optimum. The welfare function can be derived
from the indirect utility function (5) in the symmetric case (all subcenters are
of equal size). At symmetry, the utility of an individual who works at i and
purchases from subcenter k is (see equation (5)): Uik = [Ωo + (w − p)o]+µwεi+
µdεk.Note that, at the symmetric optimum, (p− w)o = c so that:

Ωo = (−αwt− β) + θ (1− β) + h− αdt− n

N
(F + S)− T

Recall the government budget equation is nS +NT = nK. Then:

Ωo + (w − p)o = Ψ− n

N
(F +K) , (19)

where:

Ψ = −β + θ (1− β) + h− c1 −
¡
αh + αd + αw

¢
t. (20)
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The welfare function is defined as the expected maximum utility: W (n) =

E

∙
max
i,k
Uik

¸
. This has the property of a welfare function and satisfies Roy’s

identity (see Anderson, et al. 1992). The first—best optimum in the short run
(exogeneous number of subcenters) and in the long run are characterized by:

Proposition 2 In the absence of congestion, the short-run first-best optimum
welfare function is given by:

W (n) = Ψ− n

N
(F +K) +

¡
µd + µw

¢
log (n) , (21)

where Ψ is given by 20. The long-run first-best optimum number of subcenters
is

no =
¡
µd + µw

¢ N

(F +K)
. (22)

Proof. Using equation (19) and the i.i.d. property, we get

W (n) = E

∙
max
i,k
Uik

¸
= Ψ− n

N
(F +K) +E

∙
max
i,k

(µwεi)

¸
+E

∙
max
i,k

¡
µdεk

¢¸
.

.
Recall that with the double exponential distribution: E

h
max
i
εi

i
= ln (n), Then:

W (n) = Ψ− n

N
(F +K) +

¡
µd + µw

¢
log (n) .

This function is concave in n. The optimal number of subcenters, no is obtained
by differentiation of W (n) where n is treated as a real number.
At the optimum, the consumption of the homogenous good is go = g(no) or

go = θ − c1 −
¡
αw + αd + αh

¢
t−

¡
µd + µw

¢
= g(0)−

¡
µd + µw

¢
.

Where g(n) is given by 2. Note that this expression is independent of the fixed
costs F and K. The comparative statics on the first-best number of subcenters
and on the consumption of the goods are left to the reader.

5.2 Equilibrium versus optimum number of subcenters

We can now compare the equilibrium and the optimum numbers of subcenters.
Note that:

(p− w)e = (p− w)o +
¡
µd + µw

¢ n

n− 1 ,

that is to say firms charge a price (net of wage) above the socially optimal
level (c). However the excessive price level will not induce distortions in the
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economy in the short run since the demand for the differentiated goods and
the differentiated labour supply are inelastic. We show below that the market
power of firms induces excessive entry in the long run.
If firms pay the total cost of the road infrastructure to their subcenter (S =

K), the equilibrium number of subcenters is larger than the optimum one (nf >
no), where nf is given by (18), and n0 is given by (22): nf = 1+

¡
µd + µw

¢
N

F+K
and

nf = 1 + no. (23)

[8] showed that monopolistic competition in a product market with a logit model
always generates an overentry of exactly one firm. We generalised this result
to a general equilibrium context. The intuition for this result is that the intro-
duction of an heterogeneous job market corresponds to an additional source of
heterogeneity. However, since the labour and product market are related, the
total degree of product heterogeneity stays about the same and the number of
firms is too large by exactly one unit as in the case where there is only product
differentiation.
Assume that 1 ≤ no, that is (F +K) /N ≤

¡
µd + µw

¢
.5 In this case, since

there is excessive entry, there exists a level of tax which can decentralize the
social optimum. The optimal tax is given by:

S =
noK + F

(no − 1) . (24)

Therefore the firm should optimally be charged more than the price of the
infrastructures (since S > K). We have.

Proposition 3 In the absence of congestion, in a free-entry Nash equilibrium,
the first-best optimum can be decentralized by a levy per firm larger than the
infrastructure cost per subcenter. If the levy covers exactly the infrastructure
cost per subcenter,at equilibrium there is one subcenter too many.

6 Equilibrium with congestion

6.1 Model setting

We have assumed till now that the travel time on road i, ti, is constant. From
here on we drop this assumption so that the travel time cost on road i is an
increasing function of the number of users on this road. Each road is occupied
by the shoppers and by the commuters as well as by the trucks that deliver the

5The minimum number of firm at the optimum is equal to one, since each consumer has
to buy a product.
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intermediate input from the center to the subcenters. The total usage on road
i, expressed in car equivalent, is:

ρi = N
£¡
καh + αd

¢
P di + αwPwi

¤
. (25)

where κ represents the car equivalent of a truck carrying the homogenous good.
The α0s can also to some extent take into account the difference in timing of
the three types of road use.
We assume that the relation between travel cost, ti, and total activity on

the road i, ρi, is given by:

ti = t+ δ
ρi
s

(26)

where s is the capacity of the road measured in car equivalent (for the time
period considered in the model), and δ is a coefficient that translates waiting
time and schedule delay costs in equivalent queueing time. The first term rep-
resents the transport time in the absence of any congestion. The second term
in (26) represents the variable travel cost. This expression is the reduced form
of the bottleneck model [4] where road users decide on their trip timing (with
no congestion pricing).
Recall the market clearing condition (13): P di = P

w
i . Equation (26) reduces

to:

ti = t+ δ
N

s
αP di = t+ δ

N

s
αPwi , (27)

where α ≡ καh + αd + αw. In the symmetric case, Pwi = P di = 1/n and the
travel cost, denoted by te , is the same on all routes:

te = t+
δ

n

N

s
α. (28)

6.2 Demand for goods and supply of labour

With congestion, the indirect utility of a consumer working at i and consuming
at k is Uik = Ωik + wi − pk + µwεi + µdεk, where:

Ωik = (−αwtk − β) + θ (1− β) + h− αdi ti + (1 /N )
X

i=1...n

πl − T.

Using the same notation as in the non-congested case, this expression can we
written as:

Uik = Ω− ΛwPwi − ΛdP dk + wi − pk + µwεi + µdεk, (29)

where Ω is given by equation (9), Λw = αwδNs α and Λ
d = αdδNs α.
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As in the no-congestion case, we need to compute the derivative dg(wi) /dwi ,
where pi = gi (wi) (see (14) in the non-congestion case). With congestion, the
probability that a consumer purchases good i is:

P dk =
exp

³
−pk−ΛdPd

k

µd

´
P

l=1...n

exp
³
−pl−ΛdPd

l

µd

´ . (30)

This equation reduces to (12), when the variable travel time is zero or in
the symmetric case (P dk = 1/n). This is an implicit equation since the travel
time on route k depends on the total traffic on route k, which is an increasing
function of P dk (see equation (27)).
Since the travel costs depend on congestion, they cannot be assumed to be

symmetric. Indeed, when a firm deviates from a symmetric candidate equi-
librium, it will affect road use and travel costs. For example, a price cut in
subcenter i will increase the level of demand, labour supply and intermediate
inputs and therefore the level of congestion and the travel cost ti.
Using the implicit function theorem, we get:

dP dk
dpk

= −
1
µd
P dk
¡
1− P dk

¢
1 + Λd

µd
P di
¡
1− P di

¢ ,
Therefore, in the symmetric case P di = 1/n :

dP di
dpi

|Sym= −
1
µd

1
n

¡
n−1
n

¢
1 + Λd

µd
1
n

¡
n−1
n

¢ < 0. (31)

Note that the price sensitivity in the symmetric case decreases as the impact of
congestion measured by Λd (that contains αd and α) gets larger. Congestion
decreases the incentive to cut prices, since a lower price implies more customers,
more workers and more intermediate deliveries and therefore more congestion,
which both reduce the benefit of the initial price cut. In fact the initial price
cut is compensated partially by congestion so that the firm is exchanging a
lower profit margin for more time losses rather than for more customers. With
an extremely high level of congestion (Λd → ∞) the demand for one specific
variety is inelastic.
Similarly, for the labour market we have:

Pwi =
exp

³
wi−ΛwPw

i

µw

´
P

j=1...n
exp

³
wj−ΛwPw

j

µw

´ > 0. (32)

This expression reduces to (11) when the variable travel time is zero: when
there is no congestion. At a symmetric situation:
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dPwi
dwi

|Sym=
1
µw

1
n

¡
n−1
n

¢
1 + Λw

µw
1
n

¡
n−1
n

¢ (33)

The market clearing condition Pwi − P di = 0 (see (13)) has a unique solution
pi = gi(wi) given that dPwi /dwi > 0 and dP

d
i /dpi < 0 . We have:

dpi(wi)

dwi
|Sym= −

µd

µw

1 + Λd

µd
1
n

¡
n−1
n

¢
1 + Λw

µw
1
n

¡
n−1
n

¢ . (34)

There are two limiting cases of interest. First, without congestion, this ex-
pression reduces to equation (14). This case can also be obtained in the limit
where the product and the labour market diversities are very large compared
to congestion ( µd >> Λd and µw >> Λw). Second, when congestion costs are
present and very high compared to the product and labour market diversities
(Λd >> µd and Λw >> µw), then:

dpi
dwi

|Sym= −
Λd

Λw
− αd

αw
.

In this case the wages and the prices are solely driven by the level of congestion,
since the workers and the shoppers select their destination only as a function of
variable travel times.

6.3 Short run equilibrium

We study first the equilibria in the absence of government interventions: no
congestion pricing, no limit on the number of centers and an exogenous road
capacity.
We know that the marginal cost is ci = c1 + αhti, where ti = t + δ ρis , and

road usage ρi is given by (25). Since the travel time ti is variable, the marginal
cost becomes variable and endogenous. We have

ci = c
1 + αh

³
t+ δ

ρi
s

´
= c+ ΛhPwi ,

where Λh = αhδNs α (using equation (27)), and where we have defined c =
c1 +αht. This means that the firm bears directly, via the intermediate delivery
cost, part of the congestion costs it creates. Using the market clearing condition,
the profit of Firm i is

eπi(wi, w−i, p) = £gi(wi)− wi − c− ΛhPwi )¤NPwi − (F + S) . (35)

The first-order condition for optimal wage (and price) setting is: deπi/dwi = 0
or
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∙
dgi(wi)

dwi
− 1
¸
Pwi +

£
gi(wi)− wi − c− 2ΛhPwi

¤ dPwi
dwi

= 0.

Substituting the expressions (34) and (33), the first-order condition, at the
symmetric candidate equilibrium reduces to:h

µd

µw

³
1 + Λd

µd
1
n

¡
n−1
n

¢´
+ 1 + Λw

µw
1
n

¡
n−1
n

¢i
−
¡
pe − we − c− Λh 2n

¢
1
µw

n−1
n = 0.

(36)

Therefore, the candidate equilibrium price is given by the solution of (36):

pe = c+
Λh

n
+ we +

¡
µd + µw

¢ n

n− 1 +
δ

n

N

s
bα2, .

where bα =pα (αh + αd + aw)6and where Λh = αhδNs α.

Proposition 4 With congestion but without congestion pricing, there exists a
unique symmetric Nash equilibrium in prices and wages given by:

pe = c+
Λh

n
+ we +

¡
µd + µw

¢ n

n− 1 +
δ

n

N

s
bα2 (37)

Proof. See Appendix C.
Note that without congestion, the equilibrium price reduces to equation (17).

With congestion, there are two additional positive terms in the RHS. First the
marginal production cost is now c+Λh /n +we and contains a congestion term
translating the increased cost of intermediate deliveries. The second term is
related to the congestion created by shopping, commuting and intermediate
delivery traffic and represents the increased market power effect.
The markup (pe − c− Λh /n − we) now has two components. The first one

is the product/wage heterogeneity term (proportional to (µd + µw)), as in the
non-congested case. The second term, represents the externality due to conges-
tion7 As discussed, congestion reduces the incentive to cut prices, and therefore,
increases equilibrium prices. This may explain why shops often lobby against
policy measures which aim to improve traffic conditions in general although a
firm individually will be in favour of local improvements of traffic, i.e. measures
which improve the accessability to.workers and consumers.
The short run equilibrium profit (see 35 and 37 is:

πe(s) =
¡
µd + µw

¢ N

(n− 1) +
δ

s

µbαN
n

¶2
− (F + S) (38)

which is an increasing function of the congestion level.
6Note than when κ = 1, bα = α.
7The total cost is TC = αNte = αN

³
t+ δα N

sn

´
. Therefore the externality, which is the

difference between the marginal cost and the average cost is equal to: δα2 N
sn
= α (te − t) .
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6.4 Long run equilibria

For a fixed level of road capacity s, the free entry equilibrium with congestion
denoted by nf (s) solves πe = 0. In order to study the free entry equilibrium, we
need to specify the fixed levy per firm S. As the default value, we use S = K.
This leads to a cubic equation, and its solution is not too illuminating. The
profit πe(s) is a decreasing function of the number of subcenters n. Given
that the equilibrium profit with congestion is larger than without, the free en-
try equilibrium with congestion involves more firms than without congestion:
nf (s) > nf .
We can find a lower bound (no(s) < nf (s)) and an upper bound for the

solution of (38). As lower bound, we use no (s) that is the solution of the
following equation:

¡
µd + µw

¢ N

no (s)
+

δ

s

µ bαN
no (s)

¶2
− (F +K) = 0. (39)

We will show in the next section that no (s) is the optimal number of firms for
given road capacity and in the absence of congestion charging. Observe that
πe (no) > 0, no (s) < nf (s). So that equation 39 has a unique positive root:

no (s) = no +
no

2

⎛⎝sµbαN
no

¶2
4δ

s (F + S)
+ 1− 1

⎞⎠ , (40)

where no = (µd+µw)N/ (F + S), represents the optimum number of subcenters
without congestion (see equation (22)) provided that the firm pays the road
infrastructure cost (S = K).
As upper bound for nf (s) , we use no (s) + 1. We have:

πe (no (s) + 1) =
¡
µd + µw

¢ N

no (s)
+

δ

s

µ bαN
no (s) + 1

¶2
− (F +K) .

Subtracting (39) from this equation, we get:

πe (no + 1) =
δ

s
(bαN)2Ã 1

(no + 1)2
− 1

(no)2

!
< 0.

As a consequence, nf (s) < no (s) + 1.
Summarizing, for given road capacity, in the absence of road pricing and for

an infrastructure charge on firms S = K, we have an upper and lower bound for
the equilibrium number of subcenters where no(s) denotes the optimal number
of subcenters.
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no(s) < nf (s) < no(s) + 1; nf < nf (s) (41)

Therefore, the equilibrium number and the optimum number of subcenters
increases with congestion.

7 Optimum with congestion

7.1 Optimum number of subcenters with fixed road ca-
pacity and no congestion charging

The policy maker has three types of instruments available to improve the Nash
equilibrium. He can influence the number of subcenters, he can optimise the road
capacity and he can implement congestion charging. The three instruments are
to some extent substitutes and it may be necessary to use them all to achieve
the first best. We first analyse the gains we can achieve by regulating only the
number of subcenters. Next we add to this first instrument the optimisation of
road capacity. In a final section we discuss the use of congestion charging.
We have the same expression for the welfare function as in the case without

congestion (see equation (21). However, now the transportation costs are no
longer constant since they depend on the number of cars (and trucks) on the
roads and on the road capacities. Using the definition of transport costs, we
rewrite equation (21) in a way that separates the variable transport costs from
the other costs:

W (n, s) = Ψ− n

N
(F +K) +

¡
µd + µw

¢
log (n)− (bα)2 δ

n

N

s
, (42)

where Ψ is given by(20)). We first consider the long-run equilibrium assuming
that the size of each road is determined administratively and not optimised (for
example, each road has two lanes inbound and two lanes outbound).
For the first-best optimal number of subcenters, we consider the first-order

condition dW (n, s) /dn = 0. It leads to a unique maximum no(s) which solves:

¡
µd + µw

¢ N

no(s)
+

δ

s

µ bαN
no(s)

¶2
− (F +K) = 0.

This is the same equation as (39). As a consequence, the optimal number of
subcenters corresponds to the lower bound proposed for the equilibrium number
of subcenters, so that there is excess entry: no (s) < nf (s). The optimal number
of subcenters increases with the level of congestion and no < no (s) where nois
the optimal number of subcenters in the absence of congestion. Note also that
dnf (s)
ds < 0.
Proposition 5 shows that, at the long run free entry equilibrium and at the

optimum, congestion induces more (and smaller) subcenters. Excessive entry
remains the norm but overentry still occurs and there is at most one subcenter
too many.
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Proposition 5 Assume fixed road capacity and no congestion charging. In
the long run, congestion increases the equilibrium and the optimal number of
subcenters. If the fixed levy on firms exactly covers the infrastructure cost per
subcenter, the equilibrium number of firms is never smaller than the optimal
number of firms and there is at most one subcenter too many.8

7.2 Optimum number of subcenters and optimum road
capacities without road pricing

Assume now that the government can also determine the size of the roads. We
assume a linear construction technology. In this case, we can solve for the
optimum capacity, for a fixed number of subcenters.

W (n, s) = Ψ− n

N

¡
F + ξ2s

¢
+
¡
µd + µw

¢
log (n)− (bα)2 δ

n

N

s
, (43)

where the infrastructure cost isK = ξ2s, where ξ2 represents the unit infrastruc-
ture cost.9 Higher transport capacity has two impacts in the economy. First, it
decreases the transportation cost (since there is congestion) and second it takes
away resources.
For n fixed, the optimal capacity solves: ∂W (n, s) /∂s = 0, and this leads

to:

so(n) =
bαN
nξ

√
δ. (44)

In the optimum, the total construction cost per individual is independent of the
number of subcenters and is equal to:

CC =
n

N
ξ2so(n) = bαξ√δ.

The congestion cost for optimised capacity is bαξ√δ; and therefore equal to the
construction cost per individual.

Proposition 6 When road capacities are optimally chosen, the construction
technology is linear and when there is no congestion charging, the average con-
gestion cost per individual is equal to the construction cost per individual ξ

√
δ.The

total construction cost is independent of the number of subcenters.

We then have for the welfare level:

cW (n) =W [n, so(n)] = Ψ− nF
N
+
¡
µd + µw

¢
log (n)− 2bαξ√δ. (45)

8Of course, as in the non-congested case, there exist an optimal level of tax S which
decentralizes the social optimum.

9Basically this amount to assume that the cost to construct two lanes is twice the cost of
constructing one lane. In a more refined version of the model the cost would be concave.
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The optimum number of subcenters in the absence of road pricing but with
optimal road capacity bno solves: dcW (n) /dn = 0 or

bno = ¡µd + µw¢ N
F
. (46)

Note that, as a consequence no < bno,where no is given by 22 .In the long run
and when the roads are optimised, the number of subcenters is larger with than
without congestion. Without congestion, the incentive to have more sub-centers
is to benefit from more product and more labour variety. With congestion,
there is an additional incentive to deconcentrate shopping and working place,
since more centers tend to decrease overall congestion levels. As extending road
capacity is costly, it remains optimal to have more subcenters in the case of
optimal road capacity. Note that if the government could decide the number
of subcenters given that firms will compete (in the goods and in the labour
market), it will again choose bn. In this case, the welfare level will be the same
as in the case where the firms are managed by a central authority subject to
the constraint that they have to break even.

7.3 Optimum number of subcenters and road capacities
in the presence of congestion charging

Before discussing the effect of charging instruments it is useful to remember that
we model congestion by using the bottleneck model. In the bottleneck model
the different road users reach an equilibrium distribution of their trips over time
when the sum of queueing and schedule delay costs are equal. When there is no
congestion charging, there is queueing and this is a pure inefficiency as a perfect
rearranging of users over time can eliminate all queueing costs.
We will discuss two congestion charging instruments.The first type of toll is

a fine toll that can be perfectly differentiated over the full period considered.
The second type of instrument is a one step toll. A one step toll means that
the relevant period can be subdivided into two periods: one period with a fixed
toll and one period without a toll. This is a much simpler but also a socially
less performant instrument than a fine toll. We could consider other charging
instruments (cordon tolls or parking levies that are not time differentiated) but
these can in our simple model be reduced to head taxes per consumer or to a
levy per firm. Fixed levies are not able to change the distribution over time of
trips and are therefore not efficient in reducing congestion. They can only affect
the total level of demand for the differentiated good but this is fixed.
With the bottleneck congestion model [4], the total variable travel cost per

individual (bα)2 δ
n
N
s can be reduced by a factor 2 when an optimal fine toll is used

and by a factor 4/3 when an optimal one step toll is used. With an optimal fine
toll, there are only schedule delay costs left as queueing is by definition inefficient
and therefore eliminated. The average congestion charge that corresponds to
the fine toll equilibrium will be equal to the average schedule delay cost. With
an optimal coarse toll, queueing is not completely eliminated.
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Introducing congestion pricing via a fine toll, will affect the mark-ups in two
ways. First via the cost of intermediate deliveries and second via the margin on
consumers as this depends on congestion too. The trucks delivering intermediate
goods to firms will now pay, on average, a congestion charge but they will on
average also experience less congestion. The net effect is zero in the case of
the fine toll, so optimal congestion charges do not affect the cost to the firm of
intermediate deliveries. The second effect is clearly negative: congestion pricing
decreases the mark-up of firms since the congestion protection of the market
is largely eliminated: where as decreasing the price attracts new customers
and thus more congestion but this congestion is taken care of by the fine toll.
Alltogether, the profit margins are smaller with fine tolls than without tolling.
Using the same arguments as for Proposition 4, we have:

Proposition 7 Assuming fixed road capacity and optimal congestion pricing,
there exists a unique symmetric Nash equilibrium in prices and wages where the
producer price and wage is given by:

pecp = c+
Λh

n
+ wecp +

¡
µd + µw

¢ n

n− 1 +
δ

2n

N

s
bα2 (47)

and the average consumer price including toll is:

pecp + αd
δ

2n

N

s
α (48)

while the average net wage after deduction of the toll is:

wecp − αw
δ

2n

N

s
α (49)

In this analysis, it is assumed that the firms anticipate the change in the
toll level when they decide to change their price. This rational behavior may be
questioned. Alternatively, one can assume that the toll level is not changed in
reaction to price changes.
Proposition 7 implies that, for any given road capacity and any given number

of firms, profit margins will be lower with road pricing. As a consequence the
number of subcenters that will exist in the long run will be lower with road
pricing than without road pricing.
Assume the government can also determine the size of the roads and price

them optimally. Maximising welfare with respect to road capacity s, taking into
account that travel costs are reduced by a factor 2 with an optimal fine toll, we
obtain:

socp(n) =
bαN
nξ

r
δ

2
.

So that in the optimum, the total construction cost per individual is independent
of the number of subcenters and is equal to:
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CCcp =
n

N
ξ2socp(n) = bαξrδ

2
.

Therefore the self-financing result of Proposition 6 holds also with optimal
road pricing. Road pricing reduces the total construction costs by a factor

√
2

compared to the no toll equilibrium.

8 Summary and a numerical illustration
We start by summarising the results obtained so far. Because the total demand
for the differentiated good is fixed, only two parameters matter for the welfare
analysis: the number of firms and the total transport costs. The total number of
firms depends on the profit margin of the firms in the Nash equilibrium. When
there is no congestion, in the equilibrium there is always one subcenter too many
(see first line in Table 1). The equilibrium and optimum numbers of subcenters
are always (increasing) linear functions of the same parameters A and A : A =¡
µd + µw

¢
N (F +K)/ and A =

¡
µd + µw

¢
N/F ). More heterogeneity (on the

product or labour market) leads to a higher optimal number of subcenters.
Higher fixed production costs, lead to a lower optimum number of subcenters.
When the road size cannot be optimized, the public infrastructure cost also
points to a lower optimal number of subcenters.
When capacity is not infinite and congestion may occur, we need to distin-

guish the case with or without road capacity optimisation and with or without
optimal road tolling. We discuss first the case with given road capacity (columns
1 and 2 in Table 1). Without tolling and given road capacity, the short-run profit
margin is always larger in the presence of congestion so that the free-entry equi-
librium always entails more subcenters than in the situation without congestion
(see second line in Table 1). The free entry equilibrium with congestion has at
most one subcenter too many. Optimum congestion pricing can reduce but not
eliminate the additional profit margins due to congestion. This explains that
in equilibrium and with road capacity given, the equilibrium number of firms is
highest if there is no congestion pricing (see first column in Table 1).
Any number of subcenters can be implemented by choosing the right fixed

levy per firm. For the free-entry equilibrium computed in Table 1, we have
assumed that the fixed levy equals the infrastructure costs per firm (firms are
then responsable for the construction of the infrastructure). As can be seen in
Table 1, we need a fixed levy per firm higher than the infrastructure costs to
obtain the optimum number of subcenters. When the planner can optimally
choose the road capacity, she compares the welfare cost of congestion with the
marginal cost of capacity expansion. Without congestion tolling, the benefit of
road expansion will be larger than with road pricing. Indeed, in the case of fine
tolls, the optimum road capacity will be smaller by a factor 1/

√
2.

TABLE 1: Long-Run optimum and equilibrium number of firms in the sym-
metric case under different congestion and policy assumptions
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Capacity given
LR equilibrium

Capacity given
LR optimum

Optimum capacity
LR optimum

No cong.
no toll

nf = 1 +A no = A no = A

Cong.
no toll

nf < nf (s)
n(s) ≤ nf (s)

nf (s) ≤ no(s) + 1
no < n(s)

no = A

s(n) = bαN
nξ

√
δ

Cong.
fine toll

nfcp(s) < n
f (s)

nocp < ncp(s)
ncp(s) < n(s)

n = A0

s(n) = bαN
nξ

√
δ√
2

with

A =
¡
µd + µw

¢ N

F +K

.A =
¡
µd + µw

¢ N
F

The symmetric equilibria can be illustrated numerically with a simple example.
Consider a city center with 1 million inhabitants who all work 8h a day, consume
one unit of the differentiated good per day and work one hour per day for the
production of the differentiated good.
The price of non-differentiated labour is set to one and taken as numéraire.

The individuals make one shopping and one commuting trip every 10 days to
one of the subcenters that produces and sell the differentiated good. We assume
also that one standard truck delivers enough intermediate goods to produce 50
units of the differentiated good and that one truck has the same congestion effect
as 2 cars. By assumption, the fixed set-up cost per firm equals 75 000 units and
a subcentre also requires a fixed public input of 75 000 units. One unit of the
differentiated good requires an intermediate input that can be produced using
0.1 units of homogenous labour.10

All individuals spend half an hour in transportation per day if there is no
congestion (note that this includes the cost of renting the car). When there is
congestion we assume that, without tolls residents’ transport costs increase by
50% in the free entry equilibrium (without tolls, taxes and capacity expansion).
For δ,the time cost parameter in the bottleneck model, we use the estimate of
[4] and choose a value of 0.2425 - this is to be understood as a travel time cost
and means that queueing and schedule delay costs are 24% of the wage. We
assume that the traffic is evenly distributed over three identical time periods
(morning peak, lunch peak and evening peak). Finally, we assume in the base
case that µd and µw both equal 0.2. Table 2 illustrates for these base case
values the number of subcenters (1) when there is no congestion, (2) when
there is congestion but no tolls, and (3) when there is congestion but first-best

10This means that each inhabitant works about half an hour per day in order to produce
and maintain the roads, the infrastructure in the subcenters and the production equipment.
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congestion pricing. In this table, we report results as real numbers (even if the
number of firms can also be treated as integer). In the absence of congestion, we
have 3.7 subcenters in the free entry equilibrium. We report the gross margin
p−w and not p and w separatly since w can be chosen freely. This margin will be
higher when the benefits of variety (for products and for workplaces) gets larger.
If there is no congestion, the optimal number of subcenters equals the free entry
equilibrium number minus one (2.7) and the welfare loss per individual due to
the excessive number of subcentres is small: it equals 0.023 to be compared
with an expenditure on differentiated goods of 1.62 and a total welfare level of
10.565. With congestion, we see that the gross margin increases and the free
entry number of firms increases from 3.7 to 5.014.The introduction of congestion
results in a lower welfare level: (- 0.330). One can use three policies to improve
the free entry equilibrium with congestion. The first is to limit the number of
subcenters. Using fixed fees on firms that exceed the public infrastructure costs,
this policy would result in a lower number of firms: 4.35 rather than 5.014. The
welfare gain of this type of policy is also very small: 0.004. A second policy that
can be used is to combine a different number of firms and a different road size
(by appropriate taxes). The optimal policy would, in this case, result in slightly
more subcenters (5.333) but smaller roads. (94% of the road size in the free
entry equilibrium). Recall that the road size in the free entry equilibrium with
congestion was by assumption optimal for this equilibrium number of firms.
The welfare gain of being able to adjust the number of subcenters becomes
much larger when the road size can also be adjusted: the welfare gain compared
to the free entry equilibrium is 0.124. A third policy, that can be used is to
introduce road pricing. This will again decrease the number of subcenters: in
the free entry equilibrium only 4.407 firms can survive leading to a welfare gain
of 0.149. We can combine the three policies in different ways. When we add to
road pricing, the possibility of controlling the number of subcenters, we have a
smaller number of subcenters: 3.78 and this means a slightly higher welfare gain
than road pricing only: 0157 instead of 0.149. When we add on top of these two
policies the optimisation of the road size, it is again optimal to have a larger
number of subcenters (5.333) and the optimal road size is now only 67% of what
is was in the free entry equilibrium. Combining the three policies generates the
highest welfare gain: 0.272.

INSERT TABLE 2 about here

Many sensitivity studies are possible. We chose to increase the benefit of
variety parameters µd and µw from 0.2 to 0.6. Table 3 reports all the results for
this case. We see in the equilibria a much higher number of firms (9 rather than
3.7 in the absence of congestion) and a much smaller increase in the equilibrium
number of firms when we introduce congestion (again calibrated such as to add
50% to the travel time). The number of firms increases from 9 to 10.523(a 17%
increase) while for the smaller µ values reported in the base case, the equilib-
rium number of firms increases by 77% when we introduced congestion. The
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reason is that the influence of congestion on the profit margins becomes much
smaller compared to the benefit of variety. The relative contribution of the three
policy instruments is different than in the base case. The control of the number
of subcenters is an ineffective policy instrument with very small welfare gains:
ranging from 0.004 in the case with congestion to 0.009 in the case without con-
gestion. The introduction of road pricing again generates an important welfare
gain: 0.140. In this case, the most important policy instrument is the control
of the size of the roads combined with the control of the number of subcenters.
This policy that induces many more subcenters (16 rather than 10) and much
narrower roads (46.5% of the base case) leads to the most efficient equilibrium.
We have studied so far the symmetric model which allows us to derive ana-

lytical results. It is straightforward to write down the non-symmetrical version
where costs, quality and transport costs are different for the different subcen-
ters. In this case it is necessary to use numerical approaches based on variational
inequalities to analyse the properties of the solutions.

INSERT TABLE 3 about here
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Free-entry equilibrium: ne 
 No congestion Unpriced congestion  Congestion & fine 

toll  
ne 3.7 5.014 4.407 
pe - we 0.54 0.66 0.65 
Welfare [hr] 10.565 10.235 (reference) 10.384 (reference) 
s (index) 26,309 ∞ 100 100 

Optimized number of subcenters: n°(s); s = 100 
n°(s) 2.7 4.35 3.78 
Welfare gain 0.023 0.004 0.008 

Optimized number of subcenters n° and optimized road size s° 
s° (index)  94 67 
n°  5.333 5.333 
Welfare gain wrt 
“reference” 

 0.124 0.123 

 
Table 2 Numerical illustration for the Base case parameters: µw = µd = 0.2. 
 
 

Free-entry equilibrium: ne 
 No congestion Unpriced congestion  Congestion & fine 

toll  
ne 9 10.523 9.811 
pe - we 1.33 1.46 1.45 
Welfare [hr] 11.882 11.588 (reference) 11.728 (reference) 
s (index) 12,536 ∞ 100 100 

Optimized number of subcenters: n°(s); s = 100 
n°(s) 8 9.83 8.99 
Welfare gain 0.009 0.004 ~ 0 

Optimized number of subcenters n° and optimized road size s° 
s° (index)  66 47 
n°  16 16 
Welfare gain wrt 
“reference” 

 0.629 0.631 

 
 
Table 3 Numerical illustration for the Base case parameters: µw = µd = 0.6. 
 



APPENDIXES

A Proof of Proposition 1
It suffices to show that the profit function is quasi-concave. Since there exists a
candidate equilibrium, quasi-concavity is sufficient to guarantee that this candi-
date equilibrium is Nash. We prove below that at any extremum, the function
is concave.
At any extremum, the first-order condition is satisfied:

1

N

deπi
dwi

=

∙
−
µ
µd

µw
+ 1

¶
+ (fi(wi)− wi − c)

(1− Pwi )
µw

¸
Pwi .

The corresponding second-order condition is:

1

N

µw

Pwi (1− Pwi )
d2eπi
dw2i

¯̄̄
deπi
dwi

=0

= −2
µ
µd

µw
+ 1

¶
+ (fi(wi)− wi − c) (1− 2Pwi )

1

µw

But, using the fist order condition, we get:

1

N

µw

Pwi (1− Pwi )
d2eπi
dw2i

¯̄̄
deπi
dwi

=0

= −2
µ
µd

µw
+ 1

¶
+

³
µd

µw + 1
´

(1− Pwi )
(1− 2Pwi )

=

µ
µd

µw
+ 1

¶µ
−2 + (1− 2P

w
i )

(1− Pwi )

¶
,

or

1

N

µw

Pwi

d2eπi
dw2i

¯̄̄
deπi
dwi

=0

= −
µ
µd

µw
+ 1

¶
< 0

Therefore, any turning point, where deπi /dwi = 0 is such that it is a maximum.
As a consequence, the profit function is quasi-concave, and the symmetric can-
didate equilibrium is a Nash Equilibrium. Q.E.D.

B I.I.D. preferences

B.1 Computation of the candidate price equilibrium

• Labour market choices

The choice probabilities of subcenter i is given as before by:

Pwi = Pr ob
©
wi + µ

wγi ≥ wj + µwγj , j = 1...n
ª
.
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We assume that the random variable γ are i.i.d., with cdf (strictly increasing
and absolutely continuous) denoted by G (.) and density denote by g defined on
R. We get:

Pwi =

Z ∞
−∞

g (x)
Y
j 6=i
G

µ
wi − wj
µw

+ x

¶
dx, i = 1...n. (50)

• Consumer choices

The probability that a household located in the center patronizes subcenter
k is

P dk =
©
−pk + µdηk ≥ −pl + µdηl, l = 1...n

ª
.

We assumed random variable η are i.i.d., with cdf (strictly increasing and abso-
lutely continuous) denoted by H (.) and density denote by h defined on R. We
get:

P dk =

Z ∞
−∞

h (x)
Y
l 6=k
H

µ
pl − pk
µd

+ x

¶
dx, k = 1...n. (51)

• Market clearing conditions

We still require that the market clearing condition holds: Pwi = P di , where
Pwi is given by (50) and P di is given by (51). We get:

Z ∞
−∞

g (x)
Y
j 6=i
G

µ
wi − wj
µw

+ x

¶
dx =

Z ∞
−∞

h (x)
Y
l6=i
H

µ
pl − pi
µd

+ x

¶
dx (52)

As before, the demand for the differentiated product sold in subcenter i is
Di = NP

d
i = NP

w
i .

• The profit function

Consider the price adjustment for subcenter i. The LHS of (52) is strictly
increasing in wi and the RHS is strictly decreasing in pi since F and G are
strictly increasing and absolutely continuous. We denote by r the one to one
relation between wi and pi: pi = ri(wi), and let ri(wi) = r(wi, w−i, p−i). Note
that:

dPwi
dwi

= (n− 1)
X

j 6=i

Z ∞
−∞

g (x) g

µ
wi − wj
µw

+ x

¶ Y
k 6=i,j

G

µ
wi − wk
µw

+ x

¶
dx, i = 1...n.

(53)

Therefore:
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dri(wi)

dwi
= − µ

d

µw

P
j 6=i

R∞
−∞ g (x) g

³
wi−wj
µw + x

´ Q
k 6=i,j

G
³
wi−wk
µw + x

´
dxP

j 6=i

R∞
−∞ h (x)h

³
pj−pi
µw + x

´ Q
k 6=i,j

H
³
pk−pi
µw + x

´
dx

< 0. (54)

Note that, at the symmetric equilibrium:

dPwi
dwi |Sym

=
(n− 1)
µw

Z ∞
−∞

g2 (x)Gn−2 (x) dx, i = 1...n. (55)

Therefore:

dri(wi)

dwi |Sym
= − µ

d

µw
Γw

Γd
< 0, (56)

where Γw =
R∞
−∞ g

2 (x)Gn−2 (x) dx and Γd =
R∞
−∞ h

2 (x)Hn−2 (x) dx. The
profit function is now:eπi(wi, w−i, p) = [ri(wi)− wi − c]NPwi − (F + S) . (57)

B.2 Short-run equilibrium

The best reply of subcenter i is (seeing w.l.o.g. N = 1)

deπi(wi, w−i, p)
dwi

=

µ
dri(wi)

dwi
− 1
¶
Pwi + (ri(wi)− wi − c)

dPwi
dwi

.

Thus, using (55) and (55) we get:

−
µ
µd

µw
Γw

Γd
+ 1

¶
1

n
+ (pe − we − c) (n− 1)

µw
Γw = 0 (58)

Or:

pe = c+ we +
1

n (n− 1)

µ
µd

Γd
+
µw

Γw

¶
.

Note that, for the double exponential distribution Γd = Γw = 1
±
n2 , then

we get the formula: (17), as expected. We have therefore proved the following
result:

Proposition 8 Consider a differentiated labour and product labour. with i.i.d.
preferences with density function h (.) for the product market and g (.) for the
labour market Then, there exists a unique symmetric Nash equilibrium in prices
and wages given by:

pe = c+ we +
1

n (n− 1)

Ã
µdR∞

−∞ h
2 (x)Hn−2 (x) dx

+
µwR∞

−∞ g
2 (x)Gn−2 (x) dx

!
.
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B.3 Long-run equilibrium

Note that if n is log-concave, then n (n− 1)Γd is increasing is n, as well as
n (n− 1)Γw and therefore the markup pe − c − we is decreasing in n (see [2]).
As a consequence, πe = N(pe−we−c)

n − (F + S) is decreasing at least in an
hyperbolic manner and there exists a unique free entry equilibrium given by:

1

n2 (n− 1)

Ã
µdR∞

−∞ h
2 (x)Hn−2 (x) dx

+
µwR∞

−∞ g
2 (x)Gn−2 (x) dx

!
=
(F + S)

N
.

C Proof of Proposition 4
The profit function is (where N is normalized to one, w.l.o.g.):

eπi(wi, w−i, p) = £gi(wi)− wi − c− ΛhPwi )¤NPwi − (F + S) .
The first-order condition is:

∂eπi(wi, w−i, p)
∂wi

=

µ
dgi(wi)

dwi
− 1
¶
Pwi +

£
gi(wi)− wi − c− 2ΛhPwi

¤ dPwi
dwi

= 0.

Moreover, we have:

∂2eπi(wi, w−i, p)
∂w2i

=

µ
d2gi(wi)

dw2i

¶
Pwi + 2

µ
dgi(wi)

dwi
− 1
¶
dPwi
dwi

− 2Λh
µ
dPwi
dwi

¶2
+
£
gi(wi)− wi − c− 2ΛhPwi

¤ d2Pwi
dw2i

.

We wish to show that any turning point is a maximum:

∂2eπi(wi, w−i, p)
∂w2i

¯̄̄̄
FOC

< 0.

If this condition is satisfied everywhere, the profit function eπi(wi, w−i, p) is
quasi-concave, and the candidate symmetric equilibrium is Nash.
Note that, the first-order condition equation can be rewritten as:

gi(wi)− wi − c− 2ΛhPwi = −

³
dgi(wi)
dwi

− 1
´
Pwi

dPw
i

dwi

.

Using this expression, we obtain after simplifications:
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Ω ≡ dPwi
dwi

∂2eπi(wi, w−i, p)
∂w2i

¯̄̄̄
FOC

=

Ã
−2
µ
dPwi
dwi

¶2
+ Pwi

d2Pwi
dw2i

!

×
µ
1− dgi(wi)

dwi

¶
+
dPwi
dwi

Ã
d2gi(wi)

dw2i
Pwi − 2Λh

µ
dPwi
dwi

¶2!
.

We wish to show that this expression Ω is negative given that dPwi /dwi > 0.
To to that, when there is no ambiguity, in order to simplify expressions, we use
the following notations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P ≡ Pwi = P di
P 0 ≡ dPw

i

dwi

P 00 ≡ d2Pw
i

dw2i

g0 ≡ dgi(wi)
dwi

g00 ≡ d2gi(wi)
dw2i

.

.

Using these notations, we have equivalently:

Ω =
³
−2 (P 0)2 + PP 00

´
(1− g0) + P 0

³
g00P − 2Λh (P 0)2

´
. (59)

We now need to compute P 0, P 00, g0 and g00 at any point (i.e. not only at the
symmetric candidate equilibrium).
First let compute P 0 and P 00. Recall that

P = Pwi =
exp

³
wi−ΛwPw

i

µw

´
P

j=1...n

exp
³
wj−ΛwPw

j

µw

´
We have, using again the implicit function theorem

P 0 =
∂P
∂wi

1− ∂P
∂Pw

i

=

1
µwP (1− P )

1 + Λw

µw P (1− P )
.

Note that:

[P (1− P )]0 = (1− 2P )P 0

Therefore, after simplifications, we get:
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P 00 =

³
1
µw

´2
P (1− P ) (1− 2P )h

1 + Λw

µw P (1− P )
i3 .

Second, we wish to compute g0 and g00. Recall that the solution of the equation
Pwi = P

d
i is unique and denoted by: pi = gi (wi). We have:

P dk =
exp

³
−pk−ΛdPd

k

µd

´
P

l=1...n

exp
³
−pl−ΛdPd

l

µd

´ ,
so that, using the same reasoning as above:

dP di
dpi

= −
1
µd
P di
¡
1− P di

¢
1 + Λd

µd
P di
¡
1− P di

¢
Differentiation of the expression Pwi − P di = 0, as a function of wi leads to

dPwi
dwi

− dP
d
i

dpi
.
dpi
dwi

= 0,

thus (using again the condition Pwi = P
d
i ):

g0 =

dPw
i

dwi
dPd

i

dpi

= − µ
d

µw

1 + Λd

µd
P di
¡
1− P di

¢
1 + Λw

µw P
w
i (1− Pwi )

< 0. (60)

Therefore:

g00 = − µ
d

µw
Φh

1 + Λw

µw P
w
i (1− Pwi )

i2 ,
with

Φ =
Λd

µd
¡
1− 2P di

¢ dP di
dpi

g0 ×
∙
1 +

Λw

µw
Pwi (1− Pwi )

¸
−Λ

w

µw
(1− 2Pwi )

dPwi
dwi

×
∙
1 +

Λd

µd
P di
¡
1− P di

¢¸
After simplification, we get:

Φ = − 1

µw

µ
Λd

µd
− Λ

w

µw

¶
(1− 2P )P (1− P )h
1 + Λw

µw P (1− P )
i
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Hence, using the expression above, we obtain:

g00 = − µd

(µw)2

µ
Λd

µd
− Λ

w

µw

¶
(1− 2P )P (1− P )h
1 + Λw

µw P (1− P )
i3 .

The sign of g00 is ambiguous (and note that without congestion g00 = 0). We are
now ready to sign the expression (59).

We first compute the expression
³
−2 (P 0)2 + PP 00

´
. We have

³
−2 (P 0)2 + PP 00

´
= − P 2 (1− P )

(µw)2
h
1 + Λw

µw P (1− P )
i3 ∙1 + 2Λwµw P (1− P )2

¸
< 0.

Furthermore, replacing the expression for g0 and after simplifications, we get:

(1− g0) =

³
1 + µd

µw

´
+
(Λw+Λd)

µw P (1− P )
1 + Λw

µw P (1− P )
> 0.

A combination of the last two expressions leads to:³
−2 (P 0)2 + PP 00

´
(1− g0) = − P 2 (1− P )

(µw)2
h
1 + Λw

µw P (1− P )
i4 ∙1 + 2Λwµw P (1− P )2

¸

×
"µ
1 +

µd

µw

¶
+

¡
Λw + Λd

¢
µw

P (1− P )
#
.

We are ready to compute the second term of (59). After substitution, we
obtain:

P 0g00P = − µd

(µw)
3

µ
Λd

µd
− Λ

w

µw

¶
(1− 2P )P 3 (1− P )2h
1 + Λw

µw P (1− P )
i4 .

Note that Ω = Ω1 − 2Λh (P 0)3 < Ω1 (since P 0 > 0), with:

Ω1 =
³
−2 (P 0)2 + PP 00

´
(1− g0) + P 0g00P.

We wish to show that Ω2 < 0 with:

Ω1 =
P 2 (1− P )

(µw)2
h
1 + Λw

µw P (1− P )
i4Ω2.

Using the two expressions derived above, we get:
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Ω2 =

∙
1 + 2

Λw

µw
P (1− P )2

¸"µ
1 +

µd

µw

¶
+

¡
Λw + Λd

¢
µw

P (1− P )
#

− µ
d

µw

µ
Λd

µd
− Λ

w

µw

¶
(1− 2P )P (1− P ) .

We can expand and regroup the terms to get:

Ω2 = −2Λ
d

µw
P (1− P )2 − µ

dΛw

(µw)
2P (1− P )−

µ
1 +

µd

µw

¶
−Λ

w

µw
P (1− P ) [1 + 2 (1− P )]− 2

Λw
¡
Λw + Λd

¢
(µw)

2 P 2 (1− P )3 .

This shows, as required, that Ω2 < 0 and therefore Ω1 and Ω < 0. As a
consequence:

∂2eπi(wi, w−i, p)
∂w2i

¯̄̄̄
FOC

< 0.

Q.E.D.
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