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Abstract

We present a model of generation and network investment in a com-

petitive electricity system. The model focuses on the duality of long-

and short-term locational signals introduced in the European Regulation

1228/2003 for enhancing cross border trade of electricity among Member

States. The model assumes that the market consists of spot and trans-

mission submarkets. Generators, consumers and a TSO operate on that

market; none of these agents has market power. Lumpiness of invest-

ments is one of the problems that may render generation and network

adequacy difficult to achieve. We take up this question and apply some

formalism formerly developed by O’Neill and co-authors for the unit com-

mitment problem in order to construct multipart tariffs that insure the

adequate development of the resources both in generation and the grid.

In the process, we recover the standard nodal pricing as part of that

multipart tariff. We address the questions of cost reflectiveness and non

discrimination imposed by Regulation 1228/2003.
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1 Introduction

The economic principles that rule capacity expansion under constant return

to scale are well known (e.g. Crew et al. (1995)). One invests so as to equal-

ize short run and long run marginal costs. If these convenient assumptions

prevailed in the transmission of electricity, one would invest so as to equalize

the marginal transmission capacity cost with marginal congestion cost. This

is not possible. The transmission of electricity suffers from many undesirable

economic properties that make the direct application of these principles impos-

sible. It combines both economies of scale and lumpy investments which make

the definition of long run marginal cost illusory. It is also plagued by consid-

erable externalities. Because the external benefits of transmission investments

are not appropriable by those who are at the origin of these investments

(Bushnell and Stoft (1996)), there is no hope to fully internalize these exter-

nalities.

Our objective in this paper is to present a model of network investments in

a competitive electricity system based on the idea of long-term locational sig-

nals introduced in the European Regulation 1228/2003 on Cross Border Trade

of Electricity, hereafter referred to as “the Regulation” (European Parliament

and Council (2003)). We conduct this analysis under the following drastic

simplifying assumptions.

• The architecture of the market essentially consists of a spot and trans-

mission markets. These are coordinated by the TSO. Such architectures

have been extensively explored in the literature and are now commonly

implemented. Current proposals of the European Transmission System

Operators (ETSO) and Power Exchanges (EuroPEX) also go in that

direction (see Section 2) even if Europeans are still far from their imple-

mentation.
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• We neglect the distinction between day-ahead and real time markets and

only assume one spot market that integrates both. This simplification

is acceptable if the day ahead and real time markets are well arbitraged,

a currently heroic assumption in the European context. We justify this

assumption by our objective to concentrate on the mix of long-term and

short-term locational signals covered by the Regulation. This requires

to somewhat disregard the detail of short-term operations.

• We assume no market power and disregard contracts. The reader will

thus find no reference to physical and financial contracts, or bilateral

and centralized markets. This simplification is important because these

contracts influence the incentive of agents in imperfect competitive mar-

kets. This influence disappears if we assume that there is no market

power as we do in this paper. The contract issue should be taken up as

soon as one departs from the assumption of price taking agents.

Except for taking network indivisibilities explicitly on board, we essentially

make all the assumptions of the perfect competition model that we particular-

ize, as described above, to accommodate some idiosyncracies of the electricity

system. We then concentrate on network individisibilities by adapting and

slightly generalizing a paper of O’Neill et al. (2004) dealing with indivisibili-

ties in the unit commitment problem.

The paper is organized as follows. Section 2 introduces the notion of lo-

cational prices in the context of the Regulation. Section 3 casts the paper

in the economic literature on electrical networks. Section 4 presents a rein-

terpretation of O’Neill et al.’s (2004) in term of network pricing. Section 5

discusses the interpretation of these results in terms appearing in the Regu-

lation, namely “cost reflectiveness” and “non discrimination”. Section 5 also

presents a transposition to the network problem of comments made by Hogan

and Ring (2003) on O’ Neill et al. (2004). Section 6 extends the model to
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address cost causality. This requires an extension of O’Neill’s Theorem 2: it is

presented in Appendix A, using the theory of conic duality. Section 7 takes up

the question of non discriminatory prices. It indicates that contrarily to the

common wisdom underlying the European debates preceding and following the

introduction of the Regulation, non discriminatory prices may entail welfare

losses in a decentralized market with indivisibilities. Section 8 briefly discusses

institutional matters. Last, Section 9 lists remaining questions that should be

addressed in future work. The conclusions terminate the paper. They can be

summarized as follows: the notion of locational price is fraught with dangers

that are largely unexplored. The introduction of this notion in the Regulation

may have helped achieve a political compromise. The task remains to make

it workable.

2 Investment, locational signals and regulation

The concept of long-term locational prices as a signal for guiding investment

and location of generation plants in restructured electricity markets appears

in the Regulation on “Conditions for Access to the Network for Cross-border

exchanges in Electricity” that came into force on July 2004. This law is

essentially an outgrowth of the work of the Florence Regulatory Forum (see

DG TREN web site) installed by the European Commission to find means to

facilitate electricity exchanges between Member States in the so-called Internal

Electricity Market. The Regulation contains five parts

(i) Articles 1 and 2 set the scope of the law and introduce important defini-

tions.

(ii) Articles 3 and 4 discuss the conditions for accessing the network. Article

3 presents a system of cross border compensations between Transmission

System Operators. Article 4 introduces the notion of locational prices

which is the main focus of this paper.
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(iii) Articles 5 and 6 discuss congestion management at the interconnections.

Article 5 makes general informational recommendations. Article 6 re-

quires that congestion management be market based.

(iv) Article 7 discusses the possible exemption of new interconnectors from

the general rules.

(v) Last, Articles 8 to 15 elaborate on procedural but crucial matters and in

particular the role of Comitology (Article 13).

This paper concentrates on long-term locational prices that it considers to-

gether with congestion management. The Regulation requires that locational

prices be efficient, cost reflective and non discriminatory (Article 4, para-

graph 1). At the time of the adoption of the Regulation (June 2003), none

of the documents elaborated by the Florence Regulatory Forum had proposed

any method for computing locational prices that would satisfy these three

criteria. The Forum and related studies (e.g. Pérez Arriaga et al. (2002))

certainly looked at long-term locational signals. But they did so in purely

accounting terms, that is by allocating network costs among network users.

Cost allocation methods only reflect costs in a very weak sense that does not

imply any causality: agents are not charged for the cost that they cause; they

only collectively pay for the total costs incurred. Cost allocation methods are

also discriminatory in an economic sense because they do not rely on marginal

costs. The fact that the marginal cost of the electricity network is difficult to

define, makes the combination of these two criteria difficult if not impossible

to implement in a non ambiguous way. Last, cost allocation methods are not

economically efficient in the sense of inducing investments in the right location

(see Currien (2003), Green (2003) and Lévêque (2003)). The lack of economic

efficiency is particularly dangerous in the restructuring context: it distorts the

incentive to invest and hence endangers the security of electricity supply. Lack

of efficient locational signals and economic incentives to invest did not matter
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much in the old regulatory days. The regulatory obligation to satisfy demand

implied some so-called optimal mix of capacities and locational decisions (tak-

ing constraints such as site adequacy and environment into account). This is

no longer true in a competitive system where long-term and short-term loca-

tional prices are the sole market instruments that can induce both the right

mix of equipments and their proper location. It is thus of the essence that

the prices be right and produce the good incentive to invest. Unfortunately,

economic theory tells us that allocated costs offer no guarantee in that respect.

The absence of any precise reference to efficient long-term locational signals

in the work of the Florence Regulatory Forum should not come as a surprise.

We do not know at this stage how to construct efficient long-term locational

signals, let alone efficient, cost reflective (in the strong sense of cost caused)

and non discriminatory long-term price signals. The reason is simple: a gen-

erator locates on some site or it does not. Location and the choice of a plant

type are discrete decisions, and we know very little on how to induce the right

discrete decisions through prices. It is indeed a basic principle of economic

theory that discrete decisions are difficult if not impossible to drive through

price mechanism because of non convexity phenomena (see Scarf (1994)) for a

clear statement of the problem and Pérez Arriaga and Smeers (2003) for a ver-

bal discussion of the question in electricity networks). The problem becomes

particularly acute if one notes that the impact of these decisions generally

covers a time period of several years.

While long-term locational signals are a rather unexplored area, short-term

locational signals for dealing with congestion are a well known but highly con-

troversial subject in Europe. These are treated in Articles 5 and 6 of the

Regulation. Congestion management involves continuous decision variables

that one understands much better how to decentralize through a market pro-

cess. The consequence is that different market based congestion methods exist
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and others are proposed. It is certainly surprising that the Regulation rec-

ommends introducing long-term locational prices that one does not know how

to construct and implement but avoids suggesting well understood short-term

locational prices that have proved effective in several systems.

3 Related literature

Different approaches to grid investments exist in the literature. They are

discussed in Rosellon (2003)’s survey. We take stock of that paper to put our

work in perspective and refer the reader to that survey for further information

and a guide to the literature. A global and in depth analysis of investment in

transmission can be found in Woolf (2003).

Hogan (2002 and 2004) and several co-authors (Pope and Harvey (2002))

extended the theory of nodal prices and Financial Transmission Rights (FTR)

to the problem of investments in the grid. Their objective is to provide a

market driven mechanism for expanding the grid. This analysis underlies the

notion of merchant plants found in FERC Standard Market Design (SMD)

proposal, which eventually also found its way in the Regulation (Article 7).

We discuss neither merchant plants nor their compatibility with the rest of

the Regulation but instead focus on how our model relates to Hogan et al.’s

theory. The basic idea of these authors is that it is possible to decentralise (at

least some) investments in the grid to economic agents (Gencos, consumers,

investors . . . ) provided these receive long-term FTRs that guarantee the pay-

ment of congestion rents over the life of the project. The System Operator

grants the long-term rights in an auction. Because investments in new lines

can destroy existing transmission rights, some restrictions on the allocation of

the long-term rights are necessary to keep the set of granted rights physically

feasible for the network. This latter process is rather complex (Hogan (2002))

but the bottom line is that congestion rents remunerate the investors who
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invest in the network. Joskow and Tirole (2003) argue that the theory suf-

fers from several shortcomings and Hogan replied to some of these comments

(Hogan (2004)). We do not elaborate on these discussions that the reader

can find in summarised form in Roselon’s paper but concentrate on one of the

points unveiled in Joskow and Tirole (2003) and clearly recognized in Hogan

(2002 and 2004), namely investment lumpiness.

FTR were primarily introduced as hedges against random congestion

charges (Hogan (1992)). FTR are forward contracts on spot transmission

prices. They are special forward contracts though, in the sense that they need

to be traded through the Transmission System Operator in order to guarantee

that they are compatible with the physical possibilities of the network. FTR

satisfy the standard property derived from finance theory that the forward

price is the expectation, in some risk neutral probability, of the congestion

price. In other terms, the economic signal embedded in long-term FTRs only

contains congestion charges. In order to see this more clearly consider a deter-

ministic world. There is no need to hedge and a FTR is then exactly equivalent

to a payment of the congestion charge in real time. Resorting to long-term

FTRs for inducing investments in the grid is then equivalent to using conges-

tion charges as incentives to invest in the grid. Investment lumpiness limits

this potential incentive. We elaborate in the following on the consequences

of this point and argue that, notwithstanding investment lumpiness, capacity

expansion of the grid can still be decentralised provided one introduces more

prices than the sole congestion charges. We come back in Section 8 on the

interpretation of that result in terms of Hogan’s theory.

The Transco model is a second approach to investments in the grid. A

Transco is a company that builds and operates the network for profit. In the

terms of this paper and taking the concepts of the Regulation on board, the

Transco is remunerated with both long-term and short-term locational charges.
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It then develops the grid by solving a network capacity expansion problem with

the view of maximising its profit. The network is a natural monopoly that

gives market power to the Transco. If not regulated, the company will set

long and short-term charges in a way that maximises its profit but degrades

welfare. The question is thus to find charges that provide the incentive to be

efficient and permit the firm to recover its costs. This has different aspects.

Maybe more than any other regulatory question, investments in the grid

have a strong flavour of asymmetry of information. The electric network is

indeed a complex technology that maybe difficult to grasp from outside the

industry. The problem of incentivising the Transco will then require the reg-

ulator to offer a menu of contracts. Models of this type usually assume an

explicit demand function for the services of the regulated company (e.g., Vo-

gelsang (2001)). For the sake of analytical convenience, these analyses also

resort to simplifications that neglect the multi-product nature of transmission

services. We depart from these considerations and see the Transco as a profit

maximising firm among others. We also consider the demand for transmission

services not as explicitly given by a demand function but as derived from the

interactions between profit maximizing generators and consumers. Last, we

also assume an electricity network that offers different point-to-point services.

Our objective, in following that path, is not to overlook the important prob-

lem of the market power of the Transco, but to attempt to construct a partial

equilibrium model with price taking agents that we intend to expand in future

developments.

Our objective can be stated as follows: consider a world of perfect infor-

mation with price taking agents (including the Transco). The question is to

find the price signals that induce the Transco to invest in an efficient network

and allows one to recover the cost of building this network. The need for ade-

quate price signals for a Transco derives from the now well recognized fact that
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a (price taking) transmission company that only receives congestion charges

and an additional fixed revenue has an incentive to under-invest in order to

increase congestion. It is also admitted that the sole recovery of congestion

charges only allows the Transco to recover a relatively small fraction of the

total costs of the grid (Pérez-Arriaga et al. (1995)). One can thus expect

to see multi part tariffs emerge as necessary instruments for achieving both

the efficiency and cost recovery objectives. Non linear tariffs are commonly

encountered in the regulatory literature for dealing with asymmetry of infor-

mation. They also appear in non convex economies (see Bjørndal and Jörsten

(2004) for a recent treatment through dual price functions). This latter con-

text is the one adopted in this paper.

In short, and possibly in contrast with the existent literature on Transco,

we disregard the question of market power, but concentrate on the existence of

price signals that induce a price taking Transco to manage congestion and de-

velop the network in an efficient way even though investments are lumpy. We

do this by constructing a model that fully accounts for the multiproduct na-

ture of the transmission infrastructure and develop an equilibrium framework

where the demand for transmission services results from other agents actions.

This was the approach formerly adopted in studies of operations and market

design. We hope to pave the way to similar developments in two directions;

on the engineering side, we introduce the capability to accommodate realistic

grid representations; on the economic side, we derive price taking equilibrium

conditions susceptible of being extended to accommodate manifestations of

market power.

4 A model of locational and congestion pricing

The mix of discrete decisions (that one does not kown how to decentralize

through prices) and continuous decisions (that one knows very well how to
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decentralize through prices) found in the electricity grid is not unique. It also

appears in an other area of electricity restructuring namely unit commitment

and plant dispatching. The mentioned papers of O’Neill et al. (2004) and

Hogan and Ring (2003) address the question of finding price signals for induc-

ing plants to start up and shut down. We transpose and slightly extend their

reasoning to the questions of locational and congestion pricing.

4.1 The grid equilibrium model

The following Primal Mixed-Integer Program (PIP) was considered by O’Neill

et al. (2004) for studying price based decentralization of start up decisions in

unit commitment problems

max νPIP =
∑
k

ckxk +
∑
k

dkzk (1)

s.t.
∑
k

Ak1 xk +
∑
k

Ak2 zk ≤ b0 (2)

Bk1 xk +Bk2 zk ≤ bk ∀ k (3)

xk ≥ 0, zk ∈ {0, 1}n(k). (4)

This model is a standard mixed integer program (see any textbook on integer

programming, e.g. Wolsey (1998)). It is easily interpreted in the context of

optimal centralized investments in a regulated electricity system. We accord-

ingly assume a system where investment decisions in the grid and in power

generation are under the supervision of a benevolent, perfectly informed and

perfectly rational (with unlimited computational possibilities) Regulator. Let

j = 1, · · · , J denote the nodes of the electrical network. We cast O’Neill et al.

model in the locational pricing context through the following interpretation.

(i) Let k = 1, · · · ,K designate an agent, consumer or generator, that decides

to connect to the network.

(ii) zk is the vector of binary variables representing locational decisions of

agent k. A component of zk, let zkj , is equal to 1 if k connects to the
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network at location j, j = 1, · · · , J . It is zero otherwise. All components

of zk are 0 if agent k does not connect to the network. The decision to

connect to the network is a simplified view of a more complex decision:

an agent, whether a consumer or generator, connecting to the network

indeed builds a plant of a certain type, a feature that is not represented

yet in the variable z. From a welfare point of view, the decision to

connect therefore also implies the decision to build and hence a cost.

We limit ourselves in this section to the sole locational decision. We

shall later introduce different technologies, i = 1, · · · , I, and extend the

definition of zk by considering zkij = 1 when agent k connects a plant of

technology i to location j of the network.

(iii) xk is the vector of power injection/withdrawal, of generator/consumer k.

There are potentially as many components of xk as there are nodes in the

network. We replace xk by signk xk in O’Neill et al.’s expressions (1) and

(2) in order to distinguish between injections and withdrawals. In this

updated expression, all xk are assumed positive and signk is a diagonal

matrix whose components are −1 for injections and +1 for withdrawals.

signkxk is thus the vector of the net nodal withdrawals of agent k.

(iv) dk is the vector of fixed costs before any payment for locational charges

incurred by agent k when it connects to the network. dkj is thus the fixed

cost of building a plant of (currently) unspecified technology in location

j. Alternatively dkj can be interpreted as a vector of fixed benefits

or costs accruing to a consumer k when it connects to the network in

location j.

(v) ck is the vector of the marginal costs of the generators; alternatively, ck is

the marginal utility of the consumer k. Both marginal costs and utilities

are taken constant as in O’Neill et al.’s model. A slight complication of

the notation makes it possible to aproximate nonlinear concave utility

and convex costs.
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(vi) Given the interpretation of the x variables, relation (2) represents the

load flow based constraints that limit the injections and withdrawals in

the network. Ak1 is thus identical for all generators and consumers k

and can be noted A. The matrix A consists of two parts. One row of

the matrix expresses the balance between injections and withdrawals in

a lossless network. This is written

1.
∑
k

signk xk = 0 (5)

where 1 is a row vector of 1. The other rows of A and the associated

constraint express the limitations on the injections and withdrawals re-

sulting from thermal limits on the lines. These are expressed using the

negatives of the Power Distribution Factors (PTDF) that give the flow

in each line of the grid as a result of the injections and withdrawals signk

xk. We keep the inequality formulation of O’Neill et al., even though

relation (5) is an equality. This facilitates the notation and can easily

be justified.

(vii) Ak2 is taken as 0 in this application and will no longer be used in this

section.

(viii) The first component of b0 is the righthand side of (5) and is thus zero.

The other components of b0 are the thermal limits on the lines of the

network (that one can only writes in one direction in order to simplify

notation). One thus sees that (2) represents the usual DC load flow

approximation of network flow.

(ix) Bk1 is an identity matrix and Bk2 a diagonal matrix of the capacity

(noted m) installed by generator/consumer k; bk is identically 0.

Using these notations, PIP can be restated as program PIPLOC

max νPIPLOC
=

∑
k

ck signkxk +
∑
k

dk signkzk (6)
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s.t. A
∑
k

signk xk ≤ b0 (7)

xk −mk zk ≤ 0 (8)

xk ≥ 0, zk ∈ {0, 1}n(k). (9)

4.2 Extensions and restrictions

This program involves both investment (z) and operation (x) variables. One

immediately notices that PIPLOC boils down to the usual optimal dispatch/

welfare optimization problem extensively studied in the congestion manage-

ment literature when the zk variables are fixed. This reduced problem is the

basis of the study of short-term locational signals. PIPLOC therefore imbeds

the question of congestion management covered in Articles 5 and 6 of the Reg-

ulation. The aim of this paper is to free the zk variables so as to also cover

the long-term signals of Article 4.

The model can easily be extended to accommodate several time segments

and contingencies. Let xτk be the power generation/withdrawal of genera-

tor/consumer k in time segment or contingency τ ; the model can be rewritten

as program PIPmpLOC (where mp stands for multiperiod)

max νPIPmpLOC
=

∑
k

∑
τ

cτk signkx
τ
k +

∑
k

dk signkzk

s.t. Aτ
∑
k

signk x
τ
k ≤ bτ0 ∀ τ

xτk −mτ
k zk ≤ 0 ∀ τ

xτk ≥ 0, zk ∈ {0, 1}n(k).

As mentioned above, the model can also be easily extended to allow zk

to represent the decision to locate at a certain node and to build a certain

capacity. This extension only makes sense in a multiperiod (time segment)

model. This model would thus consider variables zτkij and xτkij where i is the

type of plant.
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In order to simplify the discussion and to facilitate the establishment of the

correspondence between this paper and O’Neill et al., we first limit ourselves

to the simple formulation (6) to (9).

Program PIPLOC should be interpreted as the problem to be solved by a

regulator operating under the following ideal conditions:

(i) Perfect information: the Regulator knows the marginal willingness to

pay of the consumers and the marginal costs of the generators. The

Regulator also knows the locational fixed costs (the fixed cost of building

a plant (of undefined technology at this stage) at some location).

(ii) Perfect competition: agents are price takers

(iii) Perfect congestion management: congestion is managed by nodal prices.

(iv) Simplified electrical assumption: the network is lossless and its structure

is described by a PTDF matrix.

Assumptions (ii), (iii) and (iv) are common in studies of restructured electricity

systems. Assumption (i) may look harsh, but is not more stringent than the

implicit assumption that prevailed in the former regulatory regime where the

Regulator was also assumed to decide or accept investments according to a

perfect optimization cost minimization model. A main difference is that the

Regulator of the former monopoly regime did not have to interpret the results

of this optimization model in terms of locational prices. He could be wrong

with less damaging consequences. It is on these prices that we concentrate,

assuming all the above simplifying assumptions to facilitate their discovery.

4.3 Locational charges

O’Neill et al. suppose that one can solve Problem PIPLOC and we follow suit.

The assumption is indeed not that unrealistic given the astonishing numerical

progress made in mathematical programming these last 20 years.
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Let zk ∀ k be the optimal location of the generators/consumers, we state

a Primal Linear Program PLIP(z)

max
∑
k

ck signkxk +
∑
k

dk signkzk

A
∑
k

signk xk ≤ b0 (u0) (10)

xk −mk zk ≤ 0 (uk) ∀k (11)

zk = zk (wk) ∀k (12)

xk ≥ 0

where u0, uk and wk are the dual variables of the constraints (10), (11) and

(12) respectively.

The dual DLIPLOC(z) of that problem is written

minu0b0 +
∑
k

wk zk (13)

u0A signk + uk ≥ ck signk ∀ k (14)

− ukmk + wk ≥ dk signk ∀ k (15)

u0 ≥ 0, uk ≥ 0, wk unconstrainted ∀ k. (16)

Note from the above discussion that signk in relation (14) multiplies the nodal

components of u0A by −1 or +1 depending on whether agent k is a generator

or a consumer at that node. The dual variables of the problem can then be

interpreted as follows.

(a) The first component of u0 is the price of electricity at the hub node.

The other components of u0 are the values of the capacities of the lines

(flowgates). These components of u0 are indeed the dual variables of

the thermal capacities of the lines and should be interpreted in the same

sense as in usual discussions of congestion management. One can easily

verify that this implies that u0A is the vector of the nodal prices of

electricity.
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(b) uk is the vector of scarcity premium on tight generation and consumption

capacities. The constraints (14) express that the nodal price at some

active generation node (the corresponding nodal component of u0A)

is equal to the variable cost (the corresponding nodal component of

ck) of a generator at that node which operates at a positive level, but

below capacity. This price is equal to the variable cost plus a scarcity

premium if the generator operates at full capacity at that node. (Note

that signk = −1 implies (u0A)k − uk ≤ ck). A similar interpretation

holds for consumers.

(c) wk are locational prices in the sense that a generator/consumer k pays

wkj to locate at j. Note that dk are costs for generators. A constraint

(15) expresses that the locational price is greater or equal to the capacity

margin minus the fixed cost of the plant. The equality holds for a plant

that is effectively located at that node. In that case the locational price

and the capacity margin pay for the cost of locating the plant at that

node. Note that wk is unconstrained: its components can be positive

or negative. If negative a component of wk should be interpreted as a

payment to be given to the agent to locate.

4.4 Efficiency properties of locational charges

We now transpose O’Neill et al.’s result in the interpretation of locational and

congestion pricing.

Definition 1 Efficient short-term and long-term locational prices are prices

u0 (congestion) and wk (locations) such that agents (generators and con-

sumers) when charged (u0, w) behave efficiently in the following sense. Suppose

that these agents maximize their profits under the sole capacity constraints

xk −mk zk ≤ 0.
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In other words, agent k solves the following profit maximization problem

max(ck − u0A) signkxk + (dk signk − wk)zk (17)

s.t. xk −mkzk ≤ 0 (18)

xk ≥ 0, zk ∈ {0, 1}n(k) (19)

Then the solutions x′k, z
′
k that they obtain are those desired by the Regulator

who solves PIPLOC. Moreover the injections and withdrawals x′ balance and

comply with the network constraints

A
∑
k

signk x
′
k ≤ b0. (20)

Note that this definition only refers to economic efficiency. It corresponds to

the notion of market clearing price in O’Neill et al. but does not embed the

notions of cost reflectiveness or non discrimination also foreseen by Regulation.

We examine these notions in subsequent sections of this paper.

The transposition of O’Neill et al.’s results to our context can then be

expressed in the following proposition.

Proposition 1 Suppose that the Regulator successively solves problems

PIPLOC and PLIPLOC(z) where z is the solution to PIPLOC . Let u0 and

wk be part of the optimal dual solution of PLIPLOC(z). Then u0 and wk are

respectively efficient short run and long run locational prices. Let x′k and z′k be

the decision of agent k. One has (ck − u0A)signk x′k + (dk signk − wk)z′k = 0.

Proof. The proposition is a direct application of the Theorem 2 in O’Neill et

al., which is recalled in generalized form in Appendix A.

In this system, the Regulator or the System Operator receives the conges-

tion charges u0A
∑
k signkx′k and the location charges

∑
k wk z

′
k. Because the

statement of the problem does not contain any information on the cost of the

network, Proposition 1 contains no result on the balance of the TSO’s budget.
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Similarly, there is no information on how the cost of the network depends on

the locational decision of the agents; hence the result cannot express any cost

causality.

It is remarkable that generators that decide to locate and produce make

a zero profit. Similarly, consumers that decide to locate and consume have

a zero net welfare gain. This is the standard result of perfectly competitive

equilibrium market which is recovered here by the application of Theorem 2

of O’Neill’s et al. All other agents would incur a loss if they were to locate on

the network and generate/consume electricity.

5 Discussion

The above congestion and locational prices satisfy one objective of the Regu-

lation, namely economic efficiency. They leave the decision to locate, generate

and consume to the agents who pay these prices. The prices wk and u0 are

also quite distinct. The payment wk results from the decision to locate on

the network and can be interpreted as the long-term signals of Article 4 of the

Regulation. These payments must be made irrespective of the consumption or

generation levels provided the decision is made to connect to the network. The

nodal prices u0A entail congestion charges that are directly proportional to

consumption and generation. They comply with the obligation to use market

based congestion management methods of Article 6 of the Regulation. Besides

offering the two price signals required by the Regulation, u0A and w also form

true two-part tariffs in the sense commonly understood by economists.

As in O’Neill et al., the approach extends the commodity space beyond

the sole energy space. Both energy and the locational rights are priced. One

should note that it is of the essence not to convert the fixed part wk of the

tariff into a proportional charge that would come on top of u0A. Doing this

would indeed convert the two-part tariff into two single part linear prices,
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which cannot sustain the equilibrium in the presence of indivisibilities. This

important remark does appear neither in the Regulation nor in the allocation

mechanisms discussed by the TSOs and Regulators in the Florence Forum.

While Proposition 1 of Section 4 states that these nonlinear tariffs satisfy the

efficiency objective of Article 4 of the Regulation, none of the other desired

properties (cost reflectiveness and non discrimination) required by the Regu-

lation is achieved. This is not specific to this construction as two-part tariffs

are often discriminatory in two senses. By construction they lead to aver-

age prices that are decreasing with quantity. This second degree (e.g. Tirole

(1998)) price discrimination is allowed by Courts. Two-part tariffs are also

first degree (Tirole (1998)) discriminatory prices. They differ by agent in the

sense that, except for their proportional part which is equal to the marginal

cost, the fixed part does not reflect the cost incurred by the generator but the

willingness to pay of the agent. This is unlikely to be accepted by competi-

tion authorities without further justification. We therefore elaborate on this

discrimination.

(a) The wk are first degree discriminatory in the sense that two generators

that locate at the same site may not necessarily pay the same locational

price. The only possible justification of that discrimination is that, in

contrast with the common wisdom of the Florence process, price discrim-

ination is sometimes necessary in order to achieve economic efficiency.

This is what happens here: the signals are much more than simply lo-

cational; they are individual signals, targeted at each candidate in each

location.

(b) The wk are not cost reflective. They bear no relation to the cost of the

network which is completely absent from the statement of the problem.

These prices also lack other important desirable properties. First there

is no guarantee that the sum of the congestion payments and the long run
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locational price recovers the cost of the network, let alone induces an optimal

development of the network. Second the locational prices do not reflect the

incremental cost that the TSO would incur because of the decision of an agent

to locate at some node of the network. This is not surprising as the model

PIPLOC does not contain any representation of the cost of the network.

In short efficiency is achieved at the cost of sacrifying non discrimination,

cost reflectiveness and other desirable properties. One may thus search for a

more involved tariff structure that exhibits more components, some of them

related to the cost of the network. Before turning to this point, it is useful to

review Hogan and Ring (2003) comments on O’Neill et al.’s model and to see

whether they can be transposed to the problem of locational and congestion

prices.

Hogan and Ring (2003) note that they may be many wk capable of sup-

porting the dispatch equilibrium in a unit commitment problem. We want to

show that the same holds for the locational equilibrium. To see this, recall

first that uk is the scarcity rent captured by the optimally located plants when

operating in a perfectly competitive system. There may be several uk but take

one of them. Transposing Hogan and Ring’s reasoning to locational pricing,

we first consider the minimal payment wkj(u) that should be paid to agent k

in location j in order to induce a decision compatible with the z desired by

the Regulator. Using Hogan and Ring’s notation and considering the case of

a generator as an example, one defines

Πkj = −dkj zkj + ukjmkj (21)

Π+
kj = max(−dkj + ukjmkj)zkj , zkj ∈ {0, 1}. (22)

Πkj is the profit collected by agent k at location j if it behaves according to

the Regulator’s plan. This profit consists of a capacity scarcity margin ukjmkj

minus the incurred fixed cost dkjzkj . Π+
kj is the profit that the same agent

would collect if it made its own decision to invest in location j on the basis
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of the expected capacity scarcity margin ukj and its investment cost djk. The

profit Π+
kj is what would be driving the generator locational decision in a pure

nodal system. Define

w−kj(u) = min(0; Πkj −Π+
kj). (23)

Suppose w−kj(u) is strictly negative, then one can verify that a payment of

−w−kj(u) to generator k at j) compensates this agent for

- the opportunity cost Π+
kj of not following its own optimal strategy;

- the cost of following the strategy of the Regulator.

Any higher payment would over compensate the agent.

Conversely, one may also be interested in computing the maximal positive

charge that can be levied on the generator that decides to invest before it

modifies its decision. Define

w+
kj(u) = Π+

kj . (24)

One can verify that a levy wkj ≤ w+
kj will not induce a generator k that

spontaneously decide to invest in location j to change its decision. One can

thus imagine that a Regulator could try to finance (part of) its payments

w−kj(u) from charges w+
kj(u). More generally, letKJ+ andKJ− be respectively

the pairs (k, j) for which w+
kj and w−kj have been defined. A w′ supports the

locational equilibrium if

w′kj ≤ w−kj (k, j) ∈ KJ− (25)

w′kj ≤ w+
kj (k, j) ∈ KJ+. (26)

This implies that

−
∑

(k,j)∈KJ+

w+
kj(u)−

∑
(k,j)∈KJ−

w−kj(u) (27)
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is the minimal net payment that the Regulator must be prepared to make

in order to induce the different agents to abide to its locational strategy z.

Nothing guarantees that this minimal payment is negative, that is, that the

regulator will break even. Any deficit should be covered otherwise.

A similar reasoning applies to the consumers with a like conclusion. The

overall conclusion in terms of covering revenue requirements is more positive as

soon as one considers generators and consumers together. Supposing that the

total surplus of the market is positive (a very mild assumption if one starts

from nothing), then it is always possible by playing on the w according to

relations (25) and (26) to satisfy the revenue requirement.

The need for the Regulator to break even may lead one to increase the

discrimination between agents with respect to the original w. This suggests

introducing constraints on the w that are directly inspired by commonly found

regulatory objectives. One may for instance wish to achieve

(i) a budgetary balance. This would imply

∑
k

∑
m

w′kmzkm = 0 (28)

or ∑
k

∑
m

w′kmzkm = Fixed Network Cost. (29)

(ii) Non discrimination constraints. These impose some equalities between

the negative w′kj and/or other equalities between the positive w′kj .

Needless to say there is no guarantee that imposing these regulatory con-

straints on top of (25) and (26) will lead to feasible w′k. However it is always

possible to try to get close to regulatory objectives by minimizing the vio-

lation of the constraints. Note that one cannot hope to collect the deficit

accumulated by locational payments to the generators by charges levied on

customers such that w′kj > w+
kj as these would leave a negative surplus to
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these agents. We shall not elaborate any further on these variations in this

section and return to the problem of cost causality.

6 Cost causality and nonlinear locational prices

Section 5 concludes that the wk derived from problem PLIPLOC are discrima-

tory and not cost reflective. This is not surprising. Non discriminatory prices

are well known not to be able to support an efficient competitive market when

there are indivisibilities and economies of scale. The absence of cost reflec-

tiveness could also be expected as the model PIPLOC used to compute the

wk does not link agents’ locational decisions to the grid structure and hence

to the grid costs. Also, one shall note that the above tariff only prices energy

and location, while tariffs that include a capacity charge and hence a third

component in the tariff are common in practice. The following develops a

richer set up with the view of introducing cost causality in the model.

6.1 Representation of the network

Consider an extension of problem PIPLOC, constructed as follows.

(a) There exists a set of possible network configurations n = 1, · · · , N each

of cost dn0 and PTDF matrix PTDFn. The System Operator selects one

of these configurations. Let z0 be an N -dimensional vector with zn0 = 1

if the TSO selects the nth network configuration.

(b) The locational price takes the form of a two-part tariff, namely a fixed

charge for accessing the network and a proportional charge for reserving

capacity (a capaciy or demand charge). This reserved capacity can be

a single variable valid for the whole year, or a vector if one implements

seasonal reservations e.g. summer and winter (see Perrez Arriaga and

Smeers (2003)). We first work with a single annual capacity reservation
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in order to facilitate the discussion. With this interpretation xk plays

both the role of energy generated or consumed and reserved capacity.

(c) One introduces some causality between the decision to locate, the re-

served injection and withdrawal capacity and the network structure.

This causality is complex in the real world. Strictly speaking, it derives

from a network expansion planning problem. Because our methodol-

ogy uses optimization type techniques to explore economic problems, we

adopt an approach theoretically justified in optimization terms but prac-

tically still to be elaborated and represent causality through two types

of constraints.

(i) The “skeleton network constraints”

F0 z0 −
∑
k

Fk �=0 zk ≤ 0 (30)

imply that the decisions of the agents to locate (the zk, ∀ k 
= 0)

impose a certain minimal structure on the network. This results in

a set of allowed network structures z0 (there may be several z0 for

a given set of location decisions zk).

(ii) The “incremental network constraints”

−
∑
k �=0

G1kxk +G20z0 ≤ 0 (31)

imply that the capacities reserved by the different agents (the xk,

∀ k 
= 0) further restrict the set of allowable z0 of the network.

(iii) The selection constraint

N∑
n=1

zn0 ≤ 1 (32)

implies that the TSO can only select a single network configuration.

Together these constraints restrict the set of possible configurations of

the network compatible with the locational and capacity reservation de-

cisions of the agents. This might be sufficient to fully determine the
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configuration of the network, but not need to be so. We therefore also

leave the possibility that the TSO optimally (that is, through cost min-

imization) selects the configuration. One could obviously argue that the

constraints (31) can be merged with (30) and hence that one only needs

to write one set of constraints. A reduction of the number of constraints

serves no useful purpose whether computationally or economically. From

a computational point of view, the formulation that explicitly retains the

two types of constraints is likely to be tighter in an integer programming

sense (see Wolsey (1998)) and hence more efficient. From an economic

point of view, the two constraints express different cost causality and

hence should be made explicit. We recognize that the construction of

the constraints (30) and (31) may be difficult in practice, but leave it to

further research to investigate how they can be inferred from both engi-

neering practice and mathematical programming models. Before leaving

this point, we note that the absence of any agent connecting to the grid

(zk = 0, xk = 0, ∀k) eliminates the need for a network and hence allows

the solution z0 = 0. This justifies setting the right hand side of these

constraints to zero. This also means that these constraints define a cone

when the integer restrictions are relaxed.

(d) Constraints (30) and (31) delineate the set of acceptable network config-

urations. To each of them, one associates a matrix of PTDF coefficients,

PTDFn, and a vector of thermal limit constraints bn. We define the set

of acceptable injections and withdrawals in network configuration n as

Kn = {xn0 | PTDFnxn0 ≤ bn, 1xk0 = 0} (33)

where 1 is a row vector of 1 of appropriate dimension. Note that we

neglect the constraint −bn ≤ PTDFnxn0 in order to simplify the pre-

sentation. Kn is thus the set of balanced injections and withdrawals

that result in flows that do not exceed the thermal limits of the lines in
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configuration n. We also introduce a cone Cn associated to the network

configuration n as

Cn ≡
{

(xn0 , z
n
0 ) | x

n
0

zn0
∈ Kn, 1xn0 = 0 if zn0 > 0, xn0 = 0 if zn0 = 0

}
(34)

(recall that zn0 , as defined above is equal to 1 if one selects network configura-

tion n and is zero otherwise)

Define

x0 = (xn0 , n = 1, · · · , N), z0 = (zn0 , n = 1, · · · , N) (35)

and the cone

C0 ≡ {(x0, z0) | (xn0 , zn0 ) ∈ Cn0 , n = 1, · · · , N}. (36)

It is obvious that (34) defines a convex cone. We also know that the cartesian

product of convex cones is a convex cone. (x0, z0) ∈ C0 is thus a convex

constraint that we shall impose on the network company.

The Transmission System Operator selects a single zn0 that minimizes its

cost dn0 and satisfies (30) – (31). Given this selection, the TSO can offer

injection and withdrawal services x0 such that (x0, z0) ∈ C0. The agents k

request injection and withdrawal services xk such that

∑
k

signk xk =
∑
n

xn0 (37)

(x0, z0) ∈ C0 (38)
N∑
n=1

zn0 = 1, z0 ∈ {0, 1}N . (39)

Relation (37) equalizes the production and consumption of the network ser-

vices (injection/withdrawal). It also transforms the different xk into a single

nonzero vector x0 of injection/withdrawal services for the selected network

configuration. Relation (38) expresses that the TSO can only offer network

services compatible with the selected configuration of the grid. This is the

convex part of the production set of the transmission company. In contrast,

26



(39) describes its non convex part, namely that the TSO can only select one

configuration of the network. In order to simplify the notation, we rewrite

relation (37) as E0 x0 −
∑
k �=0Ek xk = 0. In order to fully use conic duality,

we also define the cone Ck for each generator or consumer k.

Ck = {(xk, zk) | xk −mk zk ≤ 0, xk ≥ 0, zk ≥ 0}.

6.2 The Regulator’s global problem

Introducing a diagonal matrix sign0 with only −1 components, the extension

of the PIPLOC problem can be stated as

Problem EPIPLOC

max
∑
k �=0

ck signkxk +
∑
k

dk signkzk (40)

E0 x0 −
∑
k �=0

Ekxk = 0 (41)

F0 z0 −
∑
k �=0

Fk zk ≤ 0 (42)

−
∑
k �=0

G1kxk +G20z0 ≤ 0 (43)

1 · z0 = 1 (44)

(xk, zk) ∈ Ck,∀ k (45)

zk ∈ {0, 1}n(k). (46)

In this model, (41) expresses the equality between produced and consumed

network services; (42) and (43) relate the selection of the network configuration

and the locational decisions of the agents; (44) states that only a single network

configuration is allowed; (45) describes the production sets of all agents, TSO,

generators and consumers. Specifically C0 imposes the flows to be feasible for

the selected network configuration and Ck requires that an agent first needs

to locate and reserve some injection or widrawal capacity before generating or

consuming.
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Note that in contrast with problem PIPLOC which is a linear mixed inte-

ger program, the conic constraint (45) makes problem EPIPLOC a nonlinear

mixed integer program. This non linearity should not be a real concern though

as EPIPLOC can easily be restated as a linear mixed integer program of the

type precedingly developped by power engineers for network capacity expan-

sion (see Latorre et al. (2003) for a survey of these models). The nonlinear

version is used here because of its tractability for extending O’Neill et al.’s

Theorem 2. We therefore again assume that this problem can be solved (for

instance by solving the linear mixed integer version of it) and note (x0, z0)

and (xk, zk), ∀ k an optimal solution.

6.3 The continous version of the Regulator’s problem

Let thus z be the locational vector selected by the Regulator after solving

EPIPLOC. Define

Problem EPLIPLOC(z)

max
∑
k �=0

ck signkxk +
∑
k

dk signkzk (47)

s.t. E0 x0 −
∑
k �=0

Ek xk = 0 (u0) (48)

F0 z0 −
∑
k �=0

Fk zk ≤ 0 (λf ) (49)

−
∑
k �=0

G1kxk +G20z0 ≤ 0 (λg) (50)

1 · z0 = 1 (λ0) (51)

zk = zk ∀ k (wk) (52)

(xk, zk) ∈ Ck,∀ k (x∗k, z
∗
k) (53)

Note that c0 = 0, G10 = 0 and G2k = 0 for k 
= 0. We slightly generalize

O’Neill et al.’s Theorem 2 by relying on the extension of standard LP dual-

ity to (convex) conic programming duality (Ben Tal and Nemirowski (2001))

presented in Appendix A. Program EPIPLOC(z) is a conic program which
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comprises the conic constraint (53). As usual we write the dual variables of

the constraints at the right of each of them. The dual variables x∗k, z
∗
k are

associated to xk and zk appearing in the conic constraint (53). The conic dual

of EPLIPLOC(z) can be written as

Problem EDLIPLOC(z)

minλ0 +
∑
k

wkzk (54)

s.t. u0 E0 = x∗0 (55)

−u0 Ek − λgG1k − ck signk = x∗k (56)

λf F0 + λgG20 + λ0 + w0 + d0 = z∗0 (57)

−λf Fk + λ0 + wk − dk signk = z∗k (58)

(x∗k, z
∗
k) ∈ C∗k , (59)

λf , λg ≥ 0 u0, λ0, wk ∀ k unconstrained (60)

Our interest in this extended model is to find prices that induce the TSO

to invest into the appropriate network configuration and the generators and

consumers to invest in the right location and operate efficiently.

6.4 Short-term locational charges

Before getting into this development, we first interpret the different constraints

of the dual of EPLIPLOC(z) and particularly those involving dual cones.

Consider first the dual of the cone C0 associated to the TSO. Recalling the

relations (34) till (36), one can write

C0 ≡
∏
n

{(xn0 , zn0 ) | PTDFnxn0 ≤ bnzn0 , 1 · xn0 = 0 if zn0 > 0,

xn0 = 0 if zn0 = 0}.

The following lemma characterizes the dual cone C∗0 .
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Lemma 1

C∗0 ≡
∏
n

C∗n0 ≡
∏
n

{(x∗n0 , z∗n0 ) | x∗n0 = µn1− λn PTDFn,

z∗n0 ≥ λnbn, for some µn and some λn ≥ 0}.

Proof. Consider the following linear program

minx∗n0 xn0 + z∗n0 zn0 (61)

s.t.− PTDFn xn0 + bnzn0 ≥ 0 λn (62)

1 · xn0 = 0 µn (63)

xn0 unconstrained, zn0 ≥ 0 (64)

where the dual variables of the constraints are λn and µn respectively. The

dual of this problem can be restated as

max 0

s.t. −λn PTDFn + µn1 = x∗n0 xn0 (65)

λn bn ≤ z∗n0 zn0 (66)

λn ≥ 0, µn unconstrained

(x∗n0 , z∗n0 ) belongs to C∗n0 iff the minimal value of the primal problem is attained

and is zero. This happens if and only if there exists a dual solution λn ≥ 0,

µn unconstrained, such that x∗n0 = µn1 − λn PDFn and z∗n0 ≥ λnbn. This

completes the proof.

The proof of the lemma immediately suggests an interpretation of the

constraint (x∗n0 , z∗n0 ) ∈ C∗n0 . The condition (65) indeed implies that x∗n0 is a

set of nodal prices where µn is the electricity price at some hub and λn are

the prices of the flowgate capacities in network configuration n. (66) implies

that z∗n0 is bounded below by the merchandizing surplus. Because the value

of the primal and the dual are equal, one also has

xn0x
∗n
0 + zn0 z

∗n
0 = 0

30



and by duality z∗n0 = λnb when zn0 > 0; z∗n0 is then exactly equal to the mer-

chandizing surplus. The above can be summarized by saying that (x∗n0 , z∗n0 ) ∈
C∗n0 iff x∗n0 is a vector of nodal prices associated to flow xn0 in configuration

n and z∗n0 is the corresponding revenue of the TSO accruing from congestion

charges.

6.5 The TSO’s problem

We are now equipped to interpret the role of the TSO in this set up. Denote

with an upper − the dual variables that are solutions of the dual problem

EDLIPLOC(z). Consider the TSO’s problem CIP0

max νCIP0
= −u0E0x0 − (d0 + λfF0 + λgG20 + w0)z0 (67)

(x0, z0) ∈ C0 (68)

1 · z0 = 1 z0 ∈ {0, 1}N (69)

Note by an upper − and a ′ the optimal solution of CIP0 (e.g. x′0). We

briefly discuss the interpretation of the different expressions appearing in this

problem.

Note first that c0 is identically zero because the TSO does not have vari-

able operating costs. By (55), u0E0 is equal to x∗0 and hence, as shown in

Lemma 1 is a vector of nodal prices in network configuration n. As a result,

−u0E0 x
′
0 = −x∗n0 x

′n
0 = z∗n0 z

′n
0 = λnbn is the merchandizing surplus in net-

work configuration n, and hence the revenue of the TSO in that configuration.

d0 is the vector of investment costs of the different network configurations. w0

is a vector of payments/charges imposed by the Regulator to induce the TSO

to select the adequate network configuration. Last −λfF0 and −λgG20 are

locational payments respectively resulting from the generators/consumers de-

cision to locate and reserve certain injection and withdrawal capacities. These

two last terms do not carry much intuitive interpretation. This is not really

surprising: one could not expect to find an easy interpretation of the cost
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causality when the causal relationships that drive the development of the grid

are themselves murky. We shall come back to these terms later in the dis-

cussion. In conclusion, relations (67) to (69) represent the problem of a TSO

that maximizes the profit accruing from short and long-term payments when

investing in the grid.

6.6 The generator and consumer’s problem

We now turn to the sets Ck. Recall that Ck is defined as

Ck ≡ {(xk, zk) | mkzk − xk ≥ 0, xk ≥ 0, zk ≥ 0}.

We have the following lemma

Lemma 2

C∗k ≡ {(x∗k, z∗k) | z∗k ≥ 0,
z∗k
mk

+ x∗k ≥ 0}.

Proof. Consider the following linear program

min z∗kzk + x∗kxk (70)

s.t. mkzk − xk ≥ 0 λk (71)

zk ≥ 0, xk ≥ 0 (72)

The corresponding dual can be stated as

max 0

s.t. λkmk ≤ z∗k

−λk ≤ x∗k

λk ≥ 0

(x∗k, z
∗
k) ∈ C∗k iff the primal problem has a solution and the objective function

value is equal to zero. This requires that the dual problem also has a solution

and hence that

x∗k +
z∗k
mk
≥ 0 and z∗k ≥ 0.
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This completes the proof the the lemma.

Note that zk > 0, xk > 0 implies by the complementarity conditions that

λkmk = z∗k and −λk = x∗k and hence that x∗k + z∗k
mk

= 0.

We are now equipped to interpret the actions of agent k. This latter solves

the problem

max νCIPk
= (ck signk + λgG1k + u0Ek)xk + (dk signk + λfFk − w∗k)zk

s.t. (xk, zk) ∈ Ck.

Denote again with an upper − and a ′ the optimal solution of problem CIPk

(e.g. x′k). The different expressions appearing in this problem can be in-

terpreted as follows. ck signk x′k is the generation cost or the willingness to

pay of agent k. u0Ek x
′
k is the revenue collected/charge paid by agent k for

injection/withdrawal of electricity in a nodal price system. λgG1kx
′
k is the

demand charge component due to the long-term locational prices. It can be

positive or negative depending on the matrix G1k. dk signk z′k is the cost

incurred by agent k in order to locate on the network and to build the equip-

ment. λfFkz′k is the charge accruing from the locational decision. This charge

can also be positive or negative depending on the matrix Fk. w∗kz
′
k is a

charge/payment levied by the Regulator in order to induce agent k to select

the right location. Again CIPk represents the problem of an agent that max-

imizes the profit accruing from short and long-term payments when deciding

to locate and to operate on the grid.

6.7 Compatibility between the TSO and other agents decisions

One needs to show that the decisions of the generators and consumers, when

solving their respective subproblems, combine to give energy flows that satisfy

the constraints of the configuration selected by the TSO. One also need to ex-

plore whether financial flows balance. Last, one also wishes that the obtained

behaviours do not depart from those found in the usual theory of congestion
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management. These properties are obtained from the solutions of the primal

and dual problems EPIPLOC(z) and EDLIPLOC(z) as we shall now show.

We begin with the less usual result coming from conic duality.

The following lemmas cast our model in the standard theory of nodal

pricing and hence directly relate to congestion management.

Lemma 3 Let (x′0, z
′
0) and (x

′∗
0 , z

′∗
0 ) be respectively part of the primal and dual

optimal solutions of EPLIPLOC(z) and EDLIPLOC(z). One has

x
′n
0 = 0 if z

′n
0 = 0. (73)

If z
′n > 0, then x

′n
0 solves

maxx∗n0 xn0 (74)

s.t. PTDFnxn0 ≤ bn (75)

1xn0 = 0 (76)

where x∗n0 is a vector of nodal prices in network configuration n.

Proof. Let n be the network configuration selected by the TSO (zn0 = 1

in (52)). (73) follows immediately from the definition of C0. The result for

n = n follows by noting that the problem (74), (75) and (76) is identical to

the problem (61) to (64) of Lemma 1 after replacing zn0 by 1. x∗n0 can be

interpreted as a vector of nodal prices as shown in Lemma 1.

Lemma 3 recovers a fundamental result of congestion management in nodal

pricing (Hogan (1992)). Given a structure n of the network, x∗n0 is the vector

of nodal prices and the TSO selects an offer x
′n
0 of injection and withdrawal

services that maximizes the value of the network. (73) imposes that the energy

flows can only be different from zero in the selected configuration n. (75)

imposes that the thermal limits of the lines in the selected configuration are

not violated. Altogether problem (74)–(75) imposes that the system operator

maximizes the value of the network capacities, using the nodal prices x∗n.
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Lemma 4 u0Ekxk is the congestion charge paid by agent k.

Proof. As argued in the discussion following Lemma 1, the constraint (55) at

optimum boilds down to

u0 = x∗n0 .

The result then follows by noting that Ek = signk.

Combining Lemmas 3 and 4, one sees that the congestion management

part of the problem is identical to the one described in the usual theory of

nodal pricing when the network configuration is given.

In contrast, the remaining expressions λTf F0, λ
T
f Fk, λgG20 and λ

T
gG1k do

not have any standard interpretation. There are the “cost causal” parts of the

tariffs that “price” the impact of the decision to locate and to reserve capacity

on the network cost incurred by the TSO. The lack of interpretation comes

from the fact that constraints (30) and (31) are of a combinatorial nature and

do not have any particular economic interpretation. But we shall see that

they induce the right behaviour on the TSO and the agents k. In no way do

these “locational prices” satisfy the criterion of transparency demanded by

the Regulation. But that should not be expected, as the network expansion

process is itself a complex problem that is not transparent. Before exploring

the global compatibility of the behaviour of the different agents, we note that

complementarity slackness implies at least some accounting relations between

the charges imposed on the agents and the revenue of the TSO.

Lemma 5 (i) λfF0z
′
0 =

∑
k �=0 λfFkz

′
k. The sum of the locational charges

λ
f
Fkz

′
k paid by the generators and consumers is equal to the locational

revenue λfF0z
′
0 received by the TSO.

(ii) λgG20z
′
0 =

∑
k λgG1kx

′
k. The sum of the locational charges λgG1kx

′
k

paid by the generators and consumers is equal to the locational revenue

λgG20z0 received by the TSO.
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Proof. Obvious from (49), (50) and complementarity conditions.

6.8 Decentralization of the decisions

It remains to show that the decentralized solutions of the TSO problem and

of the different agent k problems solve the Regulator’s problem, that is, that

they induce the TSO to select the network configuration desired by the Reg-

ulator and similarly that they incentivize generators and consumers to locate

and develop as desired by the Regulator. Last we want to be sure that the

electricity and transmission markets clear.

The following proposition is a direct consequence of Theorem 1 stated in

Appendix A.

Proposition 2 Suppose all agents k, when solving problem CIPk, are charged/

pay the price u0, λf , λg, wk found in the solution of EPLIPLOC(z). Then

the solutions found by these agents are identical to the solution of problem

EPLIPLOC. Moreover energy markets and the transmission service market

clear.

Proof. The result immediately derives from Theorem 2 in Appendix A.

This implies the following corollary.

Corollary 1 Lemmas 3, 4 and 5 hold if the solutions of problem EPLIPLOC(z)

are replaced by those of the CIPk.

This implies that prices u0, λf , λg, w0 and wk allow one to fully decentralize

decisions among agents. Congestion management boils down to nodal pricing

and retains its usual properties. TSO maximizes the value of the network and

collects the merchandizing surplus. Also the demand charges components of

the location prices paid by the users of the network and received by the TSO

balance.
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7 Non discriminatory prices

The Regulation and the work of the Florence Regulatory Forum request non

discriminatory prices in order to induce competition. The above tariffs are

only partially non discriminatory. The line congestion charges in the vector

u0 are the same for all agents k and hence are non discriminatory. This is the

usual result of congestion management by nodal prices. The same is true for

the demand charges of the long-term locational signals, at least if one accepts

the description of causality given by relations (30) and (31). In contrast the

wk are truly discriminatory. This discrimination is justified by the objective

of economic efficiency. In contrast with the common wisdom underlying both

the Regulation and the work of the Forum, there are indeed situations where

discrimination is necessary for achieving efficiency. Ramsey pricing is the best

known illustration of the usefulness of discriminatory prices in the network

industries: its justification is that it makes everyone better off. Still it remains

a discrimination and hence may be unlawful. One may wonder whether one

can obtain non discriminatory price, needless to say, at the cost of loosing

some economic efficiency. This is achieved by constructing a model where one

explicitly imposes that the wk are equal for all generators and consumers. We

briefly turn to that question.

Recall that the model of Section 6 leads to three parts locational prices

that are efficient and cost reflective. The congestion and demand charges are

non discriminatory; the locational price is cost reflective and non discrimi-

natory but the locational price (the w) remains both non cost reflective and

discriminatory. The question we address here is the removal of the discrimi-

nation. We first take up the question on the simple model of Section 4 and

then extend the discussion to the more involved model of Section 6.

Consider the problem PIPLOC and the dual problem DLIPLOC(z) of

problem LIPLOC(z). We modify DLIPLOC(z) into CDLIPLOC(z) (Con-
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strained Dual LIP problem) by imposing the non discrimination constraint

that all locational charges are identical. This leads to

min u0b0 + w
∑
k

zk (77)

s.t. u0A signk + uk ≥ ck signk ∀ k (78)

−ukmk + w ≥ dk signk ∀ k (79)

u0 ≥ 0, uk ≥ 0, w unconstrained. (80)

The only difference between CDLIPLOC(z) and DLIPLOC(z) is the implicitly

introduction of the non discrimination constraint

wk − w = 0 ∀ k

that expresses that locational charges are identical for all agents.

The corresponding primal problem is written CPLIPLOC(z)

max
∑

ck signkxk +
∑
k

dk signkzk (81)

s.t. A
∑
k

signk xk ≤ b0 (82)

xk −mzk ≤ 0 ∀ k (83)∑
k

zk =
∑

zk (84)

xk ≥ 0. (85)

Note that the constraint xk −mkzk ≤ 0 guarantees that zk ≥ 0. It is obvious

that problem CPLIP(z) is a relaxation of PIPLOC(z) because it aggregates the

objectives zk = zk ∀ k of the Regulator into the single objective (84). Strictly

speaking, this does not solve the Regulator’s problem but only approximates it.

But it may be a very good approximation as we discuss now. The solution of

PIPLOC(z) aims at selecting the optimal choice of the capacities for each agent

in different locations. It is unlikely that the Regulator has enough information

to differentiate between the cost structure of the different agents. Suppose

indeed that the Regulator cannot differentiate between the different agents.
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He is then only able to select the best mix of technologies and capacities at

the different locations. The vector
∑
k zk describes the total capacity of each

technology built at each location. The price signal w therefore depends on

both a location and a technology but not on the agent. As a locational signal,

it may still be considered as discriminatory to the extent that it differentiates

the locational price as a function of the technology. This may be forbidden by

law except if one can argue that this differentiation is justified on the basis of

cost causality. For instance gas and coal plants are not expected to operate

in the same way and hence could imply different investments in the network.

But at least the approach does not differentiate the locational signal by agent,

something that would certainly be forbidden.

The problem of this formulation is that the prices found by solving problem

(77) to (80) do not guarantee that the constraint (84) will be met in the

decentralization process. Agents may still build too much or too little capacity.

This is the welfare loss implied by the non discrimination constraint.

This discussion can be extended to the model of Section 6. We consider a

slightly different (but equivalent) formulation of the non discrimination prob-

lem based on that model.

infw max
∑
k ck signk xk − (d0 + w0)z0 +

∑
k �=0(dk signk + w)zk

E0x0 −
∑
k �=0Ekxk = 0

F0z0 −
∑
k �=0 Fkzk ≤ 0

−∑
k �=0G1kxk +G20z0 ≤ 0

1 · z0 = 1

(xk, zk) ∈ Ck

zk ∈ {0, 1}n(k)

This model is obtained from PIPLOC(z) by two operations

(i) one dualizes the constraint (52) zk = zk
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(ii) one imposes that the prices associated to these constraints are the same

for all generators and consumers.

One immediately sees that (ii) is the non discrimination constraint that im-

poses that all w are identical in the objective function of the problem.

This formulation will guarantee non discriminatory locational prices but

it will not ensure that the decentralization process will lead to locations and

investments that meet the objectif
∑
k zk through zk = zk of the Regulator.

This is the same phenomenon as mentioned for the preceding model. Gen-

erators and consumers may over or under invest, therefore entailing a loss of

economic efficiency.

It is impossible to a priori foresee the extent of the loss of efficiency that

would result from this non discrimination constraint on the sole basis of the

model formulation. But it is certainly quite doable to investigate the question

numerically.

Note that an obvious improvement of both models would be to differentiate

the locational charge depending on whether agent k injects or withdraws at

some node. This implies defining w+ as the locational charge for all generators

and w− for all consumers. This extension is straightforward.

8 Institutional discussions

The above discussion only offers an abstract setting that it is useful to try to

relate to current practical proposals. We again rely on the discussion provided

by Rosellon (2003) that was already invoked in Section 3.

It should be clear that our formulation of the TSO problem best fits the

Transco model. In this model a single company is in charge of both the invest-

ments and the operations of the transmission system. This proposal, which is
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favored in Joskow and Tirole (2002) is implemented in the United Kingdom.

Combined with an appropriate incentive regulation, this experience is credited

to be very successful. The current European institutional framework makes

no recommendation in favour of that system and some of the language of the

Regulation (Article 6, paragraph 6) even seems not to recommend it. What

is sure is that it is impossible to impose a Transco like solution throughout

Europe, let alone to adopt a single Transco for the whole of Europe. Still it

remains useful to retain this interpretation both because it is implemented in

practice and that implementation is successful.

Our model obviously differs from the exact implementation of the Transco

in the UK. In this paper, the TSO receives instructions on how to set the long-

term signals; it also receives some money transfers vie the w0 that induces it

to select the right network configuration. The model also supposes a well

informed, quite knowledgeable and very intrusive Regulator. Still, the Regu-

lator does not need to solve problem PIPLOC by himself. The Transco, or an

independent consultant can do so on the basis of commonly agreed data and

assumptions. But the Regulator is assumed to be comfortable with the whole

process and to agree that the zk (or
∑
k zk in case of non discriminations) are

desirable objectives.

The merchant line is the other approach to grid investments recalled in

Section 3. It is analytically grounded in the theory of nodal prices and their

extension into long-term financial transmission rights as hedging instruments.

The ISO model, where operations and ownership of the grid are separated,

provides the institutional background of the approach. Hogan et al.’s theory

of merchant lines essentially extends the role of financial transmission rights

from operations to both operations and investments. Joskow and Tirole (2002)

argue that this can only be done under drastic assumptions that are violated

in practice. We concentrate in this paper on one of these assumptions, namely
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the lumpiness of investments, and explore its possible consequences. Our con-

clusion is that it is still possible to decentralise lumpy investment in the grid

provided one invokes a more complex set of prices that covers not only con-

gestion but also access charges. In other words, there exists a combination of

access and congestion charges that provide the necessary incentives for invest-

ments. It is remarkable that this is exactly what the Regulation foresees, but

without indicating how this can be done. The reality is that the derivation

of these charges is a very demanding task. It indeed requires first to extend

the role of the ISO from the sole operation of the existing system, to include

both the operation and investments in the grid. This extension raises sev-

eral questions that we do not discuss here; still it retains a key property of

the ISO model in the sense that this latter does not need to own the grid.

Our abstract model is thus also fully compatible with the notion of a large

RTO. The creation of RTOs is still a long way off in the European context,

but it is definitely more doable than a single Transco. The task of the RTO

becomes formidable however. Instead of only auctioning physically feasible

financial transmission rights that only covers congestion charges, this global

RTO should now auction two types of long-term contacts, corresponding re-

spectively to the access and congestion charges. In the same way as congestion

charges need to be carefully tuned in order to ”get the prices right”, the access

charges also need to be well tuned in order to induce the right investments

in the grid. Needless to say ownership of access rights on top of congestion

rights by generators as a result of the auction would exacerbates generator’s

market power in the sense treated in Joskow and Tirole (2000) and Gilbert

et al. (2004). The answer may lie in Hogan’s suggestion (Hogan (2002)) that

transmission companies would probably be the main owners of these rights.
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9 Discussion and further questions

The locational prices obtained in Section 6 satisfy two objectives of the Reg-

ulation. They are economically efficient and cost reflective. They also allow

for a separation between short-term and long-term locational prices as fore-

seen by the Regulation. Also all the theory of nodal price/flowgate congestion

management remains unchanged. Still, these locational prices leave several

open problems. We briefly introduce some of them.

Revenue adequacy is a key element of the theory of congestion manage-

ment. It states that the TSO will normally receive a non negative profit from

congestion management. This non negative profit occurs in a short run equilib-

rium problem, that is for given network capacities, provided certain conditions

related to ex ante and ex post contingencies are met. We retain the standard

result of revenue adequacy in congestion management operated under nodal

pricing in our more general set up. Moreover, by Theorem 1 all agents make

zero profit at equilibrium. This would suggest that revenue adequacy can

be extended to encompass both long-term and short-term signals. But there

is a major difference between this extended revenue adequacy and the stan-

dard congestion management result. Congestion payments between TSOs and

agents k are in balance as can be seen by multiplying relation (48) by u0.

Revenues and expenses from demand charges also balance as can be seen from

the complementary condition of constraints (42) and (43). In contrast, there

is no guarantee that
∑
k wkzk is equal to zero and it is indeed unlikely that it

will be so. We discussed in Section 5 how Hogan and Ring expanded the scope

of prices capable of sustaining the equilibrium, therefore possibly allowing to

reduce or eliminate the revenue imbalance
∑
k wkzk faced by the Regulator.

Their reasoning can be extended to the more general model of Section 6. All

this should be studied further, probably numerically.
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The realism of the models can be improved. The model of Section 6 con-

siders that the system is operated during a single time period, therefore as-

similating the demand charge to an additional energy charge. This restriction

can easily be removed. It has been a tradition among power engineers to plan

the network for the peak period. This is unlikely to be correct because trans-

mission flows are not highest during the peak. This suggests to introduce a

set of reference periods (seasons) that are critical for designing the network

and hence that can be used for determining the demand charge. This can

easily be done by extending the model of Section 6. This would allow for a

richer description of the cost causality and hence would lead to a richer set of

nonlinear tariffs. The same can be said about the inclusion of the choice of

a technology. The zk variables have been defined to only refer to locational

decisions. As argued in Section 4, it is easy to expand their interpretation

to encompass a technological choice. This would also lead to a richer set of

nonlinear tariffs.

Last, one shall remember that the models discussed in this paper fail to

achieve fully non discriminatory tariffs. Bjørndal and Jörnsten (2004) were

able to construct non discriminatory dual price functions for the unit commit-

ment problem treated by O’Neill et al. (2004). The possibility of extending

their analysis to the grid problem constitutes an other area of interest.

The following issues may be more challenging. The current model sup-

poses that the cost causality can be expressed through relations of the type

(42) and (43). This is certainly true in principle but does not say anything

on how to derive these relations. This problem raises both power engineering

and optimization questions. Consider first the electrical engineering issue. A

main feature of model EPIPLOC is to imbed a description of the production

set of the TSO. This description involves both causal relations ((30), (31)) as

well as a description of the transportation possibilities of the different network
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configurations contemplated by the TSO ((33) and (34)). The representations

of the production set of the TSO in economic models is unusual but not totally

absent from the literature (Vogelsang (2001)). Our relations ((30), (31) and

33)) are stylized from the following considerations. We assume that the TSO

selects its investments using a capacity expansion model. There are several ex-

amples of these models in the electrical engineering literature (see e.g. Latorre

(2003) for a survey of these models). Many of these models are of the mixed

integer programming type. We suppose that one did select one of these mod-

els. Using the language of combinatorial optimization, relations (30) and (31)

are valid inequalities, derived from this mixed integer program, that describe

the polyhedron of feasible solution of EPIPLOC. The construction of these

inequalities is currently an area of intense research in combinatorial optimiza-

tion. It is not clear however that these inequalities have sofar been derived

for the type of model involved in network capacity planning. Also current

valid inequalities are limited to local description of the feasible polyhedron.

In short, the introduction of relations (30) and (31) makes a lot of sense from

the point of view of logic, but their construction remains to be explored.

Consider now the following economic issue: The current model is estab-

lished under assumptions of perfect knowledge and absence of market power.

Relaxing each of these assumptions creates a whole set of additional complex-

ities. Consider the assumption of perfect knowledge first. Following a tradi-

tional assumption of the “old” theory of regulation, the Regulator is supposed

to know the cost of the generators, the willingness to pay of the consumers

and the set of possible network configurations of the TSO. The limitations

of this type of assumptions have been extensively explored in the new theory

of regulation, using the notion of asymmetry of information. Embedding this

machinery in extensions of Theorem 2 of the appendix would add a whole new

dimension to the work.
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The absence of market power is another limitation of the model. An ex-

tension of the model discussed here to one that would accommodate market

power is straightforward to formulate: the problem EPIPLOC should be re-

placed by a mathematical program subject to equilibrium constraint (MPEC).

This model would request that the Regulator selects the long and short-term

locational prices in order to induce agents operating in an oligopolistic mar-

ket to behave in such a way that they maximize welfare. But it is not clear

that this problem has a solution. Again, the real difficulty is to extend the

decentralization result of Theorem 2 to that more general set up.

The static nature of the model is certainly one of the major shortcomings of

the above discussion. Static models are common when discussing equilibrium

problems but the simplification is a real drawback when it comes to imple-

mentation. Bushnell and Stoft (1996) have initialized the discussion of the

dynamics of investments in the electrical grids and their consequences on the

validity of existing Financial Transmission Rights. This has since been exten-

sively elaborated in various papers, among them the discussion of merchant

lines. It is totally absent from this set up.

10 Conclusion

The idea of separating long-term and short-term locational signals in the Reg-

ulation on cross border exchanges of electricity is probably a good one. It offers

the opportunity to depart from simple linear tariffs that are not sufficient to

induce the right investments and locational decisions in a system plagued by

discrete decisions. But this separation leaves it open how to construct the

long-term locational signals. It is easy but misleading to pretend to solve the

problem by cost allocation rules. Except proven otherwise by numerical exper-

iment, there is no reason to believe that these will generate the right signals.

This paper considers the goal of finding an alternative approach or at least to
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identify ideal abstract conditions that would allow for such an alternative. It

retains three criteria that are mentioned more or less explicitly in the Regu-

lation, namely economic efficiency, cost reflectiveness and non discrimination.

It finds that the three criteria cannot be simultaneously achieved, even under

ideal conditions. But one can at least trade non discrimination for the other

criteria. It also finds that transparency of the long-term signals is probably

hopeless. But this is not surprising as the network expansion process is itself

a murky one. Last and probably more important it provides a framework

where both the long-term and short-term signals can both be cast, and the

usal theory of short-term signals remains completely unaffected.
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[21] Pérez-Arriaga, I., Olmos Camacho, L. and F.J. Rubio Odériz (2002).
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Appendix A: Methodological background

The following provides a small extension of the main theoretical result of

O’Neill et al. The extension is appropriate for introducing cost causality in

the network problem.

Consider the following mixed integer conic problem.

max νCIP =
∑
k

ckxk +
∑
k

dkzk (A.1)

s.t.
∑
k

Ak1xk +
∑
k

Ak2zk ≤ b0 (A.2)

Bk1xk +Bk2zk ≤ bk ∀ k (A.3)

(xk, zk) ∈ Ck zk ∈ {0, 1}n(k) (A.4)

where Ck is a convex cone. The only difference between this CIP problem and

O’Neill et al.’s PIP is the replacement of the constraint xk ≥ 0 by (xk, zk) ∈
Ck. Because xk ≥ 0 also defines a convex cone CIP generalizes PIP. Let

C̃k = {x̃k, z̃k | x̃kxk + z̃kzk ≥ 0 ∀ (xk, zk) ∈ Ck} be the dual cone of Ck, one

knows that conic programming satisfies the same duality properties as linear

programming. We then extend the formalization of O’Neill et al. as follows.

Let z∗k be the value of the zk dual variables in an optimal solution to CIP,

define the following primal conic program

PCIP(z∗) max νPCIP =
∑
k ckxk +

∑
k dkzk

s.t.
∑
k Ak1xk +

∑
k Ak2zk ≤ b0 ∀ k

Bk1xk +Bk2zk ≤ bk ∀ k
zk = z∗k ∀ k
(xk, zk) ∈ Ck

Using duality theory in conic programming, one states the following dual prob-

lem
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DCIP(z∗) min νDCIP = y0b0 +
∑
k ykbk +

∑
k wkz

∗
k

s.t.
y0Ak1 + ykBk1 − ck = x∗k

y0Ak2 + ykBk2 − dk + wk = z∗k

y0 ≥ 0 yk ≥ 0

wk unconstrained

(x̃k, z̃k) ∈ C̃k

Theorem 1 of O’Neill et al. is readily extended into

Theorem 1.

ν∗CIP = ν∗PCIP = ν∗DCIP

where ∗ indicates the optimal solution value for the respective problems.

The proof is identical to the one of O’Neill et al.

Consider now a set of price vectors (P0, P
z
k ). One adapts the agent problem

of O’Neill et al. into

CIPk max νCIPk
= (ckxk + dkzk)− P0(Ak1xk +Ak2zk)− P zk zk

Bk1xk +Bk2zk ≤ b1

(xk, zk) ∈ Ck zk ∈ Zk

We then define a competitive equilibrium as a set of prices {P ∗0 , P z∗k } for all k

and allocations {x∗k, z∗k} for all k such that

1. At the prices {P ∗0 , P z∗k }, the allocations {x∗k, z∗k} solve PIPk for all k, and

2. The market clears:
∑
k Ak1xk +

∑
k Ak2zk ≤ b0.

O’Neill’s Theorem 2 can then be generalized as

Theorem 2. Let {x∗k, z∗
′
k } be the solution to CIPk(z∗) and PCIP(z∗) and let

{y∗0, y∗k, w∗k} be the solution to CDIP(z∗). If y∗0 = P0 and w∗k = P zk then the

prices {y∗0, w∗k} and allocations {x∗k, z∗
′
k } for all k is a competitive equilibrium.
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Proof. The proof is almost identical to the one reported by O’Neill et al. The

only difference is the replacement of the two complementarity conditions

0 ≤ (y∗0Ak1 + y∗kBk1 − ck) ⊥ xk ≥ 0 ∀ k
0 ≤ (y∗0Ak2 + y∗kBk2 + w∗k − dk) ⊥ zk ≥ 0 ∀ k

by the generalized complementarity condition

C̃k �


 x̃k

z̃k


 ⊥


 xk

zk


 ∈ Ck

which states that
 xk

zk


 ∈ Ck


 y∗0Ak1 + y∗kBk1 − ck
y∗0Ak2 + y∗kBk2 + w∗k − dk


 =


 x̃k

z̃k


 ∈ C̃k

(y∗0Ak1 + y∗kBk1 − ck)xk + (y∗0Ak2 + y∗kBk2 + w∗k − dk)zk = 0

These generalized complementarity conditions are used to prove that ν∗∗CIPk
≤

ν∗CIPk
by noting that

(ck − y∗0Ak1 − y∗kBk1)x∗∗k + (dk − y∗0Ak2 − y∗kBk2 − w∗k)z∗∗k ≤ 0

because 
 y∗0Ak1 + y∗kBk1 − ck
y∗0Ak2 + y∗kBk2 + w∗k − dk


 ∈ C̃k


 x∗∗k

z∗∗k


 ∈ Ck

and the definition of C̃k.
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