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Abstract

In this paper we introduce the stability threshold that quantifies the minimal returns
to size sufficient to prevent credible secession threats by regions of the country. Severity
of internal tension has been linked to degree of polarization of citizens’ preferences and
characteristics. We show that the increasing degree of polarization does not, in general,
raise the stability threshold, even though this hypothesis holds in some asymptotic
sense. We also examine the question of the number of smaller countries to be created
if the unity of the large country is not sustainable, and investigate the link between
this number and the degree of the country polarization.
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1 Introduction

Internal conflicts over government policies often threaten the stability of a country.

Indeed, dissatisfied regions of the country may attempt to secede, if the economies of scale

brought by unity are overweighed by the benefits of forming a separate entity (in which

the level of internal confrontation is reduced, or eliminated altogether). In many cases,

these conflicts are created by the lack of uniformity in citizens’ preferences over the range of

government policy choices and/or distinctions across ethnic, religious, historical or linguistic

lines. Thus, stability of the country is linked to the distribution of its citizens’ preferred

policies or characteristics.

How stability of the country should be measured? We suggest to measure it by means

of stability threshold. This index quantifies the minimal returns to size that are sufficient to

prevent credible secession threats. An alternative interpretation of the stability threshold is

that of the minimal burden that can be imposed on the country (and all regions, provided

they decide to secede) which still guarantees its unity.

Our notion of stability, that requires “secession-proofness” of the country in the face

of internal conflicts, effectively ties stability with the precise form of the society’s conflict-

inducing diversity, represented by the distribution of citizens’ preferences and characteristics.

Thus, the stability threshold is also a measure of severity of internal conflicts. It is indeed

natural to define severity of a conflict as the strength of secession threats that this conflict

generates (and, in turn, this strength is faithfully represented by the stability threshold or

the size of overall resources that can prevent or at least mitigate internal conflicts1).

Severity of internal tension has been linked in the literature to polarization of the dis-

tribution of citizens’ preferences and characteristics. The common belief (Esteban and Ray

(1994), (1999), (2004)) is that raising the degree of polarization increases the probability of

1For the existing literature on “greed-based” conflicts motivated by competition over resources see Gross-
man (1991), Gershenson and Grossman (1999), Caselli and Coleman (2002).
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internal conflicts, and thus makes secession threats by the country’s dissatisfied regions more

severe. It thus seems proper to check this hypothesis, by enquiring into the relation between

the degree of country’s polarization and its stability threshold (which as was said is also a

measure of severity of internal conflicts).

Our main finding is that, somewhat counter-intuitively, the relation between polariza-

tion and the stability threshold is ambiguous. Recall (Esteban and Ray (1994)), that the

concept of polarization is based on the existence of several population clusters with rela-

tive homogeneity of preferences within clusters and substantial heterogeneity across clusters.

The overall measure of polarization is then determined by the following two factors. The

first is the level of heterogeneity inside each cluster (for a given number of clusters), that

represents the degree of polarization and conflict between existing population groups: the

less heterogeneous each cluster is, the more polarized is the society at large. The second

is reflected by the number of clusters in the society, when a smaller (but greater than one)

number of clusters represents a higher degree of confrontation (and polarization) in the so-

ciety. Dependence of the polarization index on the first factor will be called fixed-clusters

polarization effect (FCPE), and on the second factor – variable-clusters polarization effect

(VCPE). Our basic conclusions are as follows:

• The stability threshold of a country is positively correlated with the FCPE.

• The link between the stability threshold and VCPE is ambiguous.

• The impact of VCPE is sufficiently strong so that the combined effect of FCPE and

VCPE is ambiguous as well.

• However, there is positive correlation between the stability threshold and the polariza-

tion when the polarization is low, which happens when the number of clusters is sufficiently

large and each cluster is sufficiently heterogeneous.

The somewhat unexpected behavior of the stability threshold with respect to VCPE is

due to the following reason. Existence of a “centrally-located” cluster (the one where the
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preferences fall in or close to the center of the political map) can make secessions more

difficult compared to the situation when the center is “vacant”. This is because the central

cluster benefits the most from being in a united country (since the chosen policy would

typically be geared towards the “median” citizen). It may therefore be costly to persuade

this cluster to join a seceding region (if it is too small to profit from secession by itself), or the

citizens of that region may actually favor unity because then they can demand compensation

from the politically-satisfied central cluster. Thus, the stability threshold may increase when

the country’s population undergoes a division into more clusters (although located closer to

each other) and the center becomes occupied, despite a decrease in polarization. This, as

was said, cannot happen in the case of FCPE, and also not when the population preferences

are distributed very uniformly across their range.

In the second part of the paper we examine the situation where the stability threshold has

not been achieved and the break-up of the country is imminent. We then examine the stable

number of countries, i.e., the number of independent entities into which the given united

country should be broken in order to eliminate credible threats of secession.2 We find that

the stable number of countries also behaves non-monotonically with respect to polarization

indices. However, monotonicity does appear when the stable number is large, and the stable

number decreases when polarization rises.

The paper is organized as follows. Section 2 contains the formal model of a country

with heterogeneous citizens and the definition of stability threshold. In Section 3 we discuss

the notion of polarization. Our results on the link between stability and polarization are

presented in Section 4, whereas Section 5 studies stability in the multi-country framework

and its relation to polarization. The proofs are relegated to the Appendix.

2See Alesina and Spolaore (1997) in the case of the uniform distribution of citizens’ characteristics.
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2 Model

We consider a country W with a population of total mass 1, whose citizens have pref-

erences over the unidimensional policy space given by the interval I = [0, 1]. Citizens have

symmetric single-peaked preferences over the set I, and we identify each citizen with her

ideal point (and thus W ≡ I). The distribution of all ideal points (and, thus, of all citizens’

preferences) is given by a cumulative distribution function F with density f , defined over I.

The country W chooses a policy in the policy space I. In this paper, as in Alesina and

Spolaore (1997) and Le Breton and Weber (2003), we adopt a spatial interpretation of the

model by identifying a policy with the physical location of the government, so we do not

distinguish between geographical and preference dimensions. The country W has to cover

the cost of provision of public good, or government cost, c. We assume that the government

costs are the same for all regions, and if a region secedes from W , it will have to cover the

same cost c. For simplicity, we restrict our analysis of possible secessions to those subsets of

W that consist of the union of a finite number of intervals and we will use the term region

only for such subsets of citizens.

Suppose now that an individual t belongs to the set S, which could be either the unified

country (S = W) or a seceding region (S ⊆ W), and whose government chooses a location

p ∈ I. Then the disutility or “transportation” cost d(t, p), incurred by individual t from the

choice of p, is determined by the distance between t and the government location p and we

shall assume that:

d(t, p) = |t− p|.

Now denote

D(S, p) =
∫
S
d(t, p)f(t)dt.

Then the value

D(S) = min
p∈I

∫
S
d(t, p)f(t)dt
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represents the minimal aggregate transportation cost incurred by the citizens of S.3

Under the linearity assumption, the aggregate transportation cost for every set S is

minimized when the government location chooses its location at the ideal point of its “median

citizen”, m(S), that satisfies
∫
{t∈S|t≤m(S)} f(t)dt =

∫
{t∈S|t≥m(S)} f(t)dt. Note that if S is an

interval and f is positive on S, then its median citizen is uniquely defined. However, if S

consists of a several disjoint intervals, the median of S is not necessarily unique.

We now introduce the notion of S-cost allocation that determines the monetary contri-

bution of each individual t towards the cost of government c.

Definition 2.1: A bounded measurable function x defined on the set S ⊆ W is called an

S-cost allocation if it satisfies the budget constraint:

∫
S
x(t)f(t)dt = c.

When the government location of S is at p, the total disutility of citizen t ∈ S under

S-cost allocation x is:

d(t, p) + x(t).

We allow for lump sum transfers and do not restrict the mechanism of sharing costs in

any way. Thus every region S that contemplates secession, could take into account only its

total cost of being a separate country, given by the sum of government and transportation

costs, in estimating its future gains:

c + D(S).

If region S can make its members better off than under the central government, then S is

said to be prone to secession:

3There always exists an optimal location of the government (see the next paragraph) and, therefore, the
cost function is well defined.
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Definition 2.2: Consider a pair (p, x), where p is the location of national government and

x is an W-cost allocation. We say that region S is prone to secession (given (p, x)) if

∫
S
(d(t, p) + x(t))f(t)dt > D(S) + c.

If no region is prone to secession, then the pair (p, x) is called secession-proof. The

country is called stable if there exists a secession-proof pair (p, x).

We now introduce stability threshold or unity index that quantifies the minimal returns

to size that are sufficient to prevent credible secession threats. As we mentioned in the

introduction, this threshold can be viewed as the minimal burden on the country which still

guarantees its unity. It is quite easy to observe that the notions of stability and secession-

proofness are closely linked to the cost of public good. Indeed, a high cost of public good

may facilitate regional cooperation and mitigate a threat to instability posed by regions. On

the other hand, a low cost of public goods could reduce incentives for economic unity and

raise the intensity of secession threats. Formally,

Proposition 2.3: For a given distribution of ideal points F , there is a cut-off value of

government costs cst(F ) such that the country is stable if and only if c ≥ cst(F ). The

value cst(F ) is called the stability threshold of F .

The natural question would be concerning the link between stability and polarization.

In the next section we proceed with examination of polarization index.

3 Polarization Index

Indices of polarization, introduced in Esteban and Ray (1994), Duclos, et al. (2004) Tsui

and Wang (2000), are based on the notions of identification within one’s own group and

alienation towards the others. The axioms that allow to derive polarization indices require,

in particular, that a mean preserving reduction in the spread of the distribution (weakly)
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reduces the degree of polarization. For a continuous cumulative distribution function F on

[0, 1], Duclos et al. (2004) have derived the following polarization index γα(F ):

γα(F ) =
∫ 1

0

∫ 1

0
|x− y| f (x)1+α f(y)dxdy, (1)

where f is the density function of F and 0 < α < 0.5. If F is a discrete distribution supported

on the set {x0, . . . , xn} , and pi is the probability of xi, the index (derived by Esteban and

Ray (1994)) is given by

γα(F ) =
n∑
i=0

n∑
j=0

p1+α
i pj |xi − xj| . (2)

As alluded to in the introduction, our analysis of conflicts will be performed under the

assumption that citizens’ ideal points form several disjoint clusters (that represent geo-

graphical regions or groups with similar political views). This will highlight the following

two attributes of conflict situations (in addition to the existence of clusters). The first is

heterogeneity of preferences within clusters, which represents conflicts within each region or

group. The second is reflected by the number of distinct groups within the society, when a

smaller (but greater than one) number of clusters represents a higher degree of confrontation.

In order to focus solely on these two factors and eliminate other effects, we shall consider a

family of step distribution functions with the support over a finite number of equal intervals

(clusters). We shall also assume complete uniformity of the distribution of citizens’ ideal

points within each cluster. Thus, all distributions in our class F will be characterized by

two parameters, the number of clusters, n and their length, a.

Formally, let an integer n ≥ 2 and the parameter a ∈ (0, 1
n
] be given. Consider a function

fn,a on the unit interval [0, 1]:

fn,a(t) =

{
1
na

if t ∈ [j 1−a
n−1

, j 1−a
n−1

+ a] for j = 0, 1, . . . , n− 1

0 otherwise

That is, fn,a is the density function of the distribution which is supported and uniform on

the n intervals of length a, removed from each other by the same distance. Denote the

corresponding distribution by Fn,a. We also introduce {Fn,0} for n ≥ 2, which is a discrete
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limiting distribution of {Fn,a} for a ∈ (0, 1
n
]. That is, Fn,0 is supported, and is uniform, on

the finite set that consists of n equidistant points {0, 1
n−1

, 2
n−1

, . . . , n−1
n−1

= 1}. (See Figure 1.)

Now, as in Duclos et al. (2004), let 0 < α < 0.5, and denote γα(n, a) ≡ γα(Fn,a). We

have the following expression for the polarization index:

Proposition 3.1:

γα(n, a) =




(
1
na

)α
n+1−na

3n
, if a > 0(

1
n

)α
n+1
3n

, if a = 0
(3)

Obviously, the distribution Fn,a becomes less polarized when a or n increase:

Corollary 3.2: The polarization index γα(n, a) declines in each of its two variables.

According to our interpretation in the introduction, the dependence of γα(n, a) on a

describes the fixed-clusters polarization effect (FCPE), while its dependence on n reflects
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the variable-clusters polarization effect (VCPE). Thus, both effects reduce the polarization

index.

It is worth pointing out that the index γα exhibits discontinuity in the transition from

continuous distributions Fn,a for a > 0 to Fn,0: limα↘0 γα(n, a) = ∞. The reason is that

according to this index discrete distributions are infinitely more polarized than continuous

ones (due to the presence of infinitely dense clusters in former). The index still allows

comparisons of discrete distributions {Fn,0}, via (3), but they belong to a different (higher)

league of polarization when it comes to comparing them with continuous distributions {Fn,a}.

The index should not therefore be used for comparisons across these two subfamilies of

distributions, but only for comparisons inside each subfamily.

4 The Linkage between the Stability Threshold and

Polarization

In this section we study how the stability threshold reacts to changes in polarization.

First, we explicitly calculate the stability threshold for the distributions in our class. For

every function Fn,a ∈ F we shall use a notation cst(n, a) instead of cst(Fn,a).

Proposition 4.1: For n ≥ 2, a ∈ [0, 1
n
], the stability threshold cst(n, a) is given by:

cst(n, a) =
1

8
(1 + (1− an)

1 + 4
n
([n+2

4
]− [n+1

4
])

2[n−1
2

] + 1
).

We now turn to our conclusions:

Proposition 4.2: (i) The stability threshold is positively correlated with FCPE. That is,

the increase in a for fixed n reduces both the polarization index and the stability

threshold.

(ii) The link between the stability threshold and VCPE is ambiguous. That is, while

an increase in n reduces the polarization index γα(n, a), it does not necessarily reduce,
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or increase, the stability threshold cst(n, a) for fixed a.

(iii) The VCPE is strong enough to make the combined effect of FCPE and VCPE on

the stability threshold ambiguous as well. That is, while the simultaneous increase in

both n and a reduces the polarization index γα(n, a), it does not necessarily reduce, or

increase, the stability threshold cst(n, a).

Thus, in general, the relationship between polarization and stability is not monotone.

According to Proposition 4.2, the stability threshold of Fn,a decreases with the increase

of a (and the implied fall in the distribution’s polarization) for fixed n, but occasionally

fails to be monotonic in γ(n, a) for fixed a. For instance, as is pointed out in the proof

of Proposition 4.2, the first deviation from monotone decline of cst(n, 0) in n occurs when

n = 6 which follows from the fact that cst(6, 0) = 1
6
> cst(5, 0) = 3

20
. The reason is the one

already mentioned in the introduction: when n = 6, the “central cluster” 1
2

(which does

not exist when n = 5) makes secessions difficult. Indeed, in the united country scenario the

optimally chosen government location is also at the center4. The existence of a relatively

big central cluster (which incurs zero transportation cost) has a mitigating effect on the

aggregate transportation cost burden. However, if we consider a subinterval of I which

contains one of the endpoints of I and 1
2
, or the subinterval that complements it,5 none has

a “central block” with zero transportation cost. This means that these intervals would incur

quite high transportation costs in the case of secession, which makes secession less likely and

the country more stable compared to the more polarized distribution F5,0.

It is worthwhile to note that, for a positive fixed a, the decline of cst(n, a) in n is restored

if the value of n is large enough (and thus polarization is low):

Proposition 4.3: For every 0 < a < 1, there exists a value n(a) such that cst(n1, a) ≤
4It is easily to verify that, under the linearity assumption, in a secession-proof pair (p, x) the government

location p must be the ideal point of the “median citizen” m(I) = 1
2 .

5Our proofs indicate that only these intervals play a role in the determination of W’s stability – see
Lemma A.2 in the Appendix.

11



cst(n2, a) whenever n1 > n2 > n(a) and n1a ≤ 1.

5 The Stable Number of Countries and Polarization

Indices

When the government cost is low, W is no longer stable (Proposition 2.3) and could

be broken up into smaller entities. The question we analyze in this section is what is the

number of smaller countries that could guarantee the stability of partition of W :

Definition 5.1: Consider a partition (S1, . . . , Sm) ofW into m countries, an m-tuple of pairs

((p1, x1), . . . , (pm, xm)), where pi is the government location in Si and xi is an Si-cost

allocation. We say that region S is prone to secession (given ((p1, x1), . . . , (pm, xm))) if

m∑
i=1

∫
S∩Si

(d(t, pi) + xi(t))f(t)dt > D(S) + c.

If no region is prone to secession, then the m-tuple ((p1, x1), . . . , (pm, xm)) is called

secession-proof. The partition (S1, . . . , Sm) is called stable if there exists a secession-

proof m-tuple ((p1, x1), . . . , (pm, xm)).

Proposition 5.2 below follows from the main result in Haimanko et al. (2004):

Proposition 5.2: For a given distribution of ideal points F ∈ F and the government cost

c > 0, there exists a stable partition (S1, . . . , Sn) of W .

In particular, when c ≥ cst (n, a) , the trivial partition of W (consisting of W itself) is

stable.

Denote by K(c, n, a) the maximal number of countries in a stable partition of I (when

the distribution of ideal points is fn,a and the government cost is c), and by K(c, n, a) –

the minimal number of countries. For simplicity, we will focus attention on K(c, n, a) =

K(c, n, a); all our observations apply to K(c, n, a) just as well. We shall call K(c, n, a) the
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stable number of countries. It is natural to ask how it is affected by the change in γα(n, a),

the polarization degree of fn,a.

First, it turns out that K does not, in general, behave monotonically in the polarization

degree. Indeed, pick c0 ∈
(

3
20
, 1

6

)
. Then, since cst(4, 0) = cst(6, 0) = 1

6
> c0, and cst(5, 0) =

3
20

< c0 (these computations were made in the proof of Proposition 4.2), we have

K(c0, 4, 0), K(c0, 6, 0) > 1, and K(c0, 5, 0) = 1.

Moreover, since cst(n, a) is continuous in a for a fixed n, for all positive and sufficiently small

a4, a5, and a6

K(c0, 4, a4), K(c0, 6, a6) > 1, and K(c0, 5, a5) = 1.

Consequently:

Corollary 5.3: The stable number of countries is not monotone in the polarization degree.

That is, while a simultaneous increase of both n and a reduces the polarization index

γα(n, a), it does not necessarily decrease, or increase, the stable number K(c, n, a) for

a given c.

The example on which this corollary is based uses relatively high values of c. It turns

out that for low values of c the stable number does behave monotonically in the polarization

index: it decreases with polarization, as we show in Proposition 5.4. Intuitively, this reflects

the fact that in a very polarized society each cluster is relatively uniform, and hence, when

separated from others, can exist as a separate and stable country even when the government

cost is very low. Thus, for a wide range of low c, highly polarized I should not be split

into more countries than there are clusters, which keeps the stable number bounded. How-

ever, when the society is not polarized, and its members’ preferences are spread uniformly,

low c necessitates a very fine partition to achieve stability, because of the wide spread of

preferences.
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Proposition 5.4: Given two integers 2 ≤ n1 ≤ n2 and 0 ≤ a1 ≤ a2 ≤ 1
n2

, there exists

c (n1, n2, a1, a2) > 0 such that for every 0 < c ≤ c (n1, n2, a1, a2) ,

K(c, n1, a1) ≤ K(c, n2, a2).

6 Appendix

We start with the following lemma:

Lemma A.1: If k, n are integers with 1 ≤ k ≤ n− 1, then for the distribution Fn,0

D([0,
k

n− 1
]) =

(
[
k
2

]
+ 1)(k −

[
k
2

]
)

n(n− 1)
.

Proof: Clearly

D([0,
k

n− 1
]) = D([0,

k

n− 1
],

1

2

k

n− 1
) =

2

n
(
1

2

k

n− 1
− 0)

+
2

n
(
1

2

k

n− 1
− 1

n− 1
) + . . . +

2

n
(
1

2

k

n− 1
−

[
k
2

]
n− 1

)

=
2

n

1

2

k

n− 1
(

[
k

2

]
+ 1)− 2

n(n− 1)

(
1 + 2 + . . . . +

[
k

2

])

=
(
[
k
2

]
+ 1)(k −

⌊
k
2

⌋
)

n(n− 1)
.

Our second lemma provides a computational formula for the unity index of distributions

in F . Its proof relies on the result of Haimanko et al. (2004), stating that stability of the

country is equivalent to its efficiency (the country is efficient if the total cost6 incurred by

its citizens is minimized when it is a united entity), and Proposition 3.3 of Haimanko et

al. (2003), according to which the country is efficient if and only if splitting it into two

independent regions does not decrease the total cost.

6Obviously, this cost has two components: the aggregate transportation cost, and the government cost.

14



Lemma A.2: For every distribution Fn,a ∈ F

cst (n, a) = max
s∈[0,1]

[D(I)−D([0, s])−D([s, 1])]

= D(I)− min
s∈[0,1]

[D([0, s]) + D([s, 1])].

Proof of Proposition 3.1: Note that for α = 0, the index γ0 defined by (1) for Fn,a

with a > 0 and by (2) Fn,0 is precisely the Gini inequality index. It is not a polarization

index but it would be useful in our derivations. The index γ0(n, a) is simply the expected

distance between two random points in I, each chosen according to Fn,a and independently

of the other one. We claim that γ0(n, 0) = n+1
3n

for every n. Indeed, clearly

γ0(n + 1, 0) =
n∑
i=0

n∑
j=0

1

(n + 1)2

∣∣∣∣ in −
j

n

∣∣∣∣
= 2

n∑
i=0

i

n(n + 1)2
+

n−1∑
i=0

n−1∑
j=0

1

(n + 1)2

∣∣∣∣ in −
j

n

∣∣∣∣
=

1

n + 1
+

n(n− 1)

(n + 1)2
γ0(n, 0).

And

γ0(n, 0) =
n + 1

3n
(4)

obviously satisfies this recursive relation, with the initial condition γ0(2, 0) = 1
2
. It is also

clear that

γ0(n,
1

n
) =

1

3
(5)

(recall that Fn, 1
n

is the uniform distribution). Further, it follows from the definition of Gini

index as the expected distance between two random points that γ0(n, ·) is an affine function

of a for fixed n, and therefore (4) and (5) imply that

γ0(n, a) =
n + 1− na

3n
.

To shift from γ0(n, a) to γα(n, a) for positive values of α, notice that

γα(n, a) =
(

1

na

)α
γ0(n, a).
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Thus,

γα(n, a) =
(

1

na

)α n + 1− na

3n

and

γα(n, 0) =
(

1

n

)α n + 1

3n
.

Proof of Proposition 4.1: Note that the assertion of the proposition can be restated

as follows:

(i) if n = 4m for m ≥ 1, then

cst(n, a) =
m

2(4m− 1)
(1− a) ; (6)

(ii) if n = 4m + 1 for m ≥ 1, then

cst(n, a) =
2m + 1

4(4m + 1)
− a

8
; (7)

(iii) if n = 4m + 2 for m ≥ 0, then

cst(n, a) =
2m2 + 2m + 1

2(4m + 1)(2m + 1)
− a

2m + 3

4(4m + 1)
; (8)

(iv) if n = 4m + 3 for m ≥ 0, then

cst(n, a) =
m + 1

2(4m + 3)
− a

8
. (9)

We first prove the equalities for the case of a = 0. Start with (6), when n = 4m. Note that

the minimum of D([0, s])+D([s, 1]) is attained at s = 1
2

(or at any other point between 2m−1
4m−1

and 2m
4m−1

). Indeed, if (say) k−1
4m−1

≤ s < k
4m−1

< 2m−1
4m−1

, then the following holds:

D([0, s]) + D([s, 1]) = D([0,
k − 1

4m− 1
]) + D([

k

4m− 1
, 1])
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= D([0,
k − 1

4m− 1
],

k − 1

2(4m− 1)
) + D([

k

4m− 1
, 1],

1

2
+

k − 1

2(4m− 1)
)

> D([0,
k

4m− 1
],

k − 1

2(4m− 1)
) + D([

k + 1

4m− 1
, 1],

1

2
+

k − 1

2(4m− 1)
)

≥ D([0,
k

4m− 1
]) + D([

k + 1

4m− 1
, 1])

≥ min
s∈[0,1]

[D([0, s]) + D([s, 1])].

Therefore

cst(4m, 0) = D(I)− min
s∈[0,1]

[D([0, s]) + D([s, 1])]

= D(I)−D([0,
1

2
])−D([

1

2
, 1])

= D(I)−D([0,
2m− 1

4m− 1
])−D([

2m

4m− 1
, 1])

= D(I)− 2D([0,
2m− 1

4m− 1
]) = (using Lemma A.1)

=
m

4m− 1
− 2

m

4(4m− 1)
=

m

2(4m− 1)
,

which establishes (6) for n = 4m and a = 0.

Next, we consider the rest of the scenarios when a = 0. Similarly to the previous case,

cst(4m + 1, 0) = D(I)− min
s∈[0,1]

[D([0, s]) + D([s, 1])]

= D(I)−D([0,
2m− 1

4m
])−D([

2m

4m
, 1])

= D(I)−D([0,
2m− 1

4m
])−D([0,

2m

4m
])

=
(2m + 1)2m

(4m + 1)4m
− m2

(4m + 1)4m
− (m + 1)m

(4m + 1)4m

=
2m + 1

4(4m + 1)
,

and (7) is also established. Further,

cst(4m + 2, 0) = D(I)− min
s∈[0,1]

[D([0, s]) + D([s, 1])]

= D(I)−D([0,
2m

4m + 1
])−D([

2m + 1

4m + 1
, 1])

= D(I)− 2D([0,
2m

4m + 1
])

17



=
(2m + 1)2

(4m + 2)(4m + 1)
− 2

m(m + 1)

(4m + 2)(4m + 1)

=
2m2 + 2m + 1

2(4m + 1)(2m + 1)
,

which shows (8). And finally,

cst(4m + 3, 0) = D(I)− min
s∈[0,1]

[D([0, s]) + D([s, 1])]

= D(I)−D([0,
2m

4m + 2
])−D([

2m + 1

4m + 2
, 1])

= D(I)−D([0,
2m

4m + 2
])−D([0,

2m + 1

4m + 2
])

=
(2m + 1)(2m + 2)

(4m + 3)(4m + 2)
− m(m + 1)

(4m + 3)(4m + 2)
− (m + 1)2

(4m + 3)(4m + 2)

=
m + 1

2(4m + 3)
,

and hence (9) is established as well.

It remains to prove the four equalities for {Fn,a}n≥2,a∈(0, 1
n

] . Note that each such distribu-

tion is symmetric around 1
2

and satisfies GEM (the “gradually escalating median” condition,

set forth in Le Breton and Weber (2003). This condition requires that there be a (non-

decreasing) selection of a median, l(t), in every subinterval [0, t], such that l′(t) ≤ 1 for

almost every t. And it obviously holds for every Fn,a for n ≥ 2, a ∈ (0, 1
n
], since one can

consider

l(t) =




t
2
, if t ∈

[
k 1−a
n−1

, k 1−a
n−1

+ a
]

and k is even;
a
2
− 1

2
1−a
n−1

+ t
2
, if t ∈

[
k 1−a
n−1

, k 1−a
n−1

+ a
]

and k is odd;
k
2

1−a
n−1

+ a
2
, if t ∈

[
k 1−a
n−1

+ a, (k + 1) 1−a
n−1

]
and k is even;

t− k+1
2

1−a
n−1

, if t ∈
[
k 1−a
n−1

+ a, (k + 1) 1−a
n−1

]
and k is odd.

According to Proposition 4.1 of Haimanko et al. (2003),

cst(n, a) =
1

2
− 4

∫ 1
2

l( 1
2
)
tfn,a(t)dt.

Due to the particular form of fn,a(t) and l(1
2
), this implies that cst(n, a) = q(n)a+r(n)+s(n) 1

a
.

However, since 0 ≤ cst(n, a) ≤ 1 for all a, it follows that cst(n, a) has the form

cst(n, a) = q(n)a + r(n), (10)
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i.e., it is an affine function of a for fixed n. Equality (10) also holds when a = 0, since

the expression mins∈[0,1][D([0, s]) + D([s, 1])] is continuous in the distribution F , as was

established in Lemma A.7 in Haimanko et al. (2004).

Since Fn, 1
n

is uniform on [0, 1],

q(n)
1

n
+ r(n) = cst(n,

1

n
) = D(I)− 2D([0,

1

2
]) =

∫ 1

0

∣∣∣∣t− 1

2

∣∣∣∣ dt− 2
∫ 1

2

0

∣∣∣∣t− 1

4

∣∣∣∣ dt =
1

8
.

We also know that

r(n) = q(n) · 0 + r(n) = cst(n, 0),

and therefore

cst(n, a) = n(
1

8
− cst(n, 0))a + cst(n, 0). (11)

Substituting the values of cst(n, 0) that have been computed above into the above equality

yields (6), (7), (8), and (9).

Proof of Proposition 4.2: (i). Follows immediately from Proposition 4.1 and Corollary

3.2.

(ii) and (iii). Consider the case where a = 0. When n increases, the distribution Fn,0

becomes less polarized and, in the limit, converges to the uniform distribution. The unity

index cst(n, 0) clearly converges to 1
8

as n→∞. By Proposition 2.3, it decreases for low values

of n : cst(2, 0) = 1
2
, cst(3, 0) = 1

6
, cst(4, 0) = 1

6
, cst(5, 0) = 3

20
. However, cst(6, 0) = 1

6
> cst(5, 0),

and thus a spike in the unity index is observed on its way down to 1
8
, despite the decreasing

polarization and increasing uniformity of the distribution. This spike is recurrent: clearly,

cst(4m + 1, 0), cst(4m + 3, 0) < cst(4m + 2, 0), (12)

and even

cst(4m− 1, 0), cst(4m, 0) ≤ cst(4m + 2, 0) (13)
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(equality occurs only for m = 1). Moreover, if a1, a2, and a3 are positive and sufficiently

small, the inequality

cst(4m + 1, a1), cst(4m + 3, a2) < cst(4m + 2, a3) (14)

holds as well, due to continuity of cst(n, a) for a fixed n. This establishes (ii) and (iii) of the

proposition.

Proof of Proposition 4.3: Fix a > 0. Note that cst(n + 1, a) ≤ cst(n, a) for all

feasible n, except possibly for those that have the form n = 4m+1. Consider the expression

cst(4m + 2, a)− cst(4m + 1, a). By Proposition 4.1, this difference is equal to

1

8(4m + 1)
(

2

2m + 1
− 5a).

Thus, cst(n + 1, a)− cst(n, a) ≤ 0 for n > n(a), where n(a) = 4
5a

.

Proof of Proposition 5.4: This follows immediately from Proposition 3.1 of Haimanko

et al. (2004). Indeed, according to this proposition,

lim
c→0

K(c, n, a)
√
c =

1

2

∫ 1

0

√
fn,a(t)dt =

1

2

√
na

if a > 0, and clearly

lim
c→0

K(c, n, 0) = n

if a = 0.
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