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Summary. The restructuring of the gas industry did not so far generate the same modeling
activity as in electricity. While the literature of activity in electricity market models is now
abundant, it is still rather scant on the gas side. This paper surveys some of the existing models
and attempts to take advantage of the wealth of knowledge available in electricity in order
to develop relevant models of restructured gas markets. The presentation is in three parts.
The first one gives a blueprint of the market architectures inherited from the European and
North American gas legislation. It also introduces a prototype optimization model and its
interpretation in terms of perfect competition between agents operating on the restructured
market. The second part extends the model to the case where marketers have market power.
The third part considers more complex issues related to regulation of access to the network and
existence of market power with different types of agents. Equilibrium models are commonly
formulated as complementarity problems and the same mathematical programming framework
is adopted here. Many models are single stage; there are generally easy to formulate and well
known computationally. But many phenomena require two stage models that are much more
intricate and on which much less is known. The paper is thus also aimed at pinpointing possible
avenues for mathematical programming research.
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1 Introduction

Natural gas markets in Europe and North America have recently witnessed
significant changes brought about by government regulation and other market
forces. An example of a regulatory measure is the U.S. Federal Energy Regula-
tory Commission (FERC) order 636, requiring open access service to qualified
shippers (www.ferc.gov). In essence, this order transformed gas pipelines from
buyers, transporters, and sellers of gas to open access transporters paving the
way for new entities such as marketers to become more significant players that
might exert market power. In the European Union, similar legal measures for
dividing the gas sellers and network operators have also been considered [13]
as part of the restructuring and deregulation of the natural gas markets.

The EU currently imports 45 % of its natural gas [32] and this share
is expected to rise given limited resources in the EU [5]). Four countries,
Russia, Norway, Algeria, and the Netherlands accounted for some 87.7% of
all EU gas imports in 2001 ([8] from Energie Bulletin 4145 p.5). Given the
declining resources of the United Kingdom, the Netherlands will be the only
major internal supplier in the coming years [5]. The potential for market power
among the few producers is apparent and natural gas supply security has been
addressed in the so-called ”Green Paper” [12] and the European Commission
(EC) directive 2004/67/EC. The increase in natural gas demand is driven
in part by environmental concerns such as the Kyoto Protocol [42] and the
fact that natural gas has a lower carbon content than oil or coal [33]. Other
reasons for increased importance of natural gas such as the long-term supply
situation, or cost-effectiveness are important factors as well.

From a modeling perspective, the traditional system optimization ap-
proach for the restructured natural gas markets in Europe and North America
will not be the best choice. First, and in contrast with electricity, the gas mar-
ket, whether in North America or in Europe has never been an integrated sys-
tem amenable to a full optimization problem given the potentially divergent
interests of the main players. Second, given the realities of the new market-
place, such models will fail to capture the important (potential) oligopolistic
behavior of market players (e.g., producers in Europe, marketers in Europe
or North America).

In general, the introduction of competition in the network industries (e.g.
electricity, telecommunication, natural gas) stems from the following idea:
one should keep (or allow to be kept), a single company for those activities
considered as a natural monopoly, i.e., not competitive by default. One should
allow entry in other activities to permit competition.

One way to model this mixture of regulated and non-regulated behav-
ior, with the latter being either perfect or imperfect competition, is to depict
all the market players solving separate optimization problems. The Karush-
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Kuhn-Tucker (KKT) conditions [2] for these optimization problems taken to-
gether with market-clearing conditions constitute a market equilibrium prob-
lem typically expressed as a nonlinear complementarity problem (NCP) [30].
Complementarity problems or the related variational inequality problems (VI)
have been studied in a variety of engineering and economic settings for a num-
ber of years (Facchinei and Pang, 2003). However, only recently have there
been NCP/VI (hereafter called “complementarity”) models of the natural gas
market with full market detail. Some previous examples of imperfect com-
petition models for natural gas markets in Europe concentrating on specific
market segments include the early works of [31] and [11] who considered Nash-
Cournot producers and a Stackelberg production market, respectively. These
works concentrating on the production side were extended for example, in
[29] and [6], who considered stochastic aspects and a duopoly of producers,
respectively. These models all departed from traditional system optimization
approaches such as maximizing total surplus [40] but lacked sufficient mar-
ket detail on all the players as might be found in large-scale, detailed system
optimization market models such as: the Natural Gas Transmission and Dis-
tribution Model of the U.S. Department’s National Energy Modeling System
and its predecessors ([1]; [38], [38]; [15] [18]), the Gas Systems Analysis Model
for the North American market ([20], [19]), to name just a few.

Two recent models, have combined both sufficient market detail with the
complementarity approach for the new markets in Europe and North Amer-
ica. The first model, GASTALE ([3]; [14]) based in part on the work by [25],
[26]. considers Nash-Cournot producers with conjectured supply functions for
the European market. In addition it also includes perfectly competitive trans-
portation and storage sectors combined with multiple consumption sectors
and seasons. Gabriel et al. ([21],[22],[23]) have developed a model of the North
American natural gas market in which marketers compete non-cooperatively
against each other as Nash-Cournot players with the transporation, produc-
tion, storage, and peak gas sectors taken to be perfectly competitive. Also,
multiple seasons and consumption sectors are modeled.

Given the recent restructuring in natural gas markets and their impor-
tance to the energy sector, an analysis of appropriate modeling formulations
is needed. This is the main goal of this paper. In Section 2 we briefly describe
the functions of the various market players and provide a simple illustrative
example to clarify. We also recall some mathematical programming paradigms
that are used in the rest of the paper. In Section 3 we describe as a start-
ing point, perfectly competitive behavior for these players and analyze the
resulting KKT conditions for each of the players’ optimization problems. Sec-
tion 4 contrasts this behavior with imperfect competition among some of the
players, analyzing the key differences. Both the perfect competition model of
Section 3 and the imperfect competition models of Section 4 are relatively
easy mathematical programming problems. Section 5 introduces more diffi-
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cult considerations. It introduces transmission problems that it treats both
in an average cost and Ramsey-Boiteux context. The first model guarantees
neither the existence nor the uniqueness of an equilibrium. The second model
is a non-convex optimization problem. More complex situations of imperfect
competition are treated in Section 6, where one envisions situations where dif-
ferent classes of agents operating in the gas market may have market power.
This leads to two-stage equilibrium problems that may not have pure strategy
solutions. Many of these models have not been treated yet in the literature.
The paper is thus a survey of work to be done as well. This is the message
developed in the conclusion.

2 Natural Gas Market Players

The supply chain for natural gas begins with producers that extract gas from
either onshore or offshore reservoirs. The producers can be assumed to poten-
tially exert market power (as is the case in Europe) or behave in a manner
consistent with perfect competition (as in North America). The next step
is to transport the gas from production sites to either storage facilities, the
citygate, or directly to the consumption sectors (e.g., residential, commercial,
industrial, and power generation). Pipeline companies own and operate these
transportation routes and are subject to regulated rates (e.g., by FERC in
the U.S. and by National Regulatory authorities (NRA) in the EU). Storage
operators take advantage of seasonal arbitrage by buying and injecting gas
into storage in the low demand season (non-winter) and then selling it to con-
sumers in the high demand season (winter). Storage operators can be taken
to be regulated or oligopolistic depending on the local regulations. The EU
Directive 2003/55/EC has much weaker regulatory requirements on storage
than on transport. It only imposes access to storage on negotiated terms but
does not impose any price regulation. Owners of storage facilities are thus
only subject to general competition law and possibly to any additional reg-
ulatory obligation imposed by the Member States where their facilities are
located. Marketers (also known as shippers) are responsible for contracting
with pipeline companies to procure the gas and sell it to end-users. The mar-
keters are generally less subject to national regulation and can reasonably be
modeled as players with market power given their important position and the
new deregulated marketplace for natural gas. Specifically, in the EU, Directive
2003/55/EC does not impose any regulation to marketers which are thus only
subject to general competition law and possibly to the regulation that indi-
vidual Member States may find necessary. Additonally, one can also consider
peak demand players who supply extra gas in times of high demand. This
supply may be in the form of liquefied natural gas (LNG) or propane/air mix-
tures. Perfect or imperfect competition could be appropriate for these players
as well.
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It should be noted that these players each can be modeled as solving an
optimization problem in which an abstraction of their operations is assumed.
For example, production rates are constrained by the number of available rigs,
pressure in the reservoirs, and so on. A full consideration of all engineering
aspects for these and the other players would no doubt lead to intractable,
non-convex problems, thus making the computation of a complementarity-
based equilibrium very difficult at best. For these reasons, an abstraction of
their operations is generally taken. Also, it is important to note that in some
cases, one parent company may have control over several levels of the natural
gas supply chain described above. However, regulations are in effect to try to
balance out the field between independent players and ones which are part of
a larger company operating on several levels of the supply chain [24]. In the
European Union, this control of concentration is left to general competition
law.

2.1 An Illustrative Example

To clarify how the natural gas market can be modeled, consider the following
example, simplified from Gabriel et al. ([21]) and depicted in Figure 1.

Production Transmission Consumption

l=1

l=2

l=1

l=2

j=1

j=2

j=1

j=2

Producers l = 1,2 

Consumers j = 1,2 

Seasons s = 1 (summer: low demand) 

s = 2 (winter: high demand) 

s = 1

s = 2

Fig. 1. A simplified example

There are two producers separated from the market by a pipeline (we ne-
glect the distribution system). Storage facilities are located at the end of the
pipeline close to the market. There are two market segments, residential and
industrial. The problem refers to a single-year horizon decomposed into two
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seasons. Demand is low in the first season and high in the second. Gas is
stored in the low season and extracted in the high season. In order to sim-
plify notation, we assume that both seasons have the same number of days. We
also neglect all losses whether from transmission or storage operations. Lastly,
depending on the case at hand, it is useful to consider domestic pipelines (en-
tirely located in a country), crossborder pipelines (e.g. crossing an European
border) or long distance transportation pipelines (e.g. bringing Russian gas
to European borders through Ukraine). Each of these raises new questions
which are not treated here. Instead we assume a single pipeline for clarity.

2.1.1. Production

The description of the production of natural gas is reduced to a function
giving the cost of extracting the quantity of gas,(q�1, q�2) for seasons 1 and 2,
respectively, for producer �.

Cost =
∑
s EC�s(q�s)

q�1 ≥ 0, q�2 ≥ 0
(EC for Extraction Cost)

(1)

All engineering complexity associated with extracting the gas from the
reservoir is thus bypassed. Stylized descriptions of this type are frequently
adopted in economics where these functions are used to construct analytical
models. In contrast, computable models rely on formulations that allow for
more detailed engineering descriptions of the gas production process ([20],
[19]). Even though we use a stylized representation of the cost function, such
as found in economic models, we keep in mind that one should be able to
replace it by a process model of gas production at least as long as one remains
within descriptions commonly amenable to optimization models (e.g. [4]).

2.1.2. Transportation

Pipeline transportation is also represented in a very simplified form that ne-
glects all technological characteristics arising from the pressure and flow re-
lationship or representation of compressors; see [10] for details. We simply
assume that the pipeline has a maximum capacity fs based on the flow fs.
The owner of the pipeline incurs both short and long-run transportation costs.
The costs for the pipeline owner is represented as follows

Cost =
∑
s TCs(fs)

fs − fs ≥ 0 fs ≥ 0 s = 1, 2
(TC for Transportation Cost)

(2)

2.1.3. Storage

Storage is also modeled in the simplest possible form for ease of presentation.
Because we neglect losses, the amount recovered in the high demand season
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is equal to the amount injected in the low demand season. Injection and
withdrawal operations respectively cause injection and withdrawal costs and
there is also a maximum injection rate. Because there are only two periods, this
maximal injection rate also limits the amount that can be stored. Additional
constraints on volumetric rates could also be included but are left out from
this simple example. The maximal injection rate thus also plays the role of
a storage volumetric constraint related to working gas in the reservoir. The
associated costs are as follows

Cost = IC(i) + WC(w)
i− w ≥ 0
i− i ≥ 0, w ≥ 0
(IC: injection cost; WC: withdrawal cost)

(3)

where i, w are the injection and withdrawal amounts, respectively, with i the
injection capacity.

2.1.4. Demand

In general, the demand for each sector will be a function of the price in that
sector, which itself is a (decision) variable to be endogenously determined. For
illustrative purposes, we assume a fixed demand in each season. We let

djs be the demand of consumer j in season s. (4)

2.1.5. From transaction costs to marketer’s costs

The supply of natural gas involves procuring gas from the producers, securing
transportation and storage services and selling the gas to the final consumers.
These activities imply transaction costs for an integrated company such as
the one described by a single optimization model. Because these activities
will take on a different interpretation later, it is convenient to single them
out in preparation for the rest of the paper. We therefore define the following
variables that will later be bundled into a marketer activity. Specifically the
marketing department of the integrated company

procures gas from producer � in season s mq�s
procures transmission services in season s mfs
procures storage services (injection and withdrawal) mi and mw
sells gas to customer j in season s mdjs

(5)

with the first letter m denoting that it is a marketing variable. For the sake
of simplification we shall only refer to the transactions costs due to the selling
of the gas (variable mdjs) and not consider the other marketing variables in
the following. We let mnjs be the unit cost of selling gas to consumer j in
season s.
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2.1.6. A system optimization model

As a point of comparison, it is natural to first state the overall natural gas
problem in standard production management terms or as a system optimiza-
tion problem. Specifically, there are costs to produce, transport and store the
gas before delivering it to the final consumers. There are also transaction costs
of coordinating these activities. As indicated above, we limit our description
to the sole transaction costs incurred because of the marketing of gas (sales
activity). The most efficient approach in optimization terms is to minimize
the sum of all these costs given as

min
∑
�

∑
sEC�s(q�s) +

∑
s TCs(fs) + IC(i)

+ WC(w) +
∑
j

∑
smnjs ·mdjs

s.t.
∑
i q�s − fs ≥ 0 s = 1, 2

f1 − i ≥
∑
j mdj1

f2 + w ≥
∑
j mdj2

i− w ≥ 0
f − f ≥ 0
i− i ≥ 0
mdjs ≥ djs s = 1, 2; j = 1, 2
q�s, fs, i, w ≥ 0

(6)

Problem (6) is a very simplified representation of a natural gas market
operated by a single integrated company. The primary usefulness is to serve
as a basis of comparison for more complicated models to be presented be-
low. Indeed, our goal is to progressively transform this small problem with
the view of encompassing some of the concerns typically faced by market
analysts, regulators, and economists. We assume throughout the paper that
all cost functions are convex and differentiable. This approximation is com-
monly made in economic models. Differentiability can be relaxed at the cost
of more complex formulations that we prefer to avoid in this paper. Adding
an assumption of quadratic function would also make our complementarity
problems linear complementarity problems (LCP).

This type of approach has been extensively used in the discussion of the re-
structuring of the electricity industry. Many arguments have been developped
on the basis of electric power models, comparatively as simple as problem (6)
and were eventually transformed into full size computable models for looking
at policy and strategic questions. We adopt the same philosophy: starting from
a simple optimization model, we progressively introduce economic questions
that reflect some of the aspects of the restructuring of the natural gas sector.
While there has been considerable modeling activity along these lines in the
electricity sector, this has not taken place yet in the gas sector.

The approach is also interesting from an optimization point of view. Some
of the models emerging from the process are standard complementarity prob-
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lems which are now well understood. Other models are optimization problems
subject to equilibrium constraints. These problems are much more recent even
though their literature is already abundant. Also, other models are equilibrium
problems subject to equilibrium constraints, a particular case of Generalized
Nash Equilibrium problems. These are quite recent models that turn out to
be quite difficult to analyze and computationally challenging to solve. At this
stage, such models have received little attention in the literature. Last, but
possibly not least, the simplified mathematical programming problems formu-
lated here, can easily be made more challenging by adding all the technological
complexities neglected in this presentation.

Classes of mathematical programming problems

Before proceeding with building up a more complicated model of (6), we re-
call the KKT conditions, complementarity problems, and other mathematical
programs that are relevant. A detailed discussion of the properties of these
various mathematical programs as well as applications thereof can be found
in (Facchinei and Pang, 2004). We use throughout the notation 0 ≤ a ⊥ b ≥ 0
which expresses the set of relations

a ≥ 0 b ≥ 0 ab = 0.

1. Karush-Kuhn-Tucker Conditions for a Convex Optimization Problem
Consider a standard nonlinear programming problem of the form

min f (x)
s.t. gi (x) ≤ 0 i = 1, . . . ,m

hj (x) = 0 j = 1, . . . , p

where f, gi : Rn → R, are convex functions and hj : Rn → R are affine
functions. The KKT conditions are then sufficient for optimality ([16]).
These conditions are to find a decision vector x ∈ Rn, an inequality La-
grange multiplier vector u ∈ Rm, and an equality Lagrange multiplier
vector v ∈ Rp such that

∇f (x) +
∑
i ui∇gi (x) +

∑
j vj∇hj (x) = 0

gi (x) ≤ 0, ui > 0, gi (x)ui = 0 ∀i
hj (x) = 0, vj unconstrained ∀j

These KKT conditions are a special case of a nonlinear complementarity
problem with both equations and inequalities, called a mixed complemen-
tarity problem (MCP) and given as follows.

2. Mixed Complementarity Problems
Find x ∈ Rn1 , y ∈ Rn2 such that
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0 ≤ F (x, y) ⊥ x ≥ 0
0 = G(x, y)

where F : Rn1×Rn2 → Rn1 , G : Rn1×Rn2 → Rn2 and in general. (These
problems are monotone in the context of this paper.)

More generally, one may want to optimize a certain function Π(x, y, z) of
three sets of variables x ∈ Rn1 , y ∈ Rn2 , z ∈ Rn3 . The z vector represents
the “first stage” variables whereas x and y represent the “second stage”
variables. A typical constraint set consists of two sets of restrictions. First,
there are regular constraints on the upper level variables of the form z ∈ S.
Secondly, the second stage variables must satisfy some mixed complemen-
tarity problem for fixed values of the first stage variables z. This problem
is given as follows.

3. Mathematical Programming Problem Subject to Equilibrium Constraints
(MPEC)

maxx,y,zΠ(x, y, z)
s.t. 0 ≤ F (x, y; z) ⊥ x ≥ 0

0 = G(x, y; z)
z ∈ S

which is in general a non-convex problem and computationally challeng-
ing. A well-known example of an MPEC is the bilevel programming prob-
lem in which the lower level constraints are the optimality conditions for
a second-stage problem.

MPEC problems can be generalized to equilibrium problems with equilib-
rium constraints (EPEC). A specific example of an EPEC is as follows:
Let K agents have first stage decision variables zk, k = 1, · · · ,K. Each
of these agents seeks to maximize an objective function Πk(x, y, zk, z∗−k)
where z∗−k represents the optimal but fixed values for the other players.
This objective function is optimized subject to the constraint that zk ∈ Sk
and equilibrium constraints such as specified in the MPEC problem. The
full problem is thus to find z∗k, k = 1, · · · ,K, x, y as follows.

4. Equilibrium Problems subject to Equilibrium Constraints

z∗k solves maxx,y,zk Π
k(x, y, zk, z∗−k)

s.t. 0 ≤ F (x, y; zk, z∗−k) ⊥ x ≥ 0
0 = G(x, y; zk, z∗−k)
zk ∈ Sk

This problem, like the MPEC, is computationally difficult given that it is
in general a non-convex problem and existence of a solution (here a pure
strategy equilibrium) is not guaranteed even under standard compactness
assumptions on the feasible region. The solution of an EPEC problem, if
it exists, is a subgame perfect equilibrium ([17]).
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3 A Perfect Competition Model

3.1 Demand functions

Market models commonly assume that demand reacts to prices. Short-term
(real time) demand of electricity is the exception where demand is commonly
assumed to be insensitive to price. This reaction is represented by a demand
function, which, for concreteness, we assume to be affine and downward slop-
ing. We let

djs(pjs) and pjs(djs) (7)

be, respectively, the demand and inverse demand functions of consumer j, in
season s. Using the inverse demand function, one introduces the willingness
to pay function given as

WPjs(djs) =
∫ djs

0

pjs(ξ)dξ. (8)

We assume, in order to simplify the discussion, that the prices will automati-
cally turn out positive.

3.2 Basic assumptions

Perfect competition assumes that all agents are price-takers. This means that
agents optimize their profit or utility subject to prices that they take as given.
This assumption does not imply that these prices are exogenous to the sys-
tem, but simply that these agents see them as such. An expanded version of
problem (6) more amenable to an interpretation in terms of an equilibrium
is given in problem (9) in which all variables are taken to be nonnegative. In
preparation for its interpretation in terms of an equilibrium model, this version
also assumes that the marketing/sales activity of the integrated company has
been split in several marketing/sales activities k each under the responsabil-
ity of a different independent marketer k, with its own activity variable and
cost. Problem (9) differs from problem (6) in two respects. First it explicitly
introduces the demand functions (7) via the willingness to pay function (8).
Second it reformulates the constraints by introducing new variables that are
easier to interpret in terms of unbundled gas activities. Specifically this latter
difference between the two formulations allows for an explicit representation
of all the transactions of the marketers and the introduction of a possibly dif-
ferent unit marketing cost mnk of each marketer k in the objective function.
It also separates the production, transportation and storage activities.

max
∑
j

∑
sWPjs(djs)−

∑
�

∑
sEC�s(q�s)−

∑
s TCs(fs)

− IC(i)−WC(w)−
∑
kmnk(

∑
j

∑
smdkjs)

(9.1)

s.t.
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q�s −
∑
kmqk�s ≥ 0 (wp�s) wellhead price (9.2)∑

�mqk�s −mfks ≥ 0 (bpks) border price (9.3)
mfk1 −mik −

∑
j mdkj1 ≥ 0 (cgk1 ) citygate price (9.4)

mfk2 + mwk −
∑
j mdkj2 ≥ 0 (cgk2 ) citygate price (9.5)∑

kmdkjs − djs ≥ 0 (pjs) price paid by consumer (9.6)
fs −

∑
kmfks ≥ 0 (τs) transmission price (9.7)

mik −mwk ≥ 0 (µk) value of gas in storage for
marketer k (9.8)

i−
∑
kmik ≥ 0 (ip) injection charge (9.9)

w −
∑
kmwk ≥ 0 (wp) withdrawal charge (9.10)
fs − fs ≥ 0 (ρs) transmission congestion (9.11)

i− i ≥ 0 (λ) storage congestion charge (9.12)

Dual variables are written to the right of each constraint together with their
interpretation. The dual variables of constraints (9.2) to (9.5) are respectively,
the wellhead prices (wp), border prices (bp), and citygate prices in summer
and in winter (cg). The other dual variables can also be usefully interpreted.
Specifically pjs is the price paid by consumer j in season s; τs is the transmis-
sion charge in season s, ip and wp respectively the injection and withdrawal
charges into and from storage; ρs is the congestion charge of the pipeline, λ
the congestion charge of storage facilities, and µk is the implicit price of gas
in storage for marketer k. Note that except for the introduction of the pos-
sibly different transaction costs of the marketing activity and the addition of
different marketing variables, this model is equivalent to problem (6). As we
argue next, because of the new variables, it is amenable to an interpretation
in terms of the behavior of the agents in the market. Note also that balance
inequalities are written under the “free disposal assumption” i.e., they hold
as equalities when the commodity/service price is positive.

3.3 KKT Conditions, Complementarity Formulations and Agent
Behavior

We now proceed to establish the KKT conditions of problem (9) and interpret
them in terms of agent behavior in perfect competition. This interpretation
paves the way to the introduction and formulation of different assumptions of
imperfect competition.

3.3.1. Producers’ behavior

The relation

0 ≤ ∂EC�s(q�)
∂q�s

− wp�s ⊥ q�s ≥ 0. (10)

expresses that each producer maximizes its profit at the prevailing price in
the season. If producer � is active in season s (q�s > 0), then the wellhead
price is equal to the marginal cost.
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3.3.2. Pipeline operator behavior

The conditions
0 ≤ ∂TCs(fs)

∂fs
− τs + ρs ⊥ fs ≥ 0

0 ≤ fs − fs ⊥ ρs ≥ 0
(11)

state that the pipeline operator maximizes the profit accruing from the use
of the pipeline at the prevailing price. If the pipeline is used (fs > 0), this
price is equal to the sum of a marginal transportation cost and a congestion

cost (τs = ∂TCs(fs)
∂fs

+ ρs). The congestion cost ρs is only different from zero

when the pipeline is full (fs = fs).

3.3.3. Storage operator behavior

The conditions describing the behavior of the storage operator can be stated
as follows.

0 ≤ ∂IC(i)
∂i

− ip + λ ⊥ i ≥ 0

0 ≤ ∂WC(w)
∂w

− wp ⊥ w ≥ 0
0 ≤ (i− i) ⊥ λ ≥ 0

(12)

These define storage operation charges and can be interpreted as follows.
There is a charge λ on injection facilities only when there are congested, i.e.
λ > 0 implies i = i. If the injection facilities are used (i > 0) the injection
charge is equal to the sum of the marginal injection cost and the congestion

charge: ip = ∂IC(i)
∂i

+ λ. The withdrawal charge is equal to the marginal

withdrawal cost when w > 0: wp = ∂WC
∂w

.

3.3.4. Consumer behavior

The condition
0 ≤ −∂WPjs

∂djs
+ pjs ⊥ djs ≥ 0 (13)

expresses that the marginal willingness to pay for gas is equal to the price
when there is consumption, that is

djs > 0⇒ ∂WPjs
∂djs

= pjs.

3.3.5. Marketers’ behavior

The appearance of marketers is a key element of the restructuring of the
gas industry. Marketers emerge from the optimization models as agents that
take on former coordination activities that involved procuring the commodity
and transportation and storage services as well as marketing the gas. They
compete against each other, and as a result put competitive pressure on other
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agents that are not in a monopoly position (e.g. producers in the EU). Each
of the marketer’s tasks is described in complementarity form as follows.

3.3.6. Procuring the gas

0 ≤ wp�s − bpks ⊥ mqk�s ≥ 0. (14)

When mqk�s > 0, the border price charged to marketer k is equal to the
wellhead price.

3.3.7. Shipping the gas

0 ≤ bpks − cgks + τs ⊥ mfks ≥ 0. (15)

When mfks > 0, the citygate price of marketer k is equal to the sum of the
border price charged to marketer k and the transmission price.

3.3.8. Procuring storage services

0 ≤ ip + cgk1 − µk ⊥ mik ≥ 0
0 ≤ µk + wp− cgk2 ⊥ mwk ≥ 0, (16)
mik = mwk.

Note that relation (9.8), mik ≥ mwk, must hold with equality. Indeed, suppose
mik > mwk ≥ 0, then µk = 0 by (9.8). This also implies ip = cgk1 = 0 (by the
first complementarity condition of (16)). i ≥

∑
k′ mik

′
> mik > 0, (12) would

then imply ∂IC
∂i = 0, ... which means that the cost of the whole supply chain

vanishes to zero in season 1. We exclude this case for economic reasonableness.

The difference of citygate prices between seasons 2 and 1 (cgk2 − cgk1 ) for
marketer k is equal to what it has to pay for storage services (ip + wp) when
it uses these services (mik = mwk > 0). This is an intertemporal arbitrage
condition.

3.3.9. Marketing the gas

0 ≤ cgks + mnk − pjs(djs) ⊥ mdkjs ≥ 0. (17)

When mdkjs > 0, the price offered to consumer j in season s is equal to the
sum of the citygate price of marketer k and the marketing cost mnk.

4 Imperfect Competition: Market Power of the
Marketers

4.1 Background and Definition of the agents

The above discussion is rather straightforward both in mathematical and eco-
nomic terms. It is well known that KKT conditions of convex problems can be
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expressed as complementarity conditions and that they can be interpreted in
economic terms under our assumptions of convexity (see Section 2.1.6). But
this economic interpretation is very specific. It only refers to perfect compe-
tition, that is to conditions where all agents are price takers. The interest of
the KKT conditions in this model stems from the fact that we would like to
modify each of these complementarity conditions in order to better represent
the reality of the market. Indeed, European producers do not necessarily be-
have as price-taking agents. Transmission may be regulated both in the US
and Europe resulting in their charging their average cost. Marketers may have
a dominant position in their home market in Europe or in some large frac-
tion of the market in the US and hence not behave according to the perfect
competition paradigm. Similarly storage owners could be regulated or be in a
position to exert market power. In short, one would like to construct a model
that resembles the above KKT model at least in terms of its structure, but
differs from it in specific market aspects. We begin by briefly motivating this
approach.

4.1.1. Unbundling of the transportation and merchant activities

It is commonly assumed, but by no means proved in theory or practice, that
the transportation infrastructure is a natural monopoly. This implies that
one should not expect competition or, at least much competition to develop,
in transportation. We take the extreme view (which is true in Spain and
France but not in Germany) that there is a single transportation company
operating the infrastructure. Transportation, because it is a monopoly should
be regulated both in terms of the conditions of access and its pricing. In other
words one cannot expect that competition will naturally lead to relation (11).
One would thus need to impose some pricing regulation on the transportation
activity.

4.1.2. Unbundling of storage and merchant activity

Storage is essential for gas operation. Storage can only be developed at certain
sites and the incumbent European companies currently already operate most
sites. It would seem natural to also unbundle storage from the marketing
operations. This can be done in two ways: one is to make storage competitive,
that is either to transfer ownership to other agents or to auction its capacity;
an alternative is to regulate the access to storage. For the sake of brevity we
shall not elaborate here on the regulation of the storage activity or on the
market power that storage owners can exert. For the sake of simplicity we
retain the perfect competition assumption model in (16).

4.1.3. Making marketing competitive

In contrast with storage and transportation, there is no restriction on having
several marketers operating in a given territory. Specifically all former gas
companies can have a marketing activity. Because they know the producers of
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gas and the main characteristics of the gas consumers, this implies that they
can compete with each other in different geographic segments of the market.
Needless to say, the incumbent in some European country is likely to know
more about the demand sector of his country than about other countries, at
least in a first stage. But this is not sufficient to refrain from entering other
markets or from trying to team up with smaller agents operating in other
markets. This justifies unbundling the marketing activities and allowing for
different marketers in every market.

In short, we thus assume in the following that there is a single pipeline
company and a single storage company. The transportation activity is regu-
lated. We do not make any special assumption on storage that remains ruled
by (12), that is, at marginal cost pricing. We suppose that there are several
marketers that buy and resell gas and procure transportation and storage
services, possibly exerting market power.

4.2 Price Discrimination and Arbitrage

Even though there may be several marketers in a single market, it is unlikely
that it will immediately become perfectly competitive. This implies that one
looks for a Nash equilibrium with respect to some strategic variables. It is
common and easy to use quantities as strategic variables (à la Cournot). We
shall later use a similar Cournot assumption for representing producers. This
will lead to a much more difficult EPEC problem. According to this assump-
tion, each marketer optimizes its profit, assuming the quantitative actions of
the others given. In order to illustrate the principle, consider for a moment
the simpler problem of marketer k buying gas in season s at citygate prices
cgks respectively. These marketers incur marketing costs mnk. In perfect com-
petition they will sell the gas to segment j at the price pjs satisfying

pjs(djs) = cgks + mnk, k = 1, 2. (18)

Both marketers will sell to segment j if the quantities cg1
s+mn1 and cg2

s+mn2

are equal. If not, only the marketer with the smallest cgks + mnk will remain
in that market segment.

The situation is different with a Nash-Cournot assumption. We adopt the
standard notation to let −k designate marketers other than k. Under this
assumption and with this notation, marketer k solves the problem

max
mdks

pjs(mdks + md−ks )mdks − (cgks + mnk)mdks . (19)

Assuming a positive sale (mdks > 0), one sees that the pricing condition (18)
is replaced by

pjs(djs) + mdks
∂pjs
∂djs

= cgks + mnk, k = 1, 2. (20)
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The only difference between the perfect and Nash-Cournot competition is thus

the replacement of pjs(djs) by pjs(djs) + mdks
∂pjs(djs)

∂djs
.

Applying this reasoning to the previously derived KKT conditions, the
Nash-Cournot behavior of the marketers can be inserted into the above model
by simply replacing relation (17) by

0 ≤ cgks + mnk − pjs(djs)−mdkjs
∂pjs(djs)

∂djs
⊥ mdkjs ≥ 0. (21)

In this relation the gas price collected by the marketer from customer j in
time segment s is replaced by the marginal revenue from the same client in
that period. The rest of the KKT conditions remain unchanged.

This model is amenable to some variations. One can assume that all mar-
keters behave à la Cournot. Alternatively, one can suppose that the incumbent
marketer retains a dominant position and that the entering marketers behave
competitively, that is that they are price-takers. One would then have a mix
of relations (17) for the entrants and (21) for the incumbent. This could be
justified for instance if an entrant believes that it is too small to try to exert
market power in this new market. The entrant therefore prefers to leave the
task of maintaining a relatively high gas price to the incumbent and simply
behaves as a price-taker.

The possibility of having this mix of behaviors introduces alternative possi-
ble formulations. One may simply combine the competitive relations describ-
ing the Cournot (21) and competitive (17) behaviors. This is the situation
where the incumbent naively considers the actions of the entrant as given.
Alternatively, one could assume that the incumbent takes the actions of the
entrant into account when planning its strategy. It then chooses its marketing
action taking into account the reaction of the entrant. This latter interpreta-
tion complicates the problem as shown below.

Price discrimination does not occur in perfect competition but is a stan-
dard outcome of market power. In order to analyze this phenomenon, consider
again the perfect competition model and suppose that marketer k supplies
both consumers 1 and 2 in season s (mdk1s > 0,mdk2s > 0) . Relation (17)
becomes

p1s = p2s = mnk + cgks . (22)

One sees that the prices paid by the two customers in season s are identi-
cal. Consider now the Cournot model and make the similar assumption that
marketer k supplies both consumers in season s. Relation (21) becomes
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p1s(d1s) + mdk1s
∂p1s
∂d1s

(d1s)−mnk − cgks = 0 and

p2s(d2s) + mdk2s
∂p2s
∂d2s

(d2s)−mnk − cgks = 0.
(23)

This time one cannot conclude that p1s = p2s. The prices to the two con-
sumers could be different and therefore price discrimination could occur. An
interesting question is whether price discrimination can persist in an open
market. This is where new agents, namely arbitrageurs, intervene.

Arbitrageurs are new agents that take advantage of price differences exist-
ing in a market. They buy where the price is lower and sell where it is higher
if the difference exceeds their transaction costs. Suppose, in order to simplify
the problem, different consumer prices as results from the Cournot pricing of
the marketers, zero transportation costs between the customers and negligible
transaction costs are present. The following modeling of arbitrageurs has been
introduced by [37] for the electricity sector and is presented here for natural
gas. Suppose an arbitrageur that buys a quantity a from a first consumer
paying a lower price and sells this amount to a second consumer with a higher
price. The arbitrageur can make a profit and will expand this trading until
the prices of both consumers are equal. This can be formalized by imposing
that an arbitrageur solves the following problem

max
as

[p1s(d1s + a∗s)− p2s(d2s − a∗s)]as (as unconstrained) (24)

where as represents the amount that is arbitraged. It is important to note
that the a∗s in p1s(d1s + a∗s) and p2s(d2s− a∗s) is not a decision variable to the
arbitrageur (based on the perfect competition assumption). The arbitrageur
is supposed to be a price taker. He/she trades as long as p1s �= p2s but does
not take the impact of his/her trade on the price into account. This is the
usual assumption of a competitive agent: it implies that the market settles at
a value as for which

p1s(d1s + a∗s)− p2s(d2s − a∗s) = 0. (25)

This effect can be readily inserted in the model (10) to (17) by adding both the
variables as and the constraints (25), s = 1, 2 to the set of complementarity
conditions.

Price discrimination can also take place between seasons. Suppose that
the marketer uses storage services. In perfect competition (17) implies that
the difference between the prices charged to a given consumer is equal to
the difference between the citygate prices in these seasons (see the discussion
of storage operations in section 3.3.5). This difference is itself equal to the
sum of the marginal injection and withdrawal costs, to which one also adds
a congestion cost in case the storage capacity is full. This is expressed in the
following relation
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pj1 − cgk1 −mnk = 0
pj2 − cgk2 −mnk = 0 (26)

which imply
pj1 − pj2 = cgk1 − cgk2 .

Taking the Cournot assumption where the prices charged to a consumer in
the two seasons have been replaced by the marginal revenues accruing from
these consumers, one obtains

pj1(dj1) + mdkj1
∂pj1
∂dj1

(dj1)− cgk1 −mnk = 0

pj2(dj2) + mdkj2
∂pj2
∂j2

(dj2)− cgk2 −mnk = 0.
(27)

This does not imply that pj2 − pj1 = cgk2 − cgk1 . The price difference between
the two seasons is not necessarily equal to the difference between the citygate
prices and hence to the sum of the marginal injection and withdrawals charges
and a possible congestion cost. In other words, there may be price discrim-
ination. This price discrimination between seasons has been pointed out for
the case of reservoir management in electricity in [7]. It also appears here in
natural gas. The implication of the market power here is a non-optimal use of
the storage compared to the perfect competition case. Arbitrageurs can again
intervene to reduce the price discrimination between seasons. An arbitrageur
here is an agent who buys a quantity in the first, low-price period and releases
it in the higher price period. The arbitrageur does not buy gas from the pro-
ducers (it would be an other marketer in that case); he/she simply takes a
position between the two periods. Needless to say the arbitrageur incurs the
storage costs, in this case the sum of the marginal injection and withdrawal
costs and the possible congestion charge in case storage facilities are full. The
arbitrageur therefore solves the following problem

max
[
pj2(dj2 + a∗)− pj1(dj1 − a∗)−

(
∂IC(i + a∗)

∂
+

∂WC(w + a∗)
∂w

+ λ

)]
a

(28)
where he/she takes ∂IC

∂i
, ∂WC

∂w
and λ as given. Solving the problem will imply

that the prices between two seasons will satisfy the relation

pj2(dj2 + a∗)− pj1(dj1 − a∗) =
∂IC(i + a∗)

∂i
+

∂WC(w + a∗)
∂w

+ λ. (29)

Again this effect can be readily inserted in the model (10)-(17) by adding both
the variables a and relation (29) to the set of complementarity conditions at
least if one assumes that one has an analytic expression of both ∂IC

∂i
and

∂WC
∂w

. One also needs to replace i ≥ i be i ≥ i + a. We saw before that
the Cournot marketer could anticipate the actions of the spatial arbitrageurs
expressed in relation (25) (clairvoyant marketer) or take them as given (myopic
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marketer). The same distinction can be made here with respect to the behavior
of marketers vis à vis the seasonal arbitrageurs (relation (29)). The case of
the näıve arbitrageur is straightforward to model: one simply replaces relation
(21)-(22) by the pair

0 ≤ cgks + mnk − pis(djs + a)−mdkjs
∂pjs
∂djs
⊥ mdkjs ≥ 0

p1s(d1s + a)− p2s(d2s − a) = 0.
(30)

In contrast with the näıve Cournot marketer, the clairvoyant marketer foresees
the action of the arbitrageur and takes them into account in its sales. Metzler
et al. (2003) have shown that both assumptions lead to the same outcome
in electricity markets. It is conjectured that the same result holds here. The
reader is referred to Metzler et al. (2003) for an in-depth discussion of this
question.

5 Regulated Transportation

5.1 Background

It was argued before that there will likely remain a single transportation
company in each EU Member State after restructuring has taken place. This
transportation company therefore has a dominant position in the transporta-
tion market and hence needs to be regulated. Germany is the only proponent
of an alternative approach and argued for a long time that transportation
of natural gas is a competitive activity. And indeed some competition de-
veloped. But Directive 2003/55/EC applies to all Member States and Ger-
many will need to comply with the common approach which is to regulate
gas transportation. It remains to be seen how it will meet the regulation re-
quirement. Regulation should facilitate the proper access to transportation
infrastructure. The exact meaning of “proper” has been extensively discussed
in the literature on access pricing in network industries (mainly in telecom-
munication). We note that our formulation (11) implements a marginal cost
pricing of transportation services and a congestion charge when the capacity
of the pipeline is saturated. This congestion cost is charged to all marketers.
Marginal cost pricing has been vigorously discussed in the context of access
to the electric power network where it gave rise to the famous disputes be-
tween proponents of the flowgate and nodal models and to the discussion of
zonal/nodal pricing in the United States. It also gives rise to various issues of
market power in the transportation of electricity. We shall not discuss these
questions here because in contrast with electricity, congestion in natural gas
transport does not seem yet to be a major issue. Besides marginal cost pricing
we consider two other approaches to transportation pricing, namely average
cost and Ramsey-Boiteux pricing. Average cost pricing is the most widely ac-
cepted tariff structure in practice even though it has little economic virtue. By
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contrast, Ramsey Boiteux pricing is a sophisticated way to allocate costs. Its
application to utilities was made famous by Boiteux’s seminal contribution to
electricity pricing. It has been extensively discussed in the context of access to
telecommunication infrastructure. Its application to natural gas is due to [9].
We model these approaches without any attempt to summarize the extensive
discussions that they generated.

5.2 Average cost pricing

Average cost pricing is the preferred access pricing method in practice. It
consists of setting a price that allows the network owner to cover its cost in-
cluding a proper rate of return on capital. To illustrate the principle, consider
the simple situation depicted in Figure 2 with two marketers. One assumes
that the charge is set at regular time intervals by the regulator on the basis
of the transportation cost and on some historical or prospective view of the
flow in the pipeline.

marketer 1

marketer 2

consumers

transport

producers

Fig. 2. two marketers and a transporter

Let tc and F be respectively the variable and the fixed cost of the network
(see Figure 3). Assume two marketers who respectively ship f1 and f2 through
the network. A plausible average cost access tariff is given by the unit rate τs

τs =
F

f1 + f2
+ tc (31)

One can again think of two possible implementations of this tariff. In a
first “näıve” implementation, the marketers do not foresee that increasing the
amount of demanded transmission service will decrease the unit rate τs. In
another interpretation, they anticipate this change. Replacing (11) by (31)
and keeping the rest of the KKT conditions unchanged models the näıve
interpretation.



Complementarity Problems in Restructured Natural Gas Markets 21

tc

f

Total cost

F

Fig. 3. Cost function of the transportation activity

5.3 Infeasible problems and multiple equilibria

All models covered up to this point can be converted into convex optimization
problems, at least under standard conditions on the cost function (convexity),
the demand curve (downward sloping) and for the Cournot model, revenue
function (concavity). They are thus guaranteed to have a convex set of solu-
tions. In contrast the introduction of average cost pricing prevents this con-
version into a convex optimization problem. The complementarity problem
becomes nonlinear and ceases to be monotone as a result of the decreasing
unit rate τs (31) replacing (11). This may make the model infeasible or intro-
duce multiple equilibria. This is illustrated in Figure 4 for the cost function of
the transportation activity shown in Figure 3. The example assumes a single
consumer, no storage, zero marginal gas production cost and a marketer who
needs to pay for transportation priced at average cost. The figure illustrates
two situations that correspond to different levels of the fixed charge F . Curve
(1) corresponds to the case of relatively low value of F ; the average cost curve
intersects with the demand curve at two points so that here are two equilibria.
When the fixed charges of the pipeline are too high (curve (2)), the transporter
cannot find a demand level that pays for the cost of the network. This lack of
equilibrium may seem unrealistic if the fixed charges are limited to the sole
cost of the network. This phenomenon proved dramatically relevant before the
restructuring of the US gas sector in the 1980’s when the fixed charges to be
recovered by the marketers (at that time the pipelines companies) included
the take or pay commitments of long-term contracts.

5.4 Ramsey-Boiteux problem statement

Economists working on access pricing in the telecommunication area have
extensively promoted the application of Ramsey-Boiteux pricing for access
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f

p,
average cost curve with high fixed cost: 
no equilibrium

average cost curve with low fixed cost: 
multiple equilibria

(1)

(2)

Fig. 4. Non existing and multiple equilibria

to the infrastructure. Cremer et al. (2003) converted this approach to trans-
portation of natural gas. We first introduce the method in a simplified context
and then discuss the problem that it raises in the more realistic context (even
though extremely simplified) of our example.

Consider the simplified case where there is no storage, a single marketer,
one gas producer and two customers as shown in Figure 4.

EC(q) transportation
Fixed cost of pipeline:F 

p1(d1)

p2(d2)

Fig. 5. One producer, one marketer, no storage

Assume the charge to recover through access prices amounts to a single
fixed cost of the pipeline (tc = 0 in Figure 3). One wants to find access charges
for the two customers that maximize economic welfare and allow one to cover
the revenue requirement of the pipeline.

Supposing that the whole economy is in perfect competition except for the
transportation of natural gas. We note q the production quantity and use τ j

to denote the transport charge to consumer j in the example. τ j is then given
by

τ j = pj(dj)−
∂EC

∂q
(q) (32)

where ∂EC
∂q is the price charged by the producer for its gas in perfect competi-

tion. The transport charge is equal to the difference between the price paid by
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the consumer and the marginal extraction cost of gas. Relation (32) implies
that q can be written as a function of dj and τ j : let q(d, τ) be this function.
The resulting welfare maximization problem in simplified form is stated as

max
∫ d1
0

p1(ξ1)dξ1 +
∫ d2
0

p2(ξ2)dξ2 − EC(q)
s.t. τ1 d1 + τ2 d2 ≥ F

0 ≤ q ≤ f.

(33)

Note that the KKT conditions of (33) are similar but not identical to (32).
(33) is indeed the regulator’s problem while (32) represents the equilibrium
conditions in a perfectly competitive market.

This formulation assumes that there exists a benevolent regulator that
tries to maximize the overall welfare while simultaneously covering the fixed
charge of the network. The formulation assumes that the marketer procures
the gas at marginal cost which corresponds to a perfectly competitive produc-
tion market. Alternative assumptions are possible. A perfectly competitive gas
production is a quite reasonable in North America, but not in Europe. What-
ever the assumption of competition on the production side, Ramsey-Boiteux
introduces access charges that are specific to the consumer segment. The con-
sumer which values gas more pays more. This is price discrimination but it
is accepted in this context because of the objective pursued, namely an effi-
cient pricing of the infrastructure. In U.S. parlance, the discrimination is not
undue. We do not discuss this legal and economic issue here.

Consider the formulation given in (33) and the transmission charges τ1

and τ2. The (perfect competition) equilibrium conditions of the rest of the
gas market can be written as

pj(dj) = bp + τ j∑
dj = q

(34)

where bp = ∂E/∂q is the border price in the one producer case. This is a
square system, which means that the production and demand are entirely
determined by bp, τ1 and τ2. The Regulator is only responsible for choosing
τ1 and τ2 while the market will select bp on the basis of q. The Regulator
therefore optimizes a criterion that effectively depends on dj and q by playing
on the τ j . Assume a quadratic cost function EC, then bp is affine. Because
we also assumed affine demand functions, the dependence of all variables d
on τ1 and τ2 is affine. The maximization problem of the Regulator is thus
convex. Economists have elaborated at length on the analytic solution of this
problem.

The same reasoning could have been made if marketers behaved à la
Cournot. The relationship (32) would have been replaced by Cournot equilib-
rium equations, that is, by replacing the price by the marginal revenue. These
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resulting expressions would have been affine. The problem of the Regulator
would have been different from an economic point of view, but its mathemat-
ical structure would have remained unchanged. In both cases, Ramsey pricing
is amenable to an analytic solution. Things become much more complex when
one turns to a more detailed physical model where the square system of equa-
tion (34) is replaced by a complementarity problem.

5.5 Applying Ramsey-Boiteux to the example

The above reasoning can be considered in the more general case of our ex-
ample. Assume as before that the transport charges (τjs) differentiated by
customer and season are known. All the other variables of the market are
determined by the equilibrium conditions that describe the behavior of all
agents except the transporter. Specifically one defines a restricted equilibrium
subproblem RESP(τ) consisting of the following complementarity conditions

- Producer’s behavior (10)
- Storage operation behavior (12)
- Consumer behavior (13)
- Marketers behavior (14) to (17)
- All balance inequalities (9.2) to (9.10) holding as equalities.

One notes that the pipeline operator equations (11) that involved the trans-
port charges τs are not part of the subproblem. They have been replaced in
RESP(τ) by exogenous assumptions on the τ . The result is a well defined
restricted equilibrium subproblem RESP(τ) parametrized by the τjs.

RESP(τ) is a complementarity problem, which in this case is equivalent
to an optimization problem. It has a convex set of solutions which reduces
to a single point when the marginal cost of the producers and the demand
functions are affine and non-constant. It is thus possible to define the Ramsey
pricing problem using the same philosophy as before: the Regulator selects the
τjs in order to maximize a function that depends on the djs and q�s. While the
objective function is concave in these variables, it is no longer concave in the
τjs. The relation between the former and the latter is indeed piecewise affine
in this case because it is the solution of a linear complementarity problem that
is parametrized in τ . This problem is a mathematical programming problem
subject to equilibrium constraints (MPEC) as discussed above (see [16]). Note
that the formulation can encompass different variants of the restricted equilib-
rium subproblem. Specifically, there is no difficulty accommodating Cournot
marketers instead of perfectly competitive marketers. The variants on arbi-
trageurs that we discussed in this problem can also be included.



Complementarity Problems in Restructured Natural Gas Markets 25

6 Cournot Producers

6.1 A first model [36]

Both the former “gas companies” and the gas producers had market power in
the pre-restructuring European market. In contrast gas producers can be seen
as largely competitive in the US. The study of market power in the European
gas sector through complementarity problems began in Norway and combined
both economic analysis and computational methods. Specifically, [36] modeled
the European gas market under three assumptions of competition, namely
perfect competition, monopoly, and the now standard Cournot assumption.
By comparing the results obtained to observation, they concluded that the
Cournot model was a realistic representation of the European market of the
time. Mathiesen ([34] and [35]) also showed how complementarity problems
could be used to solve equilibrium models. We begin our discussion of the
market power of the producers by casting this early work in our example that
we simplify somewhat further. Consider a hypothetical gas company (that
is, a company that bundles merchant, transmission and storage activities)
operating in the pre-restructured period. It is regulated at cost and can only
charge the sum of the procurement cost and a fixed mark-up that represents
its average costs and some previously agreed upon margin. We let ac�j be this
mark-up when the company procures gas at producer �’s location and sells it
to market j. Neglect storage operation and assume a single season. Let pj be
the price in market j. A producer � selling to the consumer market j receives
a netback pj − ac�j as shown in Figure 6.

producer l consumer jac11

ac12 ac21

ac22

1 1

2 2

Fig. 6. No storage, fixed gas company margin

The behavior of the Cournot producer 1 can then be described by the following
optimization problem

max
md11,md

1
2

p1(md1
1 + md−1

1 )md1 + p2(md1
2 + md−1

2 )md1
2

−ac11md1
1 − ac12md1

2 − EC1(md1
1 + md1

2)
s.t. md1

1 ≥ 0,md1
2 ≥ 0

(35)

where the optimization is carried out on the variables md1
1 and md1

2, keeping
the sales md−1

1 and md−1
2 fixed. [36] formulated and solved this problem on
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a bipartite transportation network with European producers � being the left-
hand nodes and European markets being the right hand nodes. The ac gave
the transportation costs. Different extensions of Mathiesen et al.’s work were
made that ultimately led to the GASTALE model mentioned in the introduc-
tion ([3]). Golombeck et al. (1995) examined the impact of the introduction
of the first European Gas Directive by assuming that it would lead to arbi-
trage between gas prices inside the border of the European Union. In other
words, arbitrageurs would trade gas between the different border points so as
to eliminate the price differences that would not be justified by transporting
costs. [26] also examined the impact of abolishing export monopolies in the
exporting countries. In all these studies, the marketing company was repre-
sented by an exogenously given overall cost and margin that we noted ac.
In contrast, GASTALE introduced market power both at the producer and
marketer side. The representation of the latter was simplified with respect
to Gabriel et al. [21] in order to make the example more tractable. It does
so by implementing an oligopolistic version of the economic notion of double
marginalization [27],[28]. See [41] for a discussion for the monopoly case.

6.2 Double marginalization and the GASTALE model

The structure of the European gas market suggests that both the producers
and the marketers have market power. The question is whether this duality
of market power can be accommodated in computational models. GASTALE
extends Golombeck’s model to account for this phenomena [3].

Mathiesen et al.’s original model briefly recalled above assumes that the
marketers simply add a mark-up to the price that they get from the producers.
In other words the margin between the price paid by the consumer and the
marginal cost of the producers is shared by the producers and the marketers
but the part of the latter is fixed. This is the case when one assumes that all
transportation and storage costs are exogenously given and the profit of the
marketer is regulated. The price charged by a marketer to a consumer is thus
equal to the price at the wellhead plus the sum of the price of transportation
and storage including some regulated margins. [3] consider an extension of this
view where the marketers behave competitively or à la Cournot. Specifically
these authors assume a given number of identical marketers in each market
that equally share the demand in that market. All segments are served and
hence each marketer sells an equal quantity to each segment. Using this prop-
erty, Boots et al. can relate the prices charged to the different segments of the
final demand to the price charged by the producer to the marketers. Their
model is a mix of computational and analytical modeling. The derivation of
the demand curve seen by the producers is analytical and relies on the as-
sumption of symmetry of the marketers. The exertion of market power by
the producers is computational and directly related to the previous work of
[36] and [25]. An interesting objective is to remove the analytical part of this
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model to make it purely computational. This is necessary if we want to do
away with the assumption of symmetric marketers. We shall see that Boots
et al.’s approach can in principle be extended by assuming non-identical mar-
keters that behave à la Cournot but at the price of additional computational
difficulties. We consider two cases depending on whether the producers behave
à la Cournot or à la Bertrand.

6.3 Bertrand producers and competitive or Cournot marketers

Following the standard reasoning of double marginalization we assume that
the marketers take the border price bpks as given and that they can buy un-
limited quantities at that price. Natural gas is normally considered as an
homogeneous product after pretreatment at the well or at the beach (the
“border” in bp). This suggests representing the competition of the producers
à la Bertrand. The producer � that sells to a marketer k at the lowest price
gets all the demand in that market. If several producers sell to a marketer
they do it at the same price and equally share the demand of that market.
This complies with our noting bpks as the price paid by marketer k “at the
border” in season s. Given the bpks , one can define a restricted equilibrium
subproblem RESP(bp) that represents the behavior of the rest of the market
by assembling the complementarity conditions that describe

- The pipeline operator behavior (11)
- The storage operator behavior (12)
- The consumer behavior (13)
- The marketer behavior (14) to (17)
- All balance inequalities (9.2) to (9.10) holding as equalities.

Only the relation (10) describing the behavior of the producers is left out. It
is replaced by taking the bpks as parameters. Because of the integrability of the
demand functions, RESP(bp) is a complementarity problem that is equivalent
to an optimization problem. Introduce the notation

mqks =
∑
�

mqk�s

to denote the total demand of gas by marketer k in season s. This value can
be derived from the solution of RESP(bp). It is unique for each vector bpks if
one assumes affine demand functions as we did throughout the paper (affine
demand functions are a sufficient but non necessary condition for this result).
Then, let mqks (bp) be the demand of gas of marketer k in season s, as a function
of the prices bpks found as part of the solution of RESP(bp). Inserting this
solution in the profit function of the producers, it is possible to define a new
Nash equilibrium problem whereby the producers select the border prices bpk�s
at which they sell gas to the marketers in order to maximize their profit. The
resulting problem is an equilibrium problem subject to equilibrium constraints
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but of a type that to the best of our knowledge has not been mentioned let
alone studied in the literature. The first-stage competition is of the Bertrand
type while the second stage is Cournot. The natural question is whether this
model would be relevant in practice. We already indicated that production
is competitive in the US so that this model would thus add very little. In
contrast there is much talk of the emergence of “gas to gas competition”
in the oligopolistic European gas market. A Bertrand competition, where,
producers compete in price would thus be worth exploring. The interest of
the problem is that, in contrast with all the other models discussed in this
paper, Bertrand competition for homogeneous products cannot be modeled
through complementarity formulations.

We do not explore this problem any further and turn instead to the more
standard formulation where producres have limited possibilities for exerting
market power through prices but do so through quantities. This leads to a full
two-stage Cournot model.

6.4 Cournot producers and competitive or Cournot marketers

In order to adapt the above formulation to arrive at a problem where both
stages are Cournot, consider the case where marketers are not given a cer-
tain border price bpks but an import quantity mqk�s. In other words producers
behave strategically by restricting their sales to marketers. It is easy to see
that one can restate the restricted equilibrium subproblem to accommodate
this new situation where quantities are the strategic variables. Consider the
restricted equilibrium subproblems RESP(mq) consisting of
- The pipeline operator behavior (11)
- The storage operator behavior (12)
- The consumer behavior (13)
- The marketer behavior (14) to (17)
- All balance inequalities (9.2) to (9.10) holding as equalities.

Again the relation (10) describing the behavior of the producer is left out and
is replaced by an assignment of mqk�s.

This subproblem is again a complementarity problem, which is equivalent
to an optimization problem. It has a convex set of solutions which is unique
when the marginal cost of the producers are affine and non-constant. Let bpks
be the price of the gas found in relation (15). This price, bpks is the marginal
value of the gas sold to marketer k in season s, that comes out as a solution
of that suproblem. It is thus the price at which marketer k is willing to pay
for the gas,when offered the quantities mqk�s. We can thus define the map-
ping bpks(mqs). This allows one to define a new Nash equilibrium problem for
the producers whereby they select the quantities mqk�s that they sell to the
marketers. This is stated in
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max
∑
s

[∑
k

bpks(mqk�s,mqk−�s)mqk�s − EC�s(
∑
k

mqk�s)
]

(36)

mqk�s ≥ 0,mqk−�s fixed.

There is one such intertemporal problem for each producer. The collection
of these problems for the different producers and the search of a set of mqk�s
that simultaneously solves all of them is an equilibrium problem subject to
equilibrium constraints (EPEC). Again, there is no real difficulty accommo-
dating perfectly competitive marketers instead of Cournot marketers or any
mix of assumptions that we have seen. The difficulty is indeed to solve such
a problem.

7 Conclusions

This paper surveys some work as well as points out work that remains to be
done. It considers essential problems brought about by the restructuring of the
gas industry in Europe and North America for which one has relatively little
knowledge and understanding. We can improve our insight of this market
by modeling it on the basis of standard economic assumptions. Models of
industrial organization raising questions of direct relevance to the gas market
flourish in industrial economics. As it is often the case, their results differ
drastically depending on their assumptions. This is confirmed by numerical
experiments. As one says “the devil is in the details”. The problem is that
the devil has considerable potential in the important area of natural gas. It
is important to add to the insight provided by economists by also exploring
these questions experimentally, in this case computationally. Because of the
novelty of the market, there are currently little data in Europe to validate
these models. In contrast the restructured US gas market has accumulated
several years of experience. This validation process is especially interesting
since many of the models arising from industrial economic concepts also turn
out to be quite difficult in mathematical programming terms.
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32. IEA, (2002). IEA Energy Statistics 2001,
www.iea.org/Textbase/stats/index.asp.

33. IPCC (1995). IPCC Guidelines for national Green House Gas inventories, Vol.
3, Ref Manual.

34. Mathiesen, L. (1985a). Computational experience in solving equilibrium models
by a sequence of linear complementarity problems. Operations Research, 33,
1225–1250.

35. Mathiesen, L. (1985b). Computation of economic equilibria by a sequence of
linear complementarity problems. Mathematical Programming Study, 24, 144-
162.

36. Mathiesen, L., Roland, K. and K. Thonstad (1987). The European natural gas
market: Degrees of market power on the selling side. In R. Golombek, M. Hoel
and J. Vislie (eds.), Natural Gas Markets and Contracts. North-Holland, Ams-
terdam.

37. Metzler, C., Hobbs, B.F. and J.-S. Pang (2003). Nash Cournot equilibria in
power markets on liberalized D.C. network with arbitrage: formulations and
properties. Network and Spatial Economics, 3(2), 123–150.

38. Murphy, F.H., 1983. An overview of the intermediate future forecasting system.
In A.S. Kydes et al. (eds.), Energy Modeling and Simulation, North Holland
Publishing Company, 66-73.

39. Murphy, F. H., Conti, J.J., Shaw, S.H. and R. Sanders (1988). Modeling and
forecasting energy markets with the Intermediate Future Forecasting System of
Operations Research 36, 406-420.

40. Takayama, T. and G. Judge (1971). Spatial and Temporal Price and Allocation
Models, North-Holland Publishing Company, London.

41. Tirole J. (1989). The Theory of Industrial Organization. Cambridge (MA), The
MIT Press.

42. UNFCCC (1998). Kyoto Protocol to the United Nations Framework Convention
on Climate Change (COP 3 report, document FCCC/CP/1997/7/Add.1 (18
Mar 1998)).


