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Abstract

This paper explores, theoretically and experimentally, a fixed price mecha-
nism by which, if aggregate demand exceeds supply, bidders are proportionally
rationed. If demand is uncertain, equilibrium consists in overstating true de-
mand to alleviate the effects of being rationed. Overstating is more intense
the lower the price, with bids reaching their upper limit for sufficiently low
prices. In the experiment, despite of a significant proportion of equilibrium
play, subjects tend to (under)overbid the equilibrium strategy when rationing
is (high) low, with only this latter effect being persistent over time. We ex-
plain the experimental evidence by a simple model in which the probability of
a deviation is decreasing in the expected loss associated with it.
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1 Introduction

Prices are not always set such that the market clears. Instead, we often
observe non—price rationing of buyers, for different reasons. In initial public
offerings, for example, the seller frequently sets a price at which he expects
excess demand to be able to reward information revelation by large investors
with some preferential treatment. In other situations, where demand is
uncertain, the seller might simply not be able to set the market clearing
price. In this case, two main classes of mechanisms have been proposed
as solution to this problem: auctions and fixed price mechanisms. As for
the latter, since supply is fixed (and price is chosen before actual demand
reveals), the mechanism has to include a rationing device in case demand
exceeds supply.

While axiomatic properties of different rationing schemes have been ex-
plored extensively by the literature, strategic behavior of buyers who expect
to be rationed has up to date received little attention.! The few papers that
explicitly analyze incentives in market games that may involve rationing of
buyers find that these mechanisms are often desirable for the seller. In case
a common value is sold, Bulow and Klemperer [5] show that prices which
result by rationing can even be optimal. Gilbert and Klemperer [10] come to
the same conclusion for situations where customers must make sunk invest-
ments to enter a market. In a private values setting, Bierbaum and Grimm
[4] analyze a fixed price mechanism where buyers are proportionally rationed
in case of excess demand. They find that, if total demand is uncertain, bid-
ders overstate their true demand to alleviate the effects of being rationed
in high demand scenarios. This allows the seller to set the fixed price at
a rather high level which yields the surprising result that the fixed price
mechanism outperforms alternative selling mechanisms (such as a uniform
price auction)? with respect to a variety of criteria: revenue, variability of
revenue in different demand scenarios, and minimum revenue that is raised
if demand turns out to be low.?

The above findings contribute to explaining the frequent use of mecha-
nisms that involve rationing of buyers. However, we know from an extensive
experimental literature on market institutions that often human behavior
differs substantially from theoretical predictions, which may affect the rela-
tive performance of different mechanisms. This motivated us to experimen-

IGee, for example, Herrero and Villar [14], or Moulin [21]. Here rationing usually occurs
because the allocating authority is not allowed to use prices in order to ration, e. g. in
bankruptcy problems if claims are known but exceed the pie to be allocated.

2Since Bierbaum and Grimm consider large markets a uniform price auction is incentive
compatible and therefore a very attractive mechanism, that has often been proposed as an
alternative for initial public offerings but never has been widely established.

Also Chun [6], Dagan et al. [7], Moreno-Ternero [20] and Herrero [13] look at rationing
from a noncooperative perspective. Herrero et al. [15] provide an experimental study on the
strategic behavior induced by rationing in the context of bankruptcy problems.



tally study bidding behavior in a fixed price mechanism with proportional
rationing (FPM) quite similar to the one analyzed in Bierbaum and Grimm
[4].

Our experimental design is based on a model where neither the buyers,
nor the seller, know total demand due to uncertainty about the number of
(identical) buyers. The seller, who is endowed with a given quantity of a
divisible good, sets a fixed price, and then, buyers are asked to submit a
quantity bid at this price. They are proportionally rationed in case the to-
tal quantity bid for exceeds supply, otherwise they receive their bid.* In the
experiment, we were interested only in buyers’ bidding behavior. Therefore,
the seller’s role was played by a computer, i.e. in each round a price was ran-
domly chosen from the range where demand for the good was positive, which
allowed us to extract complete bid functions. We also study an “incentive
compatible mechanism” (ICM), which only differs from FPM with respect
to the fact that buyers are never rationed. Given that the two mechanisms
only differ with respect to the presence of the rationing device, we used ICM
as a control treatment of the experimental results on FPM.

We shall now give a quick overview of our main results.

First, we show that Bierbaum and Grimm’s [4] theoretical results on
FPM are maintained in the context of small markets (i.e. a finite number of
buyers). In particular, at high prices rationing never occurs and therefore
bidding truthfully is optimal; at low prices bidders are always rationed and
thus, in equilibrium, they demand the highest possible quantity (if any); at
intermediate prices, where rationing only takes place when demand is high,
bidders overstate their true demand, but only moderately.

As for the experimental evidence, subjects play extremely well ICM,
where truthful bidding emerges as unanimous behavior since the very be-
ginning. In FPM, behavior converges to equilibrium for very high and very
low prices, where the equilibrium strategy is relatively easy to figure out.
For intermediate prices, where the equilibrium is strategically more com-
plex, some noise remains. As time proceeds, bidders even move away a bit
(but not far) from the risk neutral equilibrium prediction in the direction
of overbidding. Given our experimental evidence, a profit maximizing seller
would then opt for FPM (i. e. commit to a fixed price), not only for the
theoretical reasons highlighted by Bierbaum and Grimm [4] (and confirmed
by our theoretical analysis), but also because overbidding with respect to
equiltbrium takes place exactly in the price range which maximizes seller’s
revenues, yielding profits even higher what seller could extract if he could
be able to act as a monopolist in all demand scenarios.

Overall, the explanatory power of the theory seems impressive, espe-

4This is basically the model analyzed in Bierbaum and Grimm [4]. The only differences
are that Bierbaum and Grimm analyze large markets (whereas in our experiment the number
of potential buyers is small). Moreover, they allow for different types of buyers.



cially if compared with that of standard auction theory models.” These
considerations notwithstanding, panel data estimations yield two significant
deviations from the behavior predicted by the risk neutral Nash equilibrium
(RNNE) of the game: at intermediate prices, bids are at a higher level but
as price sensitive as predicted. At low prices we observe — contrary to the
RNNE prediction — price sensitivity of bids and underbidding.

We also find that these deviations cannot be explained by risk-attitude
considerations, but are jointly consistent with the hypothesis of noisy direc-
tional learning (Anderson et al. [2]), where bidders adjust their actions in
the direction of higher expected profits but do so subject to some exogenous
noise (with the probability of an error being decreasing with the associ-
ated expected loss). In the steady state equilibrium of this process, players’
behavior is given by probability distributions over the strategy space that
constitute a Quantal Response Equilibrium (QRE) of the game (McKelvey
and Palfrey [19]). (Maximum likelihood) estimations of the corresponding
QRE for each price interval match the observed behavioral pattern: slight
underbidding of RNNE together with some price sensitivity at low prices
and simultaneously overbidding of RNNE at intermediate prices. They also
confirm the intuition that behavior is less noisy at prices where the equilib-
rium is easier to figure out (i.e. high and low prices) than elsewhere. At the
same time they explain why at extreme prices behavior converges to RNNE,
while at intermediate prices it does not.

The remainder of the paper is arranged as follows. Theoretical properties
of FPM is what we investigate first, in Section 2. Experimental conditions
are described in Section 3. Section 4, devoted to experimental results, is
divided in two parts. Descriptive statistics are presented first, followed by
some panel data regressions in which we check the robustness of equilibrium
predictions. Section 5 then checks whether bounded rationality (in the sense
of QRE) may explain the discrepancy between theory and evidence. Con-
clusions and guidelines for future research are listed in Section 6, followed
by an Appendix containing the proofs of the theoretical results of Section 2
and the experimental instructions.

2 Theoretical Background and Hypotheses

In section 2.1, we present the basic model and introduce the two mechanisms
object of our experiment. Then, in sections 2.2 and 2.3 we characterize the
equilibria of the two mechanisms.

SExperimental studies of multi-unit auction formats find all kinds of out of equilibrium
behavior that crucially affects the relative performance of different multi unit auction rules.
See, e. g. Kagel and Levin [17], List and Lucking—Reiley [18], and Engelmann and Grimm
[8].



2.1 The Model

Consider a seller who has a fixed quantity (normalized to 1) of a perfectly
divisible good and does not know the number of potential buyers interested
in the good. By analogy with our experimental conditions, let us assume
that n, the number of buyers, is either 2 or 4, where the probability that
nis 2 (4) is A (1 — A). Throughout the paper, we shall refer to the case
of n =2 (n =4) as the "low” ("high”) demand scenario. We assume that
all potential buyers are identical. In particular, each buyer ¢ has decreasing
linear demand for the good,

zi(p) =1—p. (D)

In what follows, we provide a theoretical analysis of two mechanisms:
the Fixed Price Mechanism (FPM) and an Incentive Compatible Mechanism
(ICM), which is identical to FPM apart from the fact that bidders are never
rationed (i.e. they always get what they ask for).

2.2 FPM

We model FPM as a 3-stage, 4-player game with incomplete information.
At Stage 0 Nature moves, deciding market size n. Either two or four players
participate in the market. In a market with two players, players are labeled
717 and 727.5 If n = 4, they are labeled 717 to ”4”. In what follows we look
at the payoff of the representative player 1, who participates in the market,
not knowing the number of his competitors.

At the remaining two stages, the seller and the buyers move in sequence.
At Stage 1, the seller announces a fixed price and an upper limit on in-

dividual bids (p,d) € [0,1] x R.. At Stage 2, each participating buyer ¢
announces the quantity he demands at the posted price, d; € [0, d|, which
we will call buyer ¢’s bid. If aggregate bids fall short of supply, each buyer
obtains his bid, otherwise buyers are proportionally rationed. Each buyer
has to pay the posted price for the quantity he receives.

We formally describe proportional rationing by the following notation.
Let d = {d;} be the vector of bids and denote by d_; = {d;}j»; the vector of
bids by 4’s opponents. Then, aggregate bid is given by Y ;" | di, n € {2,4}.
Under proportional rationing, buyer 1 demanding d; receives a final quantity
of d1Q"(d), where

Q"(d) = min{1, booone {24} (2)

_
Z?:l d]

Tn the experiment, the other two players participated in a separate two—player market.
Since we analyze the decision of the representative player 1, we ignore the existence of this

parallel market.



We can now specify players’ expected payoffs. Let 70” index the seller’s
player position and recall that we only consider the representative bidder
“1”, Now, for a given pair (p,d), let m; : [0,d]* — R denote player i’s
expected payoff, given by

4

mo(d) = ZdJ p+ (1= NQ*d) ZdJ p (3)

j=1

and

d1Q*(d1,d—1) d1Q*(d1,d—1)
7r1(d1,d1))\/ (1—x—p)dm+(1—)\)/ (1 —2—p)da.
0 0
(4)

The extension to mixed strategies of the payoff structure (4) is straight-
forward, once we assume that players mix independently. If §; € A([0,d]) =
Ay (6 € A([0,d)?) = A_;) denotes a generic mixed strategy for player
i(’s opponents), with §;(d;) (6—;(d—;)) denoting the probability of bidding
d; (d—;) under 6; (6_;), then m1(61,6_1) defines player 1’s expected profit of
a generic mixed strategy profile.

2.2.1 Stage 2: the bidding stage

In the remainder of this section, we shall restrict our attention to pure
strategy profiles. We begin by characterizing bidders’ optimal behavior given
the price p and upper limit on bids d > 1.

>4

Proposition 1 (Equilibria of Stage 2) Let p. = }lgigi and Pmy = ig+

>4

® P E [pe,pm): two equilibria, di(p) = d for all i and d;(p) = %(1 -p)+
VG -0+ - p)? for alli.

® D= Py, one equilibrium where d;(p) = 2 (1-p) +\/1 A3 _ % + i(l —p)?
and a continuvum of equilibria where dq + do > 1: all d wzth d; = dj,
for all i, j.

e < (Pm, %): unique equilibrium d;(p) = %(1—p)+\/%(% — p)f’—6 + i(l —p)?
for all i.

Proof. In the Appendix. W
Figure 1 provides a graphical sketch of the structure of the game’s equi-
libria, as characterized by Proposition 1.



Put Figure 1 about here

As Figure 1 shows, the interval of possible prices can be split up into
three subintervals:

o High prices: p € [%, 1]. Buyers’ aggregate demand never exceeds
supply. Therefore, rationing plays no role and buyers’ optimal strategy
is to simply bid truthfully.

o Low prices: p € [0,p.). Large excess demand in the high demand
scenario (and, at prices below %, also excess demand in the low demand
scenario) yields an incentive to overstate true demand high enough to
lead to rationing in both scenarios. Thus, bids explode and the only
equilibrium is that every buyer bids as much as possible.

o Intermediate prices: p € [Pe, %). Excess demand in the high demand
scenario is moderate, which still yields an incentive to overstate de-
mand. The optimal bids solve a trade-off between getting too much in
the low demand scenario (where no rationing takes place) and getting
too little in the high demand scenario (where buyers are rationed).
When p = pp,, the game has a continuum of symmetric (pure) equilib-
ria, one for every possible bid d; € [%, 1]. For prices p € [pe, pm] there
is also an equilibrium where demand explodes, like in the case of low
prices.

2.2.2 Stage 1: price and upper-bound fixing

In Stage 1 the seller chooses the profit maximizing price anticipating buyers’
behavior at Stage 2, not knowing how many of them will participate in the
market. Taking into account buyers’ equilibrium bids, only prices in the
interval p € [pe, %] can be rational choices of the seller: at p. he sells the
whole quantity in both demand scenarios in any equilibrium of Stage 2 and
it would definitely lower his profit if he posted a lower price. Notice that
p= % is the linear monopoly price given high demand and thus, a higher
price cannot be profit maximizing under demand uncertainty. Given these
considerations, we are now in the position to solve the entire mechanism in
the following

Proposition 2 (Equilibria of FPM) An equilibrium of FPM always ex-
ists and has the following properties:

(i) The entire quantity is sold at pe < igi—gi m every demand Scenario.

(ii) The seller optimal choice of d is d* > 1.



(iti) The seller’s revenue is bounded below by pe and may be higher.

Proof. In the Appendix. W

2.3 ICM

As we already explained in the introduction, we also tested in the lab another
fixed-price mechanism -we called it ICM- which only differs from FPM with
respect to the fact that bidders always get what they ask for (i..e there is
no rationing). In this case, player 1’s payoff function (4) simplifies to

dy
7r1<d1,d1)/0 (1=~ pde = (2~ 2p ). 5)

The absence of rationing breaks any strategic link among the players,
who basically face a simple decision problem, whose solution is truthful
bidding.

Proposition 3 In ICM each bidder’s optimal bid equals his true demand,
1. €

di(p) =1-p. (6)
In our experiment, ICM mainly serves as a robustness check for our ex-
perimental design, to evaluate whether subjects bid truthfully when it is a
strictly dominant strategy to do so. This replicates the situation of uniform
price auctions in large markets (e. g. IPOs), where bidders cannot lower
the price by reducing demand, making truthful bidding a dominant strat-
egy. However, a crucial difference is that in large auctions bidders are well
aware of the fact that they interact with other players, which may crucially
influence their behavior.

3 The experimental design

In what follows, we describe the features of the experiment in detail.

Subjects. The experiment was conducted in three subsequent sessions
-two sessions devoted to FPM, one to ICM- in May, 2004. A total of 72
students (24 per session) were recruited among the undergraduate student
population of the Universidad de Alicante -mainly, undergraduate students
from the Economics Department with no (or very little) prior exposure to
auction theory. The FPM sessions lasted approximately 120’ each, while the
ICM session was slightly shorter (100’ approx.).

Subjects were given a written copy of the instructions in Spanish, to-
gether with a table indicating their monetary payoff associated with a grid
of 21x21=441 representative price-quantity pairs.” Instructions were read

"The complete set of instructions, translated into English, can be found in the Appendix.



aloud and we let subjects ask about any doubt they may have had. In
addition, a self-paced, interactive computer program proposed three control
questions, to make sure that subjects understood the main features of game.
In particular, we checked the comprehension of the rationing rule and the
downward sloped demand function.

Treatment. In each session, subjects played 84 rounds of the correspond-
ing mechanism. As for the FPM sessions, subjects were divided into three
cohorts of 8, with subjects from different cohorts never interacting with each
other throughout the session. As for the ICM session, every subject can be
considered as a ”cohort of size one”.

Compared with the scale used in Section 2, in the experiment, all prices
and quantities were multiplied by 10. We did this to mitigate “integer”
frame problems.® Within each round ¢ = 1, ..., 84, group size, composition
and prices were randomly determined. Let period Ty = {t : 21(k — 1) <
t < 21k}, k = 1,...,4, be the subsequence of the k—th 21 rounds. Within
each period T%, subjects experienced each and every possible price p € P =
{0, .5,1, ..., 10}, the sequence of prices randomly selected within each period
being different for each cohort. After being told the current price, subjects
had to determine their bid, d;(p) € [0, 10], for that round (subjects could
not bid more than the entire supply). By this design, we are able to charac-
terize 4 complete individual bid schedules, one for each period. Moreover,
in each round ¢, a (uniform) random draw fixed the group size n € {2,4}
independently for each cohort (i.e. A = %)

Given all these design features, we shall read the data under the as-
sumption that the history of each individual cohort (6 for FPM, 24 for ICM)
corresponds to an independent observation of the corresponding mechanism.

Payoffs. Subjects participating in the FPM (ICM) sessions received 2000
(1500) ptas. (1 euro is approx. 166 ptas.) just to show up. These stakes
were chosen to exclude the possibility of bankruptcy.

Ez-post information. After each round, subjects were informed on the
payoff relevant information. As for FPM, this refers to group size, summary
information on the aggregate behavior of their own group (both in terms of
the total sum of individual bids, but also of the average bid(s) of the other
member(s) of their group), the quantity of the good they actually received
(FPM), together with the monetary payoff associated with it. As for ICM,
subjects were simply told about the result of their individual bid. The same
information was also given in the form of a History Table, so that subjects
could easily review the results of all the rounds that they had played so far.

®Neverthelesss, in presenting the results, we shall not modify the scale to facilitate com-
parison with the content of Section 2.



4 Results

In this section, we report the results of our experiment. We begin by present-
ing some descriptive statistics which summarize the evolution of subjects’
aggregate behavior over time in ICM and FPM. We then estimate dynamic
panel data regressions. As for ICM, these regressions clearly show that
equilibrium analysis almost perfectly explains subjects’ behavior, at least
in the last repetitions of the game. This is also true in the case of FPM,
even though our regressions unambiguously show persistent deviations from
equilibrium behavior. In short, in FPM people tend to overbid (underbid)
the equilibrium strategy when rationing is less (more) severe.

4.1 Descriptive statistics

Subjects played ICM extremely “well”. Their behavior is close to equilib-
rium from the very beginning, with some initial variance quickly vanishing
over time. Out of 21 prices, in period 3 (4), all 24 subjects always played
their dominant strategy in 19 (17) cases. Even when equilibrium play does
not correspond to subjects’ unanimous decision, deviations from the domi-
nant strategy are negligible and only observed on behalf of few subjects.’
Things are different when we move to FPM. Figure 4 provides a graphical
sketch of the evolution of subjects’ aggregate behavior, tracing the average
bids in the four experimental periods. The y-axis tracks prices, while the
xr-axis reports average bids. The dotted line corresponds to the equilibrium
strategy as given by Proposition 1; the 4 grey lines correspond to aggregate
average bid functions per period, with greyscale increasing with periods.

Put Figure 4 about here

Recall from Section 2 that the structure of the equilibria of F'PM (p)
crucially depends on the price level. Thus, we present our experimental
evidence for three broad price intervals, which turn out to be crucial not
only in the theoretical analysis, but also to evaluate subjects’ behavior in
the experiment:

At high prices (p > %), where truthful bidding corresponds to the unique
equilibrium, we observe that subjects start bidding slightly more than their
demand, with overbidding gradually reducing with time. At low prices
(p < pe), where demand explosion corresponds to the unique equilibrium,
individual bids get very close to the maximum possible amount of 1. How-
ever, contrary to the theoretical prediction, average bids seem to be sensitive
to prices: the lower the price, the closer average bids get to the upper limit.

Figure 2 (3) in the Appendix reports average bids and standard deviations for ICM
(FPM), disaggregated for prices and periods.

10



At intermediate prices (% > p > pe &2 0.568), subjects start bidding above
equilibrium, with bids increasing (i.e. moving away from equilibrium) with
time.

We finally look at the experimental evidence from the seller’s viewpoint.
Figure 5 plots the evolution of expected profits (y-axis) as a function of the
ruling price given the observed behavior.'

Put Figure 5 about here

As Figure b shows, at low prices (p < pn) actual profits equal their
equilibrium levels. This is basically due to the fact that, within this price
range, out-of-equilibrium underbidding is not sufficient to prevent subjects
to be rationed in both demand scenarios. As a consequence, the entire supply
is always sold, independently on the demand scenario. At high prices (p > %)
expected profits start above equilibrium (due to overbidding), but converge
quickly to their equilibrium level.

At intermediate prices (p. < p < %) initial overbidding raises the seller’s
profits above their equilibrium levels. Moreover, since overbidding within
this price range increases with time, also the seller’s profits increase. Recall
(Proposition 2) that the profit-maximizing price always lies in the inter-
mediate price range. Therefore, persistent overbidding takes place exactly
within the price range that would be selected by a profit mazximizing seller.
In consequence, actual profits always exceed the equilibrium level and even
increase with time (up to 12% above the theoretical prediction, since actual
and predicted behavior lead to profits of .65 and .583 respectively).'!

4.2 Panel-Data Regressions

In this section, our main concern is to check whether the discrepancies be-
tween observed and predicted behavior are statistically significant. To this
aim, we construct a panel containing all decisions of all subjects at all times.
Remember that each subject participated in 84 rounds of ICM (FPM), which
creates a panel where subjects serve as the cross-sectional variable. The
sample size is 24 (48) subjects for ICM (FPM) session(s).

Note that, in the range [pe, pm], FPM has multiple equilibria and, therefore, also seller’s
profits are not uniquely determined.

Uy {llustrate the profitability of FPM, suppose that seller and buyers knew the market
size, n. In such a case, the unique equilibrium would require the seller to set the linear
monopoly price (i.e. either p = % ifn=2 orp= % if n = 4) and buyers to bid truthfully.
Thus, the whole amount would be sold in both scenarios and the ex-ante expected revenue
would be the expected monopoly profit MP = %)\ + %(1 — A). Since both scenarios are
equally likely in our experiment (ie. A = %), MP = .625. Since the theoretical expected
revenue in FPM (.583) is lower than the expected linear monopoly profit theory predicts
that the seller prefers a situation of full information. However, given the observed behavior
the seller’s profits are .65, which is higher than the expected monopoly profit.

11



As for the ICM data, we use a simple random-effect linear regression.
The underlying model assumes subjects playing linear bid functions, one
for each period Ty, k = 1,...,4. The model includes period as a regressor,
individual (random) effects and idiosyncratic errors as follows:

dit = a+ Bpy + Y1k + € + i, (7)

where T}, denotes period as defined in Section 3; ¢, describes the unobserved
time-invariant heterogeneity which characterizes subject ¢ and =44 is an idio-
syncratic error term (we assume that ¢; 1 £44).'? Since, for ICM, the unique
equilibrium corresponds to truthful bidding, null hypotheses for our tests are
a=1,0=—1and v=0.

Figure 6 reports the estimates of (7) (standard errors within brackets)
for the whole ICM dataset, regression (I), and disaggregated for period,
regressions (1I-V).

Put Figure 6 about here

As it can be seen from the fits of regressions (I-V), bidders played closely
to the assumed linear function in all periods. In regression (I), our model
explains more than 92% of subjects’ behavior. The R? jumps from .735 in
(II), to .9873 in (III) and stays above .99 in (IV-V). A very low fraction of
variance turns out to be due to the individual effects of the experimental
subjects (measured by p). In other words, it seems that all subjects learned
very quickly to play the equilibrium, which leads to completely homogeneous
play. Consequently, p reaches 0 in the last two periods.

The estimates of a and 3 for the whole dataset (regression I) are sig-
nificantly different from the theoretical prediction, as well as the estimated
parameter of v (positive v meaning increasing bids across periods). How-
ever, if we look at regressions (II-V), we find that only parameters of period
T1 (regression II) are significantly different from their theoretical values. We
cannot reject the hypothesis that the observed and the predicted behavior
differ (neither independently, nor jointly) for regressions (III-V). This basi-
cally implies that learning mostly takes place in the first repetitions of the
experiment and behavior stabilizes from 7% on.?

2Notice that equation (7) implicitely assumes that each individual history correponds to
an independent observation. This is certainly the case for ICM, but not for FPM, although
many details of the experimental design (such as anonymous and random matching within
each cohort) has been especially set to minimize “repeated game effects”.

BWe also run a regression analogous to (I) excluding observations coming from Tj. As
expected, the null hypotheses on «, 8 and v cannot be rejected, neither independently nor
jointly.

12



The FPM cross-sectional time-series analysis is more complex and results
are less straightforward. By analogy with regressions (I-V), Figure 7 reports
estimates of a model which assumes subjects playing a 3-piecewise linear bid
function, as follows:

dit = ao + aany + el + Bopr + Bipemy + Bopibr + Y1k + i + it (8)

where 7, and ; are two index functions such that n, = 1 if p, < .55 and
n; = 0 otherwise, whereas 6; = 1 if p, € (.55;.75) and ; = 0 otherwise.
Observe that the dummies 7, and 8; partition the price set into the three
subintervals that emerged our theoretical analysis. In consequence, we esti-
mate three different — but, through the individual effects ¢;, interdependent
— linear bid functions, one for each subinterval. 3, and (8; + 3;) measure
the sensitivity of bids on price for high and low prices, respectively, whereas
ag and (ap + a1) determine the constant terms. By analogy, the slope
(Bg + By) and the constant term (ag + a2) determine the estimated bid
function at the intermediate subinterval.

Note that (8) can be interpreted as the natural extension of (7 ) to the
case of FPM subject to some conditions, which we now discuss.

First, recall from Section 2.2 that there is a multiplicity of equilibria
for p € [pe, pm]. Given the price grid used in the experiment, multiplicity
only occurs at p = .6, with equilibrium bids being 1 and .461, respectively.
In order to check which of these equilibria is somehow “more consistent”
with our experimental evidence, we run a Wald test with following null
hypotheses: d(.6) = 1 (d(.6) = .461). We can (not) reject the null hypothesis
which suggests that subjects bid more consistently with the equilibrium
where moderate bidding prevails. Consequently, we include p = .6 into the
intermediate price interval.'*

Second, the equilibrium bid function of FPM is not linear (but concave)
in the intermediate price interval. However, as Figure 1 shows, the demand
function may well be approximated by a straight line.

Figure 7 reports the estimation results. By analogy with Figure 6, we
also provide estimations disaggregated by periods (regressions (VII-X)) to
allow for inter-period comparisons.

Put Figure 7 about here
Figure 8, tracing the estimated inverse bid functions disaggregated by

periods.

Put Figure 8 about here

1P_values are 0 and .4787, respectively. In any case, we also run regressions excluding
observation at p = .6. Results do not change (and are available on request).
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Again, subjects’ behavior is close to the equilibrium bid function, al-
though not as close as for ICM. Moreover, bidding behavior evolves quite
differently for the different price intervals. Therefore, we discuss the results
of the estimations separately for low, intermediate, and high prices.

e High prices (p > %). Here, the statistical analysis confirms the obser-
vations of section 4.1 that behavior converges to truthful bidding, as
predicted. In Ty, the null hypothesis (agp = 1 and 3y = —1) cannot be
rejected, neither jointly (p-value .2530), nor independently (p-values
1219 and .1567, respectively).

Looking at the evolution of subjects’ bidding behavior we find that
both, ag and 3y do not change significantly from 77 to Ty. Moreover,
initial variability of bids is moderate and decreases with time.

e Low prices (p < pe). In this interval the null hypothesis corresponds
to ap + a1 = 1 and By + 35 = 0 (i.e. bids coincide with the upper
bound and therefore, are independent of prices). Here, a Wald test
leads to rejection of the joint and two independent hypotheses. Figure
8 indeed suggests that there exists a negative dependency of bids on
prices.

The estimated value of 3; significantly increases from 17 to Ty which
means that bids become less price sensitive as time proceeds. However,
some price sensitivity remains. Moreover, variability of bids initially is
higher than in the previous case (i. e. at p > %) and then also decreases
with time.

o Intermediate prices (% > p > pe =2 0.568). Within this interval, the
estimated bid function coincides with equilibrium if ag + as = 1.255
and 8y + B, = —1.324, respectively. We reject the joint test at any
significance level (p-value 0). In case of two independent tests, we
reject the former hypothesis, but not the latter (p-values are .0296
and 0.1106, respectively). In other words, the estimated bid function
has a similar slope as the equilibrium one, while the estimated constant
is bigger.

From period T7 to Ty, ag increases and 34 decreases, both significantly.
As Figure 8 illustrates, overall bids move away from equilibrium. The
variability of bids initially is moderate and stays basically constant
over time.

To summarize, our panel-data analysis suggests that subjects behaved
almost perfectly in line with the equilibrium prediction in ICM and at high
prices in FPM (where the equilibria of both games coincide with truthful
bidding). For the remaining prices, the observed behavior in FPM signif-
icantly differs from equilibrium. For intermediate prices, bids are as price
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sensitive as predicted, however, at a higher level. Bidders start overbidding
insignificantly, but over time overbidding increases and becomes significant.
At low prices, bids negatively depend on price level, contrary to prediction.
This results in underbidding relative to equilibrium. Although underbidding
tends to disappear (the estimated inverse bid function shifts to the right),
some price dependence remains.

5 Bounded rationality and out-of-equilibrium play

Our experimental results show that the equilibrium analysis developed in
Section 2 is an (extraordinary) good predictor of subjects behavior (as far
as ICM is concerned). This consideration notwithstanding, our regressions
also show that subjects consistently deviate from equilibrium play, and that
these deviations (with particular reference to overbidding at intermediate
prices and sensitivity of bids on prices at the low price interval) do not seem
to vanish. To understand these empirical regularities of our experimental
evidence, we shall hereafter assume subjects are boundedly rational, insofar
their choice are affected by some (unmodeled) external factors that make this
process intrinsically noisy.!> This noise may be induced by the complexity of
the game, limitation of subjects’ computational ability, random preference
shocks, etc. This kind of choice framework may be modeled by specifying
the payoff associated with a choice as the sum of two terms. One term is the
expected utility of a choice, given the choice probabilities of other players.
The second term is a random variable that reflects idiosyncratic aspects of
payoffs that are not modeled formally.

Clearly, properties of this alternative class of models crucially depend
on the specific way in which the stochastic process that generates noise is
formally defined. One approach that has received attention recently involves
the concept of quantal response equilibrium (QRE), developed by McKelvey
and Palfrey [19] in the context of finite games. A quantal response is, ba-
sically, a “smoothed-out best response”, in the sense that agents are not
assumed to select the strategy that maximizes their expected payoff with
probability one. Instead, each pure strategy is selected with some positive
probability, with this probability increasing in expected payoff.'6

Some recent papers (such as [2], [11]) have modified the notion of QRE
to deal with games with a continuum of pure strategies, such as our ICM
and FPM. A logit response function is often used to model the QRE. For-
mally, the standard derivation of the logit model is based on the assumption

15 Another “usual suspect”, often invoked to explain discrepancy between theory and evi-
dence in case of auction experiments, is risk aversion. In this respect, in a previous version
of this paper, namely Grimm et al. [12], we prove that, independently of their degree of
(constant relative) risk-aversion, subjects’ deviation from the RNNE predicion is sufficiently
small not to yield an alternative testable hypothesis.

16gee also Rosenthal [22].
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that payoffs are subject to unobserved preference shocks from a double-
exponential distribution (e.g., Anderson et al. [1]). In this case, a (logit)
QRE would be the fixed point

__ exp[mi(di, 6-i)p
S (exp [mils, 6_o)u))ds

where 7;(d;, 0_;) is the expected payoff associated with the pure strategy
d; against 6 ; € A_;, and u is the noise parameter. As y — o0, the
probability of choosing an action with the highest expected payoff goes to 1.
Low values of p correspond to more noise: if 4 — 0, the density function
in (9) becomes flat over the entire support and behavior becomes essentially
random.

As we just noticed, a (logit) QRE is a then vector of densities that is a
fixed point of (9). Continuity of the payoff function 7;(.) ensures existence,
both in the case of ICM and FPM. While Section 5.0.1 explicitly character-
izes the (unique) logit equilibrium in the case of ICM, for FPM no explicit
solution can be found. This is because FPM is a game with a continuum
of pure strategies, for which logit equilibria can be calculated only for very
special cases.'” In this case, we are only able to evaluate a QRE numerically.
This equilibrium has the property that, when y — o0, it converges to the
(unique) equilibrium we derived in Section 2.

bi(di) = fildil6 4, 1)

71':17---747 (9)

5.0.1 ICM

Fix a price p € [0, 1] and consider the associated game induced by [CM. By
(5), equilibrium distribution functions can be calculated as follows:

exp [udi<2722p—di)]

Jdilp) = —

——— . (10)
fo exp |:/J'dz(2 2210 y)] dy

In Figure 9 we use standard maximum-likelihood techniques to estimate
the value of 1 in each period and each treatment. The second line of Figure
9 reports these estimations, using ICM data. The estimated noise parameter
jumps dramatically between 17 and 715 and reaches its highest value at T3.
It then decreases at Ty, but is still significantly higher than at 77. This
confirms the finding that the learning mostly takes place in 17.

Put Figure 9 about here

7Quch as potential games, as in Anderson et al. [3].
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In Figure 10, we trace the equilibrium densities f(d;|p) for three price values:
p=.2, p=.65 and p=.8. Every graph plots four curves, one for each period.

Put Figure 10 about here

Not surprisingly, these distributions are unimodal at the value (1 — p)
-the (equilibrium) pure strategy associated with the higher expected payoft-
and become flatter as u goes to zero. We are interested in the behavior of
(equilibrinm) expected bids czi(,u) = fol di f(di|p)dd;. In the following Figure
11 we trace four demand functions with the same values of p as in Figure
10.18

Put Figure 11 about here

The effect of the noise (whose magnitude is measured by u) is to create
underbidding (with respect to optimal behavior) when the price is low(er
than .5), and overbidding when the price is high(er than .5). This threshold
value is independent of u. To see why, notice that equilibrium distributions
(10) are symmetric with respect to the mode (i.e. wrt x;(p)). This is because
the payoff function (5 ) is also symmetric with respect to true demand
xi(p), given, by (5), ‘(%? = 1—d; — p. This, in turn, implies that equilibrium
average bids are biased toward the center: the cost (in terms of a payoff
loss) of deviating by an ¢ is exactly the same whether deviation is upward
or downward. What creates the bias is that deviations toward the center
are more likely (since, by (9), every pure strategy belongs to the support of
the logit equilibrium).

Figure 12 reports, for each period, average bids as in the experiment and
in the estimated QRE (with the dotted line tracing the equilibrium strategy).
11 graph shows that QRE predicts well the slight overbidding (underbidding)
when prices are high (low). The observed threshold where the average bid
switches from overbidding to underbidding (as price decreases) is situated
around p = .5, consistently with the QRE prediction. From 1% on, the three
curves almost coincide, as we know already from Section 4.

Put Figure 12 about here

5.0.2 FPM

The last three rows of Figure 9 reports the maximume-likelihood estimates
of 1 in case of FPM. In each period, two sets of estimations are presented:

¥ The dotted line traces the predicted behavior.
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one estimate per price interval (first column), and a unique estimate for the
entire price spectrum (second column).

A first look of Figure 9 confirms the findings of Section 4. In the case of
the single estimate for each period, the estimated u raises gradually from 46
in 77 to a final 150 in T}y. This suggests that as time proceeds, the observed
behavior gets closer to the equilibrium prediction.

The per-interval estimations deserve a more detailed discussion. In T}
the estimates of p for the intermediate interval exceeds considerably both
the low and high intervals. However, from 7% on, it decreases slightly until
it becomes the lowest in T4. From 735 on, p is the highest in the high price
interval.

As we previously mentioned, solutions for QRE in the case of FPM have
been evaluated numerically. The corresponding distributions are plotted in
Figure 13.

Put Figure 13 about here.

Equilibrium distributions are analogous to the ICM case only for very
high prices. By contrast, for very low prices, distributions are unimodal at 1.
This is clearly due to rationing. More importantly, for prices .75 > p > pe,
the QRE distribution is not unimodal at (1 — p), but has a mode at a higher
level and is skewed to the right. Given we cannot provide an explicit solution
for the QRE in the case of FPM, we can only search for intuitions for this
(numerical) result by getting back to FOCs in the ”high-demand rationing
case”:

(Zj>1 dj)2 + pdi Y- ; d;
(Z54)’

By (11), the derivative is decreasing and convex. This, in turn, implies
that deviations in the direction of overbidding are relatively cheaper (and,
therefore, by (9), overbidding with respect to d is more likely to occur).
Furthermore, the larger fraction of bidders overbids, the more attractive
overbidding becomes for others. In other words, if overbidding strategies
grow in probability, their payoff becomes relatively higher and this, by (9),
reinforces the bias toward overbidding induced by the asymmetry in relative
costs. These observations are well illustrated by Figure 14, which is the
analogy with Figure 11 in case of FPM.

AT N1 —p—d) (1=

ddy (11)

Put Figure 14 about here.
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The qualitative features of Figure 14 reproduce our experimental evi-
dence with remarkable accuracy, as Figure 15 shows.

Put Figure 15 about here

e p > .75. For very high prices, overbidding is basically due to the “drift
effect” already discussed in Section 5.0.1.

® p < pe. For very low prices, the drift effect yields underbidding (since
mode correspond to the upper bound of the pure strategy space).
Moreover, QRE predicts the observed sensitivity of bids on price level.
This is due to the fact that the higher is the price the cheaper is to
underbid the equilibrium prediction by the same amount. Therefore,
it is more likely to observe such deviations the higher is the price.

e .75 > p > p.. For intermediate prices, due to the cost asymmetries
highlighted in (11), the overbidding is more likely to be observed.

6 Conclusion

Two main conclusions can be drawn from our experiment. First, equilibrium
analysis provides a very good description of subjects’ behavior, compared
to other experimental settings. Second, there are still deviations from equi-
librium, for which QRE (as opposed to risk aversion, for example) seems to
produce a sufficiently consistent explanation.

We emphasize that these deviations make FPM even more attractive as
a selling mechanism. Persistent overbidding of RNNE occurs exactly within
the price range that would be selected by a profit maximizing seller. Rev-
enues at this price turns out to be even higher than the expected monopoly
profit.

A general and most important observation from our experimental data
is that subjects were able to solve the problem well enough to achieve re-
sults closely resembling the theoretical predictions. This finding is important
when it comes to the question when and where FPM should be used in prac-
tice. In this respect, two conclusions can be drawn. First, the theoretically
appealing properties of FPM clearly survive (or even are improved on) in
the laboratory, which suggests that FPM should be quite popular as a sell-
ing mechanism. Second, we have to keep in mind that those advantages of
FPM can only be realized if the seller fixes the price correctly, anticipating
buyers’ bidding behavior. Thus, FPM should rather be observed in markets
where sellers are experienced.

The latter observation points to a question for future research. While
in our experiment we focused on buyers’ behavior, the seller’s decision is
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certainly as relevant for evaluating the attractiveness of the mechanism. Two
issues are of interest here. First, does the seller anticipate bidding behavior
correctly and sets the price optimally given buyers’ behavior? Second, does
the fact that the seller is a real player (and not imitated by the computer)
change buyers’ behavior at the second stage of the game?

Another natural extension of the model studied in this paper could be
the replacement of proportional rationing by a different rule. Two natural
candidates are constrained equal losses and constrained equal cwards. The
former is a rule that makes losses as equal possible, under the condition that
no participant ends up with negative transfers. This rule gives priority to
higher bids. Constrained equal awards is the dual rule to the constrained
equal losses. In this case, supply is distributed such that each bidder receives
the same amount, subject to the condition that no buyer gets more than her
bid.

It is not difficult to show that the equilibria characterized in Section 2
maintain a similar feature if proportional rationing is replaced by constrained
equal losses.!” Only the intermediate price interval equilibrium may be
slightly modified by the different rationing scheme. On the other hand,
constrained equal awards affects the equilibrium considerably. In this case,
a symmetric equilibrium is to submit the true demand for all p > % For
prices below this threshold, any (asymmetric) bid such that min{d} > % is
an equilibrium. In other words, a strong multiplicity of equilibria occurs for
prices sufficiently low. How the presence of such strong strategic uncertainty
may affect subjects’ behavior in the lab is left for future research.
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7 Appendix

7.1 Proofs

The proof of Proposition 1 is obtained by way of four lemmas, characterizing bidders optimal
behavior at all prices. Fix a pair (p,d) chosen by the seller at Stage 1 and consider the
corresponding vector of bids d(p) at price p. Since, at a given price, the buyer’s demand is
just a quantity, in what follows we omit the dependency on the price to simplify notation.

Differentiating player 1’s payoff function (4) with respect to di yields

dry(dy,d_ 8Q%(dy,d_
M Y QQ(dl,d,l)erlM (1—d1Q2(d1,d,1)—p) (12)
6d1 adl
80*(dy, d_
=0 [ @t + a6 S (- gt a ) - )
Note that

N 8Q" (dy,d_ 1 if >0 di <1,
E (dl,dl)—dl%}{ I UM E

L C L4 =14 = 5

Thus, (13) is always positive whenever at least one bidder ask for a positive quantity. In
the following Lemma 4, we establish that no bidder has an incentive to ask for less than her

demand (independently on others’ behavior):

Lemma 4 d, < 1 — p is strictly dominated by dy = 1 — p for all p € [0,1] and all
d € [0,R)].

Proof. 1fd; < 1—p, then (1 — d1Q"(d) — p) > 0, since, by (2), Q™(d) < 1. Thus, for
fnlnd o, W

Given Lemma 4, in what follows we shall restrict our attention to strategy profiles

d1 € 0,1 — p), all terms in (12) are strictly positive, and thus,

d = {d; > 1 — p}. The remaining three lemmas establish uniqueness of the equilibrium of
the bidding stage at almost all prices. We proceed by partitioning the price set [0,1] into
three subintervals: i) prices p € (%, 1] above the market clearing price in case of 4 buyers; i7)
prices p € [0, %] below the market clearing price in case of 2 buyers, and finally, 4i7) prices

pE (%, %] in between the two market clearing prices.

Lemma 5 Ietp € (%,1]. mi(di,d—1) is strictly decreasing in di for all d—1 such that
d; > x; for at least one j /=1 and di > max{d_1}.

Proof. If Y% ;d; > 1, then, by (2) it must be that 1 > Q*(d) > Q*(d). Thus, if
1-diQ*—p<0thenl—diQ?—p < 0. Since we assume max{d_1} > 1 —p = x1, any
bid di > max{d_1} yields a supply to bidder 1 of diQ* > i >1—pforallpe [%, 1] in the
high demand scenario. Thus, 1 — d1Q*(d1,d_1) — p < 0 and, therefore, 1 — d1Q? — p < 0.
This, in turn, implies %‘qu) < 0.

Assume instead Zj‘:l d; < 1. Then, it must be 1 = Q%(d) = Q*(d). Again, since
max{d_1} > 1 — p by assumption, a bid di > max{d_1} yields a supply to bidder 1 of
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Omy(d1,d—1)

d1Q™ > 1—pin any demand scenario. Thus, 1—d; Q" —p < 0 which implies Erh < 0.

|

Lemma 5 implies that, at prices p € (%, 1], any buyer has a strict incentive to underbid
the highest bid of his opponents if the latter exceeds true demand. Together with Lemma 4
this implies that the only equilibrium at high prices is truthful bidding.

Lemma 6 Let p € [0, %] mi(di,d—1) is strictly increasing in di1 for all d—1 such that
d; > 1—p and di < min{d_1}.

Proof. At pricesp € [0, %], since the bidders bid at least their true demand, it holds that
Q' < Q% <1 (strictif p < ). Thus,if 1 —d1Q*(d1,d—1)—p >0, then 1—-d1Q*(d1,d 1) —
p > 0. If dy < min{d_1}, then d1Q*> < 1 <1 —p. Therefore, 1 — d1Q*(d1,d—1) — p > 0,
fnlnd o W

1
It follows from Lemma 6 that, at low prices, every bidder strictly wants to outbid the

which, in turn, implies

lowest, bidder given any vector of reasonable bids of the opponents (i. e. bids above true
demand). Thus, the only equilibrium at low prices is that everyone’s bid equals the upper

limit.
Lemma 7 Letpe (3,3
1. If there is no rationing in case n = 2, i. e. d1 +d2 < 1, then

(Z) mi(di,d—1) is decreasing for all di > %.

(ZZ) mi(di,d=1) is strictly concave in dy for all dy € [0, %], d_1 such that d; > xj,
forall j 1.

2. If there is rationing in case n = 2, 4. e. d1 + da > 1, then

(Z) wi(d1,d—1,p) is strictly increasing for all d_1 such that d; > x; and di <
min{d_1} ifp < ig;—i.
(ZZ) wi(d1,d—1,p) is strictly decreasing for all d_1 such that dj > x; and di >
max{d_1} ifp > ig;—i.
(m) Atp= ig;—i s %‘qu) =0 for any d such that d; = d; for all i, j.

8. Ewvery pure strategy equilibrium of FPM (p) is symmetric.

Proof. Part 1(i). Since Q* < Q? = 1, it holds that, if 1 — d1Q*(d1,d_1) — p < 0,
then 1 — d1Q?(d1,d 1) — p < 0, and thus, by (12), T = 0 ¢y > 2 yields
1-— d1Q4(d1, d1)—-p<1-— % 4 _ p =0, which proves the first part of the lemma.
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Part 1(ii). The second derivative of w1 with respect to d; is given by

827r1(d1,d,1) -
—oE (14)
8Q (d1,d_1)]”

Ody

2 2
~ A [QQ(dl,dl) + d1W] —(1—-X) [Q4(d1,d1) +dy

0Q*(dy,d_) *Q*(dy,d_1)

] (1—d1Q*(dy,d—1) —p)

0Q*(dy,d_y) 92Q*(dy,d_y)
+ d;q 3
ad, Y

+ (=N [2 ] (1 —d1Q*(d1,d 1) — p).

By (13), the first two terms of the LHS of (14) must be negative. It remains to show that
the sum of the last two terms is also negative. Note that

QaQn(dl,dq)HaQQ“(dl,dﬁ)}i PO i Xadis 15
ady ! ad? T e X2t

Thus, if no rationing occurs in the low demand scenario (23:1 d; < 1), the third term is
equal to zero. The fourth term is negative for dy € [0, %], since for those bids it holds that

1—d1Q*(d1,d 1) —p>0.
Part 2(i). We substitute (13) into (12) to get

87‘(1(d1,d71) d2 dl
- 1-— — 16
ady e T dirds P (16)
24':2dj dy
+ (1 - N)—=¢ d-2(1_ I d.—p).
(Zj:l i) Zj:l J
P 4
) . L d;
Note that, if d1 < min{d;}, then (dlizdz)z > i, dl(jrldz < %, (" ;l_]:fd]_])z > 13—6 ,and Pﬁ <
i. Substituting in yields
or1(di,d—1) 1 1 3 1 19—-X
gmlend1) 5 2o = = T— N1 == — 0 ey
ad, =TT AN o= =0 ep gy
P 4
. . L d;
Part 2(ii). By (16), if d; > max{d,;} , then (dliﬁ <1 dfﬁdz > 1 f—{ﬁ <2
and P;Ld_ > i. Substituting in yields
s=19
or1(di,d—1) 1 1 3 1 9— A
gmtlend1) o N2 = T— N1 == — 0 el
ad;, =Ml U-NEl-g-p <0 Spegme,

which proves part 2(ii) of the lemma.
Part 2(iii). For any vector of equal bids such that di 4+ d2 > 1, (12) simplifies to

omi(di,dy) 1 [ 1 1 3, 1
SoLE Y - (A1 -5 - R R
4, il VA R O SOk T Sl it D)
wit ZLEA1) 0 iff p = S2A

ad,
Part 3. In any equilibrium, either all bidders are rationed in the low demand scenario,

or none of them is rationed, because their joined quantity determines the same rationing
factor for everyone. In both cases (rationing if n = 2, or no rationing), we have shown that

there is a unique best-reply to any given strategy profile of bidder 1’s opponent, d_1. Since
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bidders’ payoff functions of all bidders are symmetric, also the equilibria of the game must
be symmetric. M

>From Lemma 7, it follows that at any price but one in the interval (%, %], FPM(p)
can have at most two equilibria in pure strategies, and all of them it must be symmetric (by
part 3 of the lemma) An equilibrium where all buyers bid d;(p) = 1 exists for all prices

P < Pm = 4 3+>\, but not for higher prices (part 2 of the lemma). At p,, = also any

19-X
137x
quadruple of equal bids that leads to rationing in both scenariosis an equilibrium of the game.
A symmetric equilibrium without rationing in the low demand scenario exists whenever the

solution to maxg, m1(d1,d—1) s. t.. di =d; ¥V d; € d_1 ensures that di + d2 < 1, which is

19472
135"

We are now in the position to prove Proposition 1.

the case for prices p > p. =

Proof. [Proof of Proposition 1.] Existence and uniqueness of equilibrium at prices
p € [0,p.) and p € [%, 1] has already been shown in lemmas 4 — 7 . Also, all remaining
equilibria where d; = 1 |, Vi and the continuum of equilibria at p,, have been derived in
Lemma 7, part 2. It remains to solve for those equilibria where no rationing takes place in

the low demand scenario at prices p € [%, %]

If Q%(d) =1, (12) simplifies to

0Q"(di,d—)

Al —di —pl+ (1 =X {Q“(dnd*i)_ od;

} (1= diQ@ diyd 1) — p) = 0. (17)

Substituting Q*(d;, d_;) = H— in (17), and imposing symmetry yields

di= (1~ )+\/—(—— -2 (18)

A symmetric profile (18) can be an equilibrium only if 2d; < 1, which is the case for all
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Proof. [Proof of Proposition 2.] If the upper limit d is high enough not to affect revealed

P > pe:With Pe =

demand at prices in [pe, %] , equilibrium demand of buyer 1 at price p € [pe, %] is at least,
d;, as given by equation (18). At price p. the whole supply is sold in both scenarios, which
implies that seller’s expected revenue is safe and equal to p. (which proves part (ii) of the
proposition). Since there is only 1 unit for sale, setting a price below pe is strictly dominated
for the seller. Thus, the seller’s revenue is bounded below by p. and may be even higher
(part (iii)). Since d can only reduce the demanded quantity, the seller strictly prefers a limit
that does not affect revealed demand by any bidder at the posted price (part (iv)).

We have already shown in proposition 1 that for any upper bound on bids an equilibrium
of the bidding stage exists at all prices p € [0, 1], and that any such equilibrium is symmetric.
Under proportional rationing any bidder who has bid the same quantity receives the same.
Recall that all bidders have the same demand function. Therefore, their willingness to pay
for the next unit is the same and no aftermarket trade among the bidders will occur (part
(v)).

Finally, for any equilibrium played in Stage 2, there is a (not necessarily unique) profit
maximizing price. Thus, an equilibrium of FPM always exists (part (i)}, where the seller
chooses the profit maximizing price p* given the play at the second stage, and chooses d
higher than the bidders’ (unrestricted) bids at p*. W
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7.2 The experimental instructions

Welcome to the experiment!

This is an experiment to study how people solve decision problems.

Our unique goal is to see how people act on average; not what you, particularly, do. Do
not, think, then, that we expect you to take any specific behavior.

On the other hand, you should take into account that your behavior will affect the
amount of money you will earn throughout the experiment. It is, therefore, your own interest
to do your best.

This sheet, contains the instructions explaining the way the experiment works and the
way you should use your computer.

Please Do not, disturb the other participants during the course experiment. If you need
any help, please, raise your hand and wait in silence. You will be attended as soon as

possible.
How can you earn money?

You will have to play 84 rounds of a simple game described as follows. In each round,
you will be part of a group of 2 or 4 people (including you) of this room. Whether the group
will be of 2 or 4 people will be decided randomly and it will change within each round.?

During the experiment, 50% of times you will be in a group of 4 and 50% of times in
a group of 4. It is crucial to keep in mind that the composition as well as the size of
your group will change at each round!

In each round, you and each of the other members of your group will have to make a
choice. Your decision (together with the decisions of the others in your group) will determine
the amount of money you will earn at the end of that round.

We will also give you a show-up fee of 2000 ptas®. At the end of the experiment, you

will be paid the exact amount you have earned throughout its course plus the show-up fee.
How to play the game?

In each round, you will participate to a market together with the other members of your
group (who can be one or three). In this market, 10 units of a product are put in sale.

In each round, a price between 0 and 10 will appear in the screen of your (as well as your
group members’) computer. This price does not necessarily have to be an integer, and has
been determined randomly. You and the other group members have to decide the amount

of the product you want to bid at this price?.

2 As there were no groups in ICM session, the last two phrases of this paragraph and
all the following one are omitted in the ICM insructions. All the rest of the insructions is
slightly modified in parts where we talk about ”the other members of your group” in order
not, to confuse the subjects participating to the ICM session.

AThe show-up fee of the ICM session was 1500 pesets, since the control treament was
strategically simpler than FPM.

2 As a next paragraph the following text in Bold appears in the ICM instructions: You
will always receive the amount you have bidded!!!
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How can you get the product??

You will not always get the amount of product you have bid!!!

The amount of good you will get depends on your bid and the bids of the other group
members. Keep in mind that you will take part of a group that will be formed of 2 or 4
members (including you). At the moment you will have to decide your bid you will not know
the size of your group!!!

In each round, we will sum the bid amounts by all your group members. Do not forget
that the maximum amount we can distribute is 10 units.

In case that the sum of the bids of all the members of your group (including
yourself) does not exceed 10, each member receives what he demanded.

Otherwise, that is, if the sum exceeds 10 units, each member receives a lower
amount than what he demanded, although each member get the same percentage of his
bid. This percentage is determined from the relation between the available amount and the
aggregate demand of your group.

Example: Suppose that:

® the price of this round is 5.5,
® vyour bid was 2 units,

@ cach of the other members of your group demanded 6 units.

If the size of your group was 2, your group’s aggregate bid would be 2+6=8. Since this
amount is lower than 10 (the available amount), you will receive 2 units and the other one
gets 6 units that is, what you both bid..

If the size of your group was 4, the aggregate demand would be 2+6+6+6=20. Since
this amount is higher than 10 (the available amount), each member of your group receives
50% of what he has bid. This is because the available amount, 10, is 50% of the amount
demanded by the whole group, 20. That is: you will get 1 unit and the others receive 3 units

each.
Summary

If the aggregate bid of the group is less or equal to 10, each member gets what he has
bid..

If the aggregate bid is higher than 10, each member receives the same percentage as
he bid.. This percentage is determined from the relation between the available amount (10
units) and the aggregate bid (e.g. 20 units in our example).

This implies that always when a person bid more than an other one this person gets

more units than the other one.

BThis chapter - together with the following Summary and the Control questions 1 and 2
- does not, appear in the ICM instructions, since there is no rationing.
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Control question # 1: If you bid 6 and each of the other members of your group bids

6,
How many units do you get, if the size of your group is 47
How many units do you get if the size of your group is 27
Control question # 2: If you bid 8 and each of the other members of your group bids
4,

How many units do you get, if the size of your group is 47

Do you get what you bid if the size of your group is 27

How much money you can earn?

Look at the table we give you together with these instructions. In this table, you can
check how much money you earn for each quantity you get at each price. The first column
of the table shows the different prices that can appear during the experiment. In the first
row, you have different quantities between 0 and 10 units. In each cell , you find your profit
if you get the corresponding quantity at the corresponding price.

For instance, if you like to know how much money you earn if you receive 4.5 units at
price 4, have a look at the cell that corresponds to the row of price 4 and to the column
corresponding to the quantity of 4.5 units. By doing so, you will see that you earn 16.88
ptas..

Control question # 3: How much money do you earn if you get 8 units at price
2.57%

In each round, you can bid any amount between 0 and 10, but it has to be a number
with at most 2 decimals. You are not forced to only bid the amounts listed in the table.

It can also happen that the quantity you get corresponds to a number between two of
the quantities listed in the table. In such a case, your profit will also be between the two

corresponding profits.
Summary?

In each round, you and other members of your group will participate in a market where
10 units of product are being sold.

The size and the composition of your group will change in each round and they will,
always, be determined randomly. The size of your group can be 2 or 4 (including yourself).
In each round, both possibilities have the same probability (i.e.50% of times your form part
of a group of 2 and 50% of a group of 4).

In each round, you and the other members of your group will face a different price.

At this price, you have to bid a quantity and you will get:

#Obviosly, this is the unique control question that appears in the ICM instructions.
PDue to the simplicity of the control treatment, we have not found it necessary to place
a Summary part to the instructions of the ICM session.

29



® What you have bid if the sum of bids of whole group is lower or equal to 10.

o [f the aggregate bid is higher than 10, each member receives the same percentage of
the total amount (10) as his bid (compared to the total sum of bids).

This implies that who bids more always receives more.

You can check your profits in the table enclosed with these instructions.
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Figure 1. FPM: Equlibrium bid function(s)



» & 1 2 3 4
0 0.958 1 1 1
(0.204) (0) (0) (0)
05 0.812 0.952 0.95 0.95
' (0.307) (0.01) (0) (0)
) 0.819 0.902 0.9 0.9
' (0.221) (0.01) (0) (0)
15 0.781 0.85 0.854 0.85
: (0.217) (0) (0.02) (0)
) 0.776 0.777 0.8 0.775
: (0.122) (0.112) (0) (0.122)
o 0.704 0.729 0.75 0.75
' (0.17) (0.102) (0) (0)
5 0.668 0.7 0.7 0.7
' (0.111) (0) (0) (0)
. 0.584 0.65 0.65 0.65
' (0.193) (0) (0) (0)
A 0.575 0.6 0.6 0.6
' (0.102) (0) (0) (0)
45 0.543 0.542 0.55 0.55
' (0.022) | (0.032) (0) (0)
. 0.51 0.5 0.5 0.5
' (0.129) (0) (0) (0)
. 0.45 0.45 0.45 0.45
' (0.108) (0.001) (0) (0)
6 0.449 0.4 0.4 0.4
' (0.162) (0) (0) (0)
o5 0.354 0.349 0.35 0.354
: (0.075) (0.005) (0) (0.02)
- 0.36 0.3 0.3 0.3
' (0.168) (0) (0) (0)
. 0.249 0.25 0.252 0.248
' (0.119) (0) (0.01) (0.01)
< 0.196 0.2 0.2 0.2
' (0.02) (0) (0) (0)
. 0.148 0.15 0.15 0.15
' (0.057) (0) (0) (0)
0 0.097 0.096 0.1 0.098
: (0.016) (0.018) (0) (0.01)
o5 0.114 0.049 0.05 0.05
' (0.211) | (0.007) (0) (0)
) 0.054 0 0 0
(0.207) (0) (0) (0)

Figure 2. ICM: Average aggregate bids (with standard deviation)




Loy 2 3 4
p
0 0.941 0.948 0.944 0.977
(0.143) (0.14) (0.2) (0.114)
05 0.858 0.947 0.96 0.972
' (0.224) (0.154) | (0.128) | (0.105)
) 0.871 0.943 0.945 0.976
' (0.203) (0.143) | (0.155) | (0.08)
5 0.821 0.95 0.944 0.959
' (0.202) (0.108) | (0.163) | (0.117)
; 0.885 0.906 0.918 0.96
! (0.169) (0.169) | (0.181) | (0.132)
. 0.739 0.894 0.888 0.944
' (0.24) (0.184) | (0.185) | (0.123)
3 0.804 0.855 0.863 0.911
' (0.196) (0.205) | (0.198) | (0.187)
. 0.747 0.802 0.864 0.904
' (0.195) (0.201) | (0.186) | (0.166)
A 0.69 0.776 0.832 0.84
' (0.19) (0.2) (0.208) | (0.188)
e 0.68 0.669 0.751 0.821
' (0.203) (0.19) (0.211) | (0.209)
- 0.632 0.652 0.692 0.741
' (0.206) (0.211) | (0.21) (0.209)
. 0.515 0.638 0.6523 0.634
! (0.177) (0.193) | (0.211) | (0.209)
o 0.476 0.496 0.493 0.561
' (0.131) (0.143) | (0.141) | (0.175)
o5 0.451 0.458 0.482 0.513
' (0.176) (0.134) | (0.168) | (0.185)
- 0.331 0.353 0.382 0.39
' (0.128) (0.105) | (0.134) | (0.126)
. 0.316 0.283 0.267 0.286
' (0.112) (0.122) | (0.07) (0.086)
R 0.22 0.21 0.206 0.208
' (0.086) (0.038) | (0.028) | (0.032)
. 0.222 0.156 0.173 0.163
' (0.195) (0.03) (0.133) | (0.04)
0 0.108 0.098 0.097 0.109
' (0.045) (0.018) | (0.016) | (0.074)
o5 0.107 0.059 0.052 0.051
' (0.158)) | (0.026) | (0.01) (0.007)
) 0.051 0.066 0.0005 0
(0.128) (0.036) | (0.003) | (0)

Figure 3. FPM: Average aggregate bids (with standard deviation)
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Figure 4. FPM: Evolution of aggregate bids
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Figure 5. FPM: Evolution of the seller's profits
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Figure 6. ICM: Panel Data Estimation
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Figure 7. FPM: Pand Data E stimations.
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Figure 8. FPM: estimated bid functions



Ty 1 2 3 4
ICM 31.3 818.7 201200 1325.4
p > 0.75 61 81 358 401
FPM p € [pe,0.75) || 148.2 | 46 || 182 | 79 || 146.5 | 98 || 126 | 150
P < Pe 37.5 70.6 76 129

Figure 9. Maximum-Likelihood estimations of p
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Figure 10. ICM: estimated QRE distributions



Figure 11. ICM: estimated QRE average bids
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Figure 12. FPM: evolution of estimated QRE average bid functions
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Figure 13. FPM: QRE distributions
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Figure 14. FPM: estimated QRE average bids



Figure 15. FPM

: evolution of estimated QRE average bid functions
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