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Abstract

We study two different lot-sizing problems with time windows that have been proposed
recently. For the case of production time windows, in which each client specific order must
be produced within a given time interval, we derive tight extended formulations for both
the constant capacity and uncapacitated problems with Wagner-Whitin (non-speculative)
costs. For the variant with nonspecific orders, known to be equivalent to the problem in
which the time windows can be ordered by time, we also show equivalence to the basic
lot-sizng problem with upper bounds on the stocks. Here we derive polynomial time
dynamic programming algorithms and tight extended formulations for the uncapacitated
and constant capacity problems with general costs.

For the problem with delivery time windows, we use a similar approach to derive tight
extended formulations for both the constant capacity and uncapacitated problems with
Wagner-Whitin (non-speculative) costs.
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1 Introduction

Recently two different lot-sizing problems with time windows have been studied. In both
cases the demand data consists of a set of orders k = 1, . . . , K consisting of a quantity Dk

and a time interval [bk, ek] lying within the time horizon [1, n]. In Brahimi, Dauzère-Pérès
and al. [3, 2, 6] the production time window is the interval during which the order must be
produced. For this problem, two variants are considered: in the first each order is distinct
(client-specific), whereas in the second orders are indistinguishable (non-specific). On the
other hand in Lee et al. [9] the delivery time window for an order is the time interval in which
the order must be delivered to the client.

For the client-specific problem with production time windows Brahimi et al. derive an
O(n2) dynamic programming (DP) algorithm for the uncapacitated case with Wagner-Whitin
(non-speculative) costs, denoted WW − U − TWP , and a pseudopolynomial DP algorithm
for the general cost case, denoted LS − U − TWP . For the indistinguishable order problem,
they show equivalence to the noninclusive time window problem in which no time window is
strictly contained in another (bk < bκ and ek > eκ is not allowed). For this latter problem,
denoted LS−U −TWP (I) they present an O(n4) DP algorithm for the general cost case. In
addition various mixed integer programming formulations for the two variants are presented,
and then the algorithms for the single item problem are used as subproblems in a Lagrangian
relaxation approach to solve multi-item problems with linking machine capacity constraints.

For the single item problem with delivery time windows Lee et al. derive polynomial time
dynamic programming (DP) algorithms for the uncapacitated case when there are Wagner-
Whitin costs, denoted WW − U − TWD, as well as a similar result in the presence of back-
logging.

The approach taken here is to look both for polynomial time optimization algorithms and
also tight mixed integer programming formulations possibly with additional variables, where
tight means that the linear programming relaxation solves the problem, which in certain cases
means that we have a description of the convex hull of feasible solutions. Then in tackling
hard multi-item problems, one can either use column generation or Lagrangian relaxation
approaches in which one requires the optimization algorithms to solve the subproblems, or one
can use a direct mixed integer programming approach and provide an initial MIP formulation
including the tight formulations of the subproblems.

Our main results are are as follows:
i) The presentation of several mixed integer programming formulations and the relationship
between them, including those of Brahimi et al. and Lee et al.
ii) For the production time window problem with constant capacities and Wagner-Whitin
costs, WW − CC − TWP , we derive a tight O(n2) × O(n2) extended formulation. For
the uncapacitated version WW − U − TWP , we obtain a tight formulation in the original
production, stock and set-up variables with O(n2) constraints.
iii) We show that the restricted production time window problem with non-inclusive time
windows, or equivalently the production time window problem with indistinguishable orders,
is also equivalent to the standard lot-sizing problem with upper bounds on stocks. For the
problem with general cost structure, we derive an O(n2) DP algorithm and an O(n2)×O(n2)
tight extended formulation for the uncapacitated problem LS − U − TWP (I) by using the
restricted time window structure. On the other hand for the constant capacity version LS −
CC − TWP (I) we derive an O(n3) DP algorithm and an O(n3) × O(n3) tight extended
formulation by using the stock upper bound viewpoint.
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iii) For the delivery time windows problem with constant capacities and and Wagner-
Whitin costs, denoted WW − CC − TWD, we also derive a tight polynomial size extended
formulation. Again for the uncapacitated case, it is of polynomial size in the original variables.

We now describe the contents of the rest of the paper. As production and delivery time
window problems have very similar structure, we present some basic mathematical results in
Section 2 that can be applied to both problems.

In Section 3 we treat the problem with production time windows and client specific orders.
First we present different MIP formulations. Then we present the tight extended formulation
for the constant capacity problem with Wagner-Whitin costs, and its simpler form when
the problem is uncapacitated. In Section 4 we show that the problems with indistinguishable
orders, noninclusive time windows and stock upper bounds are equivalent, and then derive two
algorithms: first we present a DP algorithm and formulation for the noninclusive case when
there is a natural ordering on the time intervals, and then an algorithm for lot-sizing with
stock upper bounds and constant capacities. In Section 5 the presentation for the problem
with delivery time windows follows much the same format as in Chapter 3. We terminate in
Section 6 with a discussion of some open questions.

2 Useful Results

In this section we present first a simple result on feasible flows in transportation networks
when the neighbors adjacent to the nodes form an interval. Specifically the nodes in the
bipartition will correspond to time periods and orders respectively. This will be used later to
show that one formulation can be obtained from another by projection. We then introduce
mixing sets, and a polyhedral result for “generalized constant capacity lot-sizing with Wagner-
Whitin costs”, described in terms of mixing sets, that will be used to show that for a given
problem, a particular formulation is “tight”, i.e. it describes the convex hull of the feasible
region.

2.1 Feasibility in Convex Transportation Networks

Definition 1 A bipartite graph (V1×V2, E) with |V1| = n, |V2| = K is convex if for all j ∈ V2,
its set of neighbors N(j) = {i ∈ V1 : (i, j) ∈ E} forms an interval [bj , ej ] ⊆ [1, n], where [p, q]
denotes the interval {p, p + 1, . . . , q − 1, q}.
It is doubly convex if the neighbors of nodes in V1 also form intervals in V2.

Using the max flow/min cut theorem, it is straightforward to derive the following two
Propositions. Proofs can be found in Cezik and Günlük [4].

Proposition 1 Given a convex bipartite graph with supplies ai ∈ R1
+ for i ∈ V1 and demands

dk ∈ R1
+ for k ∈ V2 such that

∑
i∈V1

ai =
∑

k∈V2
dk, there exists a nonnegative feasible flow

satisfying all the supplies and demands at equality if and only if

l∑

i=t

ai ≥
∑

{k:t≤bk≤ek≤l}
dk for 1 ≤ t ≤ l ≤ n.
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Proposition 2 Given a doubly convex bipartite graph with supplies ai ∈ R1
+ for i ∈ V1 and

demands dk ∈ R1
+ for k ∈ V2 such that

∑
i∈V1

ai =
∑

k∈V2
dk, there exists a nonnegative

feasible flow satisfying all the supplies and demands at equality if and only if

∑l
i=1 ai ≥ ∑

{k:ek≤l} dk for 1 ≤ l ≤ n
∑l

i=1 ai ≤ ∑
{k:bk≤l} dk for 1 ≤ l ≤ n.

2.2 Mixing Sets

Consider the mixing set XM (s, z, b) consisting of the points (s, z) satisfying

s + zl ≥ bl for l = 1, . . . , n (1)
s ∈ R1

+, z ∈ Zn
+. (2)

The following results can be found in Günlük and Pochet [8] and Miller and Wolsey [11],
see also Pochet and Wolsey [14].

Let fl = bl − bblc for l = 1, . . . , n, and let f0 = 0.

Theorem 3 The convex hull of the mixing set conv(XM (s, z, b)) is obtained by taking the
initial constraints (1), the nonnegativity constraints s, z ≥ 0 and two classes of inequalities

s ≥
r∑

t=1

(fit − fit−1)(bbitc+ 1− zit) (3)

and

s ≥
r∑

t=1

(fit − fit−1)(bbitc+ 1− zit) + (1− fir)(bbi1c − zi1) (4)

where {i1, . . . , ir} ⊆ {1, . . . , n} and 0 ≤ fi1 < fi2 < . . . < fir < 1.

Theorem 4 A tight extended formulation for conv(XM (s, z, b)) is:

s =
∑n

i=1 fiδi + µ

zt + µ +
∑
{i:fi≥ft} δi ≥ bbtc+ 1 for t = 1, . . . , n

∑n
i=0 δi = 1

δ ∈ Rn+1
+ , µ ∈ R1

+, z ∈ Rn
+.

2.3 “Generalized” Constant Capacity Lot-Sizing with Wagner-Whitin Costs

Suppose that we are given two vectors α, β ∈ Rn(n+1)/2
+ where each coordinate corresponds

to an interval [t, l] ⊆ [1, n]. In addition suppose that α is nondecreasing (αtl ≤ ατλ whenever
τ ≤ t ≤ l ≤ λ), β is nondecreasing and β ≤ α.
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Consider now a “generalized” constant capacity lot-sizing set X in which st denotes the
stock at the end of period t and yt ∈ {0, 1} is the set-up variable in period t. X is given by:

st−1 + C
∑l

u=t yu ≥ αtl for 1 ≤ t ≤ l ≤ n

C
∑l

u=t yu ≥ βtl for 1 ≤ t ≤ l ≤ n

s ∈ Rn
+, y ∈ {0, 1}n.

Let Y t = (yt, yt + yt+1, . . . , yt + . . . + yn) and αt = (αtt, . . . , αtn). Now the set X can be
rewritten as:

X = ∩n
t=1X

M (st−1/C, Y t, αt/C) ∩ {(y ∈ {0, 1}n :
l∑

u=t

yu ≥ βtl/C for 1 ≤ t ≤ l ≤ n}.

Theorem 5

conv(X) =
n⋂

t=1

conv(XM (st−1/C, Y t, αt/C)) (5)

⋂
{(y ∈ [0, 1]n :

l∑
u=t

yu ≥ dβtl/Ce for 1 ≤ t ≤ l ≤ n}. (6)

The proof is obtained by taking the proof based on the extended formulation for constant
capacity lot-sizing with Wagner-Whitin costs in Pochet and Wolsey [14], and observing that
the addition of the constraints (6) (a consecutive 1’s matrix in the space of the y variables)
does not invalidate the proof.

It is also interesting to consider what happens when C is large, in particular when α1n < C.
Either by specializing the above result, or by observing that the inequalities:

st−1 ≥
l∑

u=t

(αtu − αt,u−1)(1− yt . . .− yl)

are valid for 1 ≤ t ≤ l ≤ n, one obtains:

Proposition 6 If α1n < C,

conv(X) = {(s, y) ∈ Rn
+ × [0, 1]n :

st−1 +
∑l

u=t(αtl − αt,u−1)yu ≥ αtl for 1 ≤ t ≤ l ≤ n
∑l

u=t yu ≥ 1 for all 1 ≤ t ≤ l ≤ n with βtl > 0}.

3 Production Time Windows

3.1 MIP Formulations

We consider first the problem with production time windows, constant capacities and general
costs, denoted LS−CC−TWP . Here the problem data consist of a time horizon n, production
costs p′ ∈ Rn, storage costs h′ ∈ Rn, set-up costs f ∈ Rn, and a list of K orders each consisting
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of a time window [bk, ek] with 1 ≤ bk ≤ ek ≤ n, and a positive order quantity Dk. Order k
must be produced within the time interval and delivered in period ek.

We start with a first formulation as a mixed integer program. We use the standard
variables
xt is the amount produced in period t
st is the stock at the end of period t
yt ∈ {0, 1} is the set-up variable for period t.
In addition
zk
t is the amount of order k produced in period t for t ∈ [bk, ek].

We also introduce some additional notation:
Dtl =

∑
k:t≤bk,ek≤l D

k is the minimum amount that must be produced in the interval [t, l],
∆t = D1t −D1,t−1 =

∑
k:ek=t Dk is the amount that must be delivered in the period t,

∆tl =
∑l

u=t ∆u is the amount that must be delivered in the interval [t, l],
Γt = Dtn −Dt+1,n =

∑
k:bk=t Dk is the amount that becomes available for production in the

period t,
Γtl =

∑l
u=t Γu is the amount that becomes available for production in the interval [t, l].

With the above variables a natural formulation for LS − CC − TWP is:

min
∑

t p′txt +
∑

t h′tst +
∑

t qtyt (7)
st−1 + xt = ∆t + st for t = 1, . . . , n (8)
∑ek

u=bk zk
u = Dk for k = 1, . . . , K (9)∑

{k:u∈[bk,ek]} zk
u = xu for u = 1, . . . , n (10)

xu ≤ Cyu for u = 1, . . . , n (11)
s, x, z ≥ 0, y ∈ {0, 1}n (12)

where we suppose that s0 = 0.
Now if one prefers to work in the (s, x, y) or (x, y) space, we look for a formulation in

which the zk
t variables have been eliminated.

Observation 1 Applying Proposition 1 to (9)-(10) with at = xt for t = 1, . . . , n, there exist
variables zk

t ≥ 0 satisfying (9)-(10) if and only if

l∑
u=t

xu ≥ Dtl for 1 ≤ t ≤ l ≤ n. (13)

This immediately gives a formulation in the (x, s, y) space, proposed by Brahimi [3].

Proposition 7 Let QTWP = {(s, x, y, z) satisfying (8) − (11), s, x ≥ 0, y ∈ [0, 1]n, z ≥ 0}.
The projection of QTWP is given by

∑l
u=t xu ≥ Dtl for 1 ≤ t ≤ l ≤ n

xu ≤ Cyu for u = 1, . . . , n

st−1 + xt = ∆t + st for t = 1, . . . , n

s ∈ Rn, x ∈ Rn
+, y ∈ [0, 1]n.
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Observation 2 i) It is possible to completely eliminate the s variables, or completely elimi-
nate the x variables using the flow balance constraints (8). Specifically

∑
t

p′txt +
∑

t

h′tst =
∑

t

ptxt + C1 =
∑

t

htst + C2

where pt = p′t +
∑n

u=t h′u and ht = h′t + p′t − p′t+1 for all t, and C1, C2 are constants with
C1 = −∑

t h′t∆1t and C2 =
∑

t p′t∆t.

Observation 3 As st−1 =
∑t−1

u=1 xu−∆1,t−1 and ∆1t = D1t for all t, the inequality
∑l

u=1 xu ≥
D1l can be rewritten as

st−1 +
l∑

u=t

xu ≥ D1l −D1,t−1 = ∆tl. (14)

3.2 The Uncapacitated Case with General Costs: LS − U − TWP

In the uncapacitated case when C is large, the original formulation (8)-(12) can be tightened
with the inequalities

zk
u ≤ Dkyu for k = 1, . . . , K, u = 1, . . . , n. (15)

giving

min
∑

t ptxt +
∑

t qtyt (16)
∑ek

u=bk zk
u = Dk for k = 1, . . . , K (17)

zk
u ≤ Dkyu for k = 1, . . . , K, u = 1, . . . , n (18)
xu =

∑
{k:u∈[bk,ek]} zk

u for u = 1, . . . , n (19)
s, x, z ≥ 0, y ∈ {0, 1}n. (20)

Unfortunately the linear programming relaxation of this extended formulation is not in general
tight. However if the production costs p ∈ Rn are unimodal, p1 ≥ p2 ≥ . . . ≥ pr ≤ pr+1 ≤
. . . ≥ pn for some r, more can be said.

Theorem 8 With unimodal production costs, the linear programming relaxation of the prob-
lem (16)-(20) has an optimal solution with y integer.

Proof: We indicate the main steps. Substituting wk
t = zk

t /Dk and ck
t = ptD

k for all t ∈ [bk, ek]
and all k, and introducing the variables wk

t with a large weight ck
t = M for t /∈ [bk, ek], one

obtains the facility location problem:

min
∑

k,t ck
t w

k
t +

∑
t qtyt (21)

∑n
u=1 wk

u = 1 for k = 1, . . . ,K (22)
wk

u ≤ yu for k = 1, . . . , K, u = 1, . . . , n (23)
w ≥ 0, y ∈ {0, 1}n. (24)
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In Cornuéjols et al. [5], it is shown how by modifying the set of clients and the cost/profit
matrix, it is possible to obtain a reformulation of (21)-(24) such that the linear programming
relaxations of (21)-(24) and of the reformulation also have the same value, and the dual of
the new linear program takes the form:

max
∑

T⊆N uT (25)∑
{T :j∈T} uT ≤ qj for j = 1, . . . , n (26)

0 ≤ uT ≤ rT for T ⊆ N. (27)

where the data rT are integer if the original costs ck
j are integral.

Now under the unimodal cost hypothesis on the production cost vector p, the sets T ⊆ N
with rT > 0 are all subintervals of [1, n]. It follows that the constraints (26) form a matrix
with consecutive 1s. Thus this matrix is totally unimodular, and it follows from total dual
integrality that the primal LP and thus the linear programming relaxations of (21)-(24) and
(16)-(20) also have an optimal solution with y integer. 2

For the case of general production and storage costs, the complexity of LS − U − TWP is
not known.

3.3 Constant Capacity and Wagner-Whitin Costs WW − CC − TWP

Definition 2 A problem has Wagner-Whitin costs if p′t+h′t ≥ p′t+1, or equivalently pt ≥ pt+1,
or equivalently ht ≥ 0 for all t.

Again using Observation 3, with Wagner-Whitin costs the objective function (7) can be
rewritten as ∑

t

htst +
∑

t

qtyt

with ht = p′t + h′t − p′t+1 ≥ 0 for all t.
Using (11) to replace xu by its upper bound constraints Cyu in (13) and (14), we obtain

a relaxation

min
∑

t htst +
∑

t qtyt (28)

st−1 + C
∑l

u=t yt ≥ ∆tl for 1 ≤ t ≤ l ≤ n (29)

C
∑l

u=t yt ≥ Dtl for 1 ≤ t ≤ l ≤ n (30)
s ∈ Rn

+, y ∈ {0, 1}n. (31)

Let X∗ be the set of (s, y) points satisfying (29)-(31).

Observation 4 i) With h ≥ 0, the relaxed problem min{hs+gy : (s, y) ∈ X∗} has an optimal
solution in an extreme point of conv(X∗)
ii) In an extreme point of conv(X∗), y ∈ {0, 1}n and

st−1 = max
l=t,...,n

(∆tl − C

l∑
u=t

yu)+ for t = 2, . . . , n.

iii) In an extreme point of conv(X∗), 0 ≤ ∆t + st − st−1 ≤ Cyt for all t.
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Proof: iii) follows from results concerning the constant capacity lot-sizing problem with
Wagner-Whitin costs [14]. However it is easily verified as follows:
First we show that ∆t + st − st−1 ≥ 0. If st−1 = 0, the result holds, so suppose that
st−1 = ∆tk − CYtk for some k = t, . . . , n.
If k > t, then st ≥ ∆t+1,k−CYt+1,k, so ∆t +st−st−1 ≥ ∆t +∆t+1,k−CYt+1,k−∆tk +CYtk =
Cyt ≥ 0.
If k = t, then st−1 = ∆t − Cyt, so ∆t + st − st−1 = ∆t + st −∆t + Cyt = st + Cyt ≥ 0.

Now we show that ∆t + st − st−1 ≤ Cyt.
If st = 0, as st−1 ≥ ∆t − Cyt, we have that ∆t + st − st−1 ≤ ∆t + 0−∆t + Cyt = Cyt.
Otherwise st = ∆t+1,k − CYt+1,k for some k = t + 1, . . . , n. However st−1 ≥ ∆tk − CYtk, so
∆t + st − st−1 ≤ ∆t + ∆t+1,k − CYt+1,k −∆tk + CYtk = Cyt. 2

Setting xt = ∆t + st − st−1, we see that (x, s, y) is feasible and optimal for the original
problem.

Theorem 9 i) The linear program

minhs + gy

(s, y) ∈ conv(X∗)
xt = ∆t + st − st−1 for all t

solves the lot-sizing problem WW − CC − TWP .
ii) conv(X∗) is given by Theorem 5 with αtl = ∆tl and βtl = Dtl for all t, l.

Corollary 10 For the uncapacitated problem WW −U−TWP , the formulation of conv(X∗)
in the (s, y) space has O(n2) constraints

st−1 ≥
∑
{k:bk<t≤ek≤l}Dk(1− yt − . . .− yek) for 1 ≤ t ≤ l ≤ n

∑ek

u=bk yu ≥ 1 for k = 1, . . . , K

s ∈ Rn
+, y ∈ [0, 1]n.

Note that this linear program is more compact than the multicommodity formulation (16)-
(20), though both solve the problem WW −U −TWP as Wagner-Whitin costs are unimodal.

4 Indistinguishable Orders, Non-Inclusive Time Windows or
Stock Upper Bounds

Here we discuss the indistinguishable order problem LS−{U,CC}−TWP (I) and two other
apparently distinct problems that are shown to be equivalent. The other two are the non-
inclusive time window problem and the standard lot-sizing problem with stock upper bounds.

4.1 Non-Inclusive Time Windows: Description and Formulations

Definition 3 A set of time windows [bk, ek]Kk=1 are non-inclusive if there are no two time
windows k and κ with bk < bκ ≤ eκ < ek.
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Observation 5 [3] i) A set of non-inclusive time windows can be ordered so that for all k
either bk < bk+1 and ek ≤ ek+1, or bk = bk+1 and ek < ek+1.
ii) With non-inclusive time windows ordered as in i), there exists an optimal solution in which
order k is produced before (or at the same time) as order k + 1 for all k.
iii) In the uncapacitated case there exists an optimal solution in which each order k is produced
in a single period.

A formulation (7)-(12) of this problem has already been given. We again eliminate the zk
t

variables. The difference now is that the bipartite graph, whose edges correspond to the zk
t

variables, is doubly convex.

Observation 6 Applying Proposition 2 to (9)-(10) with ai = xt for t = 1, . . . , n, there exist
variables zk

t ≥ 0 satisfying (9)-(10) if and only if
∑l

u=1 xu ≥
∑
{k:ek≤l}Dk = ∆1l for 1 ≤ l ≤ n

and
∑l

u=1 xu ≤
∑
{k:bk≤l}Dk = Γ1l for 1 ≤ l ≤ n.

Now the formulation obtained in the original space is even simpler.

Proposition 11 Let QTWP = {(s, x, y, z) satisfying (8) − (11), s, x ≥ 0, y ∈ [0, 1]n, z ≥ 0}.
The projection of QTWP is given by

∑l
u=1 xu ≥ ∆1l for 1 ≤ l ≤ n (32)

∑l
u=1 xu ≤ Γ1l for 1 ≤ l ≤ n (33)
xt ≤ Cyt for 1 ≤ t ≤ n (34)

x ∈ Rn
+, y ∈ [0, 1]n. (35)

This formulation was also by Brahimi [3] in a slightly different form.

4.2 Indistinguishable Orders

In this problem it is assumed that order k with time window [bk, ek] means the arrival of Dk

units of a standard input product in period bk and then delivery of Dk units of a standard
output product in period ek. Note that the total arrival of the input product in t is Γt and
the total demand for the output product in t is ∆t. If s2

t indicates the stock of the input
product (assumed to have zero storage cost), the problem can be formulated as:

min
∑n

t=1 p′txt +
∑n

t=1 h′tst +
∑n

t=1 qtyt

s2
t−1 + Γt = xt + s2

t for 1 ≤ t ≤ n

st−1 + xt = ∆t + st for 1 ≤ t ≤ n

xt ≤ Cyt for 1 ≤ t ≤ n

s2, s, x ∈ Rn
+, y ∈ {0, 1}n.

The s2
t variables can be eliminated using the equation s2

t = Γ1t−
∑t

u=1 xu and s2
t ≥ 0, and we

modify the objective function as in Observation 2 to obtain again the formulation (??)-(35).
This equivalence of the non-inclusive time window problem and of the indistinguishable order
problem, as well as a specific procedure to modify the time windows of the latter till they are
non-inclusive has been established in Brahimi [3].
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4.3 Lot-Sizing with Upper Bounds on Stock

Here we consider a standard lot-sizing problem with demands (d1, . . . , dn) and stock upper
bounds (u1, . . . , un), denoted LS − {U,CC} − SUB. A standard formulation is

min
∑n

t=1 ptxt +
∑n

t=1 h′tst +
∑n

t=1 qtyt

st−1 + xt = dt + st for 1 ≤ t ≤ n

xt ≤ Cyt for 1 ≤ t ≤ n

st ≤ ut for 1 ≤ t ≤ n

s, x ∈ Rn
+, y ∈ {0, 1}n.

First we make the standard assumption that the demand data has been preprocessed so that
dt ≤ C for all t. In addition, as st−1 ≤ dt +ut, we can assume wlog that ut−1 ≤ dt +ut for all
t. Taking ∆t = dt for all t, the demand constraints can be rewritten as

∑t
u=1 xu ≥ ∆1t. On

the other hand the constraint st ≤ ut can be written as
∑t

u=1 xu −∆1t ≤ ut, so we obtain

t∑

u=1

xu ≤ ∆1t + ut for 1 ≤ t ≤ n.

Letting Γ1t = (∆1t + ut), Γ1t is nondecreasing from our assumption that ut−1 ≤ ∆t + ut, so
these constraints are precisely

t∑

u=1

xu ≤ Γ1t for 1 ≤ t ≤ n,

and we again obtain the formulation (32)-(35).

We have seen that the three problems are identical. The crucial link is that all three
formulations just depend on the arrival and demand vectors Γ ∈ Rn and ∆ ∈ Rn satisfying

Γ1t ≥ ∆1t for 1 ≤ t ≤ n− 1
Γ1n = ∆1n

Γ,∆ ∈ Rn
+.

To complete the picture, we also show how to compute the “orders” with non-inclusive time
windows from these two vectors.

Algorithm to Compute the Orders
Initialization Set Lt = Γt, Rt = ∆t for all t. k = 1
While L,R 6= 0

Set σ = min{t : Lt > 0}, τ = min{t : Rt > 0}.
Set Dk = min{Lσ, Rτ}, bk = σ, ek = τ .
Lσ ← Lσ −Dk, Rτ ← Rτ −Dk

k ← k + 1
end-While

Clearly there are at most 2n− 1 orders and they are uniquely defined.
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4.4 Algorithms for the Indistinguishable Order Problem

Brahimi [3] gives an O(n4) DP algorithm for the uncapacitated problem LS −U − TWP (I).
Here we give an alternative algorithm, and then use the algorithm to obtain a tight extended
formulation.

4.4.1 A Dynamic Programming Algorithm and Formulation for LS−U−TWP (I)

Here we take the objective function in the form

min
∑

t

ptxt +
∑

t

qtyt,

and we assume that the orders k = 1, . . . ,K are numbered from earliest to latest.
Using iii) of Observation 5, we define the following two value functions:

Let H(t, k) be the value of an optimal solution for periods 1, . . . , t in which the demands
D1, . . . , Dk are produced in or before period t. Note that H(t, k) = ∞ if bk > t.

Let G(t, k) be the value of an optimal solution for periods 1, . . . , t in which the demands
D1, . . . , Dk−1 are produced in or before period t and Dk is produced in t. Note that
G(t, k) = ∞ if ek < t or bk > t.

The recursion one obtains is

H(t, k) = min[H(t− 1, k), G(t, k)] for all k, t with bk ≤ t

G(t, k) = min[H(t− 1, k − 1) + qt + ptD
k, G(t, k − 1) + ptD

k] for all k, t with t ∈ [bk, ek],

where the first equation uses the fact that in an optimal solution of value H(t, k) either k
is produced before period t or k is produced in period t, and the second the fact that in an
optimal solution of value G(t, k) either order k − 1 is produced before t and k in t, or both
orders k − 1 and k are produced in t.

Obviously, as K ≤ 2n− 1, the recursion provides an O(n2) algorithm for the problem.

We now use the approach of Eppen and Martin [7] to get a tight extended formulation.
Specifically the recursion suggests the linear program

maxH(n,K)
H(t, k)−H(t− 1, k) ≤ 0 for all k, t with bk ≤ t

H(t, k)−G(t, k) ≤ 0 for all k, t with t ∈ [bk, ek]
G(t, k)−G(t, k − 1) ≤ ptD

k for all k, t with t ∈ [bk, ek]
G(t, k)−H(t− 1, k − 1) ≤ qt + ptD

k for all k, t with t ∈ [bk, ek].

Let the dual variables be vtk, wtk, xtk, ztk respectively.
The dual of this linear program is then

min
∑

t,k[(qt + ptD
k)ztk + ptD

kxtk] (36)

ztk + xtk − xt,k+1 − wt,k = 0 for all k, t with bk ≤ t (37)
vtk − vt+1,k + wtk − zt+1,k+1 = 0 for all k, t with t ∈ [bk, ek] (38)

vn,K + wn,K = 1 (39)
v, w, x, z ≥ 0. (40)
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This can be seen as a shortest path problem. An interpretation of the variables is as
follows:
ztk = 1 if order k is the first order produced in period t (i.e order k − 1 is produced earlier)
xtk = 1 if order k is produced in t, but also order k − 1 at least
wtk = 1 if order k is the last order produced is period t
vt,k = 1 if the last order produced in or before t was order k.

To obtain a complete formulation, we just need to add:

1 ≥ yt ≥
∑

k ztk for all t (41)
xt =

∑
k Dk(ztk + xtk) for all t. (42)

Theorem 12 Let XU be the set of feasible solutions of (32)-(35) of the uncapacitated problem
LS − U − TWP (W ). A tight extended formulation for conv(XU ) is given by the polyhedron
(37)-(42).

Both the DP algorithm and the extended formulation can be seen as generalizations of re-
sults of Ortega [12] for the problem with a perishable good and time windows [t, t+τ ] for all t.

4.4.2 A Dynamic Programming Algorithm and Formulation for LS −CC − SUB

The standard approach for the constant capacity lot-sizing problem LS −CC is to calculate
the optimal cost of each [t, l] regeneration interval, and then solve an O(n2) shortest path
problem on an acyclic digraph with n + 1 nodes and O(n2) arcs to find the optimal sequence
of regeneration intervals. There a regeneration interval is an interval in which st−1 = sl = 0,
but su > 0 for all t ≤ u < l.

As observed explicitly by Atamtürk and Küçükyavuz [1], see also Love [10], this approach
can be generalized for the problem with upper bounds on stocks.

Definition 4 For LS − {U,CC} − SUB, the interval [t, l] is an SUB-regeneration interval
if st−1 ∈ {0, ut−1}, sl ∈ {0, ul} and 0 < sτ < uτ for all t ≤ τ < l.

If we can calculate the optimal cost of a [t, l] SUB-regeneration interval in polynomial
time, it is easy to see that we obtain a polynomial algorithm by constructing an appropriate
shortest path problem with twice as many nodes and four times as many arcs as in the
standard shortest path problem for LS −CC. In the uncapacitated case, Love [10] has given
an O(n3) algorithm.

We now consider the problem of finding a minimum cost [t, l] SUB-regeneration interval.
Again we assume that ut−1 ≤ dt + ut for all t. There are four types of interval depending on
whether the entering and leaving stocks are at 0 or their upper bound. We treat only one of
the four cases, that with st−1 = ut−1 and sl = 0. The other cases are similar

The total production in the interval is dtl − ut−1 + 0 = Cηtl + ρtl where 0 ≤ ρtl < C.
Using the standard properties that, once the y ∈ {0, 1}n variables have been fixed, the basic
variables in the resulting flow problem must form an acyclic graph, we obtain

Observation 7 There exists an optimal solution for the [t, l] SUB-regeneration interval in
which one produces ηtl times at full capacity C, and one produces the remaining quantity ρtl

once.
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Now we can formulate the problem as an integer program using the variables:
zτ = 1 if xτ = C, and zτ = 0 otherwise
wτ = 1 if xτ = ρtl, and wτ = 0 otherwise.

The formulation, for the case where ρtl > 0, is then:

min
∑l

u=t pu(Czu + ρtlwu) +
∑l

u=t qu(zu + wu) (43)

sk =
∑k

τ=t Czτ +
∑k

τ=t ρtlwτ −Dtk + ut−1 for k = t, . . . , l − 1 (44)
0 ≤ sk ≤ uk for k = t, . . . , l − 1 (45)∑l

τ=t wτ = 1 (46)
∑l

τ=t zτ = ηtl (47)
zk + wk ≤ 1 for k = t, . . . , l (48)

z, w ∈ {0, 1} (49)

This problem can be solved either by dynamic programming in O((l− t+1)2), or by linear
programming. To explain the linear program, consider the constraint sk ≤ uk rewritten in
the form

k∑
τ=t

Czτ +
k∑

τ=t

ρtlwτ ≤ bk

where bk = uk + dtk − ut−1 ≥ 0. Let bk = Cck + ek with 0 ≤ ek < C.

Observation 8 If ek ≤ ρtl, the constraint (45) can be replaced by

k∑
τ=t

zτ ≤ ck

while if ek > ρtl, the constraint (45) can be replaced by

k∑
τ=t

(zτ + wτ ) ≤ ck.

The constraints sk ≥ 0 also can be replaced by constraints having the same form, but with
≥ constraints, see [13].

After replacing these constraints, our IP for the [t, l] regeneration interval has the form

min
∑l

u=t pu(Czu + ρtlwu) +
∑l

u=t qu(zu + wu) (50)
∑k

τ=t zτ ≤ ck for k = t, . . . , l − 1, or
∑k

τ=t(zτ + wτ ) ≤ ck for k = t, . . . , l − 1 (51)
∑k

τ=t zτ ≥ c̃k for k = t, . . . , l − 1, or
∑k

τ=t(zτ + wτ ) ≥ c̃k for k = t, . . . , l − 1 (52)
∑l

τ=t wτ = 1 (53)
∑l

τ=t zτ = ηtl (54)
zk + wk ≤ 1 for k = t, . . . , l (55)

z, w ∈ {0, 1}l−t+1. (56)
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Observation 9 The constraint matrix arising from the rows (51)-(55) is totally unimodular,
so the IP can be solved as a linear program (or network flow), and the problem is polynomial.

Using a standard technique, see [13], this O(n) × O(n) linear program can be embedded
in a linear programming representation of the shortest path problem giving an O(n3)×O(n3)
tight extended formulation.

Several families of valid inequalities for the problem with stock upper bounds have been
proposed in Atamtürk and Küçükyavuz [1], and a complete formulation for the case with
Wagner-Whitin costs was given in Pochet and Wolsey [14].

5 Delivery Time Windows

Here a time window [bk, ek] for an order k of size Dk indicates that the client requires delivery
at earliest in bk and at latest in ek. We denote the problem with general costs by by LS −
{U,CC} − TWD.

5.1 MIP Formulations

To obtain a formulation for LS − CC − TWD, let x, s, y be the same as earlier, and let
vk
t be the amount of order k delivered to the client in period t with t ∈ [bk, ek].

This leads to the formulation

min
∑

t p′txt +
∑

t h′tst +
∑

t qtyt (57)
st−1 + xt =

∑
k:bk≤t≤ek vk

t + st for t = 1, . . . , n (58)
∑ek

u=bk vk
u = dk for k = 1, . . . ,K (59)

xu ≤ Cyu for u = 1, . . . , n (60)
s, x, z ≥ 0, y ∈ {0, 1}n. (61)

Note that for this problem, Dtl =
∑

k:t≤bk≤ek≤l D
k is the amount that must be delivered in

the interval [t, l].

Observation 10 Using Proposition 1 applied to the constraints (58)-(59) with at = st−1 +
xt − st, there exists vk

t ≥ 0 satisfying (58)-(59) if and only if

st−1 +
l∑

u=t

xu − sl ≥ Dtl for 1 ≤ t ≤ l ≤ n.

Thus we obtain an equivalent formulation in the (x, s, y) space

min
∑

t p′txt +
∑

t h′tst +
∑

t qtyt∑n
u=1 xu = δ1n + sn

st−1 +
∑l

u=t xu ≥ Dtl + sl for 1 ≤ t ≤ l ≤ n

xt ≤ Cyt for t = 1, . . . , n

s, x ≥ 0, y ∈ {0, 1}n.
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5.2 The Constant Capacity Case with Wagner-Whitin Costs

Here we make s slightly stronger Wagner-Whitin cost assumption, namely that the production
costs are constant and the storage costs non-negative, so the objective function can be taken
in the form

∑
t htst +

∑
t qtyt with ht ≥ 0 for all t. Now as there are no production costs, we

can replace xt by its upper bound Cyt leading to the relaxation:

min
∑

t htst +
∑

t qtyt (62)

st−1 + C
∑l

u=t yt ≥ Dtl + sl for 1 ≤ t ≤ l ≤ n (63)
s ∈ Rn

+, y ∈ {0, 1}n (64)

having the same optimal value as the original problem (57)-(61) when h ≥ 0.

Observation 11 i) In a stock-minimal solution,

st−1 = max
l:l≥t

(Dtl − C

l∑
u=t

yt + sl)+, and

ii) if st−1 = Dtl − C
∑l

u=t yt + sl > 0 with l maximal, then sl = 0.

Proof: If not, then sl = Dl+1,k −
∑k

u=l+1 yu + sk for some k > l, and we have that st−1 =
Dtl − C

∑l
u=t yt + Dl+1,k −

∑k
u=l+1 yu + sk. However as Dtk ≥ Dtl + dl+1,k, and st−1 ≥

Dtk − C
∑k

u=t yt + sk, it follows that st−1 ≥ Dtk − C
∑k

u=t yt + sk ≥ Dtl − C
∑l

u=t yt +
Dl+1,k −

∑k
u=l+1 yu + sk = st−1, contradicting the maximality of l. 2

It follows that the relaxation

min
∑

t htst +
∑

t qtyt (65)

st−1 + C
∑l

u=t yt ≥ Dtl for 1 ≤ t ≤ l ≤ n (66)
s ∈ Rn

+, y ∈ {0, 1}n. (67)

also has the same optimal value as (57)-(61) when h ≥ 0. Let Y ∗ be the feasible region
(66)-(67).

Theorem 13 i) The linear program

minhs + gy (68)
(s, y) ∈ conv(Y ∗) (69)

(x, s, y, v) satisfy (52)− (54) (70)

solves the lot-sizing problem WW − CC − TWD (with p = 0, h ≥ 0).
ii) conv(Y ∗) is given by Theorem 5 with αtl = Dtl and βtl = 0 for all t, l.

Corollary 14 For the uncapacitated problem WW − U − TWD (with p = 0, h ≥ 0), the
formulation of conv(Y ∗) in the (s, y) space has O(n2) constraints:

st−1 ≥
∑
{k:t≤bk≤ek≤l}Dk(1− yt − . . .− yek) for 1 ≤ t ≤ l ≤ n

s ∈ Rn
+, y ∈ [0, 1]n.
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5.3 Indistinguishable Orders or Non-inclusive Time Windows

5.3.1 A Dynamic Programming Algorithm for LS − U − TWD(I)

Here we take the objective function in the form

min
∑

t

p′txt +
∑

t

h′tst +
∑

t

qtyt.

Let H(t, k) be the value of an optimal solution for periods 1, . . . , t in which the orders
D1, . . . , Dk are produced in or before period t.
Let G(t, k) be the value of an optimal solution for periods 1, . . . , t in which demands D1, . . . , Dk

are produced in or before period t and dk is produced in t. G(t, k) = ∞ if ek < t.
The recursion is

H(t, k) = min[H(t− 1, k) + h′t−1

∑

{κ:κ≤k,bκ≥t}
Dκ, G(t, k)] for all k, t

G(t, k) = min[H(t− 1, k − 1) + h′t−1

∑

{κ:κ≤k−1,bκ≥t}
Dκ + qt + p′tD

k, G(t, k − 1) + p′tD
k]

for all k, t with t ≤ ek.

where the first equation treats the cases where order k is produced before period t or in
period t, and the second the same cases but for order k−1. Obviously this provides an O(n2)
algorithm for the problem.

Again an extended formulation can be obtained with the approach of Eppen and Martin [7]
just as in Section 3.

6 Concluding Remarks

Several open questions remain, in particular the question whether there is a polynomial
algorithm for LS − U − TWP . At present we have no clear ideas on how to approach this
problem as the ordering of the demands implicit in most other polynomially solvable lot-sizing
problems has been lost.

For LS − U − TWP , an obvious practical question is whether to use the Wagner-Whitin
relaxation WW − U − TWP or the slightly less compact indistinguishable order relaxation
LS − U − TWP (I). With constant capacities approximate versions of WW − CC − TWP
can be used, but the O(n3) × O(n3) version of LS − CC − TWP (I) based on stock upper
bounds appears to be impractically large.

Another immediate question concerns backlogging. Here the extension of the Wagner-
Whitin uncapacitated case appears to be straightforward for production time windows using
the extended formulation for WW −U −B from [14], but for delivery time windows it is not
clear, even though Lee et al. give an O(n2) algorithm for the problem.
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