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Abstract

Much progress has been made in recent years in solving certain classes of production planning
problems using mixed integer programming. One of the major challenges is how to make this
expertise available and easy to use to the non-specialist and to the practitioners. Here we
describe a modeling approach and tool LS-LIB, and report on computational results.

LS-LIB is a library of primitives to declare procedures/subroutines/global constraints in
a high-level modeling language that we believe offers an interesting partial answer to this
challenge. LS-LIB provides routines for problem reformulation, cut generation, and heuristics
to find good feasible solutions quickly. The user must provide an initial formulation of his
problem in the modeling language MOSEL. Then using his knowledge of the problem he
must first classify each product or sku according to a simple three field scheme: [production
type, capacity type, variant] proposed recently. Then it is a simple matter to use the global
constraints of LS-LIB by adding a few lines to his initial MOSEL formulation to get a tightened
formulation and/or call the appropriate cut separation routines. The heuristic procedures are
called in a similar fashion.

We illustrate the use of LS-LIB on an intractable two-level problem, and a hard multi-level
problem.
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1 Motivation

Much progress has been made in recent years in solving certain classes of production planning
problems using mixed integer programming. One of the major challenges is how to make this
expertise available and easy to use to the non-specialist. In this paper we present a library LS-LIB
of primitives used to declare subroutines and global constraints in a high-level modeling language
that we believe offers an interesting partial answer to this challenge.

We suppose that the user has a new production planning problem to solve, either on a one-off
or regular basis, and that he believes that mixed integer programming is an appropriate approach.
The scenario is typically as follows:

• he builds an initial MIP model and, using a modeling and optimization language,

• he runs his MIP branch-and-cut system (commercial or other) in default mode. Either he is
happy with the results (end of the story), or

• the results are unsatisfactory (i.e. finding reasonable solutions takes far too much time,
and/or nothing is known about the quality of the solutions because the dual bounds are too
weak).

He then has several options:

a) try different parameter settings of the MIP system,

b) identify relaxations for which “good/improved” formulations or cutting planes are known and
either use them to modify his initial model or to code separation routines so as to get stronger
linear programming bounds, and hopefully faster MIP solution times or better solutions,

c) use LP-based (or other) heuristics to find good feasible solutions quickly.

He then resolves the MIP, and iterates through a), b) and c) several times, until an appropriate
solution strategy is found.

LS-LIB provides primitives for problem reformulation, cut generation, and heuristics to find
good feasible solutions quickly, and this addresses steps b) and c). The user must provide an
initial formulation of the problem in the modeling language MOSEL. Then using his knowledge
of the problem he first must classify each product or sku according to a simple three field scheme
( production type, capacity type, variant ) proposed recently in Wolsey [38]. Then it is a simple
matter to use the new primitives offered by LS-LIB to get a tightened formulation and/or call the
cut separation routines. The heuristic procedures are called in a similar fashion.

The research on reformulations and cutting planes for single item lot-sizing problems has
involved numerous researchers over the last 30 years. Among others, significant contributions on
reformulations have come from Krarup and Bilde [15], Eppen and Martin [12], Pochet and Wolsey
[21, 22], Van Hoesel and Kolen [31], Van Vyve [35], and on valid inequalities from Barany, Van Roy
and Wolsey [5], Van Hoesel, Wagelmans and coauthors [32, 30], Pochet [19], Constantino [9, 10],
Atamturk and Munoz [3]. Surveys of this area up to 2000 can be found in Pochet and Wolsey [23]
and Pochet [20].

In addition to these polyhedral results, the recent classification scheme of Wolsey [38] is an
attempt to provide easy access to this literature, and to the useful results available, and is crucial to
the correct use of LS-LIB. A second important factor for LS-LIB is the development of approximate
reformulations which lead to smaller linear programs without significant weakening of the bounds,
see Stadtler [27] and van Vyve and Wolsey [36].

Other research has dealt with the treatment and solution of multi-item and multi-level prob-
lems. An important aspect of the solution of multi-level problems is the use of echelon stocks,
see Clark and Scarf [8], and their use in Afentakish and Gavish [1]. The use of this research to
provide an effective solution approach for a variety of problems using mixed integer programming
has been demonstrated in Belvaux and Wolsey [7].
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There is also an extended literature on heuristics for multi-item lot-sizing, based on Lagrangian
relaxation, column generation, etc., see for instance Tempelmeier and Derstoff [29]. Work on
heuristic approaches for lot-sizing problems based on MIP and improved formulations is limited,
one exception is the work of Stadtler [28] on relax-and-fix heuristics. However new local or neigh-
borhood search heuristic ideas for general MIP have appeared recently, see Fischetti and Lodi [13]
and Dana et al. [11].

The outline of the paper now follows. In Section 2 we discuss the reformulation approach
for production planning problems modeled as MIPs, and the iterative solution process outlined
above. We describe and analyze the current tools available to support the process. Based on this
discussion, we list system requirements that are necessary for a new high level modeling tool.

In Section 3 we present LS-LIB: the facilities offered, how they are implemented and how they
satisfy the requirements listed at the end of Section 2.

In Section 4 we present computational results using LS-LIB for an untractable two-level prob-
lem, and a hard multi-level problem.

Finally in an appendix we present in detail the use of LS-LIB on a simple multi-item problem
Clorox that has already appeared in the literature. We describe the approach the non-expert
would follow to solve the problem with the aid of LS-LIB. He starts with the MOSEL formulation
of the original problem, and classifies all the items produced. Given this, a check of the LS-
LIB Tables tells him what is known and available as reformulations or cuts. We show how he
modifies his MOSEL formulation to include the reformulations/cuts he wants, and the results
obtained. A development of the production planning context, including an introduction to mixed
integer programming, the application of mixed integer programming to lot-sizing problems, the
classification of lot-sizing problems, the theoretical results on algorithms, valid inequalities and
formulations, as well as several detailed case studies can be found in Pochet and Wolsey [24].

2 The MIP solution process for production planning prob-
lems

In general, MIPs are solved using reformulation techniques leading to branch-and-cut algorithms.
Reformulation with new constraints, or both new constraints and new variables, is typically done
in two phases:

1. Identification of a relaxation of the problem,

2. Derivation of valid inequalities or extended reformulations for the relaxation.

The strength of the reformulation obtained depends, on the one hand on the closeness of the
relaxation relative to the original problem, and on the other hand on the strength of the valid
inequalities or extended formulations for the relaxation itself.

The applicability of this reformulation procedure depends essentially on the availability of
relaxations for which theoretical results (i.e. valid inequalities or extended reformulations) are
known. Consequently, research has focussed on the study of simple mathematical structures
that constitute strong relaxations of classes of MIPs. A useful distinction is between low-level
relaxations, which are useful for general MIPs, and high-level relaxations, which contain more
structure and give rise to more powerful reformulations or cuts, but are only applicable to specific
problem classes.

The most important low-level relaxations are the simple mixed integer set and the associated
MIR inequality, see Nemhauser and Wolsey [17], and the flow cover set and inequalities, see
Padberg et al. [18], Van Roy and Wolsey [25], and Gu at al. [14]. These constitute the major
reformulation building blocks of the best commercial MIP solvers such as XPRESS or CPLEX.
We suppose here that these low-level inequalities are added automatically by the MIP solver used,
and thus they do not constitute as such the main topic of this text.
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High-level relaxations for production planning problems include, among others, a wide variety
of single-item lot-sizing models for which many results concerning reformulations and cutting
planes are known.

So we are interested in the development of software or tools to help in using high-level relax-
ations to solve complex production planning problems.

Many approaches can be taken to develop or implement a branch-and-cut system for a class
of (production planning) problems, depending on

• whether the class of problems to be handled by the new system is large or narrow,

• the programming/modeling tools used by the system developer, and

• the division of the work between the end-user and the system.

A general MIP solver, such as XPRESS or CPLEX, is designed to handle the whole range of
MIP problems. C/C++ library versions of these solvers are available, which makes it possible to
code specific separation routines and/or heuristics. The main drawback of this approach is the very
low-level, unstructured information about the model that is available to the system: just linear
and integrality constraints. While this is sufficient to specify the model, this makes it very hard
to (automatically) recognize the structure of the problem (multi-level? capacitated? with set-up
times?). This is redundant work, as the modeler has this higher level and structured information
at the time he writes the model (at least privately).

Recognizing this has led to the development of specialized versions of the modeling language
itself. This gives access directly to the information contained in the model. Data, variables and
constraints are accessible through their names and indexing sets. Thus some structural informa-
tion contained in the model is available for the branch-and-cut system, making the automatic
identification of high-level relaxations much easier. BC-PROD, a branch-and-cut system for pro-
duction planning, makes use of this mechanism through modeling conventions, see Belvaux and
Wolsey [6]. For example, x(i, k, t) is the reserved name for the decision variable representing the
amount of item i produced on machine k in period t.
There are several problems associated with this modeling convention approach.

• It is nearly unavoidable that soon after the development of the system, interesting new
problems will arise that do not fit into the modeling conventions. For example, a multi-site
problem would require a fourth index for the production variable so as to indicate the site.

• In an industrial environment, it is not easy to impose modeling conventions. In particular,
rewriting an existing model is costly and error-prone, and different naming conventions might
already be in place. Thus modeling conventions might themselves be problematic.

• What to do with the relaxations that are detected is left entirely to the system. For example,
suppose that a single-item lot-sizing subproblem with n time periods, constant capacity and
backlogging is identified. There exists an extended formulation of size O(n3) variables and
constraints for this mixed-integer set. However, it might be computationally better to add
the weaker, but more compact, extended formulation for the uncapacitated version of the
same problem (O(n) variables and O(n2) constraints). Our experience is that this kind of
decision is very hard to automate, and is better seen as the outcome of the trial-and-error
process a)-b)-c) outlined in the introduction.

Our general critique so far is that the modeler/developer has information about the structure
of the problem that is potentially useful to the optimizer. But passing this information through
modeling conventions is not always convenient or possible. On the other hand, he does not acquire
(or does not want to acquire) the technical or scientific knowledge about separation algorithms,
extended formulations or heuristic design, and therefore he is unable to exploit this structural
information directly.
Below we give our choice of desirable features for an efficient branch-and-cut system for production
planning.
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• The end-user is responsible for building the initial model and formulation, and is therefore
the best person to identify sub-structures contained in the model, and their corresponding
relaxations.

• The end-user should be able to control what extended formulations are added, and what
separation routines are used based on the relaxations that he has identified.

• The decision to call heuristics should be easily integrated into the system but left to the
user.

• The writing of complex extended formulations, heuristics or separation routines should be
done by the system.

• The system should be computationally efficient and easy-to-use.

• The system should be easy to extend, upgrade and maintain.

3 LS-LIB

In this section, we discuss what LS-LIB does and how it is implemented. The general idea is
to provide new primitives allowing the modeler to declare global constraints. These primitives
essentially define relaxations for which theoretical knowledge is available. The new primitives are
implemented as procedures.

The notion of global constraint used here is very close to what is referred to as a global
constraint in the Constraint Programming (CP) community. In CP, global constraints are also
structures or sets of linear and non-linear constraints linking specified variables. This information
is used during enumeration to reduce the range of feasible values of these variables at a node.
Here, global constraints are modeled automatically as a set of linear and non-linear (integrality)
constraints linking specified variables, and are used to

• strengthen the model with extended formulations, or to

• generate valid inequalities during the branch-and-bound enumeration.

The approach that we advocate would not be possible without the facilities offered by the
recently developed high-level modeling language MOSEL that allows the integration of program-
ming, modeling and optimization. Whether a similar library could be developed in other modeling
languages such as OPL, AMPL, LINGO or GAMS merits further investigation.

The features of MOSEL that are essential for LS-LIB are the following:

• MOSEL is a typed language. Elementary types are boolean, integers, reals, strings. Com-
pound types are arrays, sets. Optimization types are variables, linear expressions and linear
constraints.

• MOSEL is a modeling-and-programming language. Basic programming constructs such as
assignments, loops, conditional statements, procedures/functions and includes are available.

• MOSEL is fully interfaced with the XPRESS-MP optimizer. In particular, XPRESS call-
backs for branch and cut are directly available in MOSEL.

LS-LIB appears to the end-user as a collection of three types of procedures, for the addition of ex-
tended formulations, cutting planes using separation routines, and primal heuristics, respectively.
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3.1 Extended Formulations and Cutting Planes

For many problem variants of single-item lot-sizing problems, there exist better or tight formu-
lations, either extended formulations involving new variables and constraints, or cut formulations
involving additional constraints in the original variables added as cuts during the optimization
process.

Practically the existence of a tight extended formulation of size O(n2) variables and constraints
for a single item problem with n time periods means that there is a linear program of this size
whose solution, for any linear objective function and data, always solves the single item problem.

Adding such an extended formulation is done through the call of a MOSEL procedure. The
type of relaxation (e.g. uncapacitated single-item lot-sizing with backlogging) to be declared
is encoded in the name of the procedure and the choice (if any) of extended formulation (e.g.
multi-commodity or shortest path) is indicated by an additional integer. The arguments specify
the variables (stock, backlog, production, set-up) involved and the data defining the instance
(demands, capacity). The last three arguments are always the size of the instance (e.g. the
number of periods), the approximation parameter (controlling the tradeoff between the size of the
reformulation and its tightness, see van Vyve and Wolsey [36]), and a boolean specifying if the
constraints of the extended formulation should be added as model cuts. For example, the call

XFormWWUSCB(S,R,Y,Z,W,D,n,k,false)

declares a single-item Wagner-Whitin cost uncapacitated lot-sizing problem with backlogging and
start-ups/switch-offs over n times periods with demand vector D, where S is the vector of stock
variables, R is the vector of backlog variables, Y are the setup variables, and Z and W are the
start-up and switch-off variables. The procedure adds an appropriate extended formulation of size
O(n) variables and O(kn) constraints. Procedure calls to add extended formulations for other
relaxations are similar, and are listed in the Appendix in Table 5.

The implementation of the extended formulations in LS-LIB is straightforward, as the scope
of the objects of type MIP variables and linear constraints is always global in MOSEL. Thus new
variables and constraints declared inside the procedure are still valid after its termination.

Avoiding the difficulty of the large size of extended formulations, another approach is to stay in
the original variable space and add valid inequalities as cutting planes in the course of optimization.

The corresponding MOSEL procedures are very similar to these generating extended formu-
lations. The names of the procedures begin with XCut instead of XForm, and the approximation
parameter and the model cuts flag are not defined. The available procedures with their parameters
and signification are listed in the Appendix in Table 6.

The implementation of the cutting planes in LS-LIB involves two phases. The procedure
XCutXX only declares a global structure XX which holds all the information necessary to define
the corresponding relaxation, i.e. its type, size, data and MIP variables, and a procedure XCut_ini
controls a few parameters of cut generation (depth and frequency of the cut generation,...). At
optimization time, within a callback, all such global constraints are considered automatically
and sequentially and an associated cut separation algorithm is invoked depending on the control
parameters.

3.2 Primal Heuristics

The third and last type of procedures defines and calls primal heuristics. The goal of these
subroutines is to generate good feasible solutions quickly. The names of the procedures all begin
with XHeur.

Traditionally, there are two types of heuristics, construction heuristics that produce a feasible
solution from scratch, and improvement heuristics that try to improve a given feasible solution.
Here we briefly present those heuristics implemented in LS-LIB, that appear particularly well
adapted for production planning problems.
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A trivial construction heuristic consists in running the default MIP solver for a fixed amount
of time.

Relax-and-Fix is a construction heuristic using the idea of decomposing the problem into smaller
MIP problems that are much easier to solve, i.e. problems involving many less integer variables.
In its simplest version, the integer variables are partitioned into R disjoint sets Q1, . . . , QR of
decreasing importance. At iteration k, k = 1, . . . , R, the variables in Q1, . . . , Qk−1 have already
been fixed, the variables in Qk are considered as integer, and the variables in Qk+1, . . . , QR are
linearly relaxed. Each of the smaller MIP problems is solved - to optimality or for a fixed amount
of time - using the default MIP system, and for subsequent iterations the variables in Qk become
fixed at their best or optimal values obtained at the end of iteration k.

The LP-based improvement heuristics use some information from the formulation of a problem
and from the best available integer solution, and try to improve the latter by searching its neigh-
borhood. The neighborhood is typically defined in such a way that solving the MIP problem over
it is relatively easy or fast. Then if a better (or even worse) feasible solution is found, the step
can be iterated.

For example, in Local-Branching the neighborhood consists of the solutions in which at most
k integer variables take different values from those in the current best solution, see Fischetti and
Lodi [13].

In Relaxation-Induced-Neighborhood-Search, the neighborhood consists of the solutions in which
the 0-1 variables having the same value in the linear relaxation and in the best integer solution
are fixed at this common value, see Dana et al. [11].

Finally, we propose an Exchange or Fix-and-Relax heuristic that uses the same type of decom-
position as relax-and-fix. Here, at each iteration, all integer variables are fixed except those in one
set Qk, for some k ∈ {1, . . . , R}. Then, whether or not a better feasible integer solution is found,
the exchange step can be iterated.

Clearly LP-based heuristics can be applied either just at the top node, or else at chosen nodes
within the branch-and-cut tree. In particular RINS and Local Branching, as well as other simple
heuristics such as Diving [11], are available as options in certain MIP systems.

As an example of the calling parameters, the relax-and-fix heuristic procedure from LS-LIB is
called by

XHeurRF(CY,SOL,NI,NT,MAXT,PAR).

Here CY is a NI × NT array of constraints, each one enforcing the integrality constraint on
one binary variable. By modifying these constraints inside the procedure, it is easy to relax the
integrality requirement on individual variables, or to fix these variables to specific values and
re-optimize. These operations are the only ones needed to implement relax-and-fix.

The set of binary variables will be partitioned in relax-and-fix by taking columns of CY .
Usually, these columns correspond to time periods of the production planning model. SOL is the
name of the NI × NT array in which the heuristic solution, specified as values of the integral
variables referenced by CY , will be found at the output of the procedure.

Moreover, there are a number of parameters to control the behavior of the procedure. MAXT
indicates the maximum time to be spent on each sub-MIP solved during the heuristic, and PAR
indicates into how many intervals R the time horizon 1..NT will be divided, which is also the
number of smaller MIPs to be solved sequentially in the relax-and-fix heuristic.

The available procedures with their parameters and signification are listed in the Appendix in
Table 7.
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3.3 The LS − LIB Modeling and Optimization Process

Here we formalize somewhat the modeling and optimization prototyping process presented in the
introduction.

Algorithm 1: Improved Formulations or Dual Bounds

• User builds his formulation in MOSEL. Suppose that the names chosen for the data and
variables are denoted by sni for the stock vector, yni for the set-up vector, dni for the data
vector, etc, where i refers to the item i.

• User classifies each item in his model as suggested in Wolsey [38].

• For each item, User decides on one or more LS-LIB reformulations XFormPRODi−CAP i−
V ARi() and/or cut routines XCutPRODi − CAP i − V ARi() to try.

• Using LS-LIB, User adds these to the model, i.e XFormPRODi−CAP i−V ARi(sni, yni, . . . , dni, . . .)

• User optimizes.

Algorithm 2: Improved Solutions or Primal Bounds

• User takes his original, or improved formulation.

• User adds a construction heuristic XHeurCONSTRUCT () model plus any number of calls
to improvement heuristics XHeurIMPROV E().

• The best feasible solution is kept, and possibly used in Algorithm 1. Alternatively another
reformulation/cut/heuristic combination is tested.

4 Computational Results using LS-LIB

Below we present results using LS-LIB for two intractable multi-level problems. The first is a
two-level problem on which we were unable to make any progress for several years. The second
are the four test instances with 78 and 80 items respectively of a multi-level assembly problem
that have been discussed in several recent papers, and where the two 80 item instances have not
yet been solved to optimality (with best gaps so far ranging from 3 to 15%).

4.1 Powder Production and Packing

4.1.1 Problem Description and Context

This problem is a simplified version of a powder production/packing problem. There are 60 types
of packed powder, which are the end products. There is a known demand to be met for each of these
60 end products for 30 periods. Backlogging is allowed. The set of end products is partitioned, on
the one hand, into 7 different groups sharing a common production line (resource). They are also
partitioned, on the other hand, into two distinct groups sharing a common manpower resource.

The production of each end product consumes one given type among 17 available powders
(bulk products). The production of the bulk product is part of the problem. There is a common
resource shared by all bulks. Other complicating constraints at the bulk level are perishability
(the powder must be packed at the latest one period after production), and a maximum total
stock level for the powders.

None of the resources in the problem involve set-up times. Finally, there is a time-independent
lower bound on production for all end and bulk products. The objective is to minimize stock and
backlog, with a higher penalty or weight put on backlog.
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4.1.2 Classification and Testing the Initial Formulation

After making minor improvements to the starting formulation provided by the company, we arrived
at a starting formulation pb1b.mos.

We note that it has two-level product structure, so that reformulations with echelon stocks are
appropriate. From this, we observed that the classification of the items is {LS−U−B,LB} relative
to the parameters useful for LS-LIB. This suggests the use of two relaxations {WW −U −B} and
{WW − U −B, LB}.

Using MOSEL, it is not necessary to change the original model in order to define the echelon
stock reformulation. It suffices to define each echelon stock variable as the linear expression

E(i, t) := s(i, t) +
∑

j∈Suc(i)

e(j, t),

and use E(i, t) as arguments of the LS-LIB procedures. It is worthwhile pointing out that this
last equation is not an additional constraint of the model. E(i, t) will be automatically replaced
by its expression in terms of the original variables.

We first carried out two runs to get some idea of the difficulty of the problem. We ran the
initial problem pb1b, and the model pb1c with the LS-LIB reformulation of {WW − U −B} with
Tk = 5 and with model cuts (MC = 1). Each run was for 900 seconds. The results are shown in
Table 1.

For the latter run it takes 114 seconds to obtain the LP value with the model cuts from our
reformulation, 193 seconds to obtain the XLP value with the automatically generated system cuts
of Xpress (Covercuts=20,Gomcuts=2), and no feasible solution (IP value) is found within 900
seconds. We then reduced the parameter to Tk = 3, but still no solution is found within 900
seconds. In the Table, LB gives the lower bound obtained at the end of the computing time (i.e.
after 900 seconds), and Gap measures the relative deviation from optimality and is defined as Gap
= 100× IP−LB

IP %.

instance m n int LP XLP IP LB Gap
pb1b 8308 8878 2321 470.2 1062.9 2422.1 1080.4 55%
pb1c 26653 12598 2321 1547.2 1585.4 - 1585.9 -

Table 1: pb1: Initial runs with MAXTIME=900

We see that with the weak formulation pb1b feasible solutions are found, but the final gap is
more than 50%, so that we have no idea how good our best feasible solution really is. On the other
hand with the strengthened formulation pb1c, we obtain a significantly stronger lower bound, but
no feasible solutions are found within 900 seconds because the solutions of the linear program
at each node are taking a long time due to the size of the formulation. The gap obtained by
combining pb1b and pb1c is 33%.

Our tentative conclusion at this stage is that proving optimality for this problem is probably
out of the question. So we decided to address the question of finding a feasible solution guaranteed
to be within 25% of optimality or better within say 30 minutes. Specifically we consider how good
a lower bound we can obtain in up to 15 minutes, and separately how good an upper bound we
can obtain in the same time.

4.1.3 Finding Lower Bounds

Here there was no choice but to use the linear programming bounds provided by the extended
formulations, as improving the lower bounds in the branch-and-cut tree was far too slow.

In Table 2 we show the results of runs for pb1c with different values of TK for WW − U −B
(see column TK1), and in addition the reformulation WW −U −B, LB for items with significant
demands using TK = 4 (see column TK2).
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instance TK1 TK2 m n LP XLP Secs
pb1c 3 0 20423 12598 1398.8 1452.2 110
pb1c 5 0 26653 12598 1547.2 1581.0 171
pb1c 8 0 35089 12598 1657.3 1713.2 282
pb1c 15 0 52948 12598 1692.1 1728.9 403
pb1c 8 4 134106 76094 1682.2 1717.3 3915

Table 2: pb1: Lower Bounds by Reformulation and LP (no branching)

4.1.4 Finding Upper Bounds

Our initial run with the tightened formulation indicated that if we wanted to use pb1c for heuristics,
we were obliged by the time constraint to work with a decomposition heuristic such as relax-and-fix
or exchange, which divided the problem up into significantly smaller subproblems.

In Table 3 we present results obtained first with the weak formulation pb1b, and then with
the tightened formulation pb1c. In each case using LS-LIB, we ran relax-and-fix followed by two
full runs of exchange, i.e. two runs of exchange through all NS = R blocks of variables. On the
tightened formulation, the time to find a feasible solution even for the smaller subproblems is long
and somewhat unpredictable. Thus MAXT = 60 indicates that a run stops after 60 seconds if a
solution has been found, and otherwise continues until a first feasible solution is discovered.

instance MAXT Ns RF val. EXCH val. EXCH val. RF Secs EXCH Secs EXCH Secs
pb1b -60 6 2254.3 2102.6 2083.3 360 360 360
pb1b -30 7 2297.6 2140.7 2117.6 210 189 187

pb1c(TK=8) 60 6 2222.5 2089.1 2073.6 1569 360 360
pb1c(TK=5) 60 6 2158.1 2095.4 2061.2 1504 360 360

Table 3: pb1: Primal Heuristics - Upper Bounds

Thus we can obtain a lower bound with TK = 8 of 1713.2 in 282 secs, and an upper bound of
2083.3 in 360 secs. This gives a gap of 17.8%. The best bounds 1728.9 in 403 secs and 2061.2 in
about 2200 secs give a gap of 15.1%.

4.2 Assembly of Bottling Racks

These problems are multi-level problems with assembly product structure. Many items can be
produced in each time period, and the capacity constraints limiting production on each resource
in each time period involve both production rates per item and set-up times for families of items.
The objective is to satisfy demand without backlogging, and to minimize a combination of inven-
tory holding costs and family set-up costs.

For these problems we adopted the initial echelon stock reformulation (44)-(50) from Wolsey
[38] for each problem instance. Then using the classification WW −U for each item, we used the
same parameters TK = 5 for the 78 item problems, and TK = 9 for the 80 item problems.

We adapted a similar default strategy to the one used for pb1. We applied relax-and-fix followed
by exchange to get a good starting solution. Then we fed the heuristic value to the optimizer as a
cutoff, and ran for a limited amount of time to improve the lower bound. For the 78 item instances,
we set MAXTIME=60 for each MIP during the heuristic (maximum 240 seconds in total), and
then we ran the optimizer for the same 240 seconds. For the more difficult 80 item problems, the
times were doubled. The results are shown in Table 4, where Gap measures the relative deviation
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from optimality as Gap = 100× heurval−LB
heurval %, and the last column indicates the optimal or best

known value for each problem instance.

instance heurval XLP LB Gap(LB) Optimal value
cl3-78-1b 11505.4 10840.6 11164.6 3.0 11503.4
cl3-78-2b 10889.1 10515.8 10643.5 2.3 10889.1
cl3-80-1b 24913.4 21526.8 21906.0 12.1 [23238, 24544]
cl3-80-2b 26005.6 22152.8 22385.4 13.9 [22385, 25740]

Table 4: cl3-Multi-Level Assembly

5 Conclusions

Our goal has been to demonstrate how the arrival of high-level modeling and optimization lan-
guages, such as MOSEL, has finally enabled us to develop an easily useable platform for solving
various lot-sizing problems by mixed integer programming. As researchers and consultants, we
finally have a tool that can be easily maintained and extended, allows us to tackle and advise
on new problems formulated in MOSEL within minutes, incorporates a considerable amount of
the knowledge accumulated over the last twenty years, and does not depend on sophisticated
programmers or doctoral students for its survival. For end-users we hope that it is a useful tool,
particularly for prototyping.

Our approach has been to enrich the modeling vocabulary of MIP (linear and integrality
constraints) with higher-level lot-sizing primitives. The structured information, encoded by the
modeler in these new primitives, is used by the system to automatically improve the initial MIP
formulation. We feel that the division of the work between the end-user and the computer is at its
right place: the end-user only works with a modeling language and has full control over extended
reformulations, cutting planes and primal heuristics. However, he does not need to know, and
even less to program, their mathematical or algorithmic details.

Whether a similar system could be built using languages such as AMPL, OPL or GAMS is
an interesting question. For example, constraints and linear expressions are passed as arguments
of all procedures in LS-LIB. It is not clear whether something similar can be done, or another
implementation solution can be found, in these languages.

Computationally all the results we report in Section 4 can be obtained without LS-LIB, and
similar results for the set of multi-level instances have been reported earlier in Belvaux and Wolsey
[6, 7]. However what previously required the study and correct translation of an extended formu-
lation or the programming of a separation routine is now immediately available and ready for use.
It is perhaps worth adding that the idea of the conceptually trivial EXCHANGE heuristic came
after implementing the relax-and-fix heuristic for LS-LIB, and, as shown on the pb1 problem, it
quickly leads to high quality solutions that previously took twelve or more hours to find.

Several extensions to LS-LIB can obviously be envisaged, including treatment of various single-
item variants, such as sales, piecewise concave production costs, etc. No routines for multi-item
models have been incorporated into LS-LIB, partly because the resulting relaxations are NP-hard,
including knapsack or simple mixed integer constraints for which the commercial branch-and-cut
MIP systems already have separation heuristics, and partly because highly effective reformulations
or cutting planes have not yet been discovered.

It is an obvious question whether a similar library might be useful for other classes of MIP
problems, such as network design, location, or more general supply chain problems. To date we
have seen that the LS-LIB relax-and-fix routine works well on certain location problems where
time intervals are replaced by geographical regions.

Finally given the sort of results that can now be obtained – good lower bounds from reformu-
lations and cutting planes – good upper bounds from a variety of heuristics, we believe that the
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developers of MIP systems can now no longer avoid a crucial question: How to use a good feasible
solution effectively so as to significantly speed up the branch-and-cut process?

An initial version of the LSLIB library, consisting of the file “lslibwww.bim” and user instruc-
tions are available at www.core.ucl.ac.be/PPbyMIP/, or from the authors.
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6 Appendix: LS-LIB Procedures and Functions

In this section we present the procedures available in LS − LIB.

6.1 Reformulations - XForm

Each reformulation concerns a single item subproblem. In Table 5, Columns 1 and 2 indicate the
problem classification, respectively PROB − CAP and V AR.

Row 1 contains the possible procedure parameters:

S denotes the stock vector s0, s1, . . . , sNT ,
R denotes the backlog vector r1, . . . , rNT ,
X denotes the production vector x1, . . . , xNT ,
Y denotes the set-up vector y1, . . . , yNT ,
Z denotes the start-up vector z1, . . . , zNT ,
W denotes the switch-off vector w1, . . . , wNT ,
D denotes the demand vector d1, . . . , dNT ,
C denotes the constant capacity C, or the capacity vector C1, . . . , CNT ,
NT denotes the number of time periods n = NT ,
TK is the approximation parameter controlling the size and

quality of the reformulation,
MC indicates if constraints are added as Model Cuts (MC = 1), or

are added a priori to the formulation (MC = 0).

A “Y” in the Table indicates that the corresponding parameter is present,
a “-” indicates that the parameter is not present,
a “0” in the “S” column indicates that just s0 is present,
a “1/LB” in the “C” column indicates that the constant capacity is assumed to be C = 1/ the
constant lower bound is LB, and no capacity parameter is passed to the routine.

S R X Y Z W D C NT TK MC Size (cons × vars) ref
LS-U Y - Y Y - - Y - Y Y Y O(n2)×O(n2) [15]
LS-U Y - Y Y - - Y - Y Y Y O(n)×O(n2) [12]
LS-U B Y Y Y Y - - Y - Y Y Y O(n2)×O(n2) [4, 21]

WW-U Y - - Y - - Y - Y Y Y O(n2)×O(n) [22]
WW-U B Y Y - Y - - Y - Y Y Y O(n2)×O(n) [22]
WW-U SC Y - - Y Y - Y - Y Y Y O(n2)×O(n) [22]
WW-U SC,B Y Y - Y Y Y Y - Y Y Y O(n2)×O(n) [2]
WW-U LB Y Y - Y - - Y LB Y Y Y O(n3)×O(n2) [33]
WW-U B,LB Y Y - Y - - Y LB Y Y Y O(n3)×O(n2) [33]

WW-CC Y - - Y - - Y Y Y Y Y O(n2)×O(n2) [22]
WW-CC B Y Y - Y - - Y Y Y Y Y O(n3)×O(n2) [35]
WW-C Y - - Y - - Y Y Y Y Y O(n2)×O(n2) [24]

DLSI-CC 0 - - Y - - Y Y Y Y Y O(n)×O(n) [22, 16]
DLSI-CC B 0 Y - Y - - Y Y Y Y Y O(n2)×O(n) [16, 34]
DLS-CC B - Y - Y - - Y Y Y Y Y O(n)×O(n) [16]
DLS-CC SC - Y - Y Y - Y 1 Y Y Y O(n2)×O(n) [30]

Table 5: XForm

N.B. In all the LS−LIB procedures, it is assumed that the time horizon is represented in MOSEL
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as the range 1..NT or 0..NT , and the set of items/skus/products as the range 1..NI. If the time
periods are represented as a set of strings, or as sets of integers, an appropriate translation is
needed before calling the procedures.

Example 1 Examination of the row WW − U − SC, B in Table 5 indicates that we need to
have declared the variables and constants marked with a “Y”, and then call the reformulation for
each item. We assume that the variables and data in the MOSEL problem formulation are called
“sname(i,t), dname(i,t), etc”.

Now, given a formulation written in the modeling language MOSEL, we show what needs to be
added to call the reformulation procedure for problem WW − U − SC, B for each item.

! upper part, definition of the initial model:
! data, variables, constraints, objective
!

!STEP1: declaration of the arguments of the procedure
begin-declaration

NT: integer ! Usually already declared in the model definition
S: array(0..NT) of linctr
R: array(1..NT) of linctr
Y: array(1..NT) of linctr
Z: array(1..NT) of linctr
D: array(1..NT) of real
TK: integer
MC: integer

end-declaration

!REFORMULATION LOOP OVER THE ITEMS
forall(i in 1..NI) do

!STEP2: computation of the arguments (for each single item i)
S(0):= sname(i,0)
forall (t in 1..NT) do

S(t):= sname(i,t)
R(t):= rname(i,t)
Y(t):= yname(i,t)
Z(t):= zname(i,t)
W(t):= wname(i,t)
D(t):= dname(i,t)

end-do

!STEP3: call of the reformulation procedure (for each single item i)
XFormWWUSCB(S,R,Y,Z,W,D,NT,TK,MC)

!END OF DO-LOOP OVER THE ITEMS
end-do

!
! lower part, solve instructions
!
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6.2 Cutting Plane Separation - XCut

To call cutting plane separation routines, the procedure arguments are shown in Table 6, and are
essentially identical to those in Table 5.

S R X Y Z W D C NT TK Sep ref
LS-U Y - Y Y - - Y - Y - O(n2) [5]
LS-C Y Y Y - - - Y Y Y - Pr alper [3]

WW-U Y - - Y - Y - Y - O(n) [22]
WW-U B Y Y - Y - - Y - Y - O(n3) [22]

WW-CC Y - - Y - - Y Y Y - O(n2 log n) [22]
DLSI-CC 0 - - Y - - Y Y Y Y O(n log n) [16]
DLSI-CC B 0 Y - Y - - Y Y Y Y O(n3) [34]

Table 6: XCut

The call to one of these cut generation routines passes the names of data and variables, and sets
up the separation routines. It is implemented in the MOSEL language exactly in the same way as
for extended reformulations.

In addition, there is one additional routine

XCut init(xrows, xelems, depth, freq, npassmax, eps)

that must be called once, before the instruction to solve the problem, to activate the cut generation
routines during the optimization phase. The parameters of this procedure mean the following:

“xrows” denotes the number of extra rows to store cuts,
“xelems” denotes the number of extra matrix elements to store cuts,
“depth” denotes the maximum depth in the branch-and-cut tree

at which cuts are generated,
“freq” denotes the frequency of cut generation,

i.e. cut routines are called at the root node and at depths that are multiples of freq,
“npassmax” denotes the maximum number of re-optimization passes

at each iteration of cut generation,
“eps” defines the tolerance for positive cut violation.

There are default values for all these parameters, and the non expert may simply write

XCut init

to activate the cut routines, which are then generated at the root node only.
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6.3 Heuristics - XHeur

In Table 7 we indicate the calling parameters for the heuristics. Remember that

CY denotes the constraints indexed over 1..NI, 1..NT defining the y variables as binary vari-
ables,
SOL indexed over 1..NI, 1..NT contains as input an initial feasible solution if it is an improving
heuristic, and as output the heuristic solution found (if any).

CY SOL NI NT MAXT PAR Ref
RF Y Y Y Y Y NS [26, 37]
MIP Y Y Y Y Y -
CF Y Y Y Y Y -

RINS Y Y Y Y Y - [11]
LB Y Y Y Y Y - [13]

EXCH Y Y Y Y Y NS Section 3.2

Table 7: XHeur

Here RF is a relax-and-fix heuristic, MIP a trivial heuristic consisting of running default
branch-and-cut for a given time, and CF is a cut-and-fix heuristic in which, given the LP solution,
all integer variables that take integer values and at least one taking a fractional value are fixed
at each iteration. The RINS, Local Branching (LB) and Exchange (EXCH) heuristics have been
briefly described in Section 2.

7 Appendix: A Detailed Example

We consider a multi-item problem with start-up and switch-off costs in which at most one item
can be produced in each period.

7.1 The Mathematical Formulation

This has the formulation

min
∑

i,t hi
ts

i
t +

∑
i,t f i

ty
i
t +

∑
i,t gi

tz
i
t +

∑
i,t qi

tw
i
t

si
t−1 + xi

t = di
t + si

t ∀i, t
xi

t ≤ Ciyi
t ∀i, t

xi
t ≥ Liyi

t ∀i, t
zi
t − wi

t−1 = yi
t − yi

t−1 ∀i, t
zi
t ≤ yi

t ∀i, t∑
i yi

t ≤ 1 ∀t
x, s ≥ 0, y, z ∈ {0, 1}

Here xi
t denotes the amount of item i produced per hour, and si

t and ri
t are also measured in

production hours. wi
t is a switch-off variable. Note that wi

t is precisely the slack variable in the
usual constraint zi

t+1 ≥ yi
t+1 − yi

t used to define zi
t+1.

Each item can be classified as WW−CC−SC. Inspection of the XForm and Xcut Tables suggests
the possibility of using a reformulation of the relaxation WW − U − SC, and/or a reformulation
or cutting planes for the relaxation WW − CC.
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7.2 The Initial MOSEL Formulation

!-------------------------------------------------------------------
model ’clbooko’
uses ’mmetc’,’mmxprs’,’mmsystem’;
setparam("xprs_colorder",1)
setparam("XPRS_VERBOSE",1)

!============================
! SECTION 1: INDICES and DATA
!============================
declarations

NI=4 ! # of Families
NT=30 ! # of Time Periods

RMIN: array (1..NI) of real ! Production rate [units/hour]
H: array (1..NI) of real ! Invent. cost of Prod in fam i [euro/unit,period]
CAP: array (1..NT) of real ! Number of production hours in period t [hours]
F: array (1..NT) of real ! Set-up cost in period t [euro]
DEM: array (1..NI,1..NT) of real ! Demand per family per period [hours]

end-declarations

diskdata(ETC_IN,’cldemand.dat’,DEM)

RMIN(1):=[807,608,1559,1622]
H(1):=[0.0025,0.0030,0.0022,0.0022]
F(1):=[100,100,100,4600,100,100,100,100,100,4600,100,100,100,100,100,

100,100,100,4600,100,100,100,100,100,4600,100,100,100,100,100]

forall(t in 1..NT) CAP(t):=16

!=====================
! SECTION 2: VARIABLES
!=====================
declarations

x: array(1..NI,1..NT) of mpvar ! Production of fam i in hours
s: array(1..NI,1..NT) of mpvar ! stock of fam i in hours at the end or per t
y: array(1..NI,1..NT) of mpvar ! =1 if family i produced in per t
z: array(1..NI,1..NT) of mpvar ! = 1 if family i produced in per t

! but not in per t-1
w: array(1..NI,1..NT) of mpvar ! =1 if family i produced in per t

! but not in per t+1
end-declarations

!=====================================
! SECTION 3: OBJECTIVE and CONSTRAINTS
!=====================================

COST:= SUM(i in 1..NI, t in 1..NT) H(i)*RMIN(i)*s(i,t) +
SUM(i in 1..NI, t in 1..NT) F(t)*y(i,t) +
SUM(i in 1..NI, t in 1..NT) 50*z(i,t) +
SUM(i in 1..NI, t in 1..NT) 50*w(i,t)

! DEMAND SATISFACTION
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forall(i in 1..NI, t in 1..NT)
AGD(i,t):= x(i,t)+ IF(t>1,s(i,t-1),0) = DEM(i,t) +s(i,t)

! VUB FOR SETUPS
forall(i in 1..NI, t in 1..NT)
SA(i,t):= CAP(t)*y(i,t) - x(i,t)>= 0

! VLB FOR SETUPS
forall(i in 1..NI, t in 1..NT)
LB(i,t):= 7*y(i,t) <= x(i,t)

! ONE PRODUCTION PER PERIOD
forall(t in 1..NT)
mode(t):= SUM(i in 1..NI) y(i,t)<= 1

! START-UPS AND SWITCH-OFFS
forall(i in 1..NI, t in 2..NT)
SYS(i,t):= y(i,t)-y(i,t-1)= z(i,t)-w(i,t-1)

forall(i in 1..NI)
SYT(i):= y(i,1) = z(i,1)

! VARIABLE TYPES AND BOUNDS
forall(i in 1..NI,t in 1..NT)
y(i,t) is_binary

forall(i in 1..NI,t in 1..NT)
w(i,t)<= 1

forall(i in 1..NI,t in 1..NT)
z(i,t)<= 1

!====================
! SECTION 4: SOLUTION
!====================

minimize(COST)
exit(0)
end-model
!-------------------------------------------------------------------

7.3 Adding a Reformulation

In the LS-LIB-Reformulation Table 5 of Section 3, we see that we can get the extended formulation
for WW − U − SC by calling

XFormWWUSC(S, Y, Z, NT, TK,MC).

Thus we insert the following block just before the line

minimize(COST)

!-------------------------------------------------------------------

include ’D:\\lotsizing\LSLIB-XForm.mos’

20



declarations
Y: array(1..NT) of linctr
Z: array(1..NT) of linctr
S: array(0..NT) of linctr
D: array(1..NT) of real

end-declarations

S(0):=0
forall(i in 1..NI) do

forall(t in 1..NT) Y(t):=y(i,t)
forall(t in 1..NT) Z(t):=z(i,t)
forall(t in 1..NT) S(t):=s(i,t)
forall(t in 1..NT) D(t):=DEM(i,t)
XFormWWUSC(S,Y,Z,D,NT,15,0)

end-do
!-------------------------------------------------------------------

Here the first statement calls the LS-LIB library, the declarations block defines which variables
and data need to be passed for each item. Then the do loop over the items, passes the names used
in the MOSEL file, i.e the set-up variable yi

t is y(i, t), the demand di
t is DEM(i, t), etc.

7.4 Adding a Cut Separation Routine

In the LS-LIB-Cut Table 6 of Section 3, we see that we can get the cutting plane routine for
WW − CC by calling

XCutWWCC(S, Y,C, NT ).

Thus we insert the following block just before the line

minimize(COST)

!-------------------------------------------------------------------

include ’D:\\lotsizing\LSLIB-XCut.mos’
declarations
Y: array(1..NT) of linctr
Z: array(1..NT) of linctr
S: array(0..NT) of linctr
D: array(1..NT) of real

end-declarations

S(0):=0
forall(i in 1..NI) do

forall(t in 1..NT) Y(t):=y(i,t)
forall(t in 1..NT) S(t):=s(i,t)
forall(t in 1..NT) D(t):=DEM(i,t)
XCutWWCC(S,Y,D,16,NT)

end-do

XCut_init
!-------------------------------------------------------------------
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Here the block inserted is almost identical to that used for the reformulation. The call to
XCutWWCC(S, Y, D, 16, NT ) passes the names of the names of the data and variables, and sets
up the separation routines. The final line XCut init activates the routines when optimization
occurs.

Note that to add both the reformulation and cutting plane routines simultaneously, it suffices to
replace the last two lines used for the reformulation by

XFormWWUSC(S,Y,Z,D,NT,15,0)
XCutWWCC(S,Y,D,16,NT)

end-do
XCut_init

The results for the original formulation and the three reformulations are shown in Table 8, where
XLP indicates the relaxation value at the root node after the addition of the Xpress and LS-LIB
cuts.

instance m n int LP XLP IP secs nodes
cl-run1 510 720 120 1509.1 3972.8 4404.5 23 8155
cl-run2 XForm 1438 720 120 3775.1 4333.1 4404.5 12 196
cl-run3 XCut 510 720 120 1509.1 3972.1 4404.5 27 7659
cl-run4 XForm & XCut 1438 720 120 3775.1 4344.7 4404.5 9 45

Table 8: Results with reformulation (TK=15) and/or cuts

7.5 Adding some Heuristics

Even though heuristics are not necessary for this problem, we apply a relax-and-fix heuristic
dividing the time horizon into two, and allowing up to 3 seconds for the optimization of each partial
problem, followed by the RINS heuristic for up to 10 seconds. We take the initial formulation of
the problem and replace the minimize(COST ) line by the following block.

!-------------------------------------------------------------------

include ’D:\\lotsizing\LSLIB-XHeur.mos’
declarations

CY: array(1..NI,1..NT) of linctr
HEURSOL:array(1..NI,1..NT) of integer
MAXT: integer

end-declarations

forall(i in 1..NI,t in 1..NT)
CY(i,t):= y(i,t) is_binary

MAXT := 3
NS := 2
hval := XHeurRF(CY,HEURSOL,COST,NI,NT,MAXT,NS)

MAXT := 10
hval :=XHeurRINS(CY,HEURSOL,COST,NI,NT,MAXT)

!-------------------------------------------------------------------
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Here hval contains the value of the heuristic solution returned by the functions XHeurRF and
XHeurRINS, CY is the name of the linear constraints indicating the 0-1 variables, HEURSOL
contains the heuristic solution found, which is also the initial solution passed to the improvement
heuristic function XHeurRINS, COST is the name of the linear constraint containing the objec-
tive function, the time allowed for each MIP solved during the heuristic is MAXT seconds, and
NS is the number of segments into which the time horizon is divided.

Relax-and-fix finds the optimal solution after less than 1 second, and RINS cannot improve on
it, terminating after 3 seconds.

23


