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Abstract

Two incumbent parties choose their platforms in a unidimensional
policy space while facing a credible threat of an entry by the third
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incumbents. In an equilibrium the two incumbents choose to pre-
vent the entry and achieve the balance of power, i.e., splitting the
electorate equally. The incumbents’ positions might diverge more as
compared to a system in which the parties seek to solely maximize
the voters’ support. Therefore, rank preoccupation under the threat
of entry might contribute to more polarized political platforms of the
two leading parties.
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1 Introduction

In many political and economic environments, success is measured by a
relative, rather than absolute, standard. In situations where rank matters,
potential entrants are often required to surpass the rank of at least one
incumbent to be deemed successful. This phenomenon is especially prevalent
in an electoral context. In the first round of presidential elections in many
countries, including e.g. France, Russia, Poland, Indonesia, and Argentina,
candidates must guarantee themselves at least the second place in order to
advance to the next round. In Britain and Canada, the second largest party
has the status of “official opposition" which entitles it to certain perks and
privileges. Louisiana holds an “open primary” for governor,1 with the top
two candidates facing each other in a general election thereafter.
Under these circumstances, incumbents must consider not only their po-

sition relative to the current competition, but also the possibility of displace-
ment by an entrant. Should an incumbent take steps to improve its position
at the expense of the existing competition, the field may become open to
a new competitor. In such an environment, the “balance of power" among
incumbents must be maintained in such a way that no established party can
improve its position with respect to a current competitor without running
the risk of being displaced altogether by a new entrant.
In this paper we consider a model of spatial competition with two in-

cumbents and a potential entrant. Competing parties choose their positions
in the unidimensional policy space, and each voter supports the party that
proposes a platform closest to her ideal point.2 Similar to Palfrey (1984), the
incumbents in this model behave as Nash players with respect to one another,
but as Stackelberg leaders with respect to the entrant. In other words, the
incumbents choose their platforms simultaneously, but in full anticipation of
the third party’s location along the spectrum of political issues. For entry to
be deemed successful, the third party must garner more votes than at least
one of the established parties; otherwise, the potential entrant stays out of
the race altogether. Thus, becoming one of the top two is crucial for a party.
The focus of the paper is to show existence and to characterize an equi-

1All candidates, regardless of party run against each other followed by a run-off election
in case none of the winners in the first round got more than 50% of the votes.

2One could view this voting behavior as a desire to associate oneself with a certain
platform, defining one’s identity. This motif might prevail in large elections, in which
pivotalness of an individual voter is minuscule. See Green, Palmquist, and Schickler
(2002) for a related overview.
Moreover, there are reasons to believe that sincere voting is a good “positive" assumption

in the view of the recent empirical findings, see, for example, Alvarez and Nagler (2000).
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librium of this game, referred to as R-equilibrium. This allows us to provide
an interesting comparison with the outcomes in different environments, in
which absolute support of voters, rather than the relative performance, is
the main indicator of success.
We find that a third party entry is not sustainable in an R-equilibrium,

i.e., the potential entrant can never become one of the top two. This imme-
diately implies that the set ofR-equilibria is a subset of incumbent strategies
which prevent entry by a third party, a notion introduced by Greenberg and
Shepsle (1987). This is true even though in our setting the incumbents are
forward looking; in particular, each of them might want to trigger an entry to
displace the other incumbent from being among the top two, thereby improv-
ing her own rank or increasing the share of own supporters, while preserving
its relative standing.
Greenberg and Shepsle (1987) pointed out that a profile of entry-preventing

incumbents’ strategies, which we refer to as D-strategies, may fail to exist.
We derive quite general conditions which yield existence and uniqueness ofD-
strategies. We go on to demonstrate that R-equilibrium exists if, and only
if incumbents achieve a balance of power whereby the electorate is shared
equally among them.
The positions of the incumbents in R-equilibrium diverge and, interest-

ingly, more so than under electoral systems based solely on the size of elec-
toral support. Palfrey (1984) and Weber (1992) developed equilibrium no-
tions (limit equilibrium and hierarchical equilibrium, respectively) for models
of electoral competition where two vote-maximizing established parties are
challenged by a new third party. The incumbents in such a system choose
their positions along the political spectrum, taking as given the entrant’s
vote-maximizing response. The third party always enters the race in these
models, and we find that the two established parties are generally separated
by a greater percentage of the constituency when rank matters. Whether
absolute or relative performance matters, the established parties will always
have an incentive to position themselves closer to their current rival in an ef-
fort to increase voter support. However, the threat of third party entry forces
incumbents to choose sharply differentiated positions in the issue space, oth-
erwise each of the established parties risks being “squeezed" between its
current rival and a new party. Our results suggest that the degree to which
the established parties separate themselves from one another is greater un-
der rank-related objectives than under a system of sheer vote maximization.
Therefore, motivation of the politicians, driven either by rewards built into
the electoral system or by traditional values imprinted in personal preferences
might reflect in the divergence of chosen platforms. In particular, our results
demonstrate that the same fundamental preferences of the voters, or distri-
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bution of their ideal points, can translate into different political platforms
depending on the electoral system.
In their recent contribution, Faulí-Oller, Ok, and Ortuño-Ortín (2003)

show that ability to commit (delegate) by the two competing parties might
lead to polarization of the proposed platforms, which holds under rather gen-
eral conditions, thus, providing another way to understand the gap between
Downsian predictions and the observed phenomena. The threat of the en-
try is also known to generate diversion of the two established parties, and
to account for the related contributions in spatial competition we will refer
the reader to an overview by Osborne (1995). In contrast to the existing
literature, however, we describe scenarios in which neither of the incumbents
can commit to a chosen policy, thus, expecting to react to a potential en-
try by a third party. Moreover, we consider environments in which each of
the competitors strives to be either no.1 or no.2, i.e., rank objectives are
predominant.
The paper is organized as follows. The following section describes the

spatial competition game. Section 3 demonstrates that an equilibrium of the
game has to be entry-deterrent. In Section 4 we consider the effects of polar-
ization of the electorate on equilibrium separation between the platforms and
compare the platform divergence under different electoral systems. Section
5 contains concluding remarks.

2 The Model

We consider a model of electoral competition with two incumbent parties,
1 and 2, and one potential entrant, e. The competing parties choose their
positions in the issue space I = [0, 1]. After the two incumbents chose their
positions, the entrant can either stay out, the option denoted by N , or enter
the race and choose a platform in I.
Payoffs to the parties are based on voters’ support. Each voter has sym-

metric single peaked preferences with the most preferred alternative, or ideal
point, in I. Voters’ ideal points are described by a cumulative distribution
function F , defined over the issue space I, with F (0) = 0 and F (1) = 1.
Given positions of the competing parties, each voter supports the party

whose position is closest to her ideal point, and she randomly picks one of
closest by, in case there are many. No abstention is allowed — each voter
identifies herself with a party. Let x = (x1, x2) be a pair of positions (not
necessarily different) chosen by the established parties 1 and 2 and assume
that x1 ≤ x2, let X = (x, xe) be the choices made by all three parties, where
the entrant can either choose a platform or decide not to enter: xe ∈ I∪{N} .
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All three parties have lexicographic preferences. Each of them first con-
siders the rank and then the fraction of votes they garner. Given the choiceX
of the parties, we denote by r1(X), r2(X), re(X) their corresponding ranks.
Rank ri(X) can obtain one of the six values:
A1 the sole possession of the first place,
A2 sharing the first place with one of the other parties,
B1 the sole possession of the second place,
A3 sharing the first place with two other parties,
B2 sharing the second place with one of the other parties,
C1 the sole possession of the third place.
We assume the following natural preferences for all parties:

A1 Â A2 Â B1 Â A3 Â B2 Â C1.

If the entrant decides to stay out, we say that re(X) = N, and her ranking
reflects the desire to enter only if she can become at least the second (attain-
ing rank B1) in the electoral competition.3 That is, the preferences of the
entrant are given by

A1 Â A2 Â B1 Â N Â A3 Â B2 Â C1.

If two different outcomes generate the same rank, a party prefers the one that
yields a higher vote share. This share is also determined by the positions of
the three parties.
Suppose first that party e does not enter. If the incumbents choose the

same position in the issue space, each party is supported by one half of the
electorate. If their positions are different, x1 < x2, then party 1 is supported
by all those voters whose ideal points are to the left of the middle point x1+x2

2
,

whereas party 2 is supported by voters whose ideal points are to the right of
x1+x2
2
. That is, the support of party i = 1, 2 denoted by si(X) is determined

by:

s1(X) = F (
x1 + x2
2

),

s2(X) = 1− F (
x1 + x2
2

).

Suppose now that party e enters and chooses position xe ∈ I in the issue
space. If all three parties choose the same position, then each is supported
by one-third of the electorate, i.e., s1(X) = s2(X) = se(X) =

1
3
. If the

3As mentioned in the introduction, in many situations “winning" is associated with
being one of the top two and under sufficient costs of entry, it will be prevented in case
the entrant is not expecting to “win."
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incumbents choose the same position but the entrant locates herself at a
different point, say x1 = x2 < xe, then the support of each incumbent is
given by F (x1+xe

2
)/2, whereas party e is supported by 1−F (x1+xe

2
) voters. If

all parties choose different positions, say x1 < x2 < xe, then the support of
parties 1, 2 and e is given by F (x1+x2

2
), F (x2+xe

2
)−F (x1+x2

2
) and 1−F (x2+xe

2
),

respectively. That is, if party i has rivals both to the left and to the right,4

then its support covers the interval between two points: one equidistant from
xi and its opponent from the left side, and the other equidistant from xi and
its opponent from the right. If party has no rivals to its left, then its support
covers the interval between 0 and the point which is equidistant from xi and
its closest opponent from the right side. Similarly, if party i has no rivals
to its right,5 then its support covers the interval between the point which is
equidistant from xi and its closest opponent from the left side and the right
endpoint of the issue space.
Unfortunately, subgame perfect equilibria of the game described above

do not always exist. Let us first examine the reasons for the non-existence
and then modify the game to avoid the problem.
Recall party e enters only when it can win higher support than at least one

of the incumbents. To describe these cases, fix the positions of the incumbent
parties, x = (x1, x2), and consider the following sets:

D1(x) = {xe ∈ I|se(x, xe) > max[s1(x, xe), s2(x, xe)]}

is the set of positions for the entrant that guarantee the entrant the sole
possession of the first place,

D12(x) = {xe ∈ I|se(x, xe) = max[s1(x, xe), s2(x, xe)] > min[s1(x, xe), s2(x, xe)]}

is the set of positions that yield the entrant the share of the first place with
one of the incumbents, and

D2(x) = {xe ∈ I|max[s1(x, xe), s2(x, xe)] > se(x, xe) > min[s1(x, xe), s2(x, xe)]}

is the set of positions where the entrant hold the second place. Also, let

D(x) = D1(x)∪D12(x)∪D2(x) = {xe ∈ I|se(x, xe) > min[sE1 (x, xe), sE2 (x, xe)]}.

The entrant decision process goes as follows: if the set D(x) is empty, party
e does not enter. Otherwise, it considers the sets D1(x), D12(x), D2(x) (in

4Eaton and Lipsey (1975) call this location interior.
5A position which has no rivals either to the left or to the right is called peripheral in

Eaton and Lipsey (1975).
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this order) and makes its vote-maximizing choice over the first nonempty set
in this sequence.
By using the arguments of Palfrey (1984), it is easy to see that the best

response of the entrant over the sets D1(x) or D2(x) may fail to exist.6 In
this case we adopt the procedure offered by Palfrey (1984) and Weber (1992)
and consider the average of the incumbents’ payoffs over the set of “almost
best” responses of the entrant. Specifically, for each incumbent i and each
positive ε we determine the average of player i’s payoffs over the set of “ε-
best” responses of the entrant in a subset Y (x) ∈ {D1(x), D2(x)} of the
set D (x) and consider its limit when ε approaches zero. For each pair of
incumbent choices x ∈ I2 and ε ≥ 0, denote by BY

ε (x) the set of ε-best
responses over Y ⊂ D (x) . That is,

BY
ε (x) = {xe ∈ Y (x)|se(x, xe) ≥ se(x, y)− ε for all y ∈ Y (x)}.

Let a pair of incumbents’ strategies x = (x1, x2) be such that the set D(x)
is nonempty. One can immediately observe that for Y (x) ∈ {D1(x), D2(x)} ,
while the set of best responses BY

0 (x) might be empty, the set B
Y
ε (x) is

nonempty for every strictly positive ε. It can be shown, using the argument
in Weber (1997) that the set BY

ε (x) is the union of a finite set of intervals and
that if the set of best responses BY

0 (x) is nonempty, it consists of a unique
element (see claim 3.1 in Weber (1997)).
If the entrant chooses to enter, so that for a given pair of incumbents’

positions, x, the set D (x) is nonempty, define by E (x) the subset of D (x)
that the entrant considers, i.e., let

E (x) =

⎧⎨⎩ D1 (x) if D1 (x) 6= ∅
D12(x) if D1 (x) = ∅, D12(x) 6= ∅
D2(x) if D1 (x) ∪D12(x) = ∅,D2(x) 6= ∅

Let

µε(x) ≡
Z
BE
ε (x)

dx, and ui(x) ≡ lim
ε→0

Z
BE
ε (x)

1

µε(x)
si(x, xe)dxe

for each party i, i = 1, 2. Palfrey (1984) has shown that the functions ui
are well-defined. Roughly speaking, ui is a limit of incumbent i0s electoral
support, provided the potential entrant is mixing across his ε−best responses
with equal probability.
Now we can define the second component of the preferences for the incum-

bent parties. If the best response of the entrant exists, — either the entrant

6We shall show that if the set D12(x) is nonempty, it consists of a unique element.
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does not enter, so that xe = N, or her vote-maximizing position given is well
defined, — this component is si, as defined before, and uniqueness of the best
reply of the entrant in this case implies xe is a function of the positions of
the incumbents x = (x1, x2). If the set BE

0 (x) is empty, then her payoff is
set to be equal to the limit of the average support, ui, which is also fully
determined by the positions of the incumbents. To sum up, an incumbent i,
i = 1, 2, derives payoff πi(x) from her electoral support:

πi(x) ≡
½

ui(x) if D (x) 6= ∅, BE
0 (x) = ∅

si(x, xe (x)) otherwise
.

We can now formally define game Γ between the incumbents, who foresee
that the third party, e, enters only if she can displace one of the incumbents
and to guarantee at least the sole position of the second place. Formally,

Definition 2.1 In two-person game Γ the incumbents have strategy set I.
Players’ preferences are lexicographic in (1) rank, ri and (2) payoff, πi. A
pure strategy equilibrium of the game Γ is called an R-equilibrium.

It is important to distinguish our equilibrium notion from that introduced
by Greenberg and Shepsle (1987). They refer to each pair of incumbent
positions that prevent entry by a third party as 2-equilibrium. We will simply
call these strategies entry-deterrent :

Definition 2.2 A pair of positions of established parties x = (x1, x2) is called
entry-deterrent (D-strategies), if the set D(x) is empty.

Note that an entry-deterrent pair of incumbent strategies is not necessar-
ily consistent withR-equilibrium. Indeed, the latter requires the incumbents’
positions to be immune to unilateral deviations by the incumbents, while cor-
rectly anticipating the response of a potential third party. Thus, we allow an
incumbent to induce the entry, if it is in her interest. The next section of-
fers a characterization of R-equilibria. The key result is that in R-equilibria
neither of the incumbents will want to induce the entry.

3 Balance of Power in R-equilibrium
In this section we derive conditions for the existence and uniqueness of

both R-equilibrium and D-strategies, and study the relationship between
the two. Throughout the remainder of the paper we consider only pairs of
strategies (x1, x2) where party 1 is located to the left of party 2, i.e., x1 ≤ x2,
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so that the uniqueness of an equilibrium will be stated in terms of equilibrium
configurations up to a permutation of incumbents’ strategies. The proofs of
all results in this section are relegated to the Appendix.
We shall now introduce two assumptions, (A.1) and (A.2), which will

hold throughout the rest of the paper. The first is quite standard and re-
quires the distribution of voters’ ideal points to be unimodal and the density
function f to be continuous:

Assumption (A.1) f(·) is continuous and strictly positive on [0, 1]. More-
over, there exists x̂ ∈ I, such that f(·) is strictly increasing on the
interval [0, x̂] and strictly decreasing on the interval [x̂, 1].

The second assumption assures that the ideal points of the voters are not
too concentrated at any given interval. Following Haimanko, Le Breton and
Weber (2005) we will refer to this assumption as gradually escalating median
(GEM).7 Let l : [0, 1]→ [0, 1] be the median of [0, t] and r : [0, 1]→ [0, 1] be
the median of [t, 1] under F. Given the first assumption both functions are
continuously differentiable.

Assumption (A.2) l0 (t) < 1, r0 (t) < 1.

Assumptions (A.1) and (A.2) will allow us to compare D-strategies
and strategies of the incumbents under R-equilibria. The definition of D-
strategies rules out a move by the entrant, while R-equilibrium requires an
incumbent’s position to be immune against a unilateral deviation of another
incumbent that can “invite" an entry by the third party.
As defined, R-equilibrium does not preclude third party entering the race

and ranking at least the second. It is important to establish, therefore,
whether there exists R-equilibrium in which the established parties allow
for the entry of party e. Proposition 3.1 demonstrates that the answer is
negative, implying that the notion of R-equilibrium is no less restrictive
than the notion of entry-deterrent strategies.

Proposition 3.1 Assume that (A.1) and (A.2) hold. Then in any R-
equilibrium, party e does not enter. That is, every pair of incumbents’ R-
equilibrium strategies is also a pair of D-strategies.

7This assumption is weaker than log-concavity, which is rather mild on its own, see
Bergstrom and Bagnoli (2005) for the discussion and connection to other properties, in-
cluding monotone hazard ratio. More precisely, a stronger assumption than (A.2) would
require function F (t) to be log-concave on the interval [0, x̂] and the function 1−F (1− t)
to be log-concave on the interval [x̂, 1].
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Greenberg and Shepsle (1987) concluded that, in general, the set of D-
strategies might be empty. Providing sufficient conditions for existence of
these strategies remained open. Cohen (1985) has shown that D-strategies
exists for the special case where the distribution of voters’ ideal points is
given by a normal density function. The following proposition demonstrates
that the condition of normality, and even symmetry, of the distribution can
be dropped. Unimodality and GEM yield existence and uniqueness of D-
strategies.

Proposition 3.2 Under (A.1) and (A.2), there is a unique pair of D-
strategies xd = (xd1, x

d
2). Moreover, x

d satisfies8

F (xd1) =
1

2
F (

xd1 + xd2
2

), (1)

1− F (xd2) =
1

2
(1− F (

xd1 + xd2
2

)), (2)

1

3
< F (

xd1 + xd2
2

) <
2

3
. (3)

Our next proposition derives necessary and sufficient conditions for the
existence of R-equilibrium. Note that by Proposition 3.1, the set of R-
equilibria is a subset of the set of D-strategies. We show that, in general, the
converse is not true. Since, by Proposition 3.2, for a given distribution of ideal
points a pair D-strategies is unique, it follows that the set of R-equilibria
might be empty. That is, even though (under (A.1) and (A.2), there is
always a unique entry-deterring pair strategies for established parties, one of
the incumbents could be better off by deviating from it, thus allowing for
entry of party e. Given that we impose an additional requirement of Nash
behavior on incumbents, it is not surprising to find out that R-equilibrium
may fail to exist in circumstances which guarantee existence of D-strategies.
Our result shows that R-equilibrium exists only in the case where the es-
tablished parties, while locating themselves at quartiles of the distribution,
achieve a balance of power by equally splitting the total electoral vote.

Proposition 3.3 Assume that (A.1) and (A.2) hold and let the pair xd =
(xd1, x

d
2) be a D-strategies. Then a pair of incumbents’ strategies xd is an

R-equilibrium if and only if

F (
xd1 + xd2
2

) =
1

2
. (4)

8These equations were formulated in Greenberg and Shepsle (1987) as necessary con-
ditions for the existence of a GS-equilibrium.
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That is, if

F−1(
1

4
) + F−1(

3

4
) = 2F−1(

1

2
), (5)

then the set ofR-equilibria consists of the unique element, (F−1(1
4
), F−1(3

4
)).

Otherwise the set of R-equilibria is empty.

The intuition behind Proposition 3.3 is quite simple. When power is
balanced between incumbents, in the sense that each garners 50% of the
vote, neither party can improve its standing by altering its position. Take,
for example, the candidate located on the left. Moving further to the left
will reduce her support relative to the other incumbent as well as make it
possible for the entrant to locate “very close" on her right and displace her
by garnering slightly more than 25% of the vote. On the other hand, should
the left-most incumbent attempt to increase her support by moving closer
to the current rival, the entrant will displace her by locating “very close”
on her left and garnering slightly more than 25% of the vote. By the same
argument, the right-most candidate cannot improve her standing when the
incumbents choose platforms in such a manner that the electorate is divided
equally between the established parties.
Balance of power is essential for R-equilibrium to exist. If power is not

shared equally between the two incumbents, the second place incumbent can
improve its standing by moving slightly closer to the incumbent who ranks
first. In doing so, the entrant can now garner more votes than the top-ranked
incumbent by entering “very close" on her outside. The incumbent formerly
in second place will now win the election, the third party will come in second
place, and the incumbent formerly in first place will now be ranked third as
it is “squeezed" between its old rival and the new third party.
Implicitly, Proposition 3.3 characterizes societies (described by distribu-

tions of voters’ ideal points) for which R-equilibrium exists. In particular,
any symmetric density function satisfies condition 5. Clearly, symmetry is
not necessary for that condition to hold.

4 Rank Preoccupation and Policy Divergence

In this section we will show that although more polarized societies might
have more extreme winning platforms, polarization of preferences is not the
only contributor to the divergence of platforms. Two different electoral sys-
tems might affect the degree of policy divergence through its effect on the
objectives of the politicians.
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Greenberg and Shepsle (1987) distinguished between two election proce-
dures — one, based on fixed-standard method and the other on fixed-number
method. Under the first one candidates which garner a certain number of
votes are deemed elected, thus the appropriate objective for candidates is to
maximize votes in an effort to surpass the predetermined quota (see Green-
berg andWeber (1985)). In a system characterized by a fixed-number method,
the number of winners is exogenously determined and candidates are deemed
elected based on relative performance. In this case a candidate’s rank rel-
ative to the existing and potential competition is more important than the
sheer number of votes a candidate receives.
In the prior section, we found that power between established parties is

balanced when candidates have rank-related objectives such as those under
a fixed-number method. The results, however, give no indication as to how
these platforms compare to those chosen under an electoral system where the
objective of candidates is to maximize votes. In this section, we compare the
equilibrium platforms selected under rank-related objectives to alternative
equilibrium notions where candidates seek to maximize votes. We find that,
in general, incumbent positions are more extreme when rank matters.
Palfrey (1984) consider a game between two incumbents anticipating

a third party’s entry, where the candidates’ objective is to maximize its
share of the total vote. Palfrey demonstrates the existence of a unique non-
cooperative equilibrium, called a limit equilibrium, assuming the distribution
of voters’ ideal points is symmetric. Weber (1992) points out that the no-
tion of a limit equilibrium cannot be directly extended to a broader class
of asymmetric distributions, and therefore demonstrates the existence of a
unique non-cooperative equilibrium, referred to as a hierarchical equilibrium,
for the general case of unimodal distributions. In a hierarchical equilibrium,
the number of votes available to the entrant to the left of party 1 is the same
as the number of votes available to the right of party 2, and moreover, is
equal to the maximal number of votes the entrant could garner by locating
between the two established parties. In the case of symmetric distributions
the notions of limit and hierarchical equilibria yield the same pair of strate-
gies.
Two aspects distinguish the notions of limit and hierarchical equilibrium

from D-strategies andR-equilibrium. First, the candidates seek to maximize
votes, rather than rank, in a limit or hierarchical equilibrium. Second, the
third party always enters the race regardless of whether it can displace one of
the incumbents. Because the candidates have different objectives and entry is
prevented altogether under D-strategies and R-equilibrium, the incumbents’
platforms diverge from those chosen in a limit and hierarchical equilibrium.
We will start with the case of symmetric distributions.
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4.1 Symmetric Distributions

Consider a distribution function F (x), satisfying (A.1)-(A.2), with symmet-
ric density around its mode 1

2
, i.e., f(x) = f(1 − x) for all x ∈ [0, 1]. By

Propositions 3.2 and 3.3, there exists a unique R-equilibrium xd = (xd1, x
d
2).

It is easy to verify that in equilibrium the incumbents choose positions which
are equidistant from the mode 1

2
and, moreover, F (xd1) =

1
4
, F (xd2) =

3
4
. Pal-

frey has shown the limit equilibrium x = (x̃1, x̃2), is also symmetric around
1
2
, and, moreover, satisfies

F (x̃1) = 1− 2F (
x̃1 +

1
2

2
)

Example 4.1 If the distribution is triangular and the density function is
given by

f(x) =

½
4x if x ≤ 1

2

4− 4x if x ≥ 1
2

the R-equilibrium is given by ( 1√
8
, 1 − 1√

8
) = (.35, .65) whereas the limit

equilibrium is (
√
10−1
6

, 5−
√
10

6
) = (.36, .64). Note that in this example, the

incumbents’ positions are closer to the mode of the distribution in a limit
equilibrium than in R-equilibrium.

The above example suggests that the gap between the incumbents’ po-
sitions will be larger when candidates have rank-related objectives. Recall
that the notion of a hierarchical equilibrium is a generalization of Palfrey’s
limit equilibrium. A comparison between R-equilibrium and hierarchical
equilibrium immediately yields the following result:

Proposition 4.2 Let xd = (xd1, xd2) and x = (x̃1, x̃2) denote theR-equilibrium
and the hierarchical equilibrium, respectively. Then we have

xd1 < x̃1 < x̃2 < xd2

Proposition 4.2 demonstrates that, in general, the positions of the estab-
lished parties are more extreme in an R-equilibrium than in a hierarchical
equilibrium. In an electoral system where absolute performance is more im-
portant than relative performance, established parties are just as likely to be
challenged by a moderate third party (i.e. a third party which enters between
the incumbents), as they are by a third party which is slightly more extreme
than one of the incumbents.
However, in an electoral system where rank matters more, established

parties are likely to be “mimicked" by a third party which is only slightly
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more moderate or slightly more extreme. When rank matters more than
absolute performance, established parties are equally, if not more, concerned
with maintaining the support of fringe voters (i.e. those voters whose ideal
point is more extreme than that of the candidate) as they are with main-
taining the support of moderate voters. The gap between the positions of
the established parties is sharper in an R-equilibrium than in a hierarchi-
cal equilibrium due to the incumbents’ efforts to prevent a third party from
capturing the support of its fringe voters.
Notably, the gap between the positions of the two incumbents will increase

in more heterogeneous or polarized societies. This is true for both hierarchical
and R-equilibria. To formalize this statement, let us introduce a way to
compare two distributions based on how “peaked" they are. The following
definition is adopted from Shaked and Shanthikumar (1994), p.77.

Definition 4.3 Consider two unimodal distributions, F and H, symmetric
about µ. F is more peaked than H, if H (x) ≥ F (x) for all x ≤ µ, i.e., if
F (x|x ≤ µ) first order stochastically dominates H (x|x ≤ µ) .

We will apply this order to distributions describing the ideal points of the
voters, thus a less peaked distribution will correspond a less homogeneous
society. It is easy to see that if H is less peaked than F, then F−1

¡
1
4

¢
>

H−1 ¡1
4

¢
and F−1

¡
3
4

¢
< H−1 ¡3

4

¢
, therefore in the view of Proposition 3.3,

we have the following

Remark 4.4 Let F and H be two symmetric distributions of the ideal points
of different societies, such that H,F satisfy assumptions (A.1) and (A.2)
with H being less peaked than F. Then the R-equilibrium under H is more
polarized than that under F, i.e.,

xd1 < x̂d1 < x̂d2 < xd2,

where
¡
x̂d1, x̂

d
2

¢
is the R-equilibrium under F and

¡
xd1, x

d
2

¢
is the R-equilibrium

under H.

In the view of the necessary condition (18) , the same statement is true
for the hierarchical equilibrium.
To sum up, more spread ideal points of the voters lead to a divergence of

equilibrium positions of the incumbents in the presence of a credible threat
of entry, keeping the rank-concerned politicians always at more extreme po-
sitions as compared to those chosen by the incumbents solely driven by the
absolute size of the electoral support.
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4.2 Monotone Distributions

To extend the comparison of the gap between incumbents positions under
different to a wider range of environments, we can consider the class of distri-
bution functions satisfying (A.1)-(A.2) which do not possess R-equilibrium,
although allowing for existence of D-strategies. Specifically, consider a fam-
ily of distributions whose density is monotone on the issue space, which
would amount to either concavity or convexity of cumulative distribution
functions. Since the case of decreasing density could be examined in a sim-
ilar manner, we shall restrict our attention to strictly convex distribution
functions F (x), satisfying (A.1)-(A.2). By Proposition 3.2, there exists a
unique D-strategies xd = (xd1, xd2). However, the set of R-equilibria is empty.
Indeed, we can rearrange (1) and (2) to obtain

F (
xd1 + xd2
2

) = 2(F (
xd1 + xd2
2

)− F (xd1)),

1− F (
xd1 + xd2
2

) = 2(F (xd2)− F (
xd1 + xd2
2

)).

Since the density function f is increasing, we have F (
xd1+x

d
2

2
) − F (xd1) <

F (xd2)− F (
xd1+x

d
2

2
) or F (x

d
1+x

d
2

2
) < 1

2
, violating condition (4) in the statement

of Proposition 3.3.
We will now show that the assertion regarding the positions of established

parties in Proposition 4.2 does not hold in general if we replaceR-equilibrium
by D-strategies. However, we further demonstrate that the gap between the
incumbents’ positions is still larger under rank-related objectives. In other
words, regardless of the equilibrium notion, platforms are more extreme when
rank matters.
More specifically, in the case of convex cumulative distribution functions,

the incumbents’ positions in a hierarchical equilibrium are shifted to the right
relative to their positions in a D-strategies:

Proposition 4.5 If the distribution F is convex, then

xd1 < x̃1 < xd2 < x̃2.

Example 4.6 Consider linear density function given by f(x) = 2x for all

x ∈ [0, 1]. Then the D-strategies is the pair (
√
2+
√
2

4
,

√
10+

√
2

4
) = (.46, .84)

whereas the hierarchical equilibrium is ( 3√
34
, 5√

34
) = (.51, .86).

Note that in the above example of a linear density function, the gap
between the incumbents’ positions is again wider under a system where rank
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matters more than absolute performance. We conclude this section by stating
that, though it is difficult to derive general conclusions on the relative location
of incumbents’ positions in D-strategies and hierarchical equilibrium, the
fraction of voters whose ideal points are between the incumbents’ positions
is always larger in D-strategies than in hierarchical equilibrium:

Proposition 4.7 Let xd = (xd1, x
d
2) and x = (x̃1, x̃2) denote theR-equilibrium

and the hierarchical equilibrium, respectively. Then

F (x̃2)− F (x̃1) < F (xd2)− F (xd1)

Proof. >From (1) and (2) we have F (xd2)− F (xd1) =
1
2
. Moreover, (19)

implies that F (x̃1) = 1−F (x̃2) >
1
4
. Thus, F (x̃2)−F (x̃1) < F (xd2)−F (xd1).

5 Conclusions

The model offers an analysis of electoral competition in the presence of
rank concerns. If two dominant parties face a threat of entry by a third com-
petitor aiming at displacing one of the top two, they should (if possible) keep
the balance of power by choosing distinct positions and sharing the electoral
support equally. This provides another possible reason for divergence of plat-
forms in an electoral competition model. Moreover, we find that candidates’
preoccupation with their rank leads them to take more extreme stands under
the threat of entry, thus widening the gap between the proposed platforms
as compared to the candidates who focus on the size of the electoral support.
There are two important consequences of this result. First, as motivation

of the candidates (parties) is partly driven by electoral system, the result
contributes to the comparison between different election procedures, for ex-
ample, fixed-standard method and fixed-number method. In particular, one
could use our results to evaluate the merits of introducing (or abandoning)
the system of open primaries.
Second, under the assumptions of the model, the same fundamental pref-

erences of an electorate will be “reflected” differently in the views of its
representatives depending on the electoral institution. Analyzing this result
empirically can be an interesting direction for future investigation.

6 Appendix

Let a pair of incumbents’ strategies x = (x1, x2) be given. Let
α ≡ x1+x2

2
, I1 ≡ F (x1), I2 ≡ F (α)−F (x1), I3 ≡ F (x2)−F (α), I4 ≡ 1−F (x2).

16



Assume, without loss of generality, that

I1 ≥ I4. (6)

Lemma 6.1 If I1 ≥ I2 then the support of an entrant choosing a policy
z ∈ (x1, x2) will not exceed that of the first party and if I3 ≤ I4 the support
of an entrant choosing a policy z ∈ (x1, x2) will not exceed that of the second
party. If both inequalities I1 ≥ I2 and I3 ≤ I4 hold, then no entry will occur
between x1 and x2, i.e., the set

Dm(x) ≡ {z ∈ D(x)|x1 < z < x2}

is empty.

Proof. Consider the entry of party e between x1 and x2, say, at z. Let
I1 ≥ I2 hold. Then the support of the entrant is equal to F (z + r2)− F (z −
r1) where r2 (z) ≡ (x2 − z) /2, r1 (z) ≡ (z − x1) /2. This implies r

0
1 (z) =

−r02 (z) = 1
2
and then by assumption (A.2), for r2 ∈ [0, (x2 − x1) /2] =

[0, α− x1]

l (z + r1)− l (α) < z + r2 − α

= z − r1 − x1,

thus
l (z + rb) < z − ra,

as l (α) ≤ x1. Then F (z + r2) < 2F (z − r1), so that the first party has
higher support than the entrant. Similarly, if I3 ≤ I4 G (1− z + r1) <
2G (1− z − r2) and the second party has a higher support than the entrant.
If both inequalities I1 ≥ I2 and I3 ≤ I4 hold,

F (z + r1)− F (z − r2) ≤ min[F (z − r1), 1− F (z + r2)].

Hence the support of the entrant does not exceed that of any of the two
established parties.

In order to prove Proposition 3.2 we shall use the following lemma:

Lemma 6.2 For each y, 0 < y < 1, define the values of a(y) and b(y) by:

2F (a(y)) = F (y) and 2(1− F (b(y))) = 1− F (y). (7)

Then there is a unique yd, satisfying

a(yd) + b(yd) = 2yd. (8)

Moreover, the value of yd is such that 1
3
< F (yd) < 2

3
.
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Proof. It is easy to verify that the functions a(·) and b(·) are well-
defined, increasing and differentiable on the interval [0, 1], and so is their
sum, h(y) ≡ 2y − a(y)− b(y). Since a(0) = 0, b(0) > 0, a(1) < 1, b(1) = 1, it
follows that h(0) = −b(0) < 0 and h(1) = 1− a(1) > 0. Hence, there exists
a value y that solves (8) .
For uniqueness rewrite the necessary conditions as a system of two equa-

tions, ½
2F (a)− F

¡
a+b
2

¢
= 0

2F (b)− F
¡
a+b
2

¢
= 1

for (a, b) ∈ [0, 1]2 . Its Jacobian is∙
2f (a)− 1

2
f
¡
a+b
2

¢
−1
2
f
¡
a+b
2

¢
−1
2
f
¡
a+b
2

¢
2f (b)− 1

2
f
¡
a+b
2

¢ ¸ ,
the principal minors of which are positive by (A.2), which implies

l0 (x) =
1

2

f (x)

f (l (x))
< 1 (9)

r0 (x) =
1

2

f (x)

f (r (x))
< 1.

This leads to the following conditions:

2f (a)− 1
2
f

µ
a+ b

2

¶
>
1

2
f

µ
a+ b

2

¶
> 0 (10)

2f (b)− 1
2
f

µ
a+ b

2

¶
>
1

2
f

µ
a+ b

2

¶
> 0

and, therefore,∙
2f (a)− 1

2
f

µ
a+ b

2

¶¸ ∙
2f (b)− 1

2
f

µ
a+ b

2

¶¸
−
∙
1

2
f

µ
a+ b

2

¶¸2
> 0 (11)

Conditions (10, 11) assure the positiveness of the principal minors of the Jaco-
bian and, thus, uniqueness by the Fundamental Global Univalence Theorem
(Parthasarathy (1983), p.20) .9

Finally, we need to verify the inequalities

1

3
< F (yd) <

2

3
.

9The initial formulation is due to Gale and Nikaido (1965).
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By the necessary conditions (7) , we know l
¡
yd
¢
= a. By assumption

(A.2) for any x ∈
£
yd, b

¤
, l0 (x) < 1, or for r ∈

£
0, b− yd

¤
l
¡
yd + r

¢
− r < l

¡
yd
¢
,

which implies
l (b) < l

¡
yd
¢
+ b− yd = yd

thus
F (b(yd))

F (yd)
<

F (yd)

F (a(yd))
= 2

and, moreover,

F (yd) > F (b(yd))− F (yd) =
1− F (yd)

2
,

yielding F (yd) > 1
3
. Similarly,

1− F (a(yd))

1− F (yd)
<

1− F (yd)

1− F (b(yd))
= 2,

which implies

1− F (yd) > F (yd)− F (a(yd)) =
F (yd)

2
,

or F (yd) < 2
3
.

Before proceeding with Proposition 3.1, we provide the proof of Proposi-
tion 3.2.
Proof of Proposition 3.2. Greenberg and Shepsle (1987) have shown

that conditions (1, 2, 3) are necessary for a pair of strategies to beD-strategies.
By Lemma 6.2, there is a unique pair of strategies which satisfies those con-
ditions. Thus, it remains to show that this pair of strategies is indeed a pair
of D-strategies under (A.1) and (A.2).
Lemma 6.2 yields the existence of a real number y ∈ (0, 1) such that the

pair w = (a(y), b(y)) is the unique pair of strategies which satisfies (1, 2, 3).
To demonstrate that the set D(w) is empty, let us consider options available
for party e, given the incumbents’ locations at points a(y) and b(y), respec-
tively. If party e enters to the left of a(y), it would not displace party 1.
Moreover, since F (a(y)) ≤ 1

3
≤ F (y), party 2 would not be displaced either.

By using similar arguments one can show that neither of the established par-
ties would be displaced if party e enters to the right of b(y). In the view of
conditions 1, 2 lemma 6.1 guarantees that no entrant will choose a position
in between a (y) and b (y).
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We shall turn now to the proof of Proposition 3.1.

For each pair of positions of the established parties x = (x1, x2) denote
by y1 = y1(x2−x1

2
) and y2 = y2(x2−x1

2
) two locations in the issue space which

satisfy

F (y1 +
x2 − x1
2

) = 2F (y1); (12)

G(y2 − x2 − x1
2

) = 2G(y2). (13)

Let
z1(x) ≡ 2y1 − x1; z2(x) ≡ 2y2 − x2.

In the case of z1(x) > x1, if party e enters at z1(x) it would generate the
support equal to that of party 1. Assumption (A.2) can be used to show
that if party e enters between x1 and z1(x) it would displace party 1, and if
it enters to the right of z1(x) it would not displace party 1. Similarly, in case
z2(x) < x2, if party e enters to the left of z2(x) it would not displace party 2, if
it enters at z2(x) it would generate the same number of votes as party 2, and if
it enters between z2(x) and x2 it would displace party 2. In addition, for each
pair of positions of the established parties x = (x1, x2), consider the function
se(x, t) which determines the support of party e generated by entry at t ∈ I.
It has been shown in Weber (1992) that assumptions (A.1) guarantee that
se(x, ·) is continuous and strictly quasi-concave on the interval (x1, x2). It
allows us to continuously extend this function to the closed interval [x1, x2].
Thus, there exists a unique value z (x), x1 ≤ z (x) ≤ x2 such that

z (x) = arg max
x1≤t≤x2

se(x, t).

z (x) determines the vote-maximizing location10 of party e between the po-
sitions of the two established parties.
We will show now that if one of the sets D1(x), D12(x) or D2(x) is non-

empty then x is not an R-equilibrium.

Lemma 6.3 Let a pair of strategies x = (x1, x2) be an R-equilibrium. Then
set D(x)\D2 (x) = D1(x) ∪D12(x) is empty.

Proof. Let x = (x1, x2) be an R-equilibrium. Suppose first that D1 (x)
is nonempty. Since by assumption (6) , I1≥ I4, party e may enter either to

10When z is equal either to x1 or x2, it represents the limit of “almost” vote-maximizing
positions of the entrant.
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the left of x1 or between x1 and x2.
(i). Suppose that party e enters to the left of x1, which will happen, only
if I1> I4. The entrant gains the support of almost I1 and wins the race, if
I1> I4 + I3. But then a move of player 2 to the left of x2 by a small ε would
still hold party e entering to the left of x1. Thus, the payoff of party 2 will
increase to π2(x1, x2− ε) = 1−F (α− ε

2
) > π2(x), while the support of party

1 will drop to F (α− ε
2
)− F (x1) < π1(x), a contradiction to the fact that x

is an R-equilibrium.
(ii). Suppose now that party e enters between x1 and x2, which will only
happen if z1 (x) > z2 (x) . Then D1(x) = (z1 (x) , z2 (x)), and party e maxi-
mizes its support over this interval. Thus, if any of the established parties
makes a “slight” move towards its competitor, party e would still enter “in
between” and, by Lemma 4.2 in Weber (1992), the party initiating the move,
will increase its support, a contradiction. Thus, D1 (x) is empty.
(iii). Consider now the case where the set D1 (x) is empty, whereas the set
D12 (x) consists of a unique element, x1. Indeed, the entrant cannot share
the first place by entering either to the left of x1 or to the right of x2. If
z1(x) ≤ z2(x), then there is no position between x1 and x2 that guarantees
the entrant the share of the first place. If z1(x) > z2(x), then, contrary to
our assumption, the set D1(x) is nonempty. Thus, the entrant selects her
position xe at x1 and we have 1

2
F (α) > F (1 − α) and x1 =

α
2
. Then let

party 2 can leapfrog to the immediate left of x1, thus, allowing the entrant
to move to the immediate right of x1. This move completely squeezes party
1, thus guaranteeing party 2 the sole possession of the second place, rather
than being the last before the move took place.
Proof of Proposition 3.1. Let a pair of strategies x = (x1, x2) be an

R-equilibrium. In the view of Lemma 6.3, it remains to show that the set
D2(x) is empty.
It suffices to demonstrate that I1 = I2 and I3 = I4 (Recall that I1 ≥ I4.)

Indeed, in this case, the same arguments as in the proof of Proposition 3.2
would yield the emptiness of the set D2(x).
Assume, in negation, that, at least, one of equalities I1 = I2 or I3 = I4

does not hold. There are several cases to consider.
1) I1> I2&I3≤ I4.
Lemma 6.1 implies that the entrant could not displace one of the established
parties by entering between x1 and x2. Depending on the relationship be-
tween I1, I2, I3 and I4, party e still may enter either to the left of x1 or to
the right of x2.
1a) I1> I4. Party e would enter to the left of x1, then x is not an R-
equilibrium by the same argument as in case (i) in Lemma 6.3.
1b) I1= I4> I3. Party e would enter with equal probability to the left of x1
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and to the right of x2: as both actions leads to being ranked as the second
with equal electoral support. Hence

π1(x) =
F (α)− F (x1)

2
+

F (α)

2
= F (α)− F (x1)

2
,

recall, α = x1+x2
2

. Then there exists ε > 0 such that a “slight” shift of party
1 to its left to x1− ε would force party e to enter to the right of x2, yielding
π1(x1 − ε, x2) = F (α − ε

2
) > π1(x), again a contradicting x being an R-

equilibrium.
1c) I1= I4= I3. Party e would enter to the left of x1, thus assuring the second
place and with support of almost I1. In this case π1(x) = F (α) − F (x1).
Then a move of party 1 to the left to x1 leads to an entry of party e to
the left of x2, leaving the entrant in the second place with a higher support.
Since the shift of party 1 can be chosen arbitrarily small, one can guarantee
that party e enters “very close” to x2. Thus, there exists ε > 0 such that
π1(x1 − ε, x2) > π1(x), a contradiction.
2) I1≥ I2, I3< I4. Could be examined in the same manner as the case 1).
3) I1< I2, I3≤ I4. Coupled with assumption (6) it implies I2> I4. Party e
would enter between x1 and x2. Indeed, by entering to the right of x1, it
could generate the support of “almost” I2 voters, thus assuring the second
place. On the other hand, outside of this region it could attract the support
of no more than I1 < I2 voters, which gives her the second rank at best with
less support. Moreover, since I4 ≥ I3, Lemma 6.1 implies that the entrant
is unable to attract more votes than party 2, by entering between x1 and
x2, so that Dm(x) = (x1, z

1(x)). Thus, the entrant should maximize the
electoral support on that interval. The payoffs of both players in game Γ will
be determined by:

π1(x) =

⎧⎨⎩
I1 if z = x1
F (x1+z (x)

2
) if z (x) ∈ Dm(x)

F (x1+z
1(x)
2

) if z (x) 6∈ Dm(x)

π2(x) =

⎧⎨⎩
I3 + I4 if z (x) = x1
1− F (x2+z (x)

2
) if z (x) ∈ Dm(x)

1− F (x2+z
1(x)
2

) if z (x) 6∈ Dm(x)

Suppose now that party 2 moves its position to x̄2, which is “slightly” to the
left of x2. This would shrink the set of potential “in between” entry positions
of party e, i.e., Dm(x1, x̄2) ⊂ Dm(x), as the aforementioned move of party
2 would shift y1 to the left by assumption (A.2) (combining (12) and (9)),
and therefore z1 (x1, x̄2) < z1 (x) . Thus, if z (x) ≥ z1(x), this move yields a
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higher payoff to party 2. If z (x) < z1(x), then Lemma 4.2 in Weber (1992)
implies that party 2 benefits from its move, a contradiction.
4) I1≥ I2, I3> I4. Could be examined in the same way as case 3).
The last case to be considered is:
5) I1< I2, I3> I4. Party e enters in the interval [x1, x2], as D (x) ⊂ [x1, x2]
in this case. By using the previous arguments, we have
Dm(x) = (x1, z

1(x))
S
(z2(x), x2), and, moreover, in the view of Lemma 6.3,

we are left with the case z1(x) ≤ z2(x).
If z (x) is either less than z1(x) or greater than z2(x), then the consideration
is the same as in the case (ii) of Lemma 6.3.
Assume, therefore, that z1(x) ≤ z (x) ≤ z2(x).
5a). Let us first consider the case of se(x; z1(x)) 6= se(x; z2(x)) and, without
loss of generality, se(x; z1(x)) > se(x; z2(x)). Thus, party e enters to the
left of z1 (x). Then, by moving to the left of x2, party 2 would increase its
support by forcing party e to shift its vote-maximizing position to the left
by Lemma 4.2 in Weber (1992).
5b). Let se(x; z1(x)) = se(x; z2(x)) and z (x) = z1 (x) = z2 (x) , and so
se(x; z∗(x)) = 1/3. and Dm(x) = (x1, z (x))

S
(z (x), x2). The best the en-

trant can do in this case is to displace one of the incumbents by entering as
close as possible to z (x), and, being indifferent between entering slightly to
the left of z1 (x) or to slightly the right of z2 (x), she chooses both actions
with equal probability.
Let us show that x is not a R- equilibrium. Take a “small” ε > 0 and con-
sider two alternative moves:
(ζ): Party 1 moves to the right to x

0
1 = x1 + ε. Denote xζ = (x

0
1, x2) ∈ R2.

(η): Party 2 moves to the left to x
0
2 = x2 − ε. Denote xη = (x1, x

0
2) ∈ R2.

First consider ζ. By assumption (A.2), there are z1ζ = z1(xζ) < z (x) < z2ζ =
z2(xζ), such that the set of possible entry positions of party e consists of two
disjoint intervals: Dm(xζ) = (x1, z

1
ζ )
S
(z2ζ , x2) ⊂ R. In this case, again, only

one of the established parties can be replaced, so provided party e can only
guarantee to be the second, it maximizes voters’ support. The best position
of party e under ζ, zζ = z (xζ), should by to the right of z (x) by Lemma 4.2
in Weber (1992). Therefore, zζ > z1ζ . If s

e(xζ ; z
1
ζ ) < se(xζ ; z

2
ζ ), the entrant

will replace party 2, thus benefiting party 1, a contradiction.
It is left to consider the case, in which se(xζ ; z

1
ζ ) ≥ se(xζ ; z

2
ζ ) after the move

of the first party. Note that the last inequality could be rewritten as

se(xζ ; z
1
ζ ) = F (y1(r − ε

2
)) ≥ 1− F (y2(r − ε

2
)) = se(xζ ; z

2
ζ ). (14)

The examination of the move η is similar. Again assumption (A.2) yields
the existence of z1η = z1(x1, x2) and z2η = z2(xη), such that Dm(xη) =
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(x1, z
1
η)
S
(z2η, x2). Again we assume that zη < z2η and se(xη; z

2
η) ≥ se(xη, z

1
η).

Thus we have

se(xη; z
2
η) = F (y1(r − ε

2
)) ≥ 1− F (y2(r − ε

2
)) = se(xη; z

1
η). (15)

Combining (14) and (15), we conclude that party e generates the support of
the same number of voters, denoted by s0, whenever it chooses one of the
following positions z1ζ or z

2
ζ under ζ and z1η or z

2
η under η. Note also that

since the functions y1(·) and y2(·) depend only on the distance between the
positions of the first two parties, the set of voters who pick z1ζ (z

2
ζ , respec-

tively) under ζ is the same as of those whose best choice z1η (z
2
η, respectively)

under η. Hence party 1 would be better off under ζ than under η, whereas
the opposite is true for party 2, i.e.,

π1(xζ) > π1(xη); π2(xη) > π2(xζ). (16)

As both moves generate the support of s0 voters for party e, we also have

π1(xζ) + π2(xζ) = π1(xη) + π2(xη) = 1− s0. (17)

Combining (16) and (17) we obtain π1(xζ) + π2(xη) > 1 − s0. However, by
Assumption (A.2), both moves ζ and η lead to a decline in support of party
e, i.e., s0 < 1

3
= se(x; z∗(x)). Thus

π1(xζ) + π2(xη) >
2

3

It follows, therefore, that, at least, one of the numbers π1(xζ) or π2(xη)
exceeds 1

3
, yielding either π1(xζ) > π1(x) or π2(xη) > π2(x). That is, at least

one of the established parties would benefit by deviating, a contradiction.
5c). Finally, let se(x; z1(x)) = se(x; z2(x)) with z1(x) < z2(x), in which
case party e enters with the equal probability to the left of z1(x) and to the
right of z2(x). But then the similar arguments as in the consideration of the
previous case show that x is not an R-equilibrium.

Proof of Proposition 3.3. By Proposition 3.2, there is a unique pair
of D-strategies strategies (xd1, xd2). Then, by (1) and (2), F (xd1) = 1

2
F (

xd1+x
d
2

2
)

and 1−F (xd2) =
1
2
(1−F (

xd1+x
d
2

2
)). Assume that (3) holds, i.e., F (x

d
1+x

d
2

2
) = 1

2
.

Then the payoff of each player in game Γ is equal to 1
2
. We shall show that if

one of the players would choose a different strategy, her payoff will decline.
Consider party 1. Suppose first that she moves to the right of xd1 by

choosing x1 > xd1. Since this move of party 1 shrinks the mass of voters
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located between the incumbents’ positions, party e could not displace an
established party by entering between x1 and xd2. Hence the entrant should
come either to the left of x1 or to the right of xd2. Since F (x1) >

1
4
= 1−F (xd2),

the optimal entrant’s move would be to the left and “very close” to x1. Then
the payoff of player 1 in game Γ would be less than F (xd2)−F (x1) < 1

2
. Thus,

player 1 would be worse off by moving to the right of xd1.
Suppose now that party 1 moves to the left of xd1 by choosing x1 < xd1.

Since the deviation of party 1 expands the mass of voters located between
the incumbents’ positions, party e could not displace an established party
by entering to the right of xd2. Moreover, by assumption (A.2) (and by
the argument analogous to that in Lemma 6.1), F (x1+x

d
2

2
) − F (x1) >

1
4
so

that party e could not displace party one, and, clearly, not the second party
whose support is over 1/2. Therefore, an entrant will not choose a platform
to the left of x1, either. Since, by Proposition 3.1, D(x1, xd2) is nonempty, the
entrant could displace one of the established parties by entering between x1
and xd2. Then the payoff of player 1 would be less than F (

x1+xd2
2
) < 1

2
making

her worse off. This completes the “if” part of the Proposition.
Suppose that (3) does not hold and assume, without loss of generality,

that F (xd1) < 1 − F (xd2). Choose δ > 0 such that F (xd1 + δ) < 1 − F (xd2)
and consider the move of party 1 to x1 = xd1 + δ. By entering between x1
and xd2, as well as by entering to the left of x1 the entrant would get less
than a quarter of the votes. However, by entering to the right and “very
close” to xd2, party e would displace party 2 and would receive more than
1/4 of the votes. Moreover, the support of the first party will increase,
π1(x

d
1 + δ, xd2) = F (

xd1+δ+x
d
2

2
) > F (

xd1+x
d
2

2
) = π1(x

d
1, x

d
2). Thus, the party which

gets less than 50% of the total vote in D-strategies would be better off by
moving towards its rival incumbent and allowing entry of the third party.
To conclude the proof of the proposition, note that by (1), (2), (3), the

pair (x1, x2) constitutes anR-equilibrium if and only if F (x1) = 1
4
, F (x2) = 3

4

and F (x1+x2
2
) = 1

2
.

Proof of Proposition 4.2. Let xd = (xd1, x
d
2) and x = (x̃1, x̃2) be R-

equilibrium and hierarchical equilibrium, respectively. Proposition 3.3 im-
plies that F (xd1) = 1 − F (xd2) =

1
4
. Moreover, in a hierarchical equilibrium,

the number of votes available for the entrant in three regions: to the left of
x̃1, between x̃1 and x̃2, and to the right of x̃2 is the same. That is,

F (x̃1) = sup
x̃1<y<x̃2

se(x, y) = 1− F (x̃2) (18)

Thus, F (x̃1) = 1 − F (x̃2) and, since the third party can enter “very” close
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to x̃1 and x̃2, it follows that

F (x̃1) ≥ F (
x̃2 + x̃1
2

)− F (x̃1)

1− F (x̃2) ≥ F (x̃2)− F (
x̃2 + x̃1
2

)

Furthermore, assumption (A.1) implies that at least one of these two in-
equalities is strict, yielding

F (x̃1) = 1− F (x̃2) >
1

4
. (19)

Thus, xd1 < x̃1 < x̃2 < xd2.

Proof of Proposition 4.5. Convexity of F and condition (18) imply
that

F (x̃1) = F (x̃2)− F (
x̃1 + x̃2
2

) = 1− F (x̃2) > F (
x̃1 + x̃2
2

)− F (x̃1),

yielding F (x̃1) > 1
4
. On the other hand, (1) and (2) yield F (xd2)−F (xd1) = 1

2
,

and together with convexity of the function F this gives rise to the following:

F (xd1) = F (
xd1 + xd2
2

)− F (xd1) < F (xd2)− F (
xd1 + xd2
2

) <
1

4
.

Hence xd1 < x̃1. Now consider the following equality

1− F (
x1 + x2
2

) = 2(1− F (x2)) (20)

which is satisfied for both pairs (xd1, x
d
2) and (x̃1, x̃2). Moreover, for each

x1 ∈ [0, 1] there exists a unique x2 = x2(x1) > x1 for which (6) is satisfied.
Furthermore, the function x2(·) is differentiable on the interval [0, 1]. Since
x2(x1) > x1, the convexity of F implies that

0 <
dx2
dx1

= −
−1
2
F 0(x1+x2

2
)

2F 0(x2)− 1
2
F 0(x1+x2

2
)
< 1.

Thus, the established inequality xd1 < x̃1 yields xd2 < x̃2 and x̃2−x̃1 < xd2−xd1.
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