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1 INTRODUCTION

Broadly speaking, any economic variable is indexed by time. When we say let yt be the observation at
time t, we are implicitly assuming that the economic variable y is observed at frequency t, that is every
t periods. The choice of the frequency is often given by economic arguments. But most of the times the
choice of the frequency is somehow subjective. For example, when studying financial returns, should
we consider daily returns, weekly or hourly?

The choice of the frequency influences the estimation results. Given the same economic or econo-
metric model, estimation results are different for each frequency. However, it is clear that the estimated
models for different frequencies should be related. A model for quarterly data should be related to a
model for annual data, as the latter is a temporal aggregation of the former along the year. Therefore,
not only the annual data is a function of the quarterly data, but also the annual model is a function of
the quarterly model. And the quarterly estimated model is richer, information wise, because the number
of observations used for estimation is four times larger than for the annual model. As a consequence,
it makes sense to think that the annual model should not be estimated from annual data but rather
inferred from the quarterly model.

The way in which these two models interact is the subject of this paper. In a univariate linear times
series context, that is dealing with ARIMA-GARCH models, we explain how to infer the temporally
aggregated model (at the low frequency) from the disaggregate one (at the high frequency). Temporal
aggregation has been extensively studied in the econometric literature since the last thirty-five years
and general conditions obtained in terms of order conditions (i.e. lag length), parameters estimation,
asymptotic behaviour, etc. A selected literature on the effect of temporal aggregation on model structure
includes Amemiya and Wu (1972), Brewer (1973), Wei (1978), Weiss (1984), Stram and Wei (1986),
Drost and Nijman (1993), among others. Nonetheless, to our knowledge, a complete and up-to-date
survey of the whole methodology is currently unavailable. For this reason, our aim is to present a unified
overview of temporal aggregation techniques for a broad class of univariate linear time series processes.
Given that ARIMA-GARCH models are the bread and butter of times series econometrics, analyzing,
understanding and summarizing the consequences of temporal aggregation on model structure and
parameters estimation is an issue of great theoretical and empirical relevance.

In a nutshell, deriving the low frequency model from the high frequency model involves two stages.
First, ARIMA-GARCH models are specified in terms of lag polynomials whose orders have to be chosen.
As we shall see, the technique of temporal aggregation permits to infer the orders of the low frequency
model (i.e. annual) from those of the high frequency model (i.e. quarterly). For instance, we can
answer to questions like: if the high frequency model is an ARMA(1,1), is the low frequency model an
ARMA(1,1) as well? If not, which one? Second, once the orders are inferred, we recover the parameters
of the low frequency model from the high frequency ones, rather than estimating them. Therefore, the
parameters of the low frequency model incorporate all the information content of the high frequency
data.

In general, the way in which variables aggregate may take different forms. There are indeed two
aggregation schemes that are often found in economics: stock and flow.1 Stock refers to aggregation
in which the low frequency random variable is the result of sampling every k periods from the high
frequency variable. For instance, annual observations may be obtained sampling every four periods
quarterly observations. Flow refers to aggregation in which the low frequency variable is the sum every
k periods of the high frequency variable. So that the annual observations are the sum of the quarterly
observations every four periods. Some down to earth examples. Rates and indexes, such as interest
rate, unemployment rate or CPI are stock variables. Direct economic measures, such as GDP, public
deficit or financial returns are examples of flow variables.

1They are also known as systematic sampling and temporal aggregation, respectively.
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The analysis of temporal aggregation starts up with the seminal article of Amemiya and Wu (1972).
It shows that, if the original data are generated by an AR model of order p, the non-overlapping tem-
porally aggregated sequence follows an AR model of order p with an MA residuals structure, regardless
the aggregation frequency. Tiao (1972) and Amemiya and Wu (1972) study the issue of information
loss due to incomplete sampling (i.e. sampling aggregate data instead than disaggregate data). In
their articles, these authors compare predictors based on complete and incomplete samples through the
variance of their prediction errors. They show that the optimal predictor built from the incomplete
sample performs remarkably well with respect to the optimal predictor built from the complete sample.
These findings are corroborated via numerical analysis.

Brewer, one year later, presents a generalization of the results obtained by Amemiya and Wu for
pure AR models to a wider class of models. He discusses flow and stock aggregation for ARMA models
with exogenous variables (called ARMAX models). Moreover, the important concept of stability under
loss of data is introduced: a model is stable, in this sense, if additional temporal aggregation delivers
a model with the same polynomial orders. In 1978, Wei derives the model structure for temporally
aggregated data assuming, as underlying process, a seasonal time series in disaggregate form. He shows
that, if the frequency of aggregation is the same as the seasonal frequency, the aggregate model reduces
to a model without seasonality.

All the contributions so far cited deal with stationary processes. Weiss (1984), on the contrary, dis-
cusses flow and stock aggregation schemes for ARIMA models, in terms of aggregate autoregressive and
moving average polynomial orders, once these schemes have been applied to the original disaggregate
process. Within the large literature on temporal aggregation for ARIMA processes, Stram and Wei
(1986) narrow their analysis focusing on the relationship between the autocovariance of the original dis-
aggregate series and its aggregate counterpart. Starting from the disaggregate autocovariance function,
they compute and explain the form of the aggregate autocovariance function.

More recently, Drost and Nijman (1993) derive the order conditions for temporally aggregated uni-
variate GARCH processes. They show that, in the univariate case, only the parameters of the process
followed by the flow variable depend on the disaggregate variable’s fourth moment, while in the stock
case there is dependence only up to the second moment. Thus, in this context, flow and stock aggre-
gation schemes produce different outcomes. These are relevant findings since, due to their simplicity,
GARCH models are nowadays widely used to represent the conditional volatility dynamics and to mimic
other important stylized features of financial data.

Finally, a note on three important topics that are intrinsically related to temporal aggregation. First,
since the seminal paper of Palm and Nijman (1984), a vast literature has analyzed the issue of unobserved
or missing endogenous variables. Harvey (1981) proposes a clear definition of missing observation: a
stock variable sampled less and less frequently with respect to its original model specification. The
definition of missing observation, therefore, is extremely close to the definition of stock variable. For
instance, moving from monthly to yearly frequency, yearly stock variables are observed, while monthly
stock variables are not. Under a different perspective, it may be assumed that the monthly observations
are missing, while the yearly ones are available. Then, it is necessary to compute the orders and the
parameters of the disaggregate model (i.e. monthly) starting from the aggregate one (i.e. annual),
estimated from the data. The whole subject is complicated by parameter identification issues that,
quite expectedly, arise. In this paper we assume that the high frequency model is known and, on this
basis, we infer the low frequency model. On the contrary, in a missing values context, the low frequency
model is known but the high frequency model, the one that generates the observations, is unobservable.
Therefore, while in this review we go from high to low frequency, the missing values approach goes from
low to high frequency. For an exhaustive compendium of these issues we refer to the already cited Palm
and Nijman (1984).

Second, temporal aggregation is not the only kind of aggregation. Many other economic phenomena
may be analyzed from a cross-section perspective. For instance, the European Central Bank is poten-
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tially interested in measuring and forecasting economic variables for the Euro area. And this area is
the sum, or the aggregation, of 15 countries. This scheme of aggregation, through individuals rather
than through time, is called contemporaneous aggregation. It occurs when the observed series is the
result of the sum of two or more individual series. As noted by Harvey (1981), if these individual series
are known to follow stationary ARMA processes, it is possible to investigate whether the aggregate
observed series follows an ARMA process, as well. The analogy between temporal aggregation and
contemporaneous aggregation is evident. We refer the reader to Lütkepohl (1984 and 1986), Granger
and Morris (1976) and Granger (1987, 1990), among others, for a thorough discussion.

Third, all the references quoted above assume that the high frequency model is either known or
correctly specified. That is, there is no model uncertainty.2 This immediately implies that the tempo-
rally aggregated model is also either known or correctly specified. Likewise, parameters are assumed
to be exactly known and therefore there is no parameters uncertainty. However, as far as the temporal
aggregation technique is concerned, parameters uncertainty is not an important issue as far as estimates
are consistent and the sample size is large enough. And consistency is always fulfilled, using pseudo
maximum likelihood arguments, as long as the model is either known or correctly specified.

To conclude, a comment on what we do not cover in this paper. Temporal aggregation of time
series is a very vast field and mainly any subject in times series analysis may be investigated under this
approach. In fact, the title of the article is very precise and already bounds the limits. Multivariate
models, nonlinearities, long memory, random aggregation, time continuous or state space representations
are issues that, though fascinating as they often show interesting features under temporal aggregation,3

are not discussed and are left to future research.4

The paper is organized as follows. Section 2 introduces the notation and the aggregation schemes.
Section 3 gives the intuitive foundations of the technique. Section 4 presents temporal aggregation for
the easiest times series model, the AR. Section 5 discusses temporal aggregation for ARMA models.
Section 6 is a summary of temporal aggregation for ARIMA models. Section 7 introduces seasonality
in ARIMA models. Section 8 deals with temporal aggregation of a general ARIMAX model. Section 9
states the order conditions for temporal aggregation of GARCH models and presents some well known
examples. Section 10 shows and empirical application based on macroeconomic data. Finally, our
conclusions and suggestions for further research are drawn in Section 11.

2 NOTATION AND AGGREGATION SCHEMES

Let yt, for t = 0, 1, 2, . . ., be an high frequency or disaggregate time series observed at time t. Sample
information for the low frequency or aggregate variable may be assumed to be available only every kth
period (k, 2k, 3k, . . .), where k is an integer value larger that one. In general, we define the aggregate

2By ’model’ we refer only the first two moments. Nowhere in the paper we assume some density for the error
term.

3For instance, spurious causality in temporally aggregated multivariate models, i.e. causality of the low
frequency multivariate GARCH process that is induced by temporal aggregation without any causal relationship
at the high frequency (see Hafner, 2004) or the impact of temporal aggregation on causal relations in vector
autoregressions (VARs) (see Breitung and Swanson, 2002).

4The book of Lütkepohl (1987) contains explanations and references concerning contemporaneous and tem-
poral aggregation for vector ARMA processes (VARMA), while Hafner and Rombouts (2003) discuss the perfor-
mance of various estimation techniques applied to temporally aggregated GARCH models. Random aggregation
techniques are presented by Jorda and Marcellino (2004) and Aranzana and Veredas (2005). Nonlinearities is-
sues are partly discussed in Proietti (2005) and Granger and Lee (1993). Links with time continuous models may
be found in Nelson (1990) and Drost and Werker (1996). Finally, a study of the consequences of aggregation on
long memory processes may be found in Granger (1980).
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variable as

y∗t =

A
∑

j=0

wjyt−j = W (L)yt. (1)

This is a linear combination of current and past values of yt, where W (L) =
∑A

j=0 wjL
j is a polynomial

or order A in the lag operator L that determines the type of aggregation mechanism. The weights wj ,
for j = 0, 1, . . . , A, are exactly known.

Equation (1) embeds two important cases.

1. Flow : A = k − 1 and wj = 1, for j = 0, . . . , A, or W (L) = 1 + L + . . . + Lk−1. The total flow
since the last observation is measured, and hence the flow denomination. The integer k represents
the temporal aggregation frequency or, equivalently, the order of aggregation. This means that
aggregation of yt variables is carried out over k periods. For instance, suppose that the observed
time unit t is monthly and k = 3. Then we get as an outcome quarterly sums of the monthly
realizations for yt variable. In general, y∗t =

∑k−1
j=0 L

jyt. Flow scheme is also called temporal
aggregation.

2. Stock : A = 0 and w0 = 1. The pattern of observations is known as skipped observations. This
time, the integer k represents the sampling frequency. If the observed time unit t is monthly and
k = 3, the yt variable is only observed every 3rd period. In general, y∗t = ykt. Stock scheme is
also called stock aggregation or systematic sampling.

Other cases may be covered by (1). For example:

1. Weighted averaging: wj =
χj

k
, for j = 0, . . . , k − 1. The weights are all different with predeter-

mined values (χj), but they are all divided by k. Typically, the sum of all the weights is equal to

one

(

k−1
∑

j=0

χj = 1

)

.

2. Phase averaging: wj = 1
k
, for j = 0, . . . , k − 1.

Flow and stock are the schemes more often found in economics. In the sequel, and for the sake of
clarity, we shall focus on the flow case, although references to the stock case will be made whenever it
helps to the understanding of the technique. Detailed results for the stock aggregation are relegated to
the Appendix.

An important remark: note that the general scheme in (1) for flow, phase averaging and weighted
averaging cases is a rolling sum. In other words, it is computed at every time t giving as result a sequence
of sums that overlap for each of the k − 1 periods. However, the aggregate series is not overlapped.
For instance, one year does not overlap with the next. To indicate the aggregate series, therefore, we
introduce another time scale, T , that runs in kt periods. So that t = 0, 1, 2, . . ., while T = 0, k, 2k, . . .,
as it is illustrated in Figure 1 for k = 12. Thus, we refer to the temporally aggregated series using the
notation y∗T = y∗kt.

[FIGURE 1 ABOUT HERE]

Finally, we assume that the disaggregate series, yt, follows a model of the type

φ(L)yt = θ(L)εt, (2)
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where t = 0, 1, 2, . . ., φ(L) and θ(L) are lag polynomials5 and εt is an error term with possible time
varying variance modelled via a GARCH model. Conversely, the temporally aggregated series, y∗T ,
follows the model

β(B)y∗T = η(B)ε∗T , (3)

where T = 0, k, 2k, . . ., β(B) and η(B) are aggregate lag polynomials6 and the operator B is in T time
units, running in kt periods. The variable ε∗T is an error term with possible time varying variance
modelled via a GARCH model.

3 INTUITION I: ONLY WORDS

For the sake of clarity, we suppose that the process is stationary with constant variance. If the aggregate
data (i.e. y∗T ) are a function (given by (1)) of the disaggregate data (i.e. yt), we can think that the
econometric model for y∗T , given by (3), is also a function of the model for yt, given by (2). This idea is
represented for monthly and temporally aggregated annual data in Figure 2. The natural question is:
how do these models link?

[FIGURE 2 ABOUT HERE]

In a univariate linear times series context, the expected value of yt is a linear combination of past
observations and past error terms. The number of lagged observations is given by the orders of the AR
and MA polynomials that, in turn, are determined by the autocovariance structure of yt. Once these
orders are recovered, we estimate the parameters (φ̂, θ̂) = (φ̂(y), θ̂(y)).

The expected value of y∗T is also a function of past values of y∗T and past values of ε∗T . However,
what differs now with respect to yt is that y∗T = y∗tk = W (L)ytk. That is, the aggregate data are
a function of the disaggregate data. Therefore the AR and MA aggregate polynomials orders are,
through y∗T , a function of the autocovariance structure of yt. And the estimated parameters as well,

(β̂, η̂) = (β̂(y), η̂(y)). Furthermore, following Fisher’s paradigm, the estimated parameters should be
such that they incorporate all the maximum information at the minimum cost. It means that all the
information content in the high frequency sample, yt, is in (φ̂, θ̂). And hence (β̂, η̂) = (β̂(φ̂, θ̂), η̂(φ̂, θ̂)):
the parameters of the aggregate model are a function of the parameters of the disaggregate model.

Three conclusions may be already extracted from the previous paragraphs. First, we do not only
aggregate data but we do also aggregate the model. In other words, the aggregate model is not estimated
but inferred from the disaggregate model. Here ’inferred’ has a twofold meaning: i) the lag structures
of the AR and MA polynomials and ii) the corresponding parameters. And the method is sequential,
first we derive the lag structures of the aggregate model and, subsequently, we infer its parameters.

Second, (φ, θ) are estimated with all the disaggregate observations. Thus, (β̂, η̂) = (β̂(φ̂, θ̂), η̂(φ̂, θ̂))
contains all the information of the high frequency sample. This definitely gives a more accurate estimate
of the parameters, in terms of consistency and efficiency, than if they would be estimated from y∗T ,

(β̂, η̂) = (β̂(y∗), η̂(y∗)), that has k times less observations. Moreover, and as we shall see, the function

(β̂(φ̂, θ̂), η̂(φ̂, θ̂)) is deterministic, meaning that no loss of information is incurred or no extra risk is
added.

Third, the use of this technique in practical applications implies that as soon as new disaggregate
observations are available the aggregate parameters can be updated. This is a very useful tool for

5So far not necessarily stationary. They may include unit roots.
6So far not necessarily stationary. They may include unit roots.
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situations where decisions are taken, say, annually, but information is available, for instance, monthly.
No need to wait to the end of the year to re-estimate the model. Along the year the annual model
may be updated as soon as monthly observations are released. And the updated model can be used for
monitoring and forecasting.7

In an ARMA context, the two models are linked via a polynomial, that we denote by T (L). This
polynomial is a function of the roots of φ(L) and of the aggregation scheme in (1). This function drives
us from one model to the other.

In general, the AR and MA polynomials of the disaggregate model expressed in terms of their roots
are multiplied by T (L): T (L)φ(L)yt = T (L)θ(L)εt. The resulting AR polynomial, T (L)φ(L), has roots
only divisible by Lk = B, the aggregate frequency. In this way yt is transformed into y∗T . Furthermore,
i) the order of the AR polynomial remains the same under temporal aggregation and ii) since T (L) is
a function of the inverted roots of φ(L), the roots of β(B) are the inverted roots of φ(L) powered by
k, the temporal aggregation frequency. Multiplying by T (L), in sum, the aggregate AR polynomial, its
parameters and y∗T appear naturally through a pure deterministic approach.

The aggregate AR part is the easiest one. The aggregate MA part, on the contrary, is more compli-
cated. It is calculated multiplying the disaggregate MA polynomial by the T (L) operator. Focusing on
the RHS of (3), T (L)θ(L)εt aggregates to η(B)ε∗T . The product T (L)θ(L) includes some AR compo-
nents, the aggregation scheme (they are both present in T (L)) and the MA part. We therefore end up
having two MA aggregate polynomials: i) the burdensome one, T (L)θ(L)εt, resulting from the product
of θ(L)εt by T (L), and ii) the simple one, η(B)ε∗T . Using some elementary deterministic rules, we
may infer the order of the aggregate MA polynomial, η(B), and its parameters. The trick consists in
equating the autocovariance structures of both MA polynomials, T (L)φ(L)εt and η(B)ε∗T . The result is
a system of equations with as many equations as unknowns, that can be easily solved. This corresponds
to a pure deterministic approach. Hence no extra risk is added and no information is lost.

When the process is not stationary, there is seasonality, exogenous variables or the variance of
the error term has GARCH effects the technique becomes slightly more difficult. Nevertheless, the
mechanism remains the same: there is always a polynomial function that links the two models. The
aggregate AR polynomial (both in the mean and in the variance) is inferred straightforwardly. The
MA structure is computed equating the autocovariance structures of the disaggregate and aggregate
models.

4 INTUITION II:MORE THAN WORDS

In this section we outline the econometrics of temporal aggregation for the most basic linear time series
models, namely pure autoregressive type models. The main reference is Amemiya and Wu (1972).

Let yt follow an AR(p) model
φ(L)yt = εt, (4)

where φ(L) = 1− φ1L− . . .− φpL
p is an autoregressive polynomial of order p, yt−i = Liyt is the value

of the yt variable lagged i periods and εt is an independent white noise error term with mean equal
zero and constant variance σ2

ε . Let δj , j = 1, . . . , p, be the inverted roots of φ(L) polynomial. They
are all assumed to lie inside the unit circle. Then, φ(L) may be factorized as φ(L) =

∏p
j=1 (1 − δjL).

Starting from this AR(p) model for yt, the following proposition shows how to derive the appropriate
specification for the temporally aggregated variable y∗T .

7See Moulin et al. (2004) for an application to French public deficit.
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Proposition 1 The temporal aggregation of yt as specified in model (4), denoted {y∗T , T ∈ Z}, may
be represented by an ARMA(p,r) process where r, the maximum order of the aggregate moving average
polynomial, is equal to

r =

⌊

(p+ 1)(k − 1)

k

⌋

, (5)

with bbc indicating the integer part of a real number b.

Proof. The proof fully stems from Amemiya and Wu (1972) and follows the intuitive guidelines
outlined in Section 3. Indeed, the link between the models for yt and y∗T is given by the polynomial
T (L). For the AR(p) process, it takes the following form:8

T (L) =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]

. (6)

A closer look to T (L) reveals that it has two parts. The first is a product of p terms, involving
the inverted roots of φ(L). The second component involves the ratio of two polynomials that equals
∑k−1

j=0 L
j , that is the temporal aggregation scheme. In sum, the polynomial T (L) has a component

that transforms the roots of φ(L) into the roots of β(B) and another component that accounts for the
aggregation scheme.

Multiplying both sides of (4) by T (L) we get

p
∏

j=1

[

1 − δk
jL

k
]

y∗t = T (L)εt, (7)

where y∗t is the temporally aggregated variable and with the temporal index t operating on the disag-

gregate time unit. Coming back to the ratio
p
∏

j=1

[(1 − δk
jL

k)(1 − δjL)−1], its denominator contains the

inverted roots of the AR polynomial and its numerator contains the same roots, but powered by the
aggregation frequency. The powers of the product T (L)φ(L), consequently, are only divisible by the
aggregation frequency. In other words, the only non-zero coefficients in T (L)φ(L) are those of powers of
L divisible by k and the AR order is unchanged by temporal aggregation. The aggregate AR parameters
are, simply, the disaggregate model inverted roots powered by the aggregation frequency

β(L)y∗T =

p
∏

j=1

[

1 − δk
jL

k
]

y∗T .

Following the only-words intuition, we now focus on the RHS of (7). It represents a moving average
structure. Developing, we have

T (L)εt =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

](

k−1
∑

i=0

Li

)

εt

=

p
∏

j=1

(

k−1
∑

i=0

δi
jL

i

)(

k−1
∑

i=0

Li

)

εt

=

p
∏

j=1

(

k−1
∑

i=0

δi
jL

i

)

ε∗t =

p
∏

j=0

(

k−1
∑

i=0

δi
jL

i

)

ε∗t ,

8The general form of this polynomial will be given when we shall introduce seasonality. So far we start with
the easiest form, adding terms as we add terms to the model.
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with δ0 = 0. This corresponds to a linear combination of aggregate error terms. More precisely, T (L)εt

is a moving average of order b(p+ 1)(k − 1)c. It is, however, expressed in terms of t rather than T . To
switch the time frequency and to get the appropriate order of η(B), we divide the order or T (L)θ(L)
by k. That is, the order of η(B) corresponds to bk−1(p+ 1)(k − 1)c. 2

Next, we infer the parameters of the temporally aggregated model. For the AR part, they can be
easily recovered as showed in (7). To compute the r parameters in η(B), plus the variance σ2

ε∗ , we equate

the autocovariance structures of η(B) and
∏p

j=0

(

∑k−1
i=0 δ

i
jL

i
)

ε∗t . Since these are MA polynomials, only

the variance and the r first autocovariances are different from zero. As the number of unknowns is also
r + 1, the problem consists in solving a system of equation with as many unknowns as equations.

Summarizing, an AR(p) process aggregates to an ARMA(p, r), with r = bk−1(p + 1)(k − 1)c. The
aggregate series follows an ARMA(p, r), that we can represent, letting B = Lk, as

p
∏

j=1

[

1 − δk
jB
]

y∗T = (1 + η1B + ...+ ηrB
r)ε∗T , (8)

or, more compactly, as

β(B)y∗T = η(B)ε∗T , (9)

where ε∗T process has zero mean and variance σ2
ε∗ .

In the remainder of the section we show, as an illustrative example, the easiest model that we can
encounter in time series, an AR(1), with the lowest aggregation frequency that we may have, k = 2.

4.1 An example: Parameters of an aggregate AR(1) model

Consider the following AR(1) model
(1 − φL)yt = εt, (10)

where εt is an independent white noise error term with zero mean and constant variance σ2
ε . Following

the content of Proposition 1, the model for y∗T is an ARMA(p, r), where r =
⌊

k−1(p+ 1)(k − 1)
⌋

. When
k = 2, this is equivalent to an ARMA(1,1)

(1 − βB)y∗T = (1 + ηB)ε∗T . (11)

The T (L) polynomial equals

T (L) =

[

1 − φ2L2

1 − φL

] [

1 − L2

1 − L

]

,

yielding the aggregate AR polynomial

T (L)(1 − φL)yt = (1 − φ2L2)y∗T = (1 − βB)y∗T .

As a consequence, the aggregate AR parameter β is simply the disaggregate model inverted root powered
by the aggregation frequency (k = 2), i.e. β = φ2. Hence, the AR order is unchanged by temporal
aggregation.

Regarding the MA part, we have:

T (L)εt = (1 + φL)ε∗t = (1 + φL)(1 + L)εt = εt + (1 + φ)εt−1 + φεt−2. (12)

9



To compute the aggregate MA parameters η and σ2
ε∗ , we equate the autocovariance structures of

(1+ηB)ε∗T and (12). The variance of (1+ηB)ε∗T is Γ0 =
(

1 + η2
)

σ2
ε∗ and the first-order autocovariance

is Γ1 = ησ2
ε∗ . Higher orders autocovariances are equal to zero. The variance of the model in (12) is

γ0 = (1+(1+φ)2+φ2)σ2
ε , while the first-order autocovariance is γ1 = φσ2

ε . Higher orders autocovariances
are null. This gives a system of two equations and two unknowns, Γ0 = γ0 and Γ1 = γ1, that is possible
to solve for the aggregate parameters η and σ2

ε∗

Γ0 = γ0 ⇒
(

1 + η2
)

σ2
ε∗ = (1 + (1 + φ)2 + φ2)σ2

ε ⇒ σ2
ε∗ =

(1 + (1 + φ)2 + φ2)σ2
ε

(1 + η2)
,

and

Γ1 = γ1 ⇒ ησ2
ε∗ = φσ2

ε ⇒ η =
φσ2

σ2
ε∗

=
φσ2

ε

(1+(1+φ)2+φ2)σ2
ε

(1+η2)

= (1 + η2)
φ

(1 + (1 + φ)2 + φ2)

= (1 + η2)ρ1,

where ρ1 is the autocorrelation coefficient of order one. Then, the system reduces to the following
second degree equation, of immediate solution:

η = (1 + η2)ρ1 = 0 ⇒ ρ1η
2 − η + ρ1 = 0 ⇒ η2 −

η

ρ1
+ 1 = 0.

In sum, the moving average aggregate parameters η and the aggregate variance σ2
ε∗ are a function of

the disaggregate AR inverted root φ and of the disaggregate variance σ2
ε .

5 ARMA MODELS: TEMPORAL AGGREGATION

Let us introduce a more general class of model specifications: ARMA. The underlying process for yt

variable follows an ARMA(p, q) model
φ(L)yt = θ(L)εt, (13)

where φ(L) = 1− φ1L− . . .− φpL
p and θ(L) = 1 + θ1L+ . . .+ θqL

q are the autoregressive and moving
average polynomials, of length p and q, respectively. The inverted roots of φ(L) and θ(L) are all inside
the unit circle and the same polynomials have no roots in common. The variable εt is an independent
white noise error term with mean equal to zero and constant variance σ2

ε .

Up to now we have introduced the polynomial T (L) as the cornerstone of the method. However,
we have not justified it. Where does it come from? Why does it take the form that it takes and not
another one? Why the aggregate AR parameters appear so easily while the MA are much more difficult
to calculate? It is now time to answer to these questions. As a matter of fact, Brewer (1973) provides
an interpretation of T (L) polynomial that we present in the sequel of the section for flow aggregation,
while a discussion on stock aggregation is deferred to Appendix A.1.

5.1 Aggregation of ARMA models: Order conditions

To obtain the aggregate model, each side of (13) has to be multiplied by T (L). The only non-zero
coefficients in the product T (L)φ(L) are those powers of L divisible by k. Consequently, the polynomial
T (L) must be such that the powers of the lag operator L appearing in the product T (L)φ(L) are all
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divisible by k. This requirement is expressed by Brewer in matrix form as:

T (L)φ(L) =





























1 0 ... 0
t1 1 ... 0
t2 t1 1 0
... ... ... ...
tp tp−1 ... 1
th th−1 ... th−p

0 th ... ...
0 0 th ...
0 0 0 th





































1
−φ1

...
−φp









=

































1
1
...
β1

β1

...
β2

β2

...
βs

































. (14)

A priori, the only known order is that of φ(L), (p+ 1)× 1. The orders of T (L) and β(L) depend on
h and s, respectively, that are unknown. We may however recover them as explained in what follows.
The matrix corresponding to the T (L) polynomial has size (p + h + 1) × (p + 1), while the matrix
corresponding to the AR polynomial φ(L) has size (p + 1) × 1. Hence, the product T (L)φ(L) has
dimension (p + h + 1) × 1. The RHS vector has size (s + 1)k × 1. A first restriction that helps us to
recover h and s is that the number of rows on both sides of (14) is identical

p+ h+ 1 = (s+ 1)k ⇒ p+ h+ 1 = sk + k. (15)

In addition, there are t1, t2, . . . , th unknown coefficients in the T (L) polynomial to match with (s +
1)(k − 1) equality conditions that have been imposed. On the RHS matrix, indeed, there are exactly
(s+ 1)(k − 1) equal coefficients. Therefore a second restriction is

h = (s+ 1)(k − 1) ⇒ h = sk + k − s− 1. (16)

Substituting (15) in (16), we get

h = p+ h+ 1 − s− 1 ⇒ s = p. (17)

Then, the order of the AR polynomial is unchanged after temporal aggregation (p = s).

Regarding the MA aggregate polynomial, T (L)θ(L), its order is h+q. Recall that h = (p+1)(k−1).
Hence h+q = (p+1)(k−1)+q. The autocovariance structure of order kr is E[T (L)θ(L)εtT (L)θ(L)εt−kr],
that is different from zero for kr ≤ (p + 1)(k − 1) + q or for r ≤ bk−1 ((p+ 1)(k − 1) + q)c. Thus, the
maximum aggregate MA order is r = bk−1 ((p+ 1)(k − 1) + q)c.

As example, consider the AR(1) model already introduced in subsection 4.1:

(1 − φL)yt = εt.

The temporal aggregation frequency, for simplicity, is still k = 2. In this case, the equation in matrix
form (14) reduces to









1 0
t1 1
t2 t1
0 t2









(

1
−φ

)

=









1
1
β1

β1









,

which is equivalent to the following system of three equations in three unknowns, t1, t2 and β1:






t1 − φ = 1 ⇒ t1 = 1 + φ
t2 − t1φ = β1

−t2φ = β1.
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Substituting t1 = 1 + φ inside t2 − t1φ = β1, we can solve the system by comparison:

β1

φ
+ φ+ φ2 = −β1 ⇒ β1 = φ2.

Thus, φ2 is the value of the aggregate AR parameter, as we already know.

All the results so far obtained for temporal aggregation of ARMA(p,q) processes are summarized
through the following proposition.

Proposition 2 The temporal aggregation of yt as specified in model (13), denoted {y∗T , T ∈ Z}, may
be represented by an ARMA(p,r) process where r, the maximum order of the aggregate moving average
polynomial, is

r =

⌊

(p+ 1)(k − 1) + q

k

⌋

. (18)

Proof. Multiplying both sides of (13) by the T (L) operator, we have

p
∏

j=1

[

1 − δk
jL

k
]

y∗t = T (L)





q
∑

j=0

θjL
j



 εt, (19)

with θ0 = 1. The AR part of the model is treated exactly in the same way as in the pure autoregressive
case. Regarding the disaggregate MA structure, the RHS of (19) may be expanded as

T (L)





q
∑

j=0

θjL
j



 εt =





p
∏

j=0

k−1
∑

i=0

δi
jL

i









q
∑

j=0

θjL
j



 εt.

Setting δ0 = 1, this is a MA structure of order (p+ 1)(k− 1) + q. Thus, the aggregate series follows an
ARMA(p, r) process, that we can represent, letting B = Lk, as

p
∏

j=1

[

1 − δk
jB
]

y∗T = (1 + η1B + ...+ ηrB
r)ε∗T ,

(20)

with
r = bk−1 ((p+ 1)(k − 1) + q)c.

2

5.2 An example: Parameters of an aggregate ARMA(1,1) model

As an illustration, let us focus on this disaggregate ARMA(1,1) model for the variable yt

(1 − φL)yt = (1 + θL)εt, (21)

where εt is an independent white noise error term with mean equal zero and constant variance σ2
ε .

Suppose now that the aggregation frequency is k = 3. This example is very likely to appear with
real data if, for example, the disaggregate model has monthly frequency and we aggregate every three
periods to get quarterly observations. Then the T (L) operator becomes:

T (L) =

[

1 − δ3L3

1 − δL

]





2
∑

j=0

Lj



 .
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Multiplying the model in (21) by T (L) we get:

[

1 − δ3L3
]

y∗t =

[

1 − δ3L3

1 − δL

]

(1 + θL)ε∗t . (22)

The AR component is of order one and the aggregate AR parameter is equal to δ3, i.e. the φ(L) inverted
root powered by the aggregation frequency. For the MA part, we develop the RHS of (22) as follows,
setting δ0 = 1

[

1 − δ3L3

1 − δL

]

(1 + θL)ε∗t

=





2
∑

j=0

δjLj



 (1 + θL)





2
∑

j=0

Ljεt





=
(

1 + (1 + δ + θ)L+ (1 + δ + δ2 + θ + θδ)L2

+ (δ + δ2 + θ + θδ + θδ2)L3 + (δ2 + θδ + θδ2)L4 + θδ2L5
)

εt, (23)

which is a MA polynomial of order (p+ 1)(k− 1) + q = (1 + 1)(3− 1) + 1 = 5. Therefore, the model in
(21) aggregates to an ARMA(1, r), where r = b3−1 (4 + 1)c = 1.

Let now B = Lk to operate on the aggregate time unit T . The temporal index T = 1, 3, 6, . . . is in
quarterly frequency. Then, the aggregate series in (23) may be represented by the process

(1 − βB)y∗T = (1 + ηB)ε∗T , (24)

where β = δ3.

To compute the low frequency parameters η and σ2
ε∗ , we equate the variance-covariance matrices of

εt and ε∗T variables. For the disaggregate model in (23)

γ0 = [1 + (1 + δ + θ)2 + (1 + δ + δ2 + θ + θδ)2 + (δ + δ2 + θ + θδ + θδ2)2

+(δ2 + θδ + θδ2)2 + (θδ2)2]σ2
ε

γ1 = [(δ + δ2 + θ + θδ + θδ2) + (1 + δ + θ)(δ2 + θδ + θδ2) + (1 + δ + δ2 + θ + θδ)(θδ2)]σ2
ε .

Note that, in real applications, the first step is to estimate the disaggregate ARMA model. Therefore,
γ0 and γ1 are known constants as they depend on estimated parameters. For the temporally aggregated
model in (24), Γ0 =

(

1 + η2
)

σ2
ε∗ and Γ1 = ησ2

ε∗ . To compute the unknown parameters η and σ2
ε∗ , we

must solve this elementary system in two equations in two unknowns

Γ0 = γ0 ⇒
(

1 + η2
)

σ2
ε∗ = γ0 ⇒ σ2

ε∗ =
γ0

(1 + η2)

Γ1 = γ1 ⇒ ησ2
ε∗ = γ1 ⇒ η =

γ1

σ2
ε∗

=
(

1 + η2
) γ1

γ0
=
(

1 + η2
)

ρ1.

The system above can be therefore reduced to this second degree equation

η =
(

1 + η2
)

ρ1 ⇒ ρ1η
2 − η + ρ1 = 0 ⇒ η2 −

η

ρ1
+ 1 = 0.

6 ARIMA MODELS: TEMPORAL AGGREGATION

In this section we make the further assumption that the data generating process is described by an
ARIMA model,

φ(L)(1 − L)dyt = θ(L)εt, (25)
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where φ(L), θ(L) are stationary polynomials in the lag operator L of lengths p and q, respectively,
εt is an independent white noise error term with zero mean and variance σ2

ε , while d is a real integer
denoting the order of integration. In the sequel we focus on flow aggregation. The stock case is deferred
to Appendix A.2.

Temporal aggregation for ARIMA models is very similar to temporal aggregation for ARMA models.
We only have to augment T (L) to account for unit roots:

T̄ (L) =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d+1

. (26)

Notice the difference with T (L) in (6), for the ARMA case. The second component is now powered by
d+1 instead of 1, where d is the integration order. In fact, (1−Lk)d(1−L)−d has a similar effect than
the AR component. Multiplying the disaggregate model by T (L) the high frequency unit roots vanish
and only (1 − Lk)d is left, i.e. a polynomial operating on T time units with d unit roots.

6.1 Aggregation of ARIMA models: Order conditions

We apply to model (25) a flow aggregation scheme. The proof stems from Weiss (1984). We do not
show how to compute the aggregate parameters since this is equivalent to the ARMA case.

Proposition 3 The temporal aggregation of yt as specified in model (25), denoted {y∗T , T ∈ Z}, may be
represented by an ARIMA(p,d,r) process where r, the maximum order of the aggregate moving average
polynomial, is

r =

⌊

p(k − 1) + (d+ 1)(k − 1) + q

k

⌋

. (27)

Proof. Consider the process in (25). Let δ1, δ2, . . . , δp be the reciprocals of the roots of φ(z) = 0
polynomial equation, assumed to lie inside the unit circle. We multiply each side of (25) by the
augmented T̄ (L) operator in (26), here below listed again,

T̄ (L) =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d+1

,

yielding

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

p
∏

j=1

[1 − δjL]

[

1 − Lk

1 − L

]d+1

(1 − L)dyt

=

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d+1




q
∑

j=0

θjL
j



 εt.

Simplifying on the LHS

p
∏

j=1

[

1 − δk
jL

k
](

1 − Lk
)d
y∗t =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d




q
∑

j=0

θjL
j









k−1
∑

j=0

Lj



 εt.

The LHS is an ARI(p, d) operating in time T . Manipulating further the sums on the RHS we end up
with

p
∏

j=1

[

1 − δk
jL

k
]

(1 − Lk)dy∗t =





p(k−1)+(d+1)(k−1)+q
∑

l=0

ξlL
l



 εt,
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where ξl (l = 0, . . . , p(k− 1) + (d+ 1)(k− 1) + q) is a function of δj (j = 1, . . . , p) and θj (j = 1, . . . , q).
The order of this latter polynomial in εt, on the RHS, is

bp(k − 1) + (d+ 1)(k − 1) + qc.

Thus, the aggregate series {y∗T , T ∈ Z} follows an ARIMA(p, d, r) process, that we can represent, letting
B = Lk, as

p
∏

j=1

[

1 − δk
jB
]

(1 −B)dy∗T = (1 + η1B + ...+ ηrB
r)ε∗T , (28)

with
r = k−1bp(k − 1) + (d+ 1)(k − 1) + qc.

2

Note that the ε∗T process is a white noise with zero mean and variance σ2
ε∗ . In addition, the moving

average parameters ηj and the aggregate variance σ2
ε∗ are functions of φj (j = 1, . . . , p), θj (j = 1, . . . , q)

and σ2
ε . The AR order is unchanged by temporal aggregation and the roots of the AR polynomial in

the aggregate series are the kth powers of the inverted roots of the AR polynomial in the disaggregate
series.

7 INTRODUCING SEASONALITY

Seasonality is present in many economic problems. One of the most well known examples are monthly
economic indicators such as industrial production of unemployment. In this section we analyze the
consequences of temporal aggregation in ARIMA models including seasonality.

Basically, it involves two issues: unit roots and dynamics. Seasonal movements may be non station-
ary and hence we may find unit roots at seasonal frequencies. What happens with the seasonal unit
roots when we aggregate is the first question to answer. But seasonality may also be autocorrelated.
We have, therefore, to analyze the consequences of temporal aggregation in the dynamics.

Temporal aggregation and seasonality are two terms that many times do not nicely harmonize. Some
examples: suppose that we start with monthly observations that include annual seasonal pattern. That
is, the time it takes to complete the seasonal cycle is one year. Suppose now that we compute quarters,
i.e. we aggregate every 3 periods. The new seasonality is of 4 periods and is still annual, that is it takes
one year to complete the seasonal cycle. But suppose now that we aggregate every 5 periods. Clearly,
as the original seasonality is annual, there is still some seasonal cycle, but which one? What is the time
it takes to complete the cycle? As we shall see, it takes 5 years. Therefore the aggregated seasonal
cycle is different to the original cycle. Nevertheless, it is very rare in economics to find processes that
aggregate to weird frequencies like in the example above. For instance, monthly observations almost
always aggregate to quarters or one year, for which the seasonal cycle remains the same.

When aggregating seasonal cycles we may distinguish three cases: when the aggregation frequency
is smaller than the cycle (e.g. we aggregate from monthly to quarterly), when it is the same (e.g. we
aggregate from monthly to annual) and when it is larger (e.g we aggregate from monthly to biannual). In
the first case, the temporally aggregated model still has some seasonal component. In the last two cases
seasonality vanishes. But then, what happens to the dynamics and the to unit roots when seasonality
vanishes? Everything becomes non seasonal. For instance, a seasonal AR(1) becomes a regular AR(1)
and a seasonal unit root becomes a regular unit root.

To deal with seasonality, we introduce a new polynomial, A(L), that has many similarities to T̄ (L).
In fact, A(L) is to the seasonal part of the model as T̄ (L) is to the non seasonal part. A(L) is the link
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between the seasonality of the high and low frequency models. As in T̄ (L), A(L) has two components:
one that deals with the dynamics and another that deals with the unit roots.

Due to the complex machinery that will be developed in the sequel of this section, we shall give
several easy examples that will enhance the understanding. Last, and as usual, we shall discuss the
method for flow aggregation. The stock aggregation case is deferred to Appendix A.3.

7.1 Intuition

Consider a general ARIMA(p, d, q) × (P,D,Q)s model for the variable yt

φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = θ(L)Θ(Ls)εt, (29)

where εt is an independent white noise error term with zero mean, variance σ2
ε . Standard regularity

conditions are fulfilled by assumption. Let Φ(Ls) = 1− . . .−ΦPL
Ps and Θ(Ls) = 1− . . .−ΘQL

Qs be
polynomials in the seasonal lag operator of length Ps and Qs, respectively. In addition, let τ s

1 , . . . , τ
s
P

be the reciprocals of the roots of the polynomial equation Φ(Ls), such that the factorization Φ(Ls) =
P
∏

i=1

[1 − (τiL)s] holds. In the disaggregate series, we indicate with k the aggregation frequency, with s

the seasonal frequency, with d the number of unit roots in levels and with D the number of unit roots
in seasonality.

The difference with respect to the previous ARIMA model in (25) is the presence of seasonal poly-
nomials. To account for this, we introduce a new operator, A(L),

A(L) =

P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

. (30)

As T̄ (L), it consists of two parts. The first includes the inverses of the roots of the seasonal autoregressive
polynomial. The second account for the seasonal unit roots. However, notice that A(L) does not include
the aggregation scheme, while T̄ (L) does. The reason is that instead than multiplying the high frequency
model in (29) by T̄ (L), we multiply it by T̄ (L)A(L), and the aggregation scheme is already embedded
in T̄ (L).

Another difference with T̄ (L) is given by s∗. It is the seasonal frequency of the temporally aggregated
process. As already explained in the introduction, s∗ may take weird values with lack of economic
meaning. Indeed s∗ depends on the original seasonal frequency, s, and on k. For instance, if the
disaggregate process is monthly with annual frequency (s = 12) and we aggregate it every 3 periods
(i.e. quarters), s∗ = 4, which has a very clear economic meaning. However, if we aggregate every five
periods, s∗ = 60 or 5 years. That is, the temporally aggregated process takes five years to end up a
cycle in the same month as the original process. The reason of this seasonal behaviour is that k = 5 is
not a multiple of s = 12. It means that within a year (i.e. 12 months) there is not an exact number of
aggregate periods, but it takes 5 year to have a 5 months period that ends up in a month multiple of
12.

Table 1 shows the cycle length of the temporally aggregated process when the original process
is monthly with annual frequency, s = 12. The same weird cycle for k = 5 also appears for k =
7, 8, 9, 10, 11. The trick is that these numbers are not multiples of 12 and hence it takes a long time to
complete a cycle at the same month as the monthly process.

[TABLE 1 ABOUT HERE]
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Two interesting cases are when k = 12 and k = 24. For k = 12, the aggregation frequency equals
the high frequency seasonal frequency, k = s. In this case seasonality vanishes. For k = 24 (or
k = 2s), seasonality also vanishes. This drives us to some important conclusions: if k < s there is still
some seasonality in the temporally aggregated process. If k is multiple of s the seasonal cycle remains
constant. If k is equal or larger than s seasonality vanishes.

7.2 Example I: No dynamics

The best way to grasp the meaning of these intuitions is to use a very simple model with no dynamics
and only unit roots:

(1 − L)d(1 − Ls)Dyt = εt. (31)

The polynomials A(L) and T̄ (L) are

T̄ (L) =

[

1 − Lk

1 − L

]d+1

A(L) =

[

1 − Lks∗

1 − Ls

]D

.

We multiply (31) by the product T̄ (L)A(L) and we only focus on the AR part of the model

[

1 − Lk

1 − L

]d+1 [
1 − Lks∗

1 − Ls

]D

(1 − L)d(1 − Ls)Dyt

= (1 − Lk)d(1 − Lks∗

)Dy∗t

= (1 −B)d(1 −Bs∗

)Dy∗T ,

which is basically the same model as in (31) but in aggregate frequency, in the sense that it keeps the
same structure, with the same number of regular and seasonal unit roots.

Following the last part of the previous subsection, notice what happens if k is a multiple of s. Then
s∗ = s/k is an integer and

A(L) =

[

1 − Lks∗

1 − Ls

]D

=

[

1 − Lk s
k

1 − Ls

]D

= 1.

Therefore, the polynomial that links the seasonality between the high and low frequency models becomes
equal to 1. But because y∗T has still some seasonal behaviour, we should have some seasonality in the
aggregate model. Indeed, if A(L) = 1:

[

1 − Lk

1 − L

]d+1

(1 − L)d(1 − Ls)Dyt

=

[

1 − Lk

1 − L

]d [
1 − Lk

1 − L

]

(1 − L)d(1 − Ls)Dyt

= (1 − Lk)d(1 − Ls)Dy∗t

= (1 − Lk)d(1 − Lks∗

)Dy∗t

= (1 −B)d(1 −Bs∗

)Dy∗T .

That is, we end up with the same model with no need of A(L). Let us now give some numbers
to k. Suppose that k = 5. The temporally aggregated model becomes (1 − L5)d(1 − L5×12)Dy∗T =
(1 − B)d(1 − B12)Dy∗T . Notice that B12 = L5×12 = L60 and 60 is the number of periods that the
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aggregate series takes for completing the seasonal cycle at the same month as yt. Suppose now that k
is a multiple of s, say k = 3. The model becomes (1−L3)d(1−L3×4)Dy∗t = (1−B)d(1−B4)Dy∗T . Note
that B4 = L12, that is the seasonal cycle of y∗T is the same as the cycle of yt.

Next, if k is larger or equal than s, we have seen that there is no seasonality left. Or s∗ = 1. Then

[

1 − Lk

1 − L

]d+1 [
1 − Lk

1 − Ls

]D

(1 − L)d(1 − Ls)Dyt

= (1 − Lk)d(1 − Lk)Dy∗t

= (1 − Lk)d+Dy∗t

= (1 −B)d+Dy∗T ,

which is a model without seasonal unit roots, or, in other words, the seasonal unit roots in the disag-
gregate model are now regular unit roots. This is because when the aggregation frequency is a multiple
of s, the seasonality at the low frequency vanishes. As a result, we still have the polynomial A(L) but
no seasonality in the aggregate series. Note that if k = s, k and s are both multiples of each other. It
means that A(L) = 1 and we get the result as above.

7.3 Flow variables with seasonality: Order conditions

After this intuitive explanation of temporal aggregation and seasonal models, we report, in the following
proposition, the orders of the aggregate AR and MA polynomials. The main reference is Weiss (1984).

Proposition 4 The temporal aggregation of yt as specified in model (29), denoted {y∗T , T ∈ Z}, may
be represented by an ARIMA(p, d, r) × (P,D,R)s∗ where r, the maximum order of the regular moving
average polynomial, is

r =

⌊

(p+ 1)(k − 1) + d(k − 1) + q

k

⌋

, (32)

while R, the maximum order of the seasonal moving average polynomial, is

R =

⌊

(P +D)s∗k + (Q− P −D)s

k

⌋

. (33)

Proof. Multiplying both sides of (29) by T̄ (L)A(L), we get:

T̄ (L)A(L)φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = T̄ (L)A(L)θ(L)Θ(Ls)εt.

Developing the LHS:

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d+1 P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

×

p
∏

i=1

[1 − δjL]

P
∏

i=1

[1 − (τiL)s](1 − L)d(1 − Ls)Dyt

= T̄ (L)A(L)θ(L)Θ(Ls)εt.

Which implies

p
∏

j=1

[1 − δk
jL

k]
P
∏

i=1

[1 − (τiL)ks∗

](1 − Lk)d(1 − Lks∗

)Dy∗t

= S̄(L)A(L)θ(L)Θ(Ls)ε∗t , (34)
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having defined

S̄(L) =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d

. (35)

Note that S̄(L) is very similar to T̄ (L) except for the aggregation scheme that is not present in S̄(L).
On the LHS of (34) we have obtained an ARI(p, d) × (P,D) process. To calculate the order of the
moving average part, S̄(L)A(L)θ(L)Θ(Ls)ε∗t , we develop the RHS of (34):

S̄(L)A(L)θ(L)Θ(Ls)ε∗t =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d

×

P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

θ(L)Θ(Ls)ε∗t . (36)

The order of the last polynomial in εt satisfies these equalities:

rk = d(k − 1) + p(k − 1) + (k − 1) + q,

Rk = (P +D)s∗k + (Q− P −D)s.

Thus, the temporally aggregated series {y∗T , T ∈ Z} follows an ARIMA(p, d, r) × (P,D,R)s∗ process
(s∗ = s/k), that we can represent letting B = Lk as:

p
∏

j=1

[

1 − δk
jB
]

P
∏

i=1

[

1 − τks∗

i Bs∗

]

(1 −B)d(1 −Bs∗

)Dy∗T

= (1 + η1B + ...+ ηrB
r)(1 + E1B + ...+ ERB

R)ε∗T . (37)

2

Notice that, whenever P = D = Q = 0 (no seasonality), equation (32) becomes r = k−1bp(k − 1) +
q+ (d+ 1)(k− 1)c, while R in (33) is null. Last, the derivations in this proof are slightly different from
those that may be found in Weiss (1984). The main reason being that Weiss (1984) does not compute
the maximum order R.

7.4 Example II: Some dynamics and aggregate parameters

Consider the well known Airline Model (Box, Jenkins, Reinsel, 1994)

(1 − L)(1 − L12)yt = (1 + θL)(1 + ΘL12)εt, (38)

where εt is an independent white noise error process with zero mean and variance σ2
ε . Within the same

aggregation context, this model has been studied by Koreisha and Fang (2004). We also consider the
same aggregation frequency, k = 3. The operators T̄ (L) and A(L) reduce to

T̄ (L) =

[

1 − L3

1 − L

]2

=

[

1 − L3

1 − L

]





2
∑

j=0

Lj





A(L) = 1,

as k is a multiple of s. Multiplying the model in (38) by T̄ (L)A(L), we get

(1 − L3)(1 − L12)y∗t =

[

1 − L3

1 − L

]

(1 + θL)(1 + ΘL12)ε∗t , (39)
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with the usual notation y∗t =

(

2
∑

j=0

yt−j

)

and ε∗t =

(

2
∑

j=0

εt−j

)

. Equation (39) may be simplified in:

(1 − L3)(1 − L12)y∗t =

(

2
∑

i=0

Li

)

(1 + θL)(1 + ΘL12)ε∗t . (40)

And, using equations (32) and (33), the aggregated model for y∗T corresponds to an ARIMA(0, 1, 1) ×
(0, 1, 1)4

(1 −B)(1 −B4)y∗T = (1 + η1B)(1 + E1B
4)ε∗T . (41)

We now compute the MA parameters (there are no AR parameters in this case). As usual, we
calculate the non-zero autocovariances9

γ0 = [19 + 32θ + 19θ2 + 19Θ2 + 32θΘ2 + 19θ2Θ2]σ2
ε

γ1 = [4 + 11θ + 4θ2 + 4Θ2 + 11θΘ2 + 4θ2Θ2]σ2
ε

γ3 = [4Θ + 11θΘ + 4θ2Θ]σ2
ε

γ4 = [19Θ + 32θΘ + 19θ2Θ]σ2
ε .

And for the model in (41)10

Γ0 = [1 + η2
1 + E2

1 + η2
1E

2
1 ]σ2

ε∗

Γ1 = [(1 + E2
1)η1]σ

2
ε∗

Γ3 = η1E1σ
2
ε∗

Γ4 = [(1 + η2
1)E1]σ

2
ε∗ .

It is immediately evident that Γ4 = [(1 + η2
1)E1]σ

2
ε∗ = E1σ

2
ε∗ + η1Γ3, hence Γ3 is nested inside Γ4 and

should not be considered. As a consequence, the reduced system above is composed by three equations
in three unknowns and it is exactly determined. Moreover, equating

γ1

γ3
=

1 + Θ2

Θ
=

Γ1

Γ3
=

1 + E2
1

E1
⇒ E1 = Θ1,

it comes out that E1 = Θ. This simplifies greatly the calculations. If E1 is known, the variance of y∗T
in model (41) reduces to Γ0 = (1 + η2

1)σ2
ε∗ . The first-order autocovariance is Γ1 = η1σ

2
ε∗ . Higher orders

autocovariances are all null. Coming to the model in (40), the variance is equal to

γ0 = (19 + 32θ + 19θ2)σ2
ε ,

while the first-order autocovariance is:

γ1 = (4 + 11θ + 4θ2)σ2
ε .

Higher order autocovariances are all null. The unknown aggregate parameters η1 and σ2
ε∗ may be

determined equating the variance-covariance structures of the models in (41) and in (40), as follows:

(19θ2 + 32θ + 19)σ2
ε = (1 + η2

1)σ2
ε∗

(4θ2 + 11θ + 4)σ2
ε = η1σ

2
ε∗ . (42)

Hence, given the monthly model in (38) and its corresponding estimated parameters θ, Θ and σ2
ε , it

is possible to solve the system in (42) to calculate the aggregate parameters of model (41), i.e. η1 and
σ2

ε∗ . In addition, the equality E1 = Θ holds.

9The autocovariance of order 5 is different from zero but equal to that of order 3. It is therefore redundant
and may be eliminated from the system.

10As before, the autocovariance of order 5 is different from zero but equal to that of order 3.
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8 TEMPORAL AGGREGATION OF ARIMAX MODELS

It happens very often in econometric models that an economic variable is not only explained by itself but
also by other variables, assumed to be exogenous and otherwise called explanatory (generally, they are
denoted by the letter x). In this section we study temporal aggregation when these explanatory variables
are present. For the sake of simplicity, we assume that only one exogenous variable is introduced in the
model and that there is no seasonality. Extensions to more than one variable are straightforward.

Four important clarifications before starting. First, at the beginning of the article we made the
distinction between different types of aggregation schemes, being stock and flow the most common in
economics. When the model includes explanatory variables, it may happen that its aggregation scheme
differs from the aggregation scheme of yt. Many possibilities are at hand but in order to introduce some
variety we assume that y is flow, as usual, while x is stock. Second, the new twist in complexity comes
by the fact that the explanatory variable, although exogenous, has its own ARIMA model. This means
that when we aggregate the model for y, the orders of the temporally aggregated model are going to
be a function of the orders of the model for x. But this also implies that we are going to get not only
one equation that defines the order of the aggregate MA polynomial (as we have done up to now), but
also one for the aggregate component of x. Third, we assume that x is observed at the high frequency.
This is an assumption that may not be fulfilled in real applications. For instance, if y is the monthly
industrial production series and x the GDP, this requirement is not met, since GDP is not observed
monthly. Nevertheless, there are plenty of economic applications where both y and x are observed at
all the frequencies. Last, Brewer (1973) carries out temporal aggregation for ARMAX models, but not
for integrated processes. Therefore, the proof in this section may be considered as novelty.

We consider an ARIMAX(p, d, q) model with complete lag structure in the errors and in the stock
exogenous variable:

φ(L)(1 − L)dyt = θ(L)εt + C(L)(1 − L)d̃xt, (43)

where φ(L) and θ(L) are the usual polynomials in the lag operator L of length p and q, respectively,
and εt is an independent white noise error term with mean zero and constant variance σ2

ε . Standard
regularity conditions are fulfilled. Let xt be a stock exogenous variable and let C(L) be its associated
polynomial of length m. The underlying assumption is that xt follows an ARIMA(v, d̃, w) process

D(L)(1 − L)d̃xt = F (L)ut, (44)

where D(L) and F (L) are polynomials of length v and w, respectively, d̃ is the integration order and
ut has mean zero, variance σ2

u and is independent by εt.

The problem consists in performing temporal aggregation of the ARIMAX model in (43) with a
stock exogenous variable obeying (44). The following proposition gives the order conditions and the
number of past lags of x in the temporally aggregated model. The proof is slightly different from the
previous ones because of the presence of x. Indeed, due to the temporal aggregation mechanism, some of
the x are unobserved in the temporally aggregated specification. This problem is overcome expressing
the unobserved x terms as a function of their own past, using their own model (44). This is done,
concretely, applying to (44) an operator that shares many similarities with T (L).

Proposition 5 With the ARIMAX(p,d,q) model specified in (43) and with the stock exogenous variable
following (44), the temporally aggregated series of yt, denoted {y∗T , T ∈ Z}, may be represented by an
ARIMAX(p,d,r) where r, the maximum aggregate moving average order, is the greater of

⌊

k−1[(p+ d+ 1)(k − 1) + q]
⌋

and
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+
⌊

k−1[(v + d̃)(k − 1) + w]
⌋

, (45)
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while the maximum order of the independent stock exogenous variable is

⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+ v + d̃. (46)

Proof. First, we apply the temporal aggregation operator T̄ (L) in (26) to both sides of (43),
obtaining

T̄ (L)φ(L)(1 − L)dyt = T̄ (L)θ(L)εt + T̄ (L)C(L)(1 − L)d̃xt. (47)

Equation (47) may be rewritten as

p
∏

j=1

[

1 − δk
jL

k
] (

1 − Lk
)d
y∗t = S̄(L)θ(L)ε∗t + T̄ (L)C(L)(1 − L)d̃xt. (48)

The treatment for the AR part is identical to the pure ARIMA model (see Proposition 3). In particular,
the aggregate autoregressive order remains equal to p.

Let us therefore focus on the stock exogenous variable, i.e. on the T̄ (L)C(L)(1−L)d̃xt term, whose
polynomial length is [(p+d+1)(k−1)+m+d̃] = [(p+d+1)k+(m+d̃−p−d−1)] = [(p+d+1)k+j] = [ik+j],
with j = (m+ d̃−p−d−1) and i an integer number. Hence, in (48), there are terms such as (. . .)xt−ik−j

(with 0 < j < k), i.e. some of the xt are unobserved in the temporally aggregated specification. In
other words, because of the different lag lengths of C(L) and φ(L), there are lags of x in the temporally
aggregated model that are not divisible by the aggregation frequency, i.e. they are in between t − k
and t− (k − 1). And these terms are given by the temporal location of the unobserved values (Brewer,
1973), i.e. they are a function of j.

Model (44) has to be used to express these unobserved terms as a function of the observed terms
of the same variable and random innovations ut (the errors of the model in x), that can be absorbed
inside the MA part of the temporally aggregated model. To do this, we filter both sides of (44) with

the operator P̄ (L) = P (L)
[

1−Lk

1−L

]d̃

, of generic length g + d̃(k − 1), obtaining

P (L)

[

1 − Lk

1 − L

]d̃

D(L)(1 − L)d̃xt = P (L)

[

1 − Lk

1 − L

]d̃

F (L)ut

⇒ P (L)D(L)(1 − Lk)d̃xt = P (L)

[

1 − Lk

1 − L

]d̃

F (L)ut. (49)

The only non-zero coefficients in the product P (L)D(L) on the LHS of (49) are those corresponding to
Lk−j , L2k−j , . . ., Lsk−j lag operators: indeed, i) the stock scheme is applied to the exogenous variable
xt (i.e. Lsk) and ii) some of the xt are unobserved in the temporally aggregated specification (i.e. L−j).
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This requirement is expressed by Brewer (1973) in matrix form as:





























1 0 ... 0
p1 1 ... 0
p2 p1 1 0
... ... ... ...
pv ... ... 1
pg ... ... ...
0 pg ... ...
0 0 pg ...
0 0 0 pg





































1
−d1

...
−dv









=













































1
0
...
0

d∗k−j

0
...
0

d∗2k−j

0
...
0

d∗sk−j













































. (50)

To recover the unknown orders g (i.e. generic length of the operator P (L)) and s (i.e. AR polynomial
length in the aggregate series) as a function of k (i.e. aggregation frequency) and v (i.e. AR polynomial
length in the disaggregate series), we proceed equating the number of rows on both sides of (50)11

1 + v + g = 1 + sk − j, (51)

and equating the number of unknown coefficients in P (L) with the s(k − 1) − j equality restrictions
that have been implicitly imposed on the RHS vector of (50):

g = s(k − 1) − j. (52)

Solving this system of two equations brings to:

s = v

g = v(k − 1) − j.

Therefore, the order of the aggregate AR polynomial for the stock exogenous variable (1 − L)d̃xt

is unchanged after temporal aggregation (i.e. s = v). In addition, the generic length of the P (L)
polynomial used to filter equation (49), g = v(k − 1) − j, depends by the temporal location of the
unobserved value, i.e. it is a function of j.

Once the length of the polynomial P (L) is determined, we come back to P (L)D(L)(1 − Lk)d̃xt, on

the LHS of (49). The earliest observed value of the independent variable (1 − Lk)d̃xt is

(1 − Lk)d̃xt−ik−j−g−v = (1 − Lk)d̃xt−ik−j−v(k−1)+j−v = (1 − Lk)d̃xt−(i+v)k, (53)

a quantity which is independent by the temporal location of the unobserved value, i.e. it is not a
function of j. This means that, after filtering (49) with the operator P̄ (L), we are able to express

the unobserved value of (1 − Lk)d̃xt−ik−j as a function of (1 − Lk)d̃xt−(i+1)k, (1 − Lk)d̃xt−(i+2)k, . . ..

Equation (53) is still valid if we replace the generic integer i with
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

,

which is the length of T̄ (L)C(L)(1 − L)d̃xt term in (48):

(1 − Lk)d̃x
t−bk−1[(p+d+1)(k−1)+m+d̃]ck−vk

.

11We are following an identical procedure to the one in Section 5.1.
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As a direct consequence, the earliest observed value of the independent variable xt is

x
t−bk−1[(p+d+1)(k−1)+m−1+d̃]ck−vk−d̃k

, (54)

and the maximum lag on the independent variable is
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+ v+ d̃, as

indicated in (46).

Finally, we come back to the MA part, i.e. P (L)
[

1−Lk

1−L

]d̃

F (L)ut, on the RHS of (49). Its polynomial

order is g + d̃(k − 1) +w = v(k − 1) − j + d̃(k − 1) +w = (v + d̃)(k − 1) +w − j. The earliest relevant

u-value corresponding to (1 − Lk)d̃xt−ik−vk is:

ut−ik−j−g−w = ut−ik−j−(v+d̃)(k−1)+j−w = ut−ik−[(v+d̃)(k−1)+w].

Replacing the generic integer i with
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

, we end up with:

ut−ik−[(v+d̃)(k−1)+w] = u
t−bk−1[(p+d+1)(k−1)+m−1+d̃]ck−[(v+d̃)(k−1)+w]. (55)

Therefore, we conclude that the moving average order is the larger between
⌊

k−1[(p+ d+ 1)(k − 1) + q]
⌋

and
⌊

k−1[(p+ d+ 1)(k − 1) +m− 1 + d̃]
⌋

+
⌊

k−1[(v + d̃)(k − 1) + w]
⌋

, as reported in (45). 2

9 TEMPORAL AGGREGATION OF GARCH MODELS

In this section we review the main results on temporal aggregation of univariate ARMA-GARCH models,
that have been widely used to explain conditional heteroskedasticity of financial time series. As the
main subject of the section is the time-varying variance, we rely on a simple ARMA model although
extensions to ARIMA models with seasonality and/or exogenous variables are straightforward.

The issue of temporal aggregation in financial time series is of great importance. In other fields
of economics, practice and theory tell us about the optimal sampling frequency. Months, quarters or
years seem to be the most used ones. However, in financial markets such an a priori optimal frequency
does not exist. Investment bankers may argue that the optimal frequency is a month, if not a quarter,
mutual fund managers are ultimately interested in weekly data and hedge fund managers think in daily,
if not intra-daily, basis.

An ARMA(p, q)-GARCH(P,Q) model is defined as

φ(L)yt = θ(L)εt, εt ∼ D(0, ht)

ht = ψ +

P
∑

i=1

biht−i +

Q
∑

i=1

aiε
2
t−i. (56)

where {εt, t ∈ Z} is a sequence of stationary errors with finite fourth moments and φ(L) and θ(L) are
stationary autoregressive and moving average polynomials of length p and q, respectively. Stationarity
condition for the GARCH model is

∑P
i=1 bi +

∑Q
i=1 ai < 1. The GARCH model can be rewritten as

b(L)ht = ψ + [a(L) − 1]ε2t , (57)

where a(L) = 1 +
∑Q

i=1 aiL
i and b(L) = 1 −

∑P
i=1 biL

i. The polynomials b(L) and b(L) + 1 − a(L) are
assumed to be invertible and to have roots outside the unit circle.
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As a difference with the previous sections, a new concept has to be introduced here: closeness.12

Closeness is a broad term in econometrics. In the aggregation setting it means that when aggregating
the model remains the same. But what does the model remains the same mean? Does it mean that the
distribution remain the same? Or does it mean that the lag orders remain the same? Or, furthermore,
does it mean that errors remain uncorrelated under aggregation? Drost and Nijman (1993) introduce
three definitions of GARCH models (strong, semi-strong and weak) and show that only one (weak)
remains closed under temporal aggregation. In a nutshell, strong GARCH means that errors, standard-
ized by the conditional standard deviation, are i.i.d with zero mean and unit variance. Semi-strong
GARCH goes down to the first two moments, and it defines a GARCH model as a martingale difference
sequence, i.e. conditional mean equal to zero and variance equal to the GARCH model. Weak GARCH
goes even further down in the requirements and it needs only that differences between expected and
realized first and second moments of the residuals are uncorrelated.13

Drost and Nijman (1993) show that only weak GARCH models are closed under temporal aggrega-
tion. That is, when going from yt to y∗T the distribution may change or ε∗T may not be a martingale
difference sequence anymore but differences between realized and expected values are uncorrelated.
This idea is defined in what follows.

Definition 1 We define the sequence {εt, t ∈ Z} to be generated by a symmetric weak GARCH error
process if εt variables are uncorrelated and if ψ, a(L) and b(L) can be chosen such that

P [εt|εt−1, εt−2, . . .] = 0

P [ε2t |εt−1, εt−2, . . .] = ht, (58)

where P [xt|εt−1, εt−2, . . .] represents the best linear predictor in terms of 1, εt−1, εt−2, . . ., ε
2
t−1, ε

2
t−2,

. . .. That is,
E (xt − P [xt|εt−1, εt−2, . . .]) ε

r
t−i = 0 for i ≥ 1 and r = 0, 1, 2.

Therefore, a GARCH model is weak if the expected difference between the realized and the projected
value is orthogonal, up to the second moment, with the realized value.

We now show and proof that ARMA-GARCH models with weak GARCH errors are closed under
temporal aggregation in the sense defined earlier. The proof is structured in two steps. The first step
is as usual, inferring the aggregate conditional mean (i.e. the ARMA part of the model) from the
high frequency one. The second step deals with the variance. The GARCH model is defined on the
variance of the residuals and hence treatment is slightly different from the conditional mean - though it
resembles. The proof for the second moment starts rewriting the GARCH models as an ARMA model.
Then, following the logic of the previous sections, an operator is applied to the transformed model.
However, this operator differs from all the others. It differs because the GARCH model is not on y∗T
but on ε∗T . We present the order conditions for the flow case, relegating the stock case to Appendix
A.4.

Next proposition deals with the orders of the aggregate GARCH model, nothing being said about
the parameters. Subsection 9.2 explains how to obtain the parameters in the case of stock aggregation
for a GARCH(1,1) with k = 2. It actually replicates Example 1 of Drost and Nijman (1993).

12This sentence lacks of rigor but we hope that the reader will forgive us. Closeness is not a concept related
to the aggregation of GARCH models but much more general, that can also be applied to ARIMA models.
However, for the ease of the exposition, and because it was not strictly needed, we preferred not to introduce it
earlier.

13This third definition will become clearer shortly.
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Proposition 6 The temporal aggregation of yt as specified in (56), denoted {y∗T , T ∈ Z}, may be rep-
resented by an ARMA(p,r) with weak GARCH(R,R) errors where

r =

⌊

(p+ 1)(k − 1) + q

k

⌋

R = r̃ +
1

2
r(r + 1),

and with r̃ = max(P,Q).

Proof. In the first step, the ARMA part fully mimics the proof for ARMA with constant variance.
That is, we multiply φ(L)yt = θ(L)εt by

T (L) =

p
∏

i=1

[

1 − δk
i L

k

1 − δiL

] [

1 − Lk

1 − L

]

,

where, as usual, δi, i = 1, . . . , p represent the inverted roots of φ(L) polynomial, assumed to be station-
ary. This gives

p
∏

i=1

(1 − δk
i L

k)y∗t = T (L)θ(L)εt.

And we know that this model corresponds to an ARMA(p,r) in aggregate time units,

β(B)y∗T = η(B)ε∗T ,

with r =
⌊

(p+1)(k−1)+q

k

⌋

.

In the second step, we infer the GARCH structure for ε∗T taking into account that it actually derives
from T (L)θ(L)εt. To do this, we first express the GARCH model (57) as an ARMA. Let ιt = ε2t − ht.
Substituting in (57) we get (1 − a(L) + b(L))ε2t = ψ + b(L)ιt. Or, equivalently,

C(L)ε2t = ψ + b(L)ιt, (59)

where C(L) = 1−a(L)+b(L) is a polynomial of order r̃ = max(P,Q) and b(L) is of order P . Moreover,

we may write C(L) in terms of its inverted roots, i.e. C(L) =
r̃
∏

i=1

(1 − ζiL). This is the GARCH

model for the high frequency data. We are interested in the corresponding GARCH model for the low
frequency data.

To link both models we use two polynomials that share certain similarities with T (L). The first one,

T̂ (L) =

r̃
∏

i=1

[

1 − ζk
i L

k

1 − ζiL

]

,

simply allows to recover the aggregate AR parameters in (59). The covariance structures of η(B)ε∗T and
T (L)θ(L)εt are the same and, as a consequence, η(Lk)ε∗T = T (L)θ(L)εt or ε∗T = η(Lk)−1T (L)θ(L)εt,
for all t multiple of k. In addition, note that ε∗T = η(Lk)−1T (L)θ(L)εt = Ψ(L)εt is an uncorrelated
sequence where Ψ(L) = η(Lk)−1T (L)θ(L) is a polynomial of infinite order. But, obviously, we need a
finite polynomial structure for εt. Therefore, as a second polynomial, we define the finite sum of squares

Ψ2(L) =

k−1
∑

i=0

ψ2
iL

i.
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Then we multiply (59) by the product of T̂ (L) times Ψ2(L). This product of polynomials constitutes
the link between the two error terms and hence links the GARCH models for εt and ε∗T , delivering

r̃
∏

i=1

[

1 − ζk
i L

k
]

Ψ2(L)ε2t = T̂ (1)Ψ2(1)ψ + T̂ (L)b(L)Ψ2(L)ιt. (60)

Since (ε∗T )2 = (Ψ(L)εt)
2

for all t multiple of k, (60) can be rewritten in terms of (ε∗T )2,

r̃
∏

i=1

[

1 − ζk
i L

k
]

(ε∗T )2 = T̂ (1)Ψ2(1)ψ+ T̂ (L)b(L)Ψ2(L)ιt +
r̃
∏

i=1

[

1 − ζk
i L

k
]

(

(Ψ(L)εt)
2
− Ψ2(L)ε2t

)

. (61)

In (61) we already have a GARCH structure for the low frequency model. The LHS is an AR polynomial
of order r̃, while the second and third terms on the RHS determine the MA part. We remark that
(

(Ψ(L)εt)
2
− Ψ2(L)ε2t

)

has only εt−iεt−j , i 6= j terms, as the ε2t in (Ψ(L)εt)
2

vanish with those of

Ψ2(L)ε2t . Hence the second and third terms on the RHS are uncorrelated, since ηt and εt−iεt−j are
uncorrelated by assumption (∀i 6= j ∈ Z). We now have to find the order of this MA structure.

However, due to the presence of (Ψ(L)εt)
2
, the MA structure on the RHS is not finite. To obtain a

finite structure it is necessary to multiply (61) by another polynomial.

The polynomial η(Lk)Ψ(L)εt = η(Lk)η(Lk)−1T (L)θ(L)εt = T (L)θ(L)εt is finite and of order (p +
1)(k − 1) + q. Therefore

r
∑

j=0

ηjψi−jk = 0, for i > (p+ 1)(k − 1) + q. (62)

This difference equation in ψ of order r =
⌊

(p+1)(k−1)+q

k

⌋

determines a difference equation in ψ2 of

order 1
2r(r + 1), of the type

1

2
r(r+1)
∑

j=0

ψ̃jψ
2
i−jk = 0, for i > (p+ 1)(k − 1) + q +

1

2
kr(r − 1).

Defining Ψ̃(Lk) =
∑

1

2
r(r+1)

i=0 ψ̃iL
ik, we can observe that Ψ̃(Lk)Ψ2(L) is a polynomial of finite order

(p+ 1)(k − 1) + q + 1
2kr(r − 1).

Multiplying (61) by Ψ̃(Lk) yields

Ψ̃(Lk)

r̃
∏

i=1

[

1 − ζk
i L

k
]

(ε∗T )2 = Ψ̃(1)T̂ (1)Ψ2(1)ψ +

Ψ̃(Lk)T̂ (L)b(L)Ψ2(L)ιt + Ψ̃(Lk)

r̃
∏

i=1

[

1 − ζk
i L

k
]

(

(Ψ(L)εt)
2
− Ψ2(L)ε2t

)

. (63)

The AR polynomial, Ψ̃(Lk)
r̃
∏

i=1

[

1 − ζk
i L

k
]

, is of order R = kr̃ + 1
2kr(r + 1) in the high frequency

time units. The first polynomial of the MA component, Ψ̃(Lk)T̂ (L)b(L)Ψ2(L), is of order

(k − 1)r̃ + P + (p+ 1)(k − 1) + q +
1

2
kr(r − 1). (64)

And the order of the last MA polynomial (acting on εt−iεt−j , i 6= j) is

kr̃ + (p+ 1)(k − 1) + q +
1

2
kr(r − 1). (65)
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These last two orders are very similar except for (k−1)r̃+P and kr̃. Notice as well that r̃ ≥ P because
r̃ = max(P,Q), implying that (k− 1)r̃+P ≤ kr̃. Therefore, the maximum order of the MA polynomial

is given by (65). Furthermore, since r =
⌊

(p+1)(k−1)+q

k

⌋

, we have q = kr − (p+ 1)(k − 1). Substituting

in (65) yields

kr̃ +
1

2
kr(r + 1). (66)

We have thus shown that the maximum order of the MA polynomial in the low frequency model is
R = r̃ + 1

2r(r + 1). 2

9.1 Aggregation of ARMA(1,1)-GARCH(1,1): Order conditions

We perform temporal aggregation of an ARMA(1,1)-GARCH(1,1) model satisfying

(1 − φL)yt = (1 + θL)εt, εt ∼ D(0, ht) (67)

ht = ψ + bht−1 + aε2t−1. (68)

We take for simplicity k = 2. We focus on the order conditions given in Proposition 6, with the aim of
providing an illustration.

The low frequency mean equation is derived substituting the temporal aggregation of (67) into itself,
i.e.

y∗t = φ2y∗t−2 + ω∗

t ,

where ω∗

t = ε∗t + (φ + θ)ε∗t−1 + φθε∗t−2 = (1 + φθL2)ε∗t + (φ + θ)ε∗t−1. We note that E(ω∗

t ω
∗

t−2j) = 0,
∀j > 1, implying that the low frequency mean equation is also an ARMA(1,1). Regarding the moving

average part, we let η be a solution of the system η
1+η2 =

E(ω∗

t ω∗

t−2
)

E((ω∗

t )2) . Then the aggregate ARMA(1,1)

model can be explicitly expressed as

y∗t = βy∗t−2 + ε∗t + ηε∗t−2.

The aggregate autoregressive parameter is β = φ2. Note that the low frequency parameters β and η
have replaced the high frequency parameters φ and θ.

We now have to derive the variance equation, similarly to (68). Let us express the GARCH(1,1) in
(68) as an ARMA(1,1) model, setting ιt = ε2t − ht,

ε2t = ψ + (a+ b)ε2t−1 + ιt − bιt−1.

Substituting the complete expression for ε2t−1 inside itself,

[1 − (a+ b)2L2]ε2t = (1 + a+ b)ψ + [1 + aL− b(a+ b)L2]ιt. (69)

We let Ψ2(L) =
∑1

i=0 ψ
2
iL

i, and we observe that (1 − (a+ b)2L2)Ψ2(L) is a polynomial of order 3.

Then, multiplying (69) by Ψ2(L) and rearranging,

[1 − (a+ b)2L2](ε∗T )2 = Ψ2(1)(1 + b+ a)ψ + [1 + aL− b(a+ b)L2]Ψ2(L)ιt

+[1 − (a+ b)2L2]
(

(Ψ(L)εt)
2 − Ψ2(L)ε2t )

)

. (70)

The MA structure on the RHS is not finite. To overcome this problem, we define Ψ̃(L2) =
∑1

i=0 ψ̃iL
2i.

Consequently, Ψ̃(L2)Ψ2(L) is a polynomial of order 3. Again, multiplying (70) by Ψ̃(L2),

Ψ̃(L2)[1 − (a+ b)2L2](ε∗T )2 = Ψ̃(1)Ψ2(1)(1 + b+ a)ψ + Ψ̃(L2)[1 + aL− b(a+ b)L2]Ψ2(L)ιt

+Ψ̃(L2)[1 − (a+ b)2L2]
(

(Ψ(L)εt)
2 − Ψ2(L)ε2t )

)

.
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The AR polynomial on the LHS, Ψ̃(L2)[1 − (a+ b)2L2], is of order b4/2c = 2. We can also deduce
that the RHS contains only ιt, . . . , ιt−5 and εt−iεt−j terms (i 6= j, i or j ∈ (0, . . . , 5)). Therefore, the
MA order in the temporally aggregated model is equal to b5/2c = 2. We have thus shown that the high
frequency ARMA(1,1)-GARCH(1,1) implies a temporally aggregated ARMA(1,1)-GARCH(2,2) model.

9.2 Aggregation of GARCH(1,1) model: Parameters

In this subsection we discuss stock aggregation for a GARCH(1,1) model. We focus on the low frequency
implied parameters. For simplicity, we assume as aggregation frequency k = 2. The disaggregate
GARCH(1,1) model satisfies

ht = ψ + bht−1 + ay2
t−1. (71)

Setting ιt = y2
t − ht, we can express the GARCH as an ARMA model, i.e.

y2
t = ψ + (a+ b)y2

t−1 + ιt − bιt−1.

Substituting the complete expression for y2
t−1 inside the previous equation gives

y2
t = (1 + a+ b)ψ + (a+ b)2y2

t−1 + ιt + aιt−1 − b(a+ b)ιt−2

⇒ (1 − (a+ b)2L2)y2
t = (1 + a+ b)ψ + ιt + aιt−1 − b(a+ b)ιt−2.

We have thus obtained the low frequency ARMA model (in squared observations) corresponding to
the original GARCH in (71). If we let wt = ιt + aιt−1 − b(a + b)ιt−2, we note that E(wtwt−2j) = 0,
∀j > 1, implying that the low frequency model is an ARMA(1,1). The low frequency constant equals
(1 + a+ b)ψ. The low frequency moving average parameter λ may be recovered solving the system

λ

1 + λ2
=
E(wtwt−2)

E((wt)2)
=

b(a+ b)

1 + a2 + b2(a+ b)2
,

which yields

λ1,2 =
1 + 2ab2 + b4 + a2(1 + b2) ±

√

(1 + 2ab3 + b4 + a2(1 + b2))2 − 4b2(a+ b)2

2b(a+ b)
. (72)

To calculate the low frequency autoregressive parameter, we note that the low frequency model may be
expressed in disaggregate time units as

y2
t = (1 + a+ b)ψ + (a+ b)2y2

t−2 + ιt + λιt−2.

At the same time, definition (58) holds. Hence, the best linear predictor is

P [y2
t |yt−2, yt−4, . . .] = (1 + a+ b)ψ + ((a+ b)2 + λ)y2

t−2, (73)

reminding that ιt−2 is a function of yt−2, yt−4, . . .. Therefore, the low frequency autoregressive parameter
equals (a+ b)2 + λ, with λ satisfying (72).

10 EMPIRICAL APPLICATION: BELGIAN PUBLIC DEFICIT

In this section we present an empirical application of the techniques so far surveyed. We apply the
temporal aggregation methodology to the Belgian public deficit series. We use the net balance to be
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financed - federal deficit in sort. This is the definition used by the Belgian Federal Public Service Finance,
www.minfin.fgov.be. This concept is very different from the ESA95 (or excessive deficit procedure)
definitions of net lending or net borrowing. It is on cash basis, contrary to be ESA95 deficit that is
on accrual basis. It means that it is influenced by financial transactions (e.g. privatization receipts)
that have no effect on the ESA95 deficit figures. Another crucial difference is that the federal deficit is
released monthly while the ESA95 is released annually as it is the result of the annual national account
that follows ESA95.

The federal deficit is used by the federal Treasury for instance in order to monitor debt management.
It limited to (federal government) Treasury operations; as a consequence, it does not take into account
operations of other federal institutions, social security institutions, regions and communities or local
authorities. Data range from January 1981 until December 2001, in real terms.14 The data set used
contains 252 monthly observations. Our source is the National Bank of Belgium.

Figure 3 shows the Belgian cash deficit series, in real terms, at different frequencies. Top left panel
displays the series at the monthly frequency, top right panel at the quarterly frequency, while the bottom
panel presents the annual series. It can be clearly seen that monthly and quarterly observations have
a very strong seasonal pattern. The seasonality is due to the intra-annual instalments corresponding
to the tax collection and payments. For instance, advance payments by companies are received in the
months April, July, October and December. As a result, in these months the federal deficit is generally
positive for the federal government. As these instalments are intra-annual, the annual series does not
reflect any seasonal pattern. On the basis of the explanations given in Section 7, the annual seasonality
vanishes because s = 12 and k = 12. Related with, notice that it is not clear whether the monthly
series, and even the quarterly series, have a unit root in levels or not. But it is very evident that the
annual series has a unit root. As we shall see, the monthly series has a seasonal unit root. This dovetails
perfectly with the theory. If k = s = 12, the seasonal unit root at the monthly frequency becomes a
regular unit root at the annual frequency.

[FIGURE 3 ABOUT HERE]

We perform several estimation exercises. We start estimating a monthly model.15 We then aggregate
it quarterly and annually.16 To make a comparison, we estimate directly the same quarterly and annual
models from the quarterly and annual data sets.

The monthly series can be represented by an ARIMA(0, 0, 1) × (0, 1, 1)12 model with mean:

(1 − L12)yt = µ̂+ (1 + θ̂L)(1 + Θ̂L12)εt, (74)

that is a model with a unit root in seasonality. The estimated parameters are shown in Table 2.

[TABLE 2 ABOUT HERE]

14The original cash deficit time series, in nominal terms, has been deflated dividing by the monthly Belgian
CPI, base year 1996.

15We use the package TRAMO to fit the best model. TRAMO (Time Series Regression with ARIMA Noise,
Missing Observations, and Outliers) performs estimation, forecasting, and interpolation of regression models
with missing observations and ARIMA errors, in the presence of several types of outliers. TRAMO estimates a
battery of models, including the outliers analysis, and selects the best model using the Bayes Information Crite-
ria. For a brief description of the program, consult the webpage http://www.bde.es/servicio/software/tswe.htm.

16The Matlab codes for temporal aggregation of several ARIMA models with k = 12 are available on the
homepage of David Veredas at http://www.ecares.org.
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First, we aggregate the monthly ARIMA(0, 0, 1) × (0, 1, 1)12 model in (74) to quarterly periodicity.

We multiply both sides of (74) by
∑2

i=0 L
j , obtaining:

(

1 − L12
)

2
∑

j=0

yt−j = 3µ̂+
(

1 + θ̂L
)(

1 + Θ̂L12
)

2
∑

j=0

εt−j . (75)

Letting B = L3 to operate on the aggregate time unit T , this quarterly aggregated model may be
expressed as an ARIMA(0, 0, 1) × (0, 1, 1)4

(

1 −B4
)

y∗T = M + (1 + η1B)
(

1 + E1B
4
)

ε∗T , (76)

where the aggregate parameters E1 and σ2
ε∗ are determined solving the system:

(1 + η2
1 + E2

1 + η2
1E

2
1)σ2

ε∗ = (1 + 2(1 + θ̂)2 + θ̂2 + Θ̂2 + 2Θ̂2(1 + θ̂)2 + θ̂2Θ̂2)σ̂2
ε

(1 + E2
1)η1σ

2
ε∗ = θ̂(1 + Θ̂2)σ̂2

ε

η1E1σ
2
ε∗ = θ̂Θ̂σ̂2

ε

(1 + η2
1)E1σ

2
ε∗ = Θ̂(1 + 2(1 + θ̂)2 + θ̂2)σ̂2

ε .

Notice that everything on the RHS here above is known as it has already been estimated. The equation

(1 + E2
1)η1σ

2
ε∗

η1E1σ2
ε∗

=
θ̂(1 + Θ̂2)σ̂2

ε

θ̂Θ̂σ̂2
ε

⇒
(1 + E2

1)

E1
=

(1 + Θ̂2)

Θ̂

immediately delivers E1 = Θ̂. Once E1 is recovered, the system above simplifies in:

(1 + η2
1)σ2

ε∗ = (1 + 2(1 + θ̂)2 + θ̂2)σ̂2
ε

η1σ
2
ε∗ = θ̂σ̂2

ε .

And the aggregate inferred parameters are reported in Table 2.

Second, we perform temporal aggregation into annual frequency. To do this, as already extensively
detailed, we multiply both sides of (74) by

∑11
i=0 L

j . In this way the model in (74) is expressed in terms
of the aggregate annual periodicity,

(

1 − L12
)

11
∑

j=0

yt−j = 12µ̂+ (1 + θ̂L)
(

1 + Θ̂L12
)

11
∑

j=0

εt−j . (77)

If we let B = L12 operate on the annual temporal index T = 1, 2, . . ., the aggregate model in (77)
corresponds to an ARIMA(0,1,2):

(1 −B) y∗T = M +
(

1 + η1B + η2B
2
)

ε∗T . (78)

Note that in the annual model the seasonal unit root becomes a normal unit root. The aggregate
parameters η1, η2 and σ2

ε∗ are determined by the system:
(

1 + η2
1 + η2

2

)

σ2
ε∗ = [12 + 12θ̂2 + 12Θ̂2 + 12θ̂2Θ̂2 + 2θ̂(11 + Θ̂ + 11Θ̂2)]σ̂2

ε

(η1 + η1η2)σ
2
ε∗ =

[

(

θ̂ + Θ̂
)

+ 11
(

1 + θ̂
)2

Θ̂ + θ̂Θ̂
(

θ̂ + Θ̂
)

]

σ̂2
ε

η2σ
2
ε∗ = θ̂Θ̂σ̂2

ε .

The aggregate inferred parameters are in Table 2.

We also estimate the quarterly and annual models directly, from the aggregate observations (quar-
terly and annual data sets), that are shown in Table 3.
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[TABLE 3 ABOUT HERE]

Some conclusions may be drawn. We divide them in within, meaning the analysis of the monthly
and temporally aggregated models (i.e. within Table 2), and between, meaning the differences between
the models in Tables 2 and 3.

Within conclusions. First, the constants perfectly reflect the spirit of the aggregation technique: the
quarterly and annual constants are exactly 3 and 12 times the monthly constant. Second, the annual
model does not have seasonal MA components and it becomes an MA(2). Moreover, even if we aggregate
12 periods, the inferred parameters are still large, meaning that there is significant autocorrelation in
the annual series. Last, the inferred residual variance increases over time. This makes sense, since cash
deficit is a flow variable and hence the more we aggregate, the larger the deficit becomes (as this is
reflected in Figure 3, where the monthly deficit roughly ranges from −0.04 to 0.04 while the annual
deficit ranges from −0.20 to 0).

Between conclusions. First, the constants are very similar, meaning that there is a coherence and
that the temporally aggregated models are doing their job. Second, by contrast, the MA parameters
differ, especially for the annual frequency. A possible cause is that the number of annual observations
is 21, comparing with the 252 of the aggregated model, suggesting that asymptotic properties merely
work. Moreover, recall that the transfer function from the monthly model to the quarterly and annual
aggregated models is deterministic. This is a fundamental feature. It means that all the efficiency
(due to 252 observations, 12 times more than 21) of the monthly estimates is transferred to the annual
ones, with no loss whatsoever. Regarding the residual variance, finally, direct estimation and temporal
aggregation produce comparable results.

11 CONCLUDING REMARKS

The primary purpose of this paper is to provide a comprehensive analysis of temporal aggregation, a
topic of fundamental importance in econometrics and in time series analysis. The main question we
try to answer can be expressed as follows: if, it is known that an observed stochastic process may be
described by a linear time series model, what is the appropriate model for the same process observed
at different frequencies? To answer this question, we address a number of issues that arise whenever
the sample frequency does not correspond to the ’natural’ frequency (i.e. the frequency at which the
process is supposed to be generated). In general, the techniques discussed are very flexible and can
therefore be used in a variety of different fields.

We review the econometric methodology for univariate time series temporal aggregation. We start
with simple AR models, ending up with more difficult ARIMA models with seasonality, independent
exogenous variables and GARCH effects. In Table 4, to summarize, we provide a general overview of
the results obtained for the class of linear processes presented throughout the paper.

[TABLE 4 ABOUT HERE]

As it is evident from Table 4, the most striking departures with respect to the original model
specifications are linked to the MA orders. Numerical procedures are very often required to determine
the MA and AR aggregate parameters, as we show in several example-cases discussed in this article.

Lines for further developments stretch both in theoretical both in empirical directions. On a theo-
retical ground, issues like multivariate models, nonlinearities, long memory, random aggregation, time
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continuous or state space representations are of great relevance. All these issues show interesting fea-
tures under temporal aggregation that will be undoubtedly worth analyzing in the future. On a more
applied framework, the consequences of temporal aggregation on parameter estimation and forecasting
have not been investigated. Exemplifying, if disaggregate data are available and we are interested in
estimating parameters, the maximum likelihood estimators may be based on the disaggregate model or
on the aggregate model. How carefully measuring the information loss in estimation due to aggregation?
If, similarly, we are interested in forecasting aggregate observations, the forecast function can be based
either on the disaggregate series either on the aggregate series. Does it exist a loss in efficiency through
aggregation? Is it possible to precisely quantify it? These are still partially open questions left to future
research.
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A APPENDIX

A.1 Stock aggregation of ARMA models: Order conditions

Let us hereafter focus on stock aggregation. The underlying process follows the ARMA(p,q) model in (13):
φ(L)yt = θ(L)εt, where φ(L) = 1 − φ1L − . . . − φpL

p and θ(L) = 1 + θ1L + . . . + θqL
q are the AR and MA

polynomials of length p and q, respectively. The variable εt is an independent white noise error term with mean
to equal zero and constant variance σ2

ε . Given the model in (13), suppose that only the kth, 2kth, 3kth, . . .
terms are observed. This corresponds to a stock aggregation scheme, where k is the integer interval at which we
sample the low frequency data. The aim is to find an appropriate model for the aggregate stock variable yT=tk.
Consider the proposition that follows.

Proposition 7 The sampled series of yt as specified in model (13), denoted {yT , T ∈ Z} (where yT = ykt and
k is the integer interval at which we observe the low frequency data), may be represented by an ARMA(p,r)
process where r, the maximum order of the sampled moving average polynomial, is

r =

⌊

p(k − 1) + q

k

⌋

. (79)

Proof. To prove this, consider a generic polynomial S(L) of length h whose coefficients are 1, s1, . . . , sh.
Multiplying each side of (13) by S(L), we obtain:

S(L)φ(L)yt = S(L)θ(L)εt.

On the LHS of (80), the product S(L)φ(L) defines the autoregressive polynomial for the aggregate series. This
autoregressive polynomial has to sample yt in (13) every k terms, producing a sequence {yT = ykt, T ∈ Z}.
Brewer (1973) expresses this requirement through the following equation in matrix form, i.e.

S(L)φ(L) =





























1 0 ... 0
s1 1 ... 0
s2 s1 1 0
... ... ... ...
sp sp−1 ... 1
sh sh−1 ... sh−p

0 sh ... ...
0 0 sh ...
0 0 0 sh





































1
−φ1

...
−φp
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1
0
0
...
β1

0
0
...
β2

0
0
...
βs













































. (80)

In (80), the first matrix on the LHS, S(L), has size (p + h + 1) × (p + 1). The second one on the LHS,
corresponding to the AR polynomial φ(L), has size (p + 1) × 1. Hence, the product S(L)φ(L) has dimension
(p+ h+ 1) × 1. The RHS matrix, instead, has size (rk + 1) × 1. No zeros are needed below βs, otherwise the
last equation would be −shφp = 0, which is a contradiction since both sh both φp are non-zero by definition.

It is now necessary to obtain the unknown orders h and r (AR polynomial length in the aggregate series) as a
function of k and p (AR polynomial length in the original series). The first matrix on the LHS is (p+h+1)×1,
by construction. The RHS matrix is (rk + 1) × 1. Hence, following Brewer, the first restriction is

p+ h+ 1 = rk + 1 ⇒ p+ h = rk. (81)

In addition, there are s1, s2, . . . , sh unknown coefficients in the S(L) polynomial to match with r(k−1) conditions
that have been imposed. On the RHS matrix, indeed, there are exactly r(k−1) zeros corresponding to the null
coefficients of the RHS matrix, by definition. Therefore, according to Brewer, the second restriction is

h = r(k − 1) ⇒ rk − p = rk − r ⇒ p = r. (82)
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Then, the AR polynomial length in the underlying model expressed by equation (13) equals exactly the AR
polynomial length in the aggregate series. The autoregressive order of the aggregate model is unchanged at p.
Substituting (81) in (82), we get h = p(k − 1). Hence, the unknown length of S(L) polynomial corresponds to
p(k − 1).

Let us now consider the MA polynomial on the RHS of (80). We already know that the moving average
polynomial θ(L) has length q. As a consequence, the length of S(L)θ(L) is

h+ q = r(k − 1) + q = p(k − 1) + q. (83)

This has a clear impact on the autocovariance structure of the aggregate series

E[η(L)εtη(L)εt−kr],

with k ∈ N0. For kr ≤ p(k − 1) + q, we have:

E[η(L)εtη(L)εt−kr] 6= 0.

Else, for kr ≥ p(k − 1) + q:

E[η(L)εtη(L)εt−kr] = 0. (84)

This means that, in equation (80), the whole RHS may be replaced by a MA aggregate polynomial of length
⌊

k−1(p(k − 1) + q)
⌋

. Consequently, the underlying model in equation (13), sampled every kth terms, may be
appropriately represented by an ARMA(p,

⌊

k−1(p(k − 1) + q)
⌋

) model, as reported in (79). 2

A.2 Stock aggregation of ARIMA models: Order conditions

We deal with stock variables in model (25). Hence, we face a stock aggregation scheme in the presence of
ARIMA models.

Proposition 8 The sampled series of yt as specified in model (25), denoted {yT , T ∈ Z} (where yT = ykt and
k is the integer interval at which we observe the low frequency data), may be represented by an ARIMA(p,d,r)
process where r, the order of the sampled moving average polynomial, is

r =

⌊

p(k − 1) + d(k − 1) + q

k

⌋

. (85)

Proof. We give a complete proof of the order condition in (85). As suggested by Weiss (1984), we apply
to both sides of the ARIMA(p,d,q) model in (25) the operator S̄(L) listed in (35), obtaining

p
∏

j=1

[

1 − δk
jL

k
]

(1 − Lk)dyt =

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d
(

q
∑

j=0

θjL
j

)

εt.

Therefore, filtering with the operator in (35) an ARIMA(p,d,q) model with stock variables, we have shown that
the sampled series of yt (denoted {yT , T ∈ Z}) may be represented, letting B = Lk, by an ARIMA(p,d,r)

p
∏

j=1

[

1 − δk
jB
]

(1 −B)dyT = (1 + η1B + ...+ ηrB
r)εT , (86)

with
r = k−1bp(k − 1) + d(k − 1) + qc.

In sum, the initial ARIMA(p,d,q) aggregates to an ARIMA(p,d,r), where r = [(p + d) + (q − p − d)/k]. This
latter value represents the maximum length of the MA polynomial in the aggregate model. We remark that, also
in this case, the AR order is unchanged by the sampling scheme. In addition, the roots of the AR polynomial
in the sampled series are the kth powers of the inverted roots of the AR polynomial in the disaggregate one.
Thus, for large values of the sampling interval k, the AR aggregate coefficients decrease in size. 2
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A.3 Stock aggregation and seasonality: Order conditions

Dealing with stock variables in (29), we report the following proposition for a stock aggregation scheme in the
presence of ARIMA models with seasonality.

Proposition 9 The sampled series of yt as specified in model (29), denoted {yT , T ∈ Z} (where yT = ykt and
k is the integer interval at which we observe the low frequency data), may be represented by an ARIMA(p, d, r)×
(P,D,R)s∗ where r, the maximum order of the sampled regular moving average polynomial is

r =

⌊

p(k − 1) + d(k − 1) + q

k

⌋

, (87)

and R, the maximum order of the sampled moving average in seasonality is

R =

⌊

(P +D)s∗k + (Q− P −D)s

k

⌋

. (88)

Proof. We now prove the order conditions reported in (87) and (88). Let τs
1 , . . . , τ

s
P be the reciprocals of

the roots of Φ(Ls) polynomial, such that Φ(Ls) =
P
∏

i=1

[1 − (τiL)s]. In the case of stock variables, let us consider

again the operators S̄(L) in (35) and A(L) in (30). Applying the product of these two operators to both sides
of (29), we get

S̄(L)A(L)φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = S̄(L)A(L)θ(L)Θ(Ls)εt, (89)

which can be developed as follows

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

×φ(L)Φ(Ls)(1 − L)d(1 − Ls)Dyt = S̄(L)A(L)θ(L)Θ(Ls)εt. (90)

The complete expressions for φ(L) and Φ(Ls) are Φ(Ls) =
P
∏

i=1

[1 − (τiL)s] and φ(L) =
p
∏

j=1

[1 − δjL]. Substituting

them in (90) we get

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

×

p
∏

j=1

[1 − δjL]
P
∏

i=1

[1 − (τiL)s](1 − L)d(1 − Ls)Dyt

= S̄(L)A(L)θ(L)Θ(Ls)εt.

Simplifying, we obtain

p
∏

j=1

[

1 − δk
jL

k
]

[

1 − Lk

1 − L

]d P
∏

i=1

[

1 − (τiL)ks∗
]

[

1 − Lks∗

1 − Ls

]D

×(1 − L)d(1 − Ls)Dyt = S̄(L)A(L)θ(L)Θ(Ls)εt.

Manipulating further this expression, we have

p
∏

j=1

[

1 − δk
jL

k
]

P
∏

i=1

[

1 − (τiL)ks∗
]

(1 − Lk)d(1 − Lks∗)Dyt

= S̄(L)A(L)θ(L)Θ(Ls)εt.
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To check the order of the MA polynomial is exactly the one in (87), we must develop the RHS term as

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]

[

1 − Lk

1 − L

]d P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

θ(L)Θ(Ls)εt

=

p
∏

j=1

[

1 − δk
jL

k

1 − δjL

]





d(k−1)
∑

j=0

Lj





P
∏

i=1

[

1 − (τiL)ks∗

1 − (τiL)s

] [

1 − Lks∗

1 − Ls

]D

θ(L)Θ(Ls)εt.

(91)

As it is possible to deduce from (91), the order of the regular moving average polynomial is bd(k−1)+p(k−1)+qc,
while the order of the seasonal moving average polynomial is b(P +D)s∗k + (Q− P −D)sc.

Thus, the sampled series {yT , T ∈ Z} follows an ARIMA(p, d, r) × (P,D,R)s∗ process, that can be repre-
sented letting B = Lk as

p
∏

j=1

[

1 − δk
jB
]

P
∏

i=1

[

1 − τk
i B

s∗
]

(1 −B)d(1 −Bs∗)DyT

= (1 + η1B + . . .+ ηrB
r)(1 + E1B + . . .+ ERB

R)εT , (92)

where r and R are the orders reported in (87) and in (88). Picking s∗ as previously indicated (s∗ = s/k), this
implies that the sampled series follows a seasonal ARIMA(p, d, r) × (P,D, 0)s∗ model. 2

A.4 Stock aggregation of GARCH models: Order conditions

In what follows we discuss stock aggregation of the ARMA(p,q)-GARCH(P,Q) model in (56).

Proposition 10 The sampled series of yt as specified in (56), denoted {yT , T ∈ Z} (where yT = ykt and k
is the integer interval at which we observe the low frequency data), may be represented by an ARMA(p,r) with
weak GARCH(R,R) errors where

r =

⌊

p(k − 1) + q

k

⌋

R = r̃ +
1

2
r(r + 1),

and where r̃ = max(P,Q).

Proof. As a first step, we start with the conditional mean, applying to both sides of φ(L)yt = θ(L)εt the
operator

S(L) =

p
∏

i=1

[

1 − δk
i L

k

1 − δiL

]

, (93)

where δi, i = 1, . . . , p represent the inverted roots of φ(L) polynomial, assumed to be stationary. We obtain as
a result an ARMA(p,r) model

p
∏

i=1

(1 − δk
i L

k)yt = S(L)θ(L)εt,

which may be expressed in aggregate time units as

β(B)yT = η(B)εT ,

with r =
⌊

p(k−1)+q

k

⌋

.

The second step of the proof is almost identical to the flow aggregation case. We express the GARCH model
(57) as an ARMA, as done in (59).
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The covariance structures of η(B)εT and S(L)θ(L)εt are the same. Therefore η(Lk)εT = S(L)θ(L)εt. Or
εT = η(Lk)−1S(L)θ(L)εt = Ψ(L)εt, where Ψ(L) = η(Lk)−1S(L)θ(L) is a polynomial of infinite order. We

define T̂ (L) =
r̃
∏

i=1

[

1−ζk
i Lk

1−ζiL

]

and Ψ2(L) =
∑k−1

i=0 ψ
2
iL

i as for flow aggregation. We multiply (59) by T̂ (L) times

Ψ2(L). This product of polynomials links the GARCH models for εt and εT , exactly as shown in (60).

Equation (60) can be rewritten in terms of (εT )2, in the same fashion of (61). And in (61) we have a
GARCH structure for the low frequency model. However, the MA part is not finite. We multiply (61) by
the finite polynomial η(Lk)Ψ(L) = η(Lk)η(Lk)−1S(L)θ(L) = S(L)θ(L), of order p(k − 1) + q. Therefore
∑r

j=0 ηjψi−jk = 0, for i > p(k − 1) + q. This difference equation determines
∑

1

2
r(r+1)

j=0 ψ̃jψ
2
i−jk = 0, for i >

p(k − 1) + q + 1
2
kr(r − 1), a difference equation in ψ2 of order 1

2
r(r + 1). Defining Ψ̃(Lk) =

∑

1

2
kr(r+1)

i=0 ψ̃iL
ik,

we can finally observe that Ψ̃(Lk)Ψ2(L) is a polynomial of order p(k − 1) + q + 1
2
kr(r − 1).

Multiplying (61) by Ψ̃(Lk) yields

Ψ̃(Lk)
r̃
∏

i=1

[

1 − ζk
i L

k
]

(εT )2 = Ψ̃(1)T̂ (1)Ψ2(1)ψ +

Ψ̃(Lk)T̂ (L)b(L)Ψ2(L)ιt + Ψ̃(Lk)
r̃
∏

i=1

[

1 − ζk
i L

k
]

(

(Ψ(L)εt)
2 − Ψ2(L)ε2t

)

. (94)

The AR polynomial, Ψ̃(Lk)
r̃
∏

i=1

[

1 − ζk
i L

k
]

, is of order R = kr̃+ 1
2
kr(r+1) in the high frequency time units.

The first polynomial of the MA component, Ψ̃(Lk)T̂ (L)b(L)Ψ2(L), is of order (k−1)r̃+P+p(k−1)+q+ 1
2
kr(r−1).

And the order of the last MA polynomial (acting on εt−iεt−j , i 6= j) is

kr̃ + p(k − 1) + q +
1

2
kr(r − 1). (95)

These last two orders are very similar except for (k − 1)r̃ + P and kr̃. Moreover, as we know, r̃ ≥ P , since
r̃ = max(P,Q). This implies that (k − 1)r̃ + P ≤ kr̃. Therefore, the maximum order of the MA polynomial is
given by (95). In addition, q = kr − (p+ 1)(k − 1). Substituting in (95) gives

kr̃ +
1

2
kr(r + 1). (96)

We have thus shown that the maximum MA order in the low frequency model is R = r̃ + 1
2
r(r + 1). 2
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Table 1: Temporal aggregation effect in seasonality

k k
s

s∗ Cycle length

2 2
12

= 1
6

6 1 year

3 3
12

= 1
4

4 1 year

4 4
12

= 1
3

3 1 year

5 5
12

12 5 years

6 6
12

= 1
2

2 1 year

7 7
12

12 7 years

8 8
12

= 2
3

3 2 years

9 9
12

= 3
4

4 3 years

10 10
12

= 5
6

6 5 years

11 11
12

12 11 years

12 12
12

= 1
1

1 -

24 24
12

= 2
1

1 -

Periodicity and cycle length of the temporally ag-
gregated process for different values of the aggre-
gation frequency (k). The seasonality in the dis-
aggregate process is set equal to 12.

Table 2: Belgian deficit (real terms). Monthly estimation and quarterly-annual temporal
aggregation results

Monthly Quarterly Annual
Variables estimated aggregated aggregated

model model model

MU 0.7802e-03 0.0023 0.0094
MA1 -0.2159 (lag 1) -0.0957 (lag 1) -0.4291 (lag 1)
MA2 -0.4014 (lag 12) -0.4014 (lag 4) 0.0111 (lag 2)
σ2

ε or σ2
ε∗ 4.1931e-05 9.4580e-05 3.2720e-04

Number of observations 252 252 252
Corresponding model ARIMA(0, 0, 1)(0, 1, 1)12 ARIMA(0, 0, 1)(0, 1, 1)4 ARIMA(0, 1, 2)

Method of monthly estimation: exact maximum likelihood.
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Table 3: Belgian deficit (real terms). Direct estimation results

Quarterly Annual
Variables estimated estimated

model model

MU 0.0024 0.0097
MA1 -0.3885 (lag 1) -0.7148 (lag 1)
MA2 -0.3494 (lag 4) -0.1476 (lag 2)
σ2

ε∗ 9.0723e-05 1.1827e-04

Number of observations 84 21
Corresponding model ARIMA(0, 0, 1)(0, 1, 1)4 ARIMA(0, 1, 2)

Method of estimation: exact maximum likelihood.

Figure 1: Representation of the temporal aggregation mechanism for k = 12.
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ARIMA model ARIMA model AR order AR order MA order MA order

TEMPORAL (FLOW)

AGGREGATION

AR(p) ARMA(p, r) p - r =
⌊

(p+1)(k−1)
k

⌋

-

ARMA(p, q) ARMA(p, r) p - r =
⌊

(p+1)(k−1)+q

k

⌋

-

ARIMA(p, d, q) ARIMA(p, d, r) p - r =
⌊

p(k−1)+(d+1)(k−1)+q

k

⌋

-

ARIMA(p, d, q)(P, D, Q)s ARIMA(p, d, r)(P, D, R)s∗ p P r =
⌊

p(k−1)+(d+1)(k−1)+q

k

⌋

R =
⌊

(P+D)s∗k+(Q−P−D)s
k

⌋

STOCK

AGGREGATION

AR(p) ARMA(p, r) p - r =
⌊

p(k−1)
k

⌋

-

ARMA(p, q) ARMA(p, r) p - r =
⌊

p(k−1)+q

k

⌋

-

ARIMA(p, d, q) ARIMA(p, d, r) p - r =
⌊

p(k−1)+d(k−1)+q

k

⌋

-

ARIMA(p, d, q)(P, D, Q)s ARIMA(p, d, r)(P, D, R)s∗ p P r =
⌊

p(k−1)+d(k−1)+q

k

⌋

R =
⌊

(P+D)s∗k+(Q−P−D)s
k

⌋

Disaggregate Aggregate ARIMA Aggregate Aggregate Lag of aggregate

ARIMA model model (flow aggr.) AR order MA order stock exogenous

r is the greater of

ARIMAX(p, d, q) ARIMAX(p, d, r) p
⌊

(p+d+1)(k−1)+q

k

⌋

and
⌊

(p+d+1)(k−1)+m−1+d̃

k

⌋

⌊

(p+d+1)(k−1)+m−1+d̃

k

⌋

+
⌊

(v+d̃)(k−1)+w

k

⌋

Disaggregate Aggregate GARCH Aggregate Aggregate Aggregate Aggregate

GARCH model model (flow aggr.) ARMA GARCH ARMA GARCH
AR order AR order MA order MA order

ARMA(p, q)GARCH(P, Q) ARMA(p, r)GARCH(R, R) p R = r̃ + 1
2
r(r + 1) r =

⌊

(p+1)(k−1)+q

k

⌋

R = r̃ + 1
2
r(r + 1)
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Figure 2: Relation between the parameters of the aggregate (e.g. annual) and disaggregate
(e.g. monthly) models.
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Figure 3: Belgian deficit in real terms at different frequencies.
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