
Performance of trigonometric generating functions
on some combinatorial problems

Yu. Nesterov ∗

October, 2004
September, 2005
(revised version)

Abstract

In this paper we analyze computational performance of dual trigonometric generating
functions on some integer programming problems. We show that if the number of equality
constraints is fixed, then this technique allows to solve the problems in time, which is
polynomial in the dimension of the space of variables.

Keywords: Integer programming, generating functions, polynomial complexity, dynamic
programming, knapsack problem.

CORE Discussion Paper #2005/69

∗Center for Operations Research and Econometrics (CORE), Catholic University of Louvain (UCL),
34 voie du Roman Pays, 1348 Louvain-la-Neuve, Belgium; e-mail: nesterov@core.ucl.ac.be.

This paper presents research results of the Belgian Program on Interuniversity Attraction Poles,
initiated by the Belgian Federal Science Policy Office.
The scientific responsibility rests with its author.

1 Introduction

Motivation. During last years we can see a permanent rise of interest to generating
functions and polynomial technique as applied to combinatorial problems. This technique
was developing in two main directions. The primal approach (see [1, 2] and the references
therein), is focused on studying the properties of primal generating function

f(S, x) =
∑

m∈S

xm, x = (x(1), . . . , x(n))T ∈ Cn,

with xm =
n∏

i=1
(x(i))m(i)

, which is defined for a set of integer vectors S ⊂ Zn. Denote by

1n ∈ Zn the vector vector of all ones. Since the value f(S, 1n) is equal to the number of in-
teger points inside the set S, this approach fits very well the counting problems. Moreover,
the unit coefficients of the monomials in f(S, x) ensure acceptable numerical stability of
these objects. Probably, this explains the existence of several successful implementations
of the primal technique (see, for example, [5], [6]).

The structure of dual generating functions is more complicated [3, 4]. In primal space
we define a parametric family of sets

X(y) ⊂ Zn, y ∈ ∆ ⊂ Zm.

Further, for each set X ⊂ Zn, we define a characteristic function

ψX(c), c ∈ Rn.

Then the dual generating function is defined as

g(v) =
∑

y∈∆

ψX(y)(c) vy, v ∈ Cm.

The dual generating function is a powerful tool. As the primal generating function, it
can be used for counting integer points in convex sets. However, it can be used also
for approximating the optimal values of linear objective function over the corresponding
feasible set. Moreover, for some simple cases, like knapsack problem, these technique
coupled with fast Fourier transform, results in an algorithm [8], which is more efficient
than the standard Dynamic Programming methods (see, for example, Section II.6.1 [7]).

To the best of our knowledge, the computational performance of the dual generating
functions was not studied yet. In this paper we are addressing some complexity issues of
this approach. At the same time, we show that the natural domain of the dual generating
functions is not the whole Cm, but a direct product of m unit circles. Thus, on this domain
the dual generating functions become the trigonometric polynomials. This transformation
improves stability of all operations as applied to these functions. Moreover, it significantly
facilitates the numerical computation of the characteristic functions.

Contents. The paper is organized as follows. In Section 2 we introduce a definition
of characteristic functions and prove the representation theorem for (dual) trigonometric
generating functions. We discuss the computational complexity of the value of character-
istic function of a given set and of a particular point from this set. In the next Section

2

3 we apply the result to a family of integer polytopes formed as the intersection of n-
dimensional boxes and a set of solutions to a system of linear equations parameterized by
its right-hand side. We show that for m being fixed the complexity of our computations is
polynomial in n. These results can be seen as an extension of the Dynamic Programming
technique developed for knapsack problem onto a more general situation.

Notation. The main part of our notation is quite standard. For two real vectors x and
y we denote by 〈x, y〉 their standard inner product:

〈x, y〉 =
∑
i

x(i)y(i).

Dimension of the arguments is always clear from the context. Notation j is used for
√−1.

Finally, for a discrete set X, notation |X| is used for its cardinality, while for a complex
point v = x + j y ∈ C, we denote by |v| its absolute value.

2 Trigonometric generating functions

Let us start by describing the main idea of proposed technique. Consider a parametric
family of sets in Zn:

X = {X(y), y ∈ ∆} ⊂ Zn,

where ∆ is a subset of Zm; for simplicity, we assume ∆ to be finite. For a given y, we
are interested in a possibility of computing a value of the characteristic function of the
set X(y), that is

ψX(y)(c) =





∑
x∈X(y)

e〈c,x〉, if X(y) 6= ∅,
0, otherwise,

(c ∈ Rn).

This function can be interesting in different situations. For example, the problem of
counting the integer vectors in X(y) is solved by relation

|X(y)| = ψX(y)(0).

Characteristic function can be used for approximating the optimal value of an optimization
problem over X(y):

µ ln ψX(y)

(
1
µc

)
≥ max

x
{〈c, x〉 : x ∈ X(y)}

≥ µ lnψX(y)

(
1
µc

)
− µ ln |X(y)|, µ > 0.

There is a convenient way for representing the whole system of characteristic functions
using so-called (dual) generating function [3, 4]:

gX ,c(v) =
∑

y∈∆

ψX(y)(c) · vy, v ∈ Cm, (2.1)

where vy =
m∏

i=1
(v(i))y(i)

. Note that quite often it is possible to find a compact expression for

the value gX ,c(v) (see [3]). However, it is very difficult to use it in practical computations
since the polynomials of complex variables of high degree are numerically unstable.

3

In this paper we suggest to change the sense of variables in (2.1) and consider the
generating functions with arguments restricted to a direct product of unit circles, the set

Sm = {v ∈ Cm, |v(i)| = 1, i = 1, . . . , m}.
Then gX ,c(v) becomes a trigonometric polynomial. The advantages of this modification
are immediate. Firstly, now the powers of the variables are numerically stable:

z ∈ C, |z| = 1 ⇒ z = e jϕ ⇒ zk = cos(kϕ) + j sin(kϕ).

Secondly, the system of monomials {vy}y∈Zm , v ∈ Sm, becomes orthogonal. This leads to
many useful consequences. In this paper we analyze only one of them.

Lemma 1 For ϕ ∈ Rm denote e jϕ = (e jϕ(1)
, . . . , e jϕ(m)

)T , and dϕ = dϕ(1) . . . dϕ(m).
Then

ψX(y)(c) = 1
(2π)m

2π∫
0

. . .
2π∫
0

e− j 〈y,ϕ〉gX ,c(e jϕ) dϕ. (2.2)

Proof:
This follows immediately from orthogonality of monomials vy and vȳ for y 6= ȳ:

2π∫
0

. . .
2π∫
0

e− j 〈y,ϕ〉e j 〈ȳ,ϕ〉 dϕ =
2π∫
0

. . .
2π∫
0

e j 〈ȳ−y,ϕ〉 dϕ

=
m∏

i=1

2π∫
0

e j (ȳ(i)−y(i))ϕ(i)
dϕ(i) =

{
0, if ȳ 6= y,

(2π)m, otherwise.

2

Note that in (2.2) we need to integrate a polynomial. Therefore we can compute the
value of this integral by exact cubature formulas. Indeed, for y ∈ Zm denote

py(v) = vy, v ∈ Sm.

Lemma 2 For L ∈ Zm
+ define the following grid

GL =
{
ϕ ∈ Rm : ϕ(i) = 2π

L(i) ki, ki ∈ Z, 0 ≤ ki ≤ L(i) − 1, i = 1, . . . ,m
}

,

|GL| =
m∏

i=1
L(i).

Then, for any y ∈ Zm, |y(i)| < L(i), i = 1, . . . , m, we have

1
(2π)m

2π∫
0

. . .
2π∫
0

py(e jϕ) dϕ = 1
|GL|

∑
ϕ∈GL

py(e jϕ). (2.3)

Proof:
Indeed, we have seen that

1
(2π)m

2π∫
0

. . .
2π∫
0

py(e jϕ) dϕ =

{
0, if y 6= 0,
1, otherwise.

4

On the other hand,

∑
ϕ∈GL

py(e jϕ) =
∑

ϕ∈GL

m∏
i=1

e jϕ(i)y(i)
=

L(1)−1∑
k1=0

. . .
L(m)−1∑
km=0

m∏
i=1

e
j

2πki

L(i)
y(i)

=

(
L(1)−1∑

k=0
e
j 2πy(1)

L(1)
k

)
· · ·

(
L(m)−1∑

k=0
e
j 2πy(m)

L(m)
k

)
.

Since |y(i)| < L(i), i = 1, . . . , m, for y(i) 6= 0 we have

si
def=

L(i)−1∑
k=0

e
j 2πy(i)

L(i)
k =

[
e j 2πy(i) − 1

]
·
[
e
j 2πy(i)

L(i) − 1

]−1

= 0.

If y(i) = 0, then si = L(i). 2

We can easily prove now the following theorem.

Theorem 1 Let L(i) > |y(i)|, for any i = 1, . . . , m, and y ∈ ∆. Then

ψX(y)(c) = 1
|GL|

∑
ϕ∈GL

gX ,c(e jϕ)e− j 〈y,ϕ〉, y ∈ ∆. (2.4)

Proof:
In view of Lemma 1 and Lemma 2 we have

ψX(y)(c) = 1
(2π)m

2π∫
0

. . .
2π∫
0

e− j 〈y,ϕ〉
(

∑
u∈∆

ψX(u)(c) · e j 〈u,ϕ〉
)

dϕ

=
∑

u∈∆
ψX(u)(c) · 1

(2π)m

2π∫
0

. . .
2π∫
0

e j 〈u−y,ϕ〉dϕ

=
∑

u∈∆
ψX(u)(c) · 1

|GL|
∑

ϕ∈GL

e j 〈u−y,ϕ〉 = 1
|GL|

∑
ϕ∈GL

gX ,c(e jϕ)e− j 〈y,ϕ〉.

2

Let us mention now some computational advantages of this representation. First of
all, this is a straightforward computation provided that we are able to compute the values
gX ,c(e jϕ) for different ϕ ∈ Rm. Moreover, representation (2.4) can be used for computing
a point from the convex hull of the set X(y). Indeed, by definition of gradient, we have

1
ψX(y)(c)

∇ψX(y)(c) = 1
ψX(y)(c)

∑
x∈X(y)

x · e〈c,x〉 ∈ Conv (X(y)). (2.5)

On the other hand,

∇ψX(y)(c) = 1
|GL|

∑
ϕ∈GL

∇c gX ,c(e jϕ) e− j 〈y,ϕ〉. (2.6)

5

The computational complexity of this vector depends on the complexity of computation of
the value of function gX ,c. However, if this function is given by a formula, then usually the
computational complexity of the gradient ∇ψX(y)(c) is proportional (up to an absolute
multiplicative factor) to the complexity of computing the value gX ,c(e jϕ). Of course,
in general ∇ψX(y)(c) is not an integer vector. However, it is possible to approach any
boundary integer point of X(y) by applying an appropriate cost vector c. Note that for
c = 0 we get an arithmetic mean of all vectors in X(y).

Note also that the space Rn and its dimension n have no direct impact on the com-
plexity of expression (2.4). If we are able to find an efficient way for computing the values
gX ,c(e jϕ) (see [3, 4] for examples of short generating functions), and if the set ∆ is not
too big, then the computation by (2.4) can be quite efficient. In some sense, using the
technique of generating functions we can replace the combinatorial objects X(y) in Zn by
another combinatorial object in Rm. Of course, in the latter space we have to apply a kind
of complete enumeration. However, if the dimension m is small, the resulting complexity
may be reasonably good. We consider a corresponding example in the next section.

3 Application example

Consider a family of sets of nonnegative integer solutions for a system of linear equations
parameterized by its right-hand side. Namely, for u ∈ Zn

+ and y ∈ Zm denote

B(u) = {x ∈ Zn : 0 ≤ x ≤ u}

Xu(y) = {x ∈ B(u) : Ax = y},

X = {Xu(y), y ∈ ∆ def= AB(u)}.

where A is an m× n-matrix with integer coefficients. Let us introduce the trigonometric
generating function of our problem:

gX ,c(v) =
∑

y∈∆

ψXu(y)(c) · vy, v ∈ Sm. (3.1)

The following result is quite useful.

Lemma 3

gX ,c(e jϕ) =
n∏

j=1

[
1 +

u(j)∑
k=1

ek·(c(j)+ j 〈aj ,ϕ〉)
]

, ϕ ∈ Rm, (3.2)

where aj is the jth column of matrix A.

Proof:
The proof of this statement is quite straightforward. Indeed, each variable v(i) def= e jϕ(i)

of function gX ,c(·) is used for describing the status of the ith constraint. Consider the
case n = 1. Then the set of all feasible values for y is comprised of u(1) + 1 vectors

0, a1, 2a1, . . . , u(1)a1.

6

In this case, each set Xu(y) consists of a single integer vector. Thus, the expressions (3.1)
and (3.2) are identical.

Assuming now that the representation (3.2) is valid for certain n = p, we can easily
see that multiplication of this representation by the term

1 +
u(p+1)∑
k=1

ek·(c(p+1)+ j 〈ap+1,ϕ〉)

properly modifies the feasible set for right-hand side y taking into account the appearance
of the new variable x(p+1). Each term in this sum corresponds to a possible value of
variable x(p+1), that is 0, 1, . . . , u(p+1). 2

Note that the representation (3.2) can be written in a short form:

gX ,c(e jϕ) =
n∏

j=1

[
1 +

u(j)∑
k=1

ek·(c(j)+ j 〈aj ,ϕ〉)
]

=
n∏

j=1

e(u(j)+1)·(c(j)+ j 〈aj,ϕ〉)−1

ec(j)+ j 〈aj,ϕ〉−1
.

Thus, the value gX ,c(e jϕ) can be computed in O(mn) operations.
Let us estimate now the complexity of computing the value ψX(y)(c) by (2.4). In order

to do that, we need to estimate the size of the set ∆ = AB(u). Let us assume that the
elements of matrix A are bounded:

|A(i,j)| ≤ α, i = 1, . . . ,m, j = 1, . . . , n,

and that the box B(u) is uniform:
u = β · e,

where e ∈ Rn is the vector of all ones. Then, for any x ∈ B(u) we have

|
n∑

j=1
A(i,j)x(j)| ≤ αβ · n. i = 1, . . . , m.

Hence, we can take
L(i) = 1 + αβ · n, i = 1, . . . , m.

In this case, computation of the value ψX(y)(c) by expression (2.4) takes

O (mn · (1 + αβ · n)m) (3.3)

operations. If m is fixed, then this dependence is polynomial in n. On the contrary, the
direct inspection of all integer vectors x ∈ B(u), and verification of the system of linear
equations Ax = b takes

O (mn · (1 + β)n)

operations. The latter complexity bound is exponential in n.
Note that the above computation allows to solve also optimization problems by ap-

plying a bisection strategy with respect to the value of the objective function.

7

References

[1] A. Barvinok, and J.E. Pommersheim. An algorithmic theory of lattice points in
polyhedra. In “New perspectives in algebraic combinatorics”, MSRI Publications,
38 (1999), 91 – 147.

[2] A. Barvinok, and K. Woods. Short rational generating functions for lattice point
problems. Journal of the American Math. Society, 16 (2003), 957 – 979.

[3] M. Brion, and M. Vergne. Residue formulae, vector partition functions and lattice
points in rational polytopes. Journal of the American Math. Society, 10/4 (1997),
797 – 833.

[4] J.B. Lasserre. Generating functions and duality for integer programs. To be pub-
lished in Discrete Optimization.

[5] J.A. De Loera, D. Haws, R. Hemmecke, P.Huggins, and R. Yoshida. Effective lat-
tice point counting in rational convex polytopes. To appear in Journal of Symbolic
Computation.

[6] J.A. De Loera, D. Haws, R. Hemmecke, P.Huggins, and R. Yoshida. Three kinds of
integer programming algorithms based on Barvinok’s rational functions. Accepted
to IPCO 2004.

[7] G.L. Nemhauzer, and L.A. Wolsey. Integer and Combinatorial Optimization. Willey
& Sons, New York 1988.

[8] Yu.Nesterov. Fast Fourier trasform and its applications to integer knapsack prob-
lems. CORE Discussion Paper #2004/64, September 2004.

8

