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1 Introduction

Motivation. In this paper we consider numerical schemes for solving the following prob-
lem:

min
x
{f(x) : x ∈ Q}, (1.1)

where Q is a closed convex set in a finite dimensional space E and f is a nonsmooth
convex function with dom f = Q. The majority of minimization methods for solving (1.1)
are justified either by imposing some bounds on the derivatives of function f :

‖gx‖∗ ≤ L, ∀gx ∈ ∂f(x), ∀x ∈ Q, (1.2)

or, by bounding the variation of f over Q (e.g., [1], [2], [3], [6]). Note that both these mea-
sures enter as the essential factors in the worst-case complexity bounds of corresponding
schemes. And both of them change if we add to the objective function a linear one.

Recently it became clear that in certain situations it is possible to get rid from such an
unpleasant sensitivity. Firstly, the complexity estimates of smoothing technique [4] do not
change after adding a linear function to the objective. Secondly, the dual extrapolation
method [5], developed for solving the variational inequalities, can be applied to operators
with bounded variations. Being specified for the problem (1.1), this condition looks as
follows:

‖gx − gy‖∗ ≤ M,

∀gx ∈ ∂f(x), ∀gy ∈ ∂f(y), ∀x, y ∈ Q.
(1.3)

However, in both examples the approaches in use are quite special. Thus, it was not clear
if it is possible to treat in a proper way the problems from the functional class (1.1), (1.3)
using the standard minimization methods.

In this paper we give a positive answer on the above question. Namely, we show
that the minimization schemes of Dual Averaging [7], developed for the standard setting
(1.1), (1.2), can be directly applied to the problems satisfying a finer assumption (1.3).
However, in this case we can guarantee an appropriate rate of convergence only for the
primal solutions. In order to get convergence in the dual space, we need to introduce in
the scheme a simple modification.

The paper is organized as follows. In Section 2 we introduce the gap functions and recall
the reader the main results on dual averaging [5], [7]. In the next section we show that the
simplest dual-averaging scheme as applied to the minimization problems with bounded
variations of subgradients ensures a proper rate of convergence of primal variables. In
Section 4 we present a simple modification of the scheme, which guarantees the right
convergence for primal-dual variables.

Notations and generalities. Let E be a finite-dimensional real vector space and E∗ be
its dual. We denote the value of linear function s ∈ E∗ at x ∈ E by 〈s, x〉. For measuring
distances in E, let us fix some (primal) norm ‖ · ‖. This norm defines a system of primal
balls:

Br(x) = {y ∈ E : ‖y − x‖ ≤ r}.
The dual norm ‖ · ‖∗ on E∗ is introduced, as usual, by

‖s‖∗ = max
x
{〈s, x〉 : x ∈ B1(0)}, s ∈ E∗.
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Let Q be a closed convex set in E. Assume that we know a prox-function d(x) of the
set Q. This means that d(x) is a continuous function with domain belonging to Q, which
is strongly convex on Q with respect to ‖ · ‖: ∀x, y ∈ Q, ∀α ∈ [0, 1],

d(αx + (1− α)y) ≤ αd(x) + (1− α)d(y)− 1
2σα(1− α)‖x− y‖2, (1.4)

where σ ≥ 0 is the convexity parameter. Denote by x0 the prox-center of the set Q:

x0 = arg min
x
{d(x) : x ∈ Q}. (1.5)

Without loss of generality, we assume that d(x0) = 0. Since d is strongly convex, the
prox-center is well-defined and

d(x) ≥ 1
2σ‖x− x0‖2, x ∈ Q. (1.6)

2 Gap functions and dual averaging

In this section we recall the reader some standard facts from [5] and [7]. We mainly follow
Section 2 of the latter paper.

Let Q be a closed convex set in E endowed with a prox-function d(x). We allow Q to
be unbounded (for example, Q ≡ E). For our analysis we need to define two support-type
functions of the set Q:

ξD(s) = max
x∈Q

{〈s, x− x0〉 : d(x) ≤ D},

Vβ(s) = max
x∈Q

{〈s, x− x0〉 − βd(x)},
(2.1)

where D ≥ 0 and β > 0 are some parameters. The first function is a usual support
function for the set

FD = {x ∈ Q : d(x) ≤ D}.
The second one is a proximal-type approximation of the support function of set Q. Since
d(·) is strongly convex, for any positive D and β we have dom ξD = domVβ = E∗. We
assume Q to be simple, which means that both functions in (2.1) are computable together
with their differential characteristics.

Let us mention some properties of these functions. If β2 ≥ β1 > 0, then for any s ∈ E∗

we have
Vβ2(s) ≤ Vβ1(s). (2.2)

Note that the level of smoothness of function Vβ(·) is controlled by parameter β.

Lemma 1 Function Vβ(·) is convex and differentiable on E∗. Moreover, its gradient is
Lipschitz continuous with constant 1

βσ :

‖∇Vβ(s1)−∇Vβ(s2)‖ ≤ 1
βσ‖s1 − s2‖∗, ∀s1, s2 ∈ E∗. (2.3)

For any s ∈ E∗, vector ∇Vβ(s) belongs to Q:

∇Vβ(s) = πβ(s)− x0, πβ(s) def= arg min
x∈Q

{−〈s, x〉+ βd(x)}. (2.4)
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It is important that function V is homogeneous:

τVβ(s) = Vτβ(τs), πβ(s) = πτβ(τs), τ > 0. (2.5)

Lemma 2 For any s ∈ E∗ and β ≥ 0 we have

ξD(s) ≤ βD + Vβ(s). (2.6)

Consider now the sequences

Xk = {xi}k
i=0 ⊂ Q, Gk = {gi}k

i=0 ⊂ E∗, Λk = {λi}k
i=0 ⊂ R+.

Typically, the test points xi and the weights λi are generated by some algorithmic scheme
and the points gi are computed by a black-box oracle G(·), related to a specific convex
problem:

gi = G(xi), i ≥ 0.

In this paper we consider only the problem instances, for which there exists a solution
x∗ ∈ Q satisfying the condition

〈gi, xi − x∗〉 ≥ 0, i ≥ 0. (2.7)

We are going to approximate the primal and dual solutions of our problem using the
following aggregate objects:

Sk =
k∑

i=0
λi, x̂k+1 = 1

Sk

k∑
i=0

λixi,

sk+1 =
k∑

i=0
λigi, ŝk+1 = 1

Sk
sk+1,

(2.8)

with x̂0 = x0 and s0 = 0.
As we will see later, the quality of the test sequence Xk can be naturally described by

the following gap function:

δk(D) = max
x

{
k∑

i=0
λi〈gi, xi − x〉 : x ∈ FD,

}
, D ≥ 0. (2.9)

Using notation (2.8), we get an explicit representation of the gap:

δk(D) =
k∑

i=0

λi〈gi, xi − x0〉+ ξD(−sk+1). (2.10)

Sometimes we will use an upper gap function

∆k(β, D) = βD +
k∑

i=0
λi〈gi, xi − x0〉+ Vβ(−sk+1)

=
k∑

i=0
λi〈gi, xi − πβ(−sk+1)〉+ β · (D − d(πβ(−sk+1))) .

(2.11)
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In view of (2.6) and (2.10), for any non-negative D and β we have

δk(D) ≤ ∆k(β, D). (2.12)

Since Q is a simple set, the values of the gap functions can be easily computed. Note
that for some D these values can be negative. However, if the solution x∗ of our problem
do exist (in the sense of (2.7)), then for

D ≥ d(x∗)

the value δk(D) is non-negative independently on the sequences Xk, Λk and Gk, involved
in its definition.

Consider now the generic scheme of Dual Averaging (DA-scheme) [7].

Initialization: Set s0 = 0 ∈ E∗. Choose β0 > 0.

Iteration (k ≥ 0):

1. Compute gk = G(xk).

2. Choose λk > 0 and set sk+1 = sk + λkgk.

3. Choose βk+1 > 0 and set xk+1 = πβk+1
(−sk+1).

(2.13)

Theorem 1 Let the sequences Xk, Gk and Λk be generated by (2.13), and the parameters
{βk}∞k=0 satisfy the condition

βk+1 ≥ βk, k ≥ 0. (2.14)

Then:

1. For any k ≥ 0 and D ≥ 0 we have:

δk(D) ≤ ∆k(βk+1, D) ≤ βk+1D + 1
2σ

k∑
i=0

λ2
i

βi
‖gi‖2∗. (2.15)

2. Assume that the solution x∗ in the sense (2.7) exists. Then

1
2σ‖xk+1 − x∗‖2 ≤ d(x∗) + 1

2σβk+1

k∑
i=0

λ2
i

βi
‖gi‖2∗. (2.16)

Thus, if the scheme (2.13) is applied to the problem (1.1) with oracle G(x) ∈ ∂f(x),
which satisfies condition (1.2), then inequality (2.15) establishes the rate of convergence
of the generated sequence. Indeed, if D ≥ d(x∗), then in view of definition of the gap
function (2.9), we have

1
Sk

k∑
i=0

λif(xi)− f(x∗) ≤ 1
Sk

δk(D) ≤ 1
Sk

∆k(βk+1, D)

≤ 1
Sk

[
βk+1D + L2

2σ

k∑
i=0

λ2
i

βi

]
.

(2.17)
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In the scheme of Simple Averages (SA) we take

λk ≡ 1, β0 = γ, βk = γ
√

k, k ≥ 1, (2.18)

where γ is a positive parameter. Then, from (2.17) we derive the following bound:

1
k+1

k∑
i=0

f(xi)− f(x∗) ≤ 1
k+1

[
γD

√
k + 1 + L2

2γσ

(
1 +

k∑
i=1

1√
i

)]

≤ 1√
k+1

[
γD + L2

γσ

]
.

(2.19)

3 Bounded variation of subgradients

Let us show now how to bound the gap functions using the assumption (1.3). Denote
µk

def= βk+1

Sk
. Then

Ψk
def= 1

Sk
∆k(βk+1, D)

(2.11)
= 1

Sk

k∑
i=0

λi〈gi, xi − x0〉+ µkD + 1
Sk

Vβk+1
(−sk+1)

(2.5),(2.8)
= 1

Sk

k∑
i=0

λi〈gi, xi − x0〉+ µkD + Vµk
(−ŝk+1).

(3.1)

Let us introduce for scheme (2.13) two new requirements which are assumed to be valid
for all k ≥ 0:

A1. µk+1 ≤ µk.

A2. d(xk) ≤ D.
(3.2)

Note that the first requirement is satisfied by the strategy (2.18). The second assumption
can be valid, for example, due to the boundedness of the set Q. Or, if we ensure condition
(2.14), it can be derived from inequality (2.16).

In view of (3.1), we have

Ψk+1
(2.11)
= 1

Sk+1

k+1∑
i=0

λi〈gi, xi − xk+2〉+ µk+1 · (D − d(xk+2))

(3.2)

≤ 1
Sk+1

k+1∑
i=0

λi〈gi, xi − xk+2〉+ µk · (D − d(xk+2))

(2.8)
= 1

Sk+1

k+1∑
i=0

λi〈gi, xi − x0〉 − 〈ŝk+2, xk+2 − x0〉+ µk · (D − d(xk+2))

(2.1)

≤ 1
Sk+1

k+1∑
i=0

λi〈gi, xi − x0〉+ µkD + Vµk
(−ŝk+2).

(3.3)
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Denote αk = λk+1

Sk+1
. Then

1
Sk+1

k+1∑
i=0

λi〈gi, xi − x0〉 = (1− αk) 1
Sk

k∑
i=0

λi〈gi, xi − x0〉+ αk〈gk+1, xk+1 − x0〉,

1
Sk

k∑
i=0

λi〈gi, xi − x0〉 (3.1)
= Ψk − µkD − Vµk

(−ŝk+1),

〈gk+1, xk+1 − x0〉 (2.13)
= 〈gk+1, πβk+1

(−sk+1))− x0〉

(2.5)
= 〈gk+1, πµk

(−ŝk+1))− x0〉

= 〈gk+1,∇Vµk
(−ŝk+1)〉.

Substituting these equalities in (3.3), we obtain:

Ψk+1 ≤ µkD + Vµk
(−ŝk+2) + (1− αk) [Ψk − µkD − Vµk

(−ŝk+1)]

+αk〈gk+1,∇Vµk
(−ŝk+1)〉

= (1− αk)Ψk + αkµkD

+ [Vµk
(−ŝk+2)− (1− αk)Vµk

(−ŝk+1) + αk〈gk+1,∇Vµk
(−ŝk+1)〉] .

(3.4)

Note that
ŝk+2 = 1

Sk+λk+1
[Sk · ŝk+1 + λk+1gk+1]

= (1− αk)ŝk+1 + αkgk+1

= ŝk+1 + αk(gk+1 − ŝk+1).

Hence, in view of (2.3), we can estimate

Vµk
(−ŝk+2) ≤ Vµk

(−ŝk+1)− αk〈gk+1 − ŝk+1,∇Vµk
(−ŝk+1)〉+ α2

k
2σµk

‖gk+1 − ŝk+1‖2∗.

Hence, for the expression in brackets in (3.4) we get an upper bound

[ · ] ≤ αkVµk
(−ŝk+1) + αk〈ŝk+1,∇Vµk

(−ŝk+1)〉+ α2
k

2σµk
‖gk+1 − ŝk+1‖2∗.

Since Vµ(·) is a convex function and Vµ(0) = 0, the latter inequality together with (3.4)
result in the following statement.

Lemma 3 Assume that the objects involved in the scheme of Dual Averaging (2.13) sat-
isfy conditions (3.2). Then for any k ≥ 0 we have

Ψk+1 ≤ (1− αk)Ψk + αkµkD + α2
k

2σµk
‖gk+1 − ŝk+1‖2∗. (3.5)

Now we can estimate the rate of convergence of SA-method (2.13), (2.18) as applied
to the problem (1.1) with oracle G(x) ∈ ∂f(x).
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Theorem 2 Let problem (1.1) satisfy assumption (1.3), and sequence {xk}N
k=0 generated

by SA-method (2.13), (2.18) satisfy condition A2 in (3.2) with D ≥ d(x∗). Then for any
N ≥ 1 we have

1
N

N∑
k=1

f(xk)− f∗ ≤ 2√
N

[
γD + 1

2γσM2
]
. (3.6)

Proof:
Note that for k ≥ 0 the choice (2.18) results in

Sk = k + 1, αk = λk+1

Sk+1
= 1

k+2 , µk = βk+1

Sk
= γ√

k+1
. (3.7)

Hence, condition A1 in (3.2) is valid.
Further, by definition (2.8) we have ŝk+1 ∈ Conv {g0, . . . , gk}. Therefore, in view of

assumption (1.3), we can bound

‖gk+1 − ŝk+1‖∗ ≤ M, k ≥ 0.

Applying now the statement of Lemma 3, we obtain

Ψk+1 ≤ k+1
k+2Ψk + γD

(k+2)
√

k+1
+ M2

√
k+1

2γσ(k+2)2

≤ k+1
k+2Ψk + 1

(k+2)
√

k+1

[
γD + 1

2γσM2
]
.

Denoting now τk = (k + 1)Ψk and C = γD + 1
2γσM2, we come to recursive bounds

τk+1 ≤ τk + 1√
k+1

C, k ≥ 0.

Hence, for any N ≥ 1

τN ≤ τ0 + C
N∑

k=1

1√
k
≤ τ0 + (2

√
N − 1)C. (3.8)

Further, for any x ∈ Q denote by f ′(x) an arbitrary element from ∂f(x). By defini-
tion (3.1), we have

τ0 = Ψ0 = µ0D + Vµ0(−ŝ1)
(2.8),(3.7)

= γD + Vγ(−g0)

(2.1)
= γD + max

x∈Q
{〈g0, x0 − x〉 − γd(x)}

= γD + max
x∈Q

{〈f ′(x), x0 − x〉+ 〈g0 − f ′(x), x0 − x〉 − γd(x)}

(1.3),(1.6)

≤ γD + max
x∈Q

{〈f ′(x), x0 − x〉+ M‖x− x0‖ − 1
2γσ‖x− x0‖2}

≤ γD + 1
2γσM2 + f(x0)− f(x∗).

(3.9)
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Thus, substituting this estimate in (3.8), we obtain

f(x0)− f(x∗) + 2
√

NC ≥ τN = (N + 1)ΨN
(3.1)
= ∆N (βN+1, D)

(2.12)

≥ δN (D)
(2.9)
= max

x

{
N∑

k=0
〈gk, xk − x〉 : x ∈ FD

}

≥ max
x

{
N∑

k=0
[f(xk)− f(x)] : x ∈ FD

}

=
N∑

k=0
f(xk)− (N + 1)f(x∗).

Clearly, this inequality can be rewritten in the form (3.6). 2

It is interesting that the value f(x0) cannot appear in the left-hand side of inequal-
ity (3.6). Indeed, an augmentation of the objective function by a linear term can change
the gap f(x0)−f(x∗) in an arbitrary way. On the other hand, such a modification does not
affect anyhow the right-hand side of inequality (3.6). Thus, we can see that the influence
of a “linear part” of the objective function of problem (1.1) is eliminated by SA-method
in one iteration.

Note also that we managed to get a rate of convergence only for the sequence of the
values of objective function. However, as it was shown in [7], the rate of convergence for
approximate primal-dual solutions of optimization problems can be derived only from the
convergence rate of the gap functions. In the proof of Theorem 2 we have seen that the
upper bound for this gap (3.9) includes residual f(x0)− f(x∗), which does not admit any
upper bound in terms of M . Nevertheless, in the next section we show that our goal can
be achieved by a simple modification of the general DA-scheme (2.13).

4 General problems

Note that the technique presented in Section 3 can be adapted to all classes of problems
considered in [7] provided that the variation of the answers of their oracles is bounded.
However, as we have seen in the previous section, the rules of DA-methods need some
modifications. Namely, the information related to the starting point x0 must be treated
in a very special way.

In order to describe a general scheme of modified DA-methods, we need to intro-
duce notation for some new objects. All of them can be seen as truncated versions of
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corresponding prototypes introduced in Section 2:

S+
k =

k∑
i=1

λi, x̂+
k = 1

S+
k

k∑
i=1

λixi, s+
k =

k∑
i=1

λigi, ŝ+
k = 1

S+
k

s+
k ,

δ+
k (D) = max

x

{
k∑

i=1
λi〈gi, xi − x〉 : x ∈ FD,

}
, D ≥ 0,

∆+
k (β, D) = βD +

k∑
i=1

λi〈gi, xi − x0〉+ Vβ(−s+
k )

=
k∑

i=1
λi〈gi, xi − πβ(−s+

k )〉+ β ·
(
D − d(πβ(−s+

k ))
)

.

(4.1)

As before, for any non-negative β and D we have

δ+
k ≤ ∆+

k (β, D). (4.2)

Consider the following scheme of Truncated Dual Averaging (TDA). Below we choose

λ1 = λ0, β1 = β0. (4.3)

Initialization: Set s+
0 = 0 ∈ E∗.

Choose β0 > 0. Set x1 = πβ0(−λ0g0).

Iteration (k ≥ 1):

1. Compute gk = G(xk).

2. Choose λk > 0 and set s+
k = s+

k−1 + λkgk.

3. Choose βk > 0 and set xk+1 = πβk
(−s+

k ).

(4.4)

As compared with (2.13), in the modified scheme we exclude x0 and g0 from all aggregated
objects. In what follows we denote µ+

k = βk/S+
k .

Theorem 3 Assume the variation of the answers of oracle G be bounded:

‖gx − gy‖∗ ≤ M,

∀gx ∈ G(x), ∀gy ∈ G(y), ∀x, y ∈ Q.
(4.5)

Let sequences {xk}∞k=1, {gk}∞k=1 and {λk}∞k=1 be generated by (4.4). Assume that

d(xk) ≤ D, µ+
k+1 ≤ µ+

k , k ≥ 1. (4.6)
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Then, for any k ≥ 1 and D ≥ 0 we have:

δ+
k (D) ≤ ∆+

k (βk, D) ≤ D

[
β0 +

k∑
i=2

λiβi−1

S+
i−1

]
+ 1

2σM2
k∑

i=1

λ2
i

βi−1
. (4.7)

Proof:
Denote αk = λk+1/S+

k+1. Then, for any k ≥ 1 we have

∆+
k+1(βk+1, D) = βk+1D + Vβk+1

(−s+
k+1) +

k+1∑
i=1

λi〈gi, xi − x0〉

= βk+1D + Vβk+1
(−s+

k+1) + λk+1〈gk+1, xk+1 − x0〉

+∆+
k (βk, D)− βkD − Vβk

(−s+
k )

(2.5)
= S+

k+1

[
µ+

k+1D + Vµ+
k+1

(−ŝ+
k+1) + αk〈gk+1, xk+1 − x0〉

]

+∆+
k (βk, D)− βkD − S+

k Vµ+
k
(−ŝ+

k ).

(4.8)

In view of (2.5) and assumption (4.6), we have

µ+
k+1D + Vµ+

k+1
(−ŝ+

k+1) = µ+
k+1D + 〈−ŝ+

k+1, xk+2 − x0〉 − µ+
k+1d(xk+2)

≤ µ+
k D + 〈−ŝ+

k+1, xk+2 − x0〉 − µ+
k d(xk+2)

≤ µ+
k D + Vµ+

k
(−ŝ+

k+1).

Since S+
k = (1− αk)S+

k+1, and S+
k+1µ

+
k = βk

1−αk
, from (4.8) we obtain

∆+
k+1(βk+1, D) ≤ ∆+

k (βk, D) + αkβk
1−αk

D

+S+
k+1[Vµ+

k
(−ŝ+

k+1) + αk〈gk+1, xk+1 − x0〉 − (1− αk)Vµ+
k
(−ŝ+

k )].

Note that ŝ+
k+1 = (1− αk)ŝ+

k + αkgk+1 ∈ Conv {g1, . . . , gk+1}. Since

∇Vµ+
k
(−ŝ+

k ) = xk+1 − x0,

in view of (2.3) and assumption (4.5) we have

Vµ+
k
(−ŝ+

k+1) ≤ Vµ+
k
(−ŝ+

k ) + αk〈ŝ+
k − gk+1,∇Vµ+

k
(−ŝ+

k )〉+ α2
k

2σµ+
k

‖ŝ+
k − gk+1‖2∗

≤ Vµ+
k
(−ŝ+

k ) + αk〈ŝ+
k − gk+1, xk+1 − x0〉+ α2

k

2σµ+
k

M2.
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Hence, we can continue:

∆+
k+1(βk+1, D) ≤ ∆+

k (βk, D) + αkβk
1−αk

D

+αkS
+
k+1

[
Vµ+

k
(−ŝ+

k ) + 〈ŝ+
k , xk+1 − x0〉+ αk

2σµ+
k

M2

]

≤ ∆+
k (βk, D) + αkβk

1−αk
D +

α2
kS+

k+1

2σµ+
k

M2

≤ ∆+
k (βk, D) + λk+1βk

S+
k

D +
λ2

k+1

2σβk
M2.

Thus, for any k ≥ 2 we get the following bound:

∆+
k (βk, D) ≤ ∆+

1 (β1, D) + D
k∑

i=2

λiβi−1

S+
i−1

+ 1
2σM2

k∑
i=2

λ2
i

βi−1
. (4.9)

It remains to estimate the first term in the right-hand side of this inequality. Note that

∆+
1 (β1, D) = β1D + λ1〈g1, x1 − x0〉+ Vβ1(−λ1g1)

= β1D + λ1〈g1,∇Vβ0(−λ0g0)〉+ Vβ1(−λ1g1)

(4.3)
= β0D + λ1〈g1,∇Vβ0(−λ1g0)〉+ Vβ0(−λ1g1).

(4.10)

However, in view of (2.3), we have

Vβ0(−λ1g1)
(4.5)

≤ Vβ0(−λ1g0) + λ1〈g0 − g1,∇Vβ0(−λ1g0)〉+ λ2
1

2σβ0
M2

(Vβ(·) is convex; Vβ(0) = 0) ≤ −λ1〈g1,∇Vβ0(−λ1g0)〉+ λ2
1

2σβ0
M2.

Thus, using this inequality in (4.10), we get

∆+
1 (β1, D) ≤ β0D + λ2

1
2σβ0

M2.

Now, taking into account (4.9), we obtain (4.7). 2

Thus, using TDA-scheme (4.4) we can guarantee a certain rate of convergence of the
gap function 1

S+
k

∆+
k (βk, D) to zero. This means that corresponding methods are able to

generate the approximate dual solutions (see [7] for details). Note that the strategy (2.18)
leads to the following variant of the estimate (4.7):

1
S+

k

δ+
k (D) ≤ 1

S+
k

∆+
k (βk, D) ≤ 1

kDγ

[
1 +

k∑
i=2

1√
i−1

]
+ 1

2σγkM2

[
1 +

k∑
i=2

1√
i−1

]

≤ 2√
k

[
Dγ + 1

2σγ M2
]
, k ≥ 1.
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