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Abstract

We estimate by Bayesian inference the mixed conditional heteroskedasticity model of

(Haas, Mittnik, and Paolella 2004a). We construct a Gibbs sampler algorithm to compute

posterior and predictive densities. The number of mixture components is selected by the

marginal likelihood criterion. We apply the model to the SP500 daily returns.
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1 Introduction

Finite mixture models, see e.g. (McLachlan and Peel 2000), are more and more used in

statistics and econometrics. Their main advantage lies in the flexibility they provide in model

specification, compared to the use of a more simple distribution. On the other hand, these

models are more difficult to estimate than corresponding models without a mixture, but their

estimation becomes more and more feasible as computational power increases. However,

computational power is not sufficient, one needs also good algorithms. Maximum likelihood

estimation of mixture models is not at all as easy as for non-mixture models, and not very

reliable in some cases. The EM algorithm was initially developed in this perspective, see

(Dempster, Laird, and Rubin 1977). Bayesian estimation is also very efficient for mixture

models, see (Marin, Mengersen, and Robert 2005).

Conditionally heteroskedastic models are very widespread for modelling time-series of fi-

nancial returns. The most used class of model is the GARCH family, see e.g. (Bollerslev,

Engle, and Nelson 1994) for a survey. A lot of research has has been devoted to refine the

dynamic specification of the conditional variance equation, for which the benchmark is the

linear GARCH specification of (Bollerslev 1986). The conditional distribution of the model

error term is chosen by most researchers among the Gaussian, Student-t, and too a smaller

extent skewed versions of these and the GED distribution, see (Nelson 1991). Empirical mod-

els typically include around five parameters to fit time-series of a few thousands observations.

This may be considered as a powerful way to represent the data. Simultaneously such par-

simonious models may be too restrictive: one should be able to fit the data better by using

a more flexible model, like a mixture model. Mixture GARCH models have been recently

developed, see (Haas, Mittnik, and Paolella 2004a), who build on the results of (Wong and

Li 2000) and (Wong and Li 2001), and (Haas, Mittnik, and Paolella 2004b) and (Alexander

and Lazar 2004). All these authors use ML estimation, while (Bauwens, Bos, van Oest, and

van Dijk 2004) propose a particular two-component mixture GARCH model and estimate it

by Bayesian inference.

Bayesian inference for the mixed normal GARCH model of (Haas, Mittnik, and Paolella

2004a) is the subject of this paper. The model is defined in Section 2. In Section 3 we explain

how this model can be estimated in the Bayesian framework. We design a Gibbs sampler,

and discuss how to obtain predictive densities and how to choose the number of components
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of the mixture. In Section 4, we illustrate all this on simulated data, and in Section 5, we

apply the approach to returns of the SP500 index.

2 Mixed conditional heteroskedasticity

(Haas, Mittnik, and Paolella 2004a) define a mixture model on a demeaned series yt =

Yt − E(Yt|Ft) where Ft is the information set up to time t and the conditional mean does

not depend on the components of the mixture. They call this model (diagonal) MN-GARCH

(MN for mixed normal). The conditional cdf of yt is the K-component mixture

F (yt|Ft) =
K∑

k=1

πkΦ

(
yt − µk√

hk,t

)
(1)

where

hk,t = ωk + αky
2
t−1 + βkhk,t−1 (2)

and Φ(·) is the standard Gaussian cdf. Note that the parameter πk is positive for all k and
∑K

k=1 πk = 1, which is imposed by setting πK = 1−∑K−1
k=1 πk. The other Greek letters denote

the other parameters. The zero mean assumption on yt is ensured by the restriction

µK = −
K−1∑

k=1

πkµk

πK
. (3)

(Haas, Mittnik, and Paolella 2004a) also consider a more general model where the hk,t’s

are GARCH(pk, qk) and more importantly may depend on other hj,t’s, k 6= j (contrary to

the diagonal specification defined above). The weak stationarity condition for a (diagonal)

MN-GARCH model is
[ K∑

k=1

πk

β̃k

(
1− αk − βk

)] K∏

k=1

β̃k > 0. (4)

where β̃k = 1− βk. Its unconditional variance is then given by

E(y2
t ) =

c +
∑K

k=1 πkωk/β̃k∑K
k=1 πk(1− αk − βk)/β̃k

(5)

where c =
∑K

k=1 πkµ
2
k. One can check that the process may be stationary even if some compo-

nents are not stationary provided that these components have sufficiently low corresponding

component weights.
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3 Bayesian inference

The likelihood of the MN-GARCH model for T observations is given by

L(Ψ | y) =
T∏

t=1

K∑

k=1

πkφ(yt|µk, θk) (6)

where Ψ is the vector regrouping the parameters πk, µk, θk for k = 1, . . . , K, y = (y1, y2, . . . , yT ),

φ(·|µk, θk) denotes a normal density with mean µk and variance hk,t that depends on θk =

(ωk, αk, βk). A direct evaluation of the likelihood function is difficult because it consists of

a product of sums. To alleviate this evaluation, we introduce for each observation a state

variable St ∈ {1, 2, . . . , K} that takes the value k if the observation yt belongs to component

k. The vector ST contains the state variables for the T observations. We assume that the

state variables are independent given the group probabilities, and the probability that St is

equal to k is equal to πk:

ϕ(ST |π) =
T∏

t=1

ϕ(St|π) =
T∏

t=1

πSt , (7)

where π = (π1, π2, . . . , πK). Given ST and y the likelihood function is

L(Ψ | ST , y) =
T∏

t=1

πStφ(yt|µSt , θSt), (8)

which is easier to evaluate than (6). Since ST is not observed we treat it as a parameter of

the model. This technique is called data augmentation, see (Tanner and Wong 1987) for more

details. Although the augmented model contains more parameters, inference becomes easier

by making use of Markov chain Monte Carlo (MCMC) methods. In this paper we implement a

Gibbs sampling algorithm that allows to sample from the posterior distribution by sampling

from its conditional posterior densities, which are called blocks. The blocks of the Gibbs

sampler, and the prior densities, are explained in the next subsections, using the parameter

vectors π, θ = (θ1, θ2, . . . , θk), and µ = (µ1, µ2, . . . , µK). The joint posterior distribution is

given by

ϕ(ST , µ, θ, π|y) ∝ ϕ(µ) ϕ(θ)ϕ(π)
T∏

t=1

πStφ(yt|µSt , θSt), (9)

where ϕ(µ), ϕ(θ), ϕ(π) are the corresponding prior densities. Thus we assume prior inde-

pendence between π, µ and θ. We define these prior densities below when we explain the

different blocks of the Gibbs sampler.
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3.1 Sampling ST from ϕ(ST |µ, θ, π, y)

Given µ, θ, π and y, the posterior density of ST is proportional to L(Ψ | ST , y). It turns out

that the St’s are mutually independent, so that we can write the relevant conditional posterior

density as

ϕ(ST |µ, θ, π, y) = ϕ(S1|µ, θ, π, y) · · ·ϕ(ST |µ, θ, π, y). (10)

As the sequence {St}T
t=1 is equivalent to a multinomial process, we simply have to sample

from a discrete distribution where the K probabilities are given by

P (St = k|θ, µ, π, y) =
πkφ(yt|µk, θk)∑K

k=1 πkφ(yt|µk, θk)
, (k = 1, . . . ,K). (11)

To sample St we draw one observation from a uniform distribution on (0, 1) and decide which

group k to take according to (11).

3.2 Sampling π from ϕ(π|ST , µ, θ, y)

The full conditional posterior density of π is given by

ϕ(π|ST , y) = ϕ(π|ST ) ∝ ϕ(π)
K∏

k=1

πxk
k (12)

where xk is the number of times that St = k. The prior ϕ(π) is chosen to be a Dirichlet

distribution, Di(a10, a20 · · · aK0) with parameter vector a0 = (a10, a20 · · · aK0)′. As a con-

sequence, ϕ(π|ST , y) is also a Dirichlet distribution, Di(a1, a2 · · · aK) with ak = ak0 + xk,

k = 1, 2, . . . , K. Notice that it does nor depend on µ and θ. The Dirichlet density function is

given by

fDi(π| a1, a2 · · · aK) =
Γ(A)∏K

k=1 Γ(ak)

K∏

k=1

π
ak−1

k 11SK
(π) (13)

where ak > 0 (k = 1, . . . ,K), A =
∑K

i=1 ai and SK = {πk, k = 1, . . . , K|πk > 0 ∀k,
∑K

k=1 πk =

1}. The first two moments are given by E(πi|a) = ai
A , V (πi|a) = ai (A−ai)

A2(A+1)
and cov(πi, πj |a) =

− aiaj

A2(A+1)
respectively.

We sample a Dirichlet distribution by sampling K independent gamma random variables,

Xk ∼ G(ak, 1), and transforming them to

πi =
Xi

X1 + . . . + XK
i = 1, . . . , K − 1

πK = 1− π1 − π2 − . . .− πK−1.
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It follows that (π1, . . . , πK) ∼ Di(a1, . . . , aK). Other properties of the Dirichlet distribution

can be found in (Wilks 1962).

3.3 Sampling µ from ϕ(µ|ST , π, θ, y)

Since the mean of the mixture is equal to zero, see (3), the µk’s cannot be drawn independently.

We illustrate this for K = 3. Minus two times the log-kernels for the first two components

are given by

∑

t∈St=k

(
yt − µk√

hk,t

)2

= ck + µ2
k

∑

t∈St=k

1
hk,t

− 2µk

∑

t∈St=k

yt

hk,t
(k = 1, 2), (14)

where ck is a constant that does not depend on µk. The third mixture component contributes

in the following way:

∑

t∈Sk=3

(
yt + π1

π3
µ1 + π2

π3
µ2√

h3t

)2

= c3 + µ2
1

(
π1

π3

)2 ∑

t∈St=3

1
h3t

+

µ2
2

(
π2

π3

)2 ∑

t∈St=3

1
h3,t

+ 2µ1
π1

π3

∑

t∈St=3

yt

h3,t
+

2µ2
π2

π3

∑

t∈St=3

yt

h3,t
+ 2

π1π2µ1 u2

π2
3

∑

t∈St=3

1
h3,t

(15)

The sum of (14) and (15) can be written compactly as

(µ− µ̄)′A(µ− µ̄) + c, (16)

where c is a constant not depending on µ, by defining the matrix A as



∑
t∈St=3

1
h1,t

+
(

π1
π3

)2 ∑
t∈St=3

1
h3,t

π1π2

π2
3

∑
t∈St=3

1
h3,t

π1π2

π2
3

∑
t∈St=3

1
h3,t

∑
t∈St=3

1
h2,t

+
(

π2
π3

)2 ∑
t∈St=3

1
h3,t


, (17)

and the vector µ̄ as −A−1b, where

b =




π1
π3

∑
t∈Sk=3

yt

h3t
−∑

t∈Sk=1

yt

h1t

π2
π3

∑
t∈Sk=3

yt

h3t
−∑

t∈Sk=2

yt

h2t


. (18)

Minus one half times the first term of (16) is the log-kernel of a bivariate normal density with

mean µ̄ and covariance matrix A−1.
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In general, for K components, in this block of the Gibbs sampler, the K−1 first parameters

µk are drawn from a multivariate normal density with mean −A−1b and covariance matrix

A−1, where

A = diag

( ∑

t∈St=1

1
h1,t

, . . . ,
∑

t∈St=K−1

1
hK−1,t

)
+

π̃π̃′

π2
K

∑

t∈St=K

1
hK,t

, (19)

denoting π̃ = (π1, . . . , πK−1), and

b =




π1
πK

∑
t∈St=K

yt

hK,t
−∑

t∈St=1
yt

h1,t

...
πK−1

πK

∑
t∈St=K

yt

hK,t
−∑

t∈St=K−1
yt

hK−1,t


 . (20)

3.4 Sampling θ from ϕ(θ|Sk, µ, π, y)

By assuming prior independence between the θk’s, i.e. ϕ(θ) =
∏K

k=1 ϕ(θk), it follows that

ϕ(θ|ST , π, y) = ϕ(θ|ST , y) = ϕ(θ1|ỹ1)ϕ(θ2|ỹ2) · · ·ϕ(θK |ỹK) (21)

where ỹk = {yt|St = k} and

ϕ(θk|ỹk) ∝ ϕ(θk)
∏

t∈St=k

φ(yt|µk, θk). (22)

Since we condition on the state variables, we can simulate each block θk separately. We do

this with the griddy-Gibbs sampler. The algorithm works as follows at iteration n + 1 (for

lighter notations, we drop the index k):

1. Using (22), compute κ(ω|αn, βn, ỹ), the kernel of the conditional posterior density of

ω given the values of α and β sampled at iteration n, over a grid (ω1, ω2 · · · , ωG), to

obtain the vector Gκ = (κ1, κ2, · · · , κG).

2. By a deterministic integration rule using M points, compute Gf = (0, f2, . . . , fG) where

fi =
∫ ωi

ω1

κ(ω|αn, βn, ỹ) dω, i=2,...,G. (23)

3. Generate u ∼ U(0, fG) and invert f(ω|α(n), β(n), ỹ) by numerical interpolation to get a

draw ω(n+1) ∼ ϕ(ω|α(n), β(n), ỹ).

4. Repeat steps 1-3 for ϕ(α|ω(n+1), βn, ỹ) and ϕ(β|ω(n+1), α(n+1), ỹ).
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Note that intervals of values for ω, α and β must be defined. The choice of these bounds (such

as ω1 and ωG) needs sometimes to be fine tuned in order to cover the range of the parameter

over which the posterior is relevant. For the deterministic integration we used thirty-three

points, which proved to be enough according to several experiments. For further details and

remarks on the griddy-Gibbs sampler we refer to (Bauwens, Lubrano, and Richard 1999).

3.5 Predictive densities

Predictive densities are essential for financial applications such as portfolio optimization and

risk management. Unlike prediction in the classical framework, predictive densities take into

account parameter uncertainty by construction. The predictive density of yT+1 is given by

f(yT+1 | y) =
∫

f(yT+1 | Ψ) ϕ(Ψ | y) dΨ (24)

where f(yT+1 | Ψ) =
∑K

k=1 πkφ(yt|µk, θk) as implied by (1). An analytical solution to (24) is

not available but it can be approximated by

1
N

N∑

j=1

(
K∑

k=1

π
(j)
k φ

(
yT+1|µ(j)

k , θ
(j)
k

))
(25)

where the superscript (j) indexes the draws generated with the Gibbs sampler and N is the

number of draws. Therefore, simultaneously with the Gibbs sampler, we repeat N times the

following two-step algorithm

step 1: simulate Ψ(j) ∼ ϕ(Ψ | y). This is done by the Gibbs sampler.

step 2: simulate y
(j)
T+1 ∼ f(yT+1 | Ψ(j)). Go to step 1.

Extending the idea used for yT+1, the predictive density for yT+s may be written as

f(yT+s | y) =
∫ [∫ ∫

. . .

∫
f(yT+s | yT+s−1, . . . , yT+1, y,Ψ) ×

f(yT+s−1 | yT+s−2, . . . , yT+1, y,Ψ)×

. . .×

f(yT+1 | y, Ψ)dyT+s−1dyT+s−2dyT+1]ϕ(Ψ | y) dΨ (26)

for which draws can be obtained by extending the above algorithm to a (s+1)-step algorithm.

The draw of yT+1 serves as conditioning information to draw yT+2, both realisations serve
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to draw yT+3, etc. All these draws are easily generated from the finite mixture of normal

densities. A non-Bayesian procedure typically proceeds by conditioning on a point estimate

of Ψ, which ignores the estimation uncertainty.

3.6 Marginal likelihood

The marginal likelihood of y, also called predictive density, is useful for selecting the number of

components K in the mixture. For example, Bayes factors are ratios of marginal likelihoods,

see (Kass and Raftery 1995) for a detailed explanation. The marginal likelihood is defined as

the integral of the likelihood with respect to the prior density

m(y) =
∫
L(Ψ | y)ϕ(Ψ)dΨ. (27)

Since this is the normalizing constant in Bayes’ theorem we can also write

m(y) =
L(Ψ | y)ϕ(Ψ)

ϕ(Ψ|y)
. (28)

Notice that (28) is an identity that holds for every Ψ. Deterministic numerical integration

of (27) is computationally too demanding for the finite mixture model of this paper. In-

stead, we calculate the marginal likelihood by the Laplace approximation, see (Tierney and

Kadane 1986). To explain this, let us define exp(h(Ψ)) = L(Ψ | y)ϕ(Ψ). The Laplace ap-

proximation is based on a second order Taylor expansion of h(Ψ) around the posterior mode

Ψ̂ = arg max lnL(Ψ | y), so that the first order term in the expansion vanishes:

h(Ψ) ≈ h(Ψ̂) +
1
2
(Ψ− Ψ̂)′

∂2h(Ψ)
∂Ψ ∂Ψ′ |Ψ=Ψ̂ (Ψ− Ψ̂). (29)

Therefore the marginal likelihood can be computed as
∫

exph(Ψ)dΨ ≈ exp(h(Ψ̂))
∫

exp
(

1
2
(Ψ− Ψ̂)′

∂2h(Ψ)
∂Ψ∂Ψ′ |Ψ=Ψ̂(Ψ− Ψ̂)

)
dΨ (30)

or

m(y) = L(Ψ̂ | y) ϕ(Ψ̂) (2π)k/2 | Σ(Ψ̂) |1/2, (31)

where k is the dimension of Ψ and

Σ(Ψ̂) =
[
−∂2 lnL(Ψ | y) ϕ(Ψ)

∂Ψ∂Ψ′ |Ψ=Ψ̂

]−1

. (32)
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We choose the model with the highest marginal likelihood value.

Another possibility to choose the number of components is to treat K as an additional

parameter in the model as is done in (Richardson and Green 1997) who make use of the

reversible jump MCMC methods. In this way, the prior information on the number of com-

ponents can be taken explicitly into account by specifying for example a Poisson distribution

on K in such a way that it favours a small number of components.

4 Illustration on simulated data

The purpose of this section is to validate, using simulated data, the Gibbs sampler described

in the preceding section and to compare Bayesian results with maximum likelihood estimates.

We simulate one dataset from the following two component model:

F (yt|Ft) = 0.8Φ

(
yt − 0.08√

h1,t

)
+ 0.2Φ

(
yt − 0.32√

h2,t

)
(33)

where

h1,t = 0.003 + 0.03y2
t−1 + 0.94h1,t−1

h2,t = 0.03 + 0.25y2
t−1 + 0.85h2,t−1. (34)

The sample size is fixed at 3000 and the conditional mean to zero. Although the second

GARCH component is explosive, the model is weakly stationary because the expression given

in equation (4) is equal to 0.0024. The parameters are chosen to be close to the estimates

obtained for the same model using a comparable amount of real data in the empirical illus-

tration described in Section 5. Table 1 provides descriptive statistics for the simulated data.

The parameter values for this process clearly generate unconditional negative skewness and

excess kurtosis, in addition to high persistence in the conditional variance process. This is

also visible in Figure 1, which shows the sample path, the estimated kernel density, and the

correlogram of the squared data.

In Table 2, we report the parameter estimates for the two component model by maximum

likelihood (ML) and by Bayesian inference, using the simulated data. The ML estimator

is obtained by maximizing the natural logarithm of (6) taking into account the restrictions

on the component probabilities. The standard errors are obtained from the Hessian matrix

evaluated at the ML estimates. The Bayesian results are the posterior means and standard
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Figure 1: Simulated data for the Gaussian two component mixture GARCH(1,1) model de-

fined in (33)-(34).
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Table 1: Descriptive statistics - simulated data

Observations 3000

Mean -0.0048

Standard Deviation 0.65

Maximum 3.34

Minimum -3.64

Skewness coefficient -0.53

Kurtosis coefficient 5.39

Statistics for the simulated data of the two

component model in (33)-(34).

deviations computed using 6500 draws of which the first 500 ones are discarded to warm up

the Gibbs sampler. The parameters a0k of the Dirichlet prior for π are all equal to 1, implying

that the prior density of π1 is uniform on (0, 1). The prior densities for the other parameters

are all independent and uniform on finite ranges, chosen to be wide enough not to truncate

the posterior density but narrow enough not to waste computational time.

We see from Table 2 that the parameters estimates for both estimation methods are close

to each other and of the same order of magnitude as the true values. Generally speaking,

we also notice that the bias and the variance of the Bayes estimates are somewhat smaller,

although some care has to be taken since the table contains only results for one simulated

data set. We did a more detailed analysis of these estimators by running a Monte Carlo study,

the results of which are reported in (Bauwens and Rombouts 2006), and it turns out that the

smaller bias and variance for the Bayes estimator indeed are confirmed.

In Table 3, we report the marginal likelihood values, see Section 3.6, for the one, two

and three component model. As expected, the marginal likelihood is maximized for the

two component model since this is the true data generating process. To compare with the

marginal likelihood, we also compute the Bayesian information criterion (BIC), defined as

−2L(Ψ̂ | y)+k log(T ), using the maximum likelihood estimator Ψ̂. Again, the two component

model is preferred because it minimizes the BIC.

This illustration on simulated data shows that the Gibbs sampler for the mixture GARCH
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Table 2: Estimation results - simulated data

DGP MLE Bayes

estimate std error mean std dev

π1 0.8 0.79824 0.040065 0.76908 0.046114

µ1 0.08 0.088729 0.011766 0.084313 0.0087951

ω1 0.003 0.0042042 0.0017198 0.0043303 0.0015511

α1 0.03 0.054952 0.0092736 0.054893 0.0081617

β1 0.94 0.89565 0.016395 0.89236 0.015149

ω2 0.03 0.019888 0.010659 0.024543 0.0094535

α2 0.25 0.18725 0.056536 0.19938 0.0494

β2 0.85 0.89226 0.027749 0.88094 0.025564

Results for two component mixture GARCH(1,1) model in (33)-

(34).

Table 3: Model choice criteria - simulated data

K Marginal log-lik. Maximized log-lik. # par. BIC

1 -2772.59 -2761.2 3 5546.4

2 -2675.68 -2653.2 8 5370.5

3 -2680.74 -2651.0 13 5406.1

K is the number of components of the Gaussian mixture GARCH(1,1)

model.
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model performs well. In the next section we apply the model to a real dataset.

5 Application to S&P500 data

We fit the two component mixture model to daily S&P500 percentage return data from

01/03/1994 to 09/06/2005 (3047 observations). Descriptive statistics are given in Table 4.

Figure 2 displays the sample path, estimated kernel density for the data and the correlogram

for the squared data. It is clear from this that excess kurtosis and volatility clustering are

present in the data. We analyzed whether a dynamic specification for the conditional mean

is necessary and we found evidence for an autoregressive model of order three. The data are

filtered for these effects in the rest of the empirical application.

Table 4: Descriptive statistics - S&P 500 returns

Observations 3047

Mean 0.0389

Standard Deviation 1.07

Maximum 5.58

Minimum -7.11

Skewness -0.11

Kurtosis 6.74

Statistics for S&P500 percentage daily returns

from 01/03/1994 to 09/06/2005.

The ML estimates and the Bayes’ first two marginal posterior moments are given in Table

5. The parameters ak0 of the Dirichlet prior for π are all equal to 1 like in the simulation

example. The prior densities for the other parameters are all independent and uniform on

finite ranges given by 0.0001 < ω1 < 0.0097, 0.0005 < α1 < 0.08, 0.89 < β1 < 0.99, 0.001 <

ω2 < 0.13, 0.0001 < α2 < 0.73, 0.73 < β2 < 0.99. These values are the bounds used

in the griddy-Gibbs sampler part of the algorithm described in Section 3.4. The posterior

marginal distributions for all the parameters are given in Figure 3. The x-axes for the GARCH

parameters are the prior intervals reported above. Note that the posterior marginals for ω1
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Figure 2: S&P 500 graphs
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and ω2 are somewhat truncated at zero given that they are restricted to be positive.

From Table 5, we conclude that the parameter estimates are close to each other but that

the posterior standard deviations (std dev.) are smaller than the ML standard errors (std

error). The latter are computed from the Hessian matrix evaluated at the ML estimates.

The estimated probability is about 0.8 for the first component which is driven by a persistent

α1 + β1 = 0.98 GARCH process. The second component of the mixture has a conditional

variance process where α2 + β2 = 1.14 with a probability of about 0.2.

Table 5: Estimation results - S&P 500

MLE Bayes

estimate std error mean std dev.

π1 0.83496 0.13179 0.79347 0.085364

µ1 0.074463 0.023198 0.074918 0.013654

ω1 0.0025423 0.0024439 0.0028809 0.0019193

α1 0.036845 0.016711 0.038411 0.012836

β1 0.94662 0.017437 0.94241 0.016584

ω2 0.030760 0.029664 0.03589 0.023328

α2 0.27255 0.14932 0.273 0.11191

β2 0.87141 0.047557 0.86448 0.042872

Results for two component Gaussian mixture GARCH(1,1)

model.

Figure 4 displays convergence plots for all the parameters. The convergence statistics for

a parameter ρ are computed as follows:

CSt =

(
1
t

∑t
n=1 ρn

)− µρ

σρ
, (35)

where µρ and σρ are the empirical mean and standard deviation, respectively, of the N draws

ρ1, ρ2, . . . , ρN . If the sampler converges, the graph of CSt against t should converge smoothly
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Figure 3: Posterior densities (kernel estimates from Gibbs output) for two component Gaus-

sian mixture GARCH(1,1) model.
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to zero. One can see from Figure 4 that convergence is indeed achieved for all the parameters.
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Figure 4: Convergence plots of Gibbs estimates of posterior means

As a comparison, we also estimate the one-component mixture model, i.e. the conventional

GARCH(1,1) model. The maximum likelihood estimates and the Bayes’ first two marginal

posterior moments are given in Table 6. The process looks like highly persistent, given that

α1 + β1 is estimated as 0.996. This may be interpreted as a compromise between the less

17



persistent and explosive components of the mixture model. We obtain a similar result when

we estimate the GARCH(1,1) model with the data simulated from the two component mixture

of Section 4. Thus the observation that a quasi-integrated GARCH model (α̂1 + β̂1 ≈ 1) is

obtained in many empirical results can be explained by a lack of flexibility of this model.

Table 6: Estimation results (one component) - S&P 500

MLE Bayes

estimate std dev. mean std error

ω1 0.0054295 0.0019993 0.0057050 0.001763

α1 0.062177 0.0082521 0.063294 0.0079359

β1 0.93494 0.0085043 0.93373 0.008198

Resulst for Gaussian GARCH(1,1) model.

in Table 7, we report the marginal likelihood and the BIC values for the one and two

component models. The results indicate a strong preference for the two component model.

Table 7: Model choice criteria - S&P500 data

K Marginal log-lik. Maximized log-lik. # par. BIC

1 -4139.13 -4127.1 3 8278.2

2 -4090.87 -4071.0 8 8206.1

K is the number of components of the Gaussian mixture GARCH(1,1)

model.

As for any time series model, prediction is essential. As we explained in Section 3.5

Bayesian inference allows to obtain predictive densities that by construction incorporate pa-

rameter uncertainty. Furthermore, they can be easily computed together with the Gibbs

sampler for the model parameters. We calculate predictive densities out of sample for a hori-

zon up to five days, that for September 7, 2005 until September 11, 2005. Kernel density

estimates for the predictive densities are given in Figure 5. The dotted line represents the

two component model, the solid line represents the one component model. Eyeballing Figure

18



Table 8: Features of predictive densities

h One component Two components

1 0.0035362 0.010062

2 0.012670 -0.0033736

Mean 3 -0.010694 -0.0012910

4 0.0034478 0.0028309

5 -0.0067062 0.017732

1 0.57949 0.58562

2 0.5845 0.59397

Std Dev. 3 0.57378 0.57801

4 0.5902 0.57529

5 0.58926 0.57141

1 -1.3428 -1.6054

2 -1.3621 -1.6473

VaR 3 -1.2906 -1.5556

4 -1.3461 -1.5505

5 -1.3648 -1.5812

h is the post-sample prediction horizon. VaR is

the 5 percent value-at-risk quantile.

5, we see that the left tail of the predictive densities are fatter for the two component model

compared to the simple GARCH model.

In Table 8 we give the mean, standard deviation and value-at-risk at 5 percent (VaR) for

the five days. Because of the fatter left tail in the two component model, the VaR is smaller

than for the one component model.

6 Conclusion

We have shown how a certain type of mixture GARCH model can be estimated by Bayesian

inference. ML estimation is typically not easy because of the complexity of the likelihood
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Figure 5: Kernel density estimates of predictive densities from September 7, 2005 to Septem-

ber 11, 2005. The dotted line represents the two component model, the solid line represents

the one component model.
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function. In Bayesian estimation, this is taken care of by enlarging the parameter space with

state variables, so that a Gibbs sampling algorithm is easy to implement. Despite a higher

computing time, the Bayesian solution is more reliable since estimation does not fail, while

this may happen in MLE. Moreover, as we show in Section 3, the Gibbs algorithm can be

extended to include the computation of predictive densities, which takes care of estimation

uncertainty. Prediction in the ML approach is typically done by conditioning on the ML

estimate and therefore ignores estimation uncertainty.

Bayesian estimation of other types of mixture GARCH models, including multivariate

models, can probably be handled in a similar way as in this paper. Such extensions are on

our research agenbda.
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