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1 Introduction

This paper deals with endogenous heterogeneity of firms involved in strategic re-

search activity (R&D). Its main interest is the occurrence of equilibria where ex ante

identical firms undertake different levels of R&D thereby operating as asymmetric

competitors in the product market. The analysis here conforms to a dominant para-

digm for strategic R&D consisting of multi-stage oligopoly models where prior R&D

investments lower the marginal costs of production at the market stage. Most such

models have been recently concerned with performance comparisons between differ-

ent R&D scenarios, given non cooperative behavior in the product market. The key

assumption of R&D spillovers is made most often.

The articles by d’Aspremont and Jacquemin (1988)- henceforth AJ- and by Kamien

et al. (1992) are leading examples for the two-stage case.1 A common result of their

analysis is that both industry-wide cost reduction and total output are larger under

R&D cooperation than under R&D competition, whenever the spillover rate is suf-

ficiently large. In this case R&D cooperation increases consumer surplus and hence

social welfare independently of any direct public intervention.

Performance comparisons in these studies have been usually restricted to the sym-

metric equilibrium of the non cooperative case. Henriques (1990) argues that com-

paring cooperative and non cooperative solutions is meaningful only when the latter

are stable under Cournot best reply dynamics, however.2 Considering only the case of

zero spillovers, Amir and Wooders (1998) show that when the AJ model is not stable,

two other asymmetric and locally stable equilibria in R&D levels arise. Then they

1The literature on strategic R&D has been pioneered by Ruff (1969). Among more recent studies,
see Suzumura (1992), Katsoulakos and Ulph (1998), Amir (2000), and Hinloopen (2000, 2003).

2Cournot best reply dynamics is defined by each player best replying to the previous action of the
rival. About the instability of the Cournot equilibrium see, among others, Seade (1980) and Dixit
(1986).
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provide various justifications for taking the asymmetric equilibria as the appropriate

standard of analysis, resting on both theoretical support and experimental evidence.3

In this spirit, Cournot instability is a source of endogenous heterogeneity.4

Focusing on the asymmetric equilibria for non cooperative R&D, Amir and Wood-

ers (1998) find that R&D cooperation under the constraint of identical investments

is sometimes unattractive for firms, in that it generates smaller combined profits

than asymmetric R&D competition with no spillovers.5 More generally, benefits to

asymmetric competitors are direct implications of well known properties of Cournot

oligopolies. As shown by Bergstrom and Varian (1985, 1985a), industry output and

hence price and consumer surplus are not affected by any sum preserving reallocation

of constant marginal costs among Cournot competitors, provided the equilibrium is

interior. So, changes in social surplus will only depend on the way such a reallocation

affects industry profit through the aggregate cost of production. This latter, for a

given marginal costs sum, is maximized by symmetric allocation of marginal costs

among firms. Hence, the private gross benefit of operating the reallocation is positive

whenever this latter is feasible. In multi-stage models of cost reducing R&D/Cournot

competition, this tendency towards asymmetric cooperative solutions is attenuated

by the cost of undertaking asymmetric actions in the R&D phase. An example of

such a cost is the efficiency loss due to investing unequally in the first stage under

decreasing returns to R&D.6

3A major reason is that Cournot best reply dynamics never converges to the symmetric, unstable
equilibrium.

4Also see Matsuyama (2002).
5 It is worth recalling the general fact that when the equal treatment constraint is not imposed,

R&D cooperation always yields higher combined profits than R&D competition. So the case discussed
by Amir and Wooders implicitly provides an example where the global solution of the cooperative
problem is asymmetric. However, as emphasized in the literature, asymmetric cooperative solutions
are easy to conceive but hard to realize. See, among others, Salant and Shaffer (1998). Amir et
al. (2003) allow for asymmetry in the cooperative solution using a general version of the model of
Kamien et al. (1992).

6This point has been recently emphasized by Salant and Shaffer (1999). Also see Van Long and
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In line with the above contributions, this paper addresses the issue of firm diversity

in terms of Cournot instability of the symmetric solution in R&D space. The study

of asymmetric equilibria is extended to encompass R&D spillovers. A comparison

of asymmetric R&D competition and symmetric cooperation through a joint lab is

performed to feature the impact of spillovers on both the private benefits and the

consumer gains from firm asymmetry. The main results can be summarized as follows.

Increasing spillovers act as a barrier to endogenous asymmetry, in that they raise

the opportunity cost of private research while stimulating the dissemination of innov-

ative results through imitation. For the non cooperative scenario, when spillovers are

relatively large, firms’ incentive for private R&D are attenuated and symmetric R&D

profiles prevail. Conversely, when the productivity of research is large relative to the

benefits from imitation, i.e. the spillover rate is relatively small, the symmetry of the

model is broken in favor of an R&D expert-novice configuration with the more R&D

intensive firm choosing the maximal R&D level in its action set. This is what here

is meant by R&D specialization or full innovation. As long as interfirm asymmetry

is preserved in the equilibrium with R&D competition, both industry-wide cost re-

duction and consumer surplus increase with the spillover rate. This result is due to

the combined effect of persistent specialization in the research activity by the larger

firm and increasing externalities. Therefore, firm asymmetry, namely the difference of

equilibrium cost reductions and market shares, declines as the spillover rate increases.

The comparative analysis focuses on the parameter region in which the model

is unstable. As mentioned, the asymmetric equilibria here represent the benchmark

for the non cooperative case. In the absence of spillovers, the joint lab is shown to

dominate asymmetric R&D competition in terms of social surplus. When spillovers

Soubeyran (1999).
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are introduced, welfare results are ambiguous because of a twofold impact of imitation

on industry performance. The paper considers consumer surplus and combined profits

separately.

The first effect of spillovers concerns industrywide dissemination of innovative

results and is beneficial to consumers. As shown by Amir and Wooders (1998), with

zero spillovers, total cost reduction and consumer surplus are higher under the joint

lab than with asymmetric R&D competition. Here it is shown that if spillovers are

not too small, aggregate cost reduction and hence consumer surplus are larger with

asymmetric competition than with the joint lab.

The second effect relates to endogenous asymmetry and is detrimental to firms.

With zero spillovers, a large level of demand relative to unit costs is sufficient for joint

profits to be larger with the joint lab than with asymmetric R&D competition.7 This

paper shows that, by reducing the market share of the more efficient firm, increasing

spillovers weakens the conditions under which the joint lab generates higher combined

profits.

The remainder of the paper is organized as follows. Section two introduces the

model and two organizational scenarios for R&D depicting Nash competition and

cooperation via joint lab, respectively. Performance comparisons are provided in

section three. Section four concludes. All the propositions are proved in the appendix.

2 The model

2.1 The game and the R&D scenarios

Consider a two-stage duopoly game in which firms 1 and 2, before engaging in

Cournot competition, exploit a cost reducing opportunity by investing resources in

7See [Amir and Wooders, 1998, Prop.3].
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R&D. In the first stage, R&D expenditures are chosen simultaneously. Subsequent

Cournot competition is subject to firms’ first stage R&D levels.

Firms are ex ante identical. Namely, they utilize the same linear production

technology, with unit cost c > 0, share the same R&D opportunities, and face the

same inverse demand function P (q1 + q2) = a− (q1 + q2), where qi denotes the final

output of firm i = 1, 2.

The inventive activity takes place under technological externalities. Namely, for

any pair of R&D investments (x1, x2), the effective cost reduction for firm i, i = 1, 2,

depends on its own autonomous cost reduction λ
√
xi, λ > 0, and, via spillovers,

on the rival’s one. Let CR1(x1, x2,λ, θ) ≡ min λ(
√
x1 + θ

√
x2), c be the effective

cost reduction obtained by firm 1, where θ ∈ [0, 1] is the spillover parameter.8 So

A1 ≡ x1 : 0 ≤ x1 ≤ ( cλ − θ
√
x2)

2 identifies firm 1’s R&D undominated action set

(and similarly for firm 2). That is, R&D levels strictly larger than ( cλ − θ
√
x2)

2 are

strictly dominated.

Firms are Cournot competitors in the product market. Cournot output and profit

for firm 1 are

q1 =
a−c+λ√x1(2−θ)+λ√x2(2θ−1)

3 and Π1 =
a−c+λ√x1(2−θ)+λ√x2(2θ−1)

3

2

− x1,

respectively (and similarly for firm 2). The validity of the previous formulas is granted

by Assumption 1, stated below.

Assumption 1 : a > 2c

Assumption 1 restricts the attention to the case in which the product market is

8The specification of the R&D technology used here is equivalent to that introduced by d’Aspre-
mont and Jacquemin, according to which, in the first stage of the game, firm 1 chooses a cost
reduction level y1, facing an R&D cost of

γ
2
y21 , γ > 0. Given the pair of actions (y1, y2), the effective

cost reduction of firm 1 is equal to y1+βy2, where β is the spillover parameter. Therefore, the R&D
production function y1 = λ

√
x1 represents the inverse mapping of the R&D cost function used by

d’Aspremont and Jacquemin, with x1 = 1
λ
y

2
and λ = 2

γ
.
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large relative to the marginal cost of production. It ensures that the Nash equilibrium

of the market subgame is unique, with production levels being strategic substitutes

and both firms active in the market. This allows to emphasize the role of R&D with

respect to firm asymmetry.

Two different scenarios for the behavior of firms in the R&D stage are considered:

Nash competition (N): Firms act simultaneously and non cooperatively. Each firm

sets its own R&D expenditure given the action of the rival. Attention is restricted

to subgame perfect equilibria (SPNE). Therefore, the game is solved going backward

from the second stage to the first, where the maximization problem faced by each

firm is defined conditionally on the second stage equilibrium payoffs.

Firm 1 solves:

max
x1∈A1

ΠN1 (x1,x2) ≡ a−c+λ√x1(2−θ)+λ√x2(2θ−1)
3

2

− x1 , (1)

and similarly for firm 2. Since the Cournot equilibrium in the market stage is

unique, every Nash equilibrium of the R&D game with payoffs as in (1), gives rise to

a SPNE of the whole game. For the sake of brevity, in the remainder of the paper

mention is made to the Nash equilibria of the R&D game only.

Joint lab (J): Firms manage a joint lab in order to maximize the overall combined

profit net of the innovative expenditure xJ , sharing in both R&D benefits and efforts.

More precisely, the total cost reduction is independent of the spillover rate and equals

2λ
√
xJ . Ex post symmetry between members is generated by construction.9 So, the

whole game induces a mixed cooperative and non cooperative symmetric equilibrium.

As for the N case, second stage profits are taken conditionally on the unique Cournot

9The joint lab scenario was formally introduced by Amir (2000). Though independent of the
spillover rate, it is equivalent to the cartelized joint venture discussed in Kamien et al. (1992).
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equilibrium of the market subgame.

The joint lab solves:

max
0≤x≤( cλ )2

ΠJ(x) ≡ 2 a−c+λ√x
3

2

− x . (2)

The solution to (2) is xJ = 4(λ(a−c))2
(9−2λ2)2 ,

10 which generates aggregate profit ΠJ =

2(a−c)2
9−2λ2 , total cost reduction TCR

J = 4(a−c)λ2
9−2λ2 , and consumer surplus C

J = 18( a−c
9−2λ2 )

2.

2.2 Equilibria with R&D competition

In this subsection the reaction functions in R&D space are characterized and the

equilibria for the non cooperative scenario are derived. Throughout the analysis, the

following assumption is made.

Assumption 2 : λ2 ac <
9

(2−θ)(1+θ) .

Assumption 2 rules out the circumstance in which, in the non cooperative scenario,

the intersection of firms’ R&D reaction functions identifies the pair of R&D levels

( c
λ(1+θ) )

2, ( c
λ(1+θ) )

2 , in which case both firms would achieve a full cost reduction

in equilibrium.11

Let x∗i (xj) ≡ (2−θ)λ(a−c+λ√xj(2θ−1)
9−[(2−θ)λ]2

2

denote the unique root of ∂ΠNi (xi,xj)
∂xi

= 0,

i, j = 1, 2, and i 9= j, i.e. the interior part of firm i’s reaction curve in R&D

space. Under Assumption 1, ΠNi (xi,xj) is strictly concave in xi. So the first order

10The first order condition for (2) is
4λ[a−c+λ√x]

18
√
x

−1 = 0. Given Assumption 1, stated below, the
second order condition, λ(c−a)

9x3/2
< 0, is satisfied.

11 Such an equilibrium is excluded if x∗i ( c
λ(1+θ)

)2 < ( c
λ(1+θ)

)2, where x∗i (.), as defined in the
remainder of this subsection, denotes the interior part of firm i’s reaction curve in R&D space. This
condition is equivalent to the requirement of Assumption 2. With zero spillovers, Assumption 2
reduces to 2λ2 a

c
< 9, that prevents the case of dominant strategies with either firm choosing a

maximal R&D level (see Amir & Wooders (1998)).
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condition for (1) is sufficient.12 In addition, firm i’s reaction function in R&D space

is continuous and single valued, and is given by

ri(xj) ≡ argmax ΠNi (xi,xj) : xi ∈ Ai = min x∗i (xj), (
c

λ
− θ
√
xj)

2 . (3)

Given the specification here of the spillover mechanism, it is convenient to linearize

the R&D reaction functions by taking the square root of the R&D level to be the deci-

sion variable. According to (3), the linearized reaction function of firm i is piecewise

linear, corresponding to the isocost line
√
xi =

c
λ − θ

√
xj whenever the first order

condition of the program induces a higher R&D level than what is sufficient to realize

a full cost reduction. This line is decreasing with slope −θ. Along it, firm i achieves a

full cost reduction for any investment level of the opponent. Larger investment levels

are strictly dominated.

Since R&D is cost reducing, for zero or sufficiently small spillovers R&D invest-

ments have the same strategic relationship as quantities. Namely, when θ < 0.5, R&D

levels are strategic substitutes and the R&D reaction functions slope down. When

θ > 0.5, the part of firm i ’s reaction function stemming from the first order condition

slopes up. When this latter hits the boundary identified by the line
√
xi =

c
λ − θ

√
xj ,

the reaction function slopes downward and strategic substitutability is restored. I can

now state the following.

Proposition 1: The pair (xs, xs) is a Nash equilibrium of the R&D game, where

xs = λ(2−θ)(a−c)
9−(2−θ)λ2(1+θ)

2

. If λ2 < 3
(2−θ)(1−θ) , then (x

s, xs) is unique and stable. If

λ2 > 3
(2−θ)(1−θ) , then (x

s, xs) is unstable, and two other locally stable Nash equilibria

12 In fact, Assumption 1 implies
∂2ΠN1 (x1,x2)

∂x2
1

=
(θ−2)λ(a−c+(2θ−1)√x2λ)

18x
3/2
1

< 0. In addition, lim
x1→0

∂ΠN1 (x1,x2)

∂x1
=∞. So a zero R&D level violates a marginal condition for (1).
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of the form (x, r(x)), (r(x), x) obtain, each satisfying
√
x = c

λ − θ r(x) and x =

1
λ
9c−λ2(2−θ)(2c(1−θ)+aθ)

9−2λ2(2−θ)(1−θ2)
2

> r(x) = λ2 (2c(θ−1)+a)2(θ−2)2
(2λ2(2+θ3−2θ2−θ)−9)2 .

A proof is provided in the appendix.

Linearized R&D reaction curves

The figure describes three possible equilibria for the R&D stage of the game.13

Both examples (a) and (c) relate to the standard case discussed in the literature in

which the unique symmetric equilibrium is stable under Cournot best reply dynamics,

with strategic substitutability and complementarity, respectively.

Example (b) illustrates the case of multiple equilibria addressed in this paper.

According to Proposition 1 this occurs when the productivity of private R&D is large

relative to the benefits from imitation i.e., λ2 > 3
(2−θ)(1−θ) . In this case, the sym-

metric equilibrium of the R&D game is unstable under Cournot best reply dynamics,14

13As reported, the R&D reaction functions have been linearized by taking the square root of the
R&D levels to be the decision variable.

14Henriques (1990) studies the stability of the AJ model for the specific case of λ =
√
2. In her

setting the model is unstable when θ < 0.17.

10



and two other asymmetric and locally stable equilibria arise, each involving full in-

novation by the larger firm. More precisely, the two asymmetric equilibria are mirror

images of each other, both inducing an R&D expert-novice configuration where the

more R&D intensive firm achieves a full cost reduction.

Note that the minimal value of λ observable under the asymmetric equilibria

increases with the spillover rate. It eventually approaches the upper bound identified

by Assumption 2, above which the equilibrium is unique, symmetric, and involves a

full cost reduction for either firm. Namely, asymmetry is sustainable in equilibrium

for small spillovers only, with symmetric R&D profiles prevailing whenever θ ≥ 0.2.15

The intuition is that the external effect of R&D is a substitute for an autonomous

investment. By raising the opportunity cost of private research, large spillover rates

prevent a firm from fully investing in the first stage.

It is worth emphasizing that, given the restrictions imposed by Assumptions 1

and 2, the parameter a does not play any role as to whether or not the equilibrium

market structure is symmetric. As usual in the case of linear demand, a can be

thought of as a market size parameter. Similar results have been reported in the

literature. In a Cournot model with fixed cots and free entry, Neumann et al. (2001)

show that a vertical market expansion (a rise of the parameter a) does not influence

firms’ size but only causes entry. In a similar context, Götz (2004) finds that firms’

technological choices do not depend on vertical market size. In line with these results,

Proposition 1 here says that the equilibrium distribution of market shares depends

on the technological parameters λ and θ only, while it is not affected by the size of

the market.

15Assumptions 1 and 2 imply λ2< 4.5
(1+θ)(2−θ) . This, along with λ2 > 3

(2−θ)(1−θ) , implies θ < 0.2.
So firm asymmetry obtains only if R&D investments are strategic substitutes.
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3 Comparing asymmetric R&D competition and the joint lab

In this section, asymmetric R&D competition and cooperation via joint lab are

compared.16 The case of zero spillovers is discussed first. This case has been already

addressed in Amir and Wooders, where it is shown that total cost reduction and

hence consumer surplus are larger under the joint lab than with the asymmetric

Nash equilibrium, whereas joint profits are sometimes larger with R&D competition.

Proposition 2 below states the superiority of the joint lab in terms of social surplus.

Proposition 2: If θ = 0, then social surplus with the joint lab is greater than with

the asymmetric Nash equilibrium with R&D competition.

A proof is provided in the appendix.

As mentioned, in the case of spillovers, welfare results are ambiguous. In what

follows two offsetting effects of R&D spillovers on industry performance are discussed,

concerning consumer surplus and joint profits respectively.

The first effect relates to the remarkable fact that in the equilibrium with R&D

competition the larger firm achieves a full cost reduction. As long as asymmetry

is sustainable in equilibrium, this feature is persistent under positive spillovers with

the R&D expenditure of the larger firm- say
√
x1- lying on the isocost reduction line

√
x1 =

c
λ − θ

√
x2. As is summarized in Proposition 3, the combined effect of full

innovation and increasing spillovers makes industry-wide cost reduction rise.

Proposition 3: The aggregate level of cost reduction in the asymmetric Nash equi-

librium with R&D competition is an increasing function of the spillover rate.

16The analysis focuses on the parameter region within which the symmetric equilibrium under
R&D competition is unstable. Recall from footnote 15 that a necessary condition for the symmetric
equilibrium to be unstable is θ < 0.2. Also notice that Assumptions 1 and 2 implicitly impose an
upper bound on the productivity of R&D, i.e. λ < 1.5. Moreover, λ2 > 3

(2−θ)(1−θ) together with

Assumption 1 and Assumption 2, implies 3
(2−θ)(1−θ)

a
c
< 9

(2−θ)(1+θ) , and hence 2 <
a
c
<

3(1−θ)
(1+θ)

.
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A proof is provided in the appendix.

The following argument gives an intuition for Proposition 3. Along the isocost

line
√
x1 =

c
λ − θ

√
x2, the best response of the more R&D intensive firm to a given

expenditure of the less intensive one reduces as θ increases. This is due to the men-

tioned fact that on the boundary part of the R&D expert’s reaction function in R&D

space, the effective cost reduction going to that firm is constant and hence private and

spillover effects are substitute. On the other hand, at the asymmetric equilibrium,

the marginal benefit to the smaller firm of its own R&D increases with the spillover

rate,17 i.e. the smaller firm’s R&D reaction function shifts up as the spillover in-

creases. So, a raise of θ causes the small firm to increase and the large firm to reduce

the respective R&D levels. Since at the asymmetric equilibrium r3 (x) < −1, this

makes the effective cost reduction of the less R&D intensive firm rise. Given that the

effective cost reduction of the R&D expert is constant (and equal to c), the overall

effect of increasing θ on industrywide cost reduction is positive.

Consumer surplus is increasing in aggregate cost reduction. So, for the non coop-

erative scenario, increasing spillovers are advantageous for consumers. On the other

hand, the innovative performance of the joint lab is independent of the spillover rate.

It follows that the difference between aggregate cost reduction and hence consumer

surplus in the competitive and the collusive scenario increases with θ. As stated in

Proposition 4, and contrary to the case of zero spillovers discussed in Amir and Wood-

17Let firm 2 be the R&D novice and denote Λ ≡ ∂2ΠN2 /∂x2∂θ. At the asymmetric equilib-

rium Λeq = 1/9 r (x) λ λ c− θ r (x) (5− 4θ) + 2λ r (x) (θ − 2)− a+ c , where r (x) is

defined as in Proposition 1. Recall that a < 3c(1−θ)
(1+θ)

(see footnote 16), λ2 > 3
(2−θ)(1−θ) , and

0 < λ r (x) < c. This implies Λeq >
λ c 3

(2−θ)(1−θ) (5−4θ)+
3(θ−1)
1+θ +1 +λ

√
r(x)(4θ2−3θ−4)

9
√
r(x)

>

λ 3
(2−θ)(1−θ) (5−4θ)+

3(θ−1)
1+θ

+1+(4θ2−3θ−4)
9
√
r(x)

, which is positive for any admissible θ.
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ers (1998), if θ is not too small, then aggregate cost reduction and consumer surplus

are both larger with asymmetric R&D competition.

Proposition 4: There exists θ∗ (λ) such that, if θ > θ∗ (λ) then the aggregate levels

of cost reduction and consumer surplus in the asymmetric Nash equilibrium with R&D

competition are larger than the respective levels under the joint lab.

A proof is provided in the appendix.18

Proposition 3 implicitly establishes a central property of the asymmetric Nash

equilibria. Given a full cost reduction by the larger firm, growing levels of the ag-

gregate cost reduction clearly involve reduced firm heterogeneity, as measured by the

difference of firms’ marginal costs or market shares. This induces a second effect of

spillovers on social surplus. By reducing asymmetry in the product market, increas-

ing spillovers bring combined profits down. The idea is that a rise in the spillover

rate reduces the market share going to the more efficient firm with R&D competition.

Analogously to what mentioned relative to consumer surplus, joint profits with the

joint lab are independent of the spillover rate. So, the difference between aggregate

profits with R&D competition and R&D cooperation increases with θ. As reported

in the introduction, Amir and Wooders (1998) show that with zero externalities joint

profits are greater under the joint lab than with the asymmetric equilibrium if de-

mand is relatively large.19 Proposition 5 here claims that R&D spillovers weaken the

condition under which the superiority of the joint lab in terms of aggregate profits is

restored.

Proposition 5: Let w ≡ a
c . There exists w∗ (λ) such that, if

a
c ≥ 1− θ2 w∗ (λ)

18θ∗ (λ) is defined in the appendix. Calculations show that the total cost reduction is greater in
the asymmetric equilibrium whenever θ > 0.07.
19A sufficient condition for that is a

c
≥ w∗ (λ). For a definition of w∗ (λ) see the proofs of

Propositions 1 and 5 in the appendix.
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then combined profits with the joint lab are larger than combined profits at the asym-

metric Nash equilibrium with R&D competition.

A proof is provided in the appendix.20

4 Conclusion

In a standard model of strategic R&D, endogenous firm asymmetry under R&D

competition obtains for sufficiently small spillovers only. By raising the opportunity

cost of private R&D, large spillovers induce Cournot stability in the R&D stage,

leading to symmetric investment profiles in equilibrium. In addition, spillovers pro-

mote the diffusion of R&D results among asymmetric competitors, so reducing firm

heterogeneity in terms of R&D propensities and hence marginal costs and market

shares. These results lend support to a traditional interpretation of spillovers as a

barrier to firm heterogeneity and a stimulus to industrywide diffusion of technological

progress.21

When R&D is perfectly appropriable, a symmetric joint lab dominates asymmet-

ric R&D competition in terms of social surplus. As shown in the literature, while

consumer surplus is larger with the joint lab, joint profits are sometimes larger with

asymmetric R&D competition. By contrast, with not too small spillovers, asymmetric

R&D competition is relatively advantageous for consumers, but not for firms. As a

consequence, an ambiguous scenario for policy prescriptions obtains.

20Calculations show that a sufficient condition for combined profits to be larger under the joint
lab is θ ≥ 0.05.
21 See, for instance, Röller and Sinclair-Desgagnè (1996), and Spence (1984). An opposite inter-

pretation of spillovers is due to Eeckhout and Jovanovic (2002). According to the authors, spillover
rates, by inducing followers to free ride, create permanent inequality among firms. A second exam-
ple of externalities as a source of firms’ diversity is provided by Amir and Wooders (1999). In their
framework spillovers are unilateral, i.e. they flow from the more R&D intensive firm to the opponent
only. Given this specification, each firm’s reaction function in R&D space is discontinuous along the
diagonal. As a consequence, only asymmetric investment profiles are sustainable in equilibrium.
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Appendix

Proof of Proposition 1

Recall that ΠNi (xi, xj) as defined in (1) and ri (xj) as defined in (3) are concave

in xi and continuous and single valued, respectively. Observe first that the pair

(xs, xs) satisfying ∂ΠNi (x
s, xs)

∂xi
= 0, i 9= j, i = 1, 2 is a Nash equilibrium of the R&D

game. Solving the previous system yields xs = λ(2−θ)(a−c)
9−(2−θ)λ2(1+θ)

2

. Linearize now the

reaction functions in R&D space by taking the square root of the R&D level to be

the decision variable. Stability of the equilibrium under best reply dynamics requires

|r31 (x2) r32 (x1)| < 1, where r3i (.) denotes the slope of firm i’s reaction function, i = 1, 2.

By Assumption 2, the slope of each firm’s linearized reaction function at the symmetric

equilibrium is given by λ2(2−θ)(2θ−1)
9−[(2−θ)λ]2 . Given Assumption 2, the stability requirement

is written λ2(2−θ)(2θ−1)
9−[(2−θ)λ]2 > −1, so (xs, xs) is stable if and only if λ2 < 3

(2−θ)(1−θ) .

Further, the absolute value of the slope of the iso cost reduction part of each reaction

function is equal to θ ≤ 1. Given this, if λ2 < 3
(2−θ)(1−θ) , then (x

s, xs) is unique

from the contraction mapping theorem. If λ2 > 3
(2−θ)(1−θ) , then (x

s, xs) is unstable.

Since the reaction functions are piecewise linear, two other equilibria of the form

(x, r(x)), (r(x), x) obtain, each satisfying
√
x = c

λ − θ r(x). Solving with respect

to x yields x = 1
λ
9c−λ2(2−θ)(2c(1−θ)+aθ)

9−2λ2(2−θ)(1−θ2)
2

and r(x) = λ2 (2c(θ−1)+a)2(θ−2)2
(2λ2(2+θ3−2θ2−θ)−9)2 . Since

θλ
2(2−θ)(2θ−1)
9−[(2−θ)λ]2 < 1, the two asymmetric equilibria are locally stable. In addition,

√
x−

r(x) = 9c−λ2a(2−θ)(1+θ)
λ(9−2λ2(1−θ2)(2−θ)) . Given Assumptions 1 and 2, the denominator of the

previous expression is positive. Consider the numerator and notice that Assumption

2 implies 9c− λ2a(2− θ)(1 + θ) > 9c 1− (2−θ)(1+θ)
(2−θ)(1+θ) = 0. Hence x > r(x).
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Proof of Proposition 2

[Amir and Wooders, 1998, Prop.2, pg.69, Prop.3, pg.70] show that, in the absence

of spillovers, consumer surplus under the joint lab is greater than consumer surplus

at the asymmetric equilibrium with R&D competition, and that combined profits

with the joint lab are larger than at the asymmetric equilibrium if a
c ≥ 45

2(9+λ2)
.

Hence, given Assumption 1, welfare analysis can be restricted to the case in which

2 < a
c <

45
2(9+λ2)

. Let w ≡ a
c , and define w∗ (λ) ≡ 45

2(9+λ2)
. Also let Π

N
and ΠN

denote the equilibrium profits to the more and the less R&D intensive firm under

R&D competition, respectively. With zero spillover effects, combined profits and

consumer surplus at the asymmetric equilibrium with R&D competition are equal to

Π
N
+ ΠN = a(3−2λ2)+3c

9−4λ2
2

+ (a−2c)2
9−4λ2 − c

λ

2
and CN = 1

2
2a(3−λ2)−3c

9−4λ2
2

, re-

spectively. Equilibrium combined profits and consumer surplus with the joint lab are

equal to ΠJ = 2 (a−c)
2

9−2λ2 , and C
J = 18 a−c

9−2λ2
2

, respectively.

Define the difference between welfare levels with the asymmetric equilibrium and

with the joint lab as ∆W ≡ ΠN + CN − ΠJ + CJ . ∆W has the same sign as

∆∗ ≡ h(w,λ)

2λ2(9−4λ2)2(9−2λ2)2 , where

h(w,λ) ≡ wλ2 5832− 7452λ2 + 2448λ4 − 176λ6 +

w2λ4 1548λ2 − 528λ4 + 48λ6 − 1296

+λ2 19683− 8748λ2 + 1548λ4 − 128λ6 − 13122.

Taking derivatives with respect to w yields

∂h(w,λ)
∂w = λ2 5832− 7452λ2 + 2448λ4 − 176λ6 +

2wλ4 1548λ2 − 528λ4 + 48λ6 − 1296 .

Given Assumptions 1 and 2, and imposing λ2 > 3
(2−θ)(1−θ) (i.e. imposing that the

symmetric equilibrium with R&D competition is unstable), it must be that
√
1.5 <

17



λ < 1.5 (see footnotes 15 and 16). Since 1548λ2 − 528λ4 + 48λ6 − 1296 > 0 for any

admissible value of λ, it follows that ∂h(w,λ)
∂w < ∂h(w,λ)

∂w
w=w∗(λ)

< 0, for
√
1.5 < λ <

1.5. Hence, ∆∗ is a decreasing function of w. The result follows by observing that

∆∗ < ∆∗|w=2 < 0, for
√
1.5 < λ < 1.5.

Proof of Proposition 3

Let w ≡ a
c . Given Assumptions 1 and 2 and imposing λ2 > 3

(2−θ)(1−θ) (i.e.

imposing that the symmetric equilibrium with R&D competition is unstable), it must

be that w > 2 and θ < 0.2 (see footnote 15). The aggregate level of cost reduction

at the asymmetric equilibrium is equal to TCRN = c + λ r(x) + θλ
√
x, where c

and λ r(x) + θλ
√
x are the effective cost reductions obtained by the more and the

less R&D intensive firm respectively, and x and r(x) are defined as in Proposition 1

above. Notice that

TCRN = (1 + θ) c+ λ r(x) (1− θ) =

(1 + θ) c+ λ2 (2c(θ−1)+a)(θ−2)
(2λ2(2+θ3−2θ2−θ)−9) (1− θ) .

Taking derivatives with respect to θ yields

∂TCRN

∂θ = 9
λ2(a(θ(3θ−4)−1)+2c(θ(2θ2−5θ+4)−1))+9c

(9−2λ2(2−θ)(1−θ2))2 .

The numerator of the previous expression has the same sign as

λ2 w (θ (3θ − 4)− 1) + 2 θ 2θ2 − 5θ + 4 − 1 + 9.

It is easy to check that for the parameters under consideration,

w (θ (3θ − 4)− 1) + 2 θ 2θ2 − 5θ + 4 − 1 < 0.

18



So, λ2 w (θ (3θ − 4)− 1) + 2 θ 2θ2 − 5θ + 4 − 1 + 9 > z (w, θ) + 9, for As-

sumption 2, where z (w, θ) =
9(w(θ(3θ−4)−1)+2(θ(2θ2−5θ+4)−1))

w(1+θ)(2−θ) . Taking derivatives

with respect to w yields ∂z(w, θ)
∂w = 182θ

3−5θ2+4θ−1
w2(1+θ)(θ−2) > 0, for θ < 0.2. The result fol-

lows by observing that z (w, θ) + 9 > z (w, θ)|w=2 + 9 = 9 2 θ
2(θ−1)−1
(2−θ)(1+θ) + 1 > 0, for

θ < 0.2.

Proof of Proposition 4

Let w ≡ a
c . Given Assumptions 1 and 2 and imposing λ2 > 3

(2−θ)(1−θ) (i.e.

imposing that the symmetric equilibrium with R&D competition is unstable), it must

be that 2 < w < 3(1−θ)
1+θ and θ < 0.2 (see footnotes 15 and 16).

Recall from section 2 and the proof of Proposition 3 above that total cost re-

ductions at the asymmetric Nash equilibrium and with the joint lab are equal to

TCRN = (1 + θ) c+ λ2 (2c(θ−1)+a)(θ−2)
(2λ2(2+θ3−2θ2−θ)−9) (1− θ) and TCRJ = 4(a−c)λ2

9−2λ2 , respec-

tively. Further, TCRN − TCRJ has the same sign as

∆TCR ≡ 3λ
2(w((4+2θ3−4θ2−2θ)λ2+3θ3−6θ2−6)+3(θ+8θ2−4θ3−6))+27(1+θ)

(9−2λ2(2+θ3−2θ2−θ))(9−2λ2) .

It is easy to check that, within the admissible region of parameters, the denom-

inator of the previous expression is positive. Consider next the numerator and note

that 4 + 2θ3 − 4θ2 − 2θ λ2+3θ3−6θ2−6 > 0 if λ2 > 3
(2−θ)(1−θ) . Hence, ∆

TCR > 0

if and only if w > w (λ, θ) ≡ 3 4λ2θ3−λ2θ−8λ2θ2−9+6λ2−9θ
λ2((4+2θ3−4θ2−2θ)λ2+3θ3−6θ2−6) .

Define θ∗ (λ) ≡ λ2 − 1.5 (1.5− λ) (2.3λ− 1.45). The conclusion follows by ob-

serving that if λ2 > 3
(2−θ)(1−θ) , then w (λ, θ) < 2 if θ > θ∗ (λ), with a region of the

admissible parameters existing within which both λ2 > 3
(2−θ)(1−θ) and θ > θ∗ (λ)

hold.
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Proof of Proposition 5

Let w ≡ a
c . Given Assumptions 1 and 2 and imposing λ2 > 3

(2−θ)(1−θ) (i.e.

imposing that the symmetric equilibrium with R&D competition is unstable), it must

be that 2 < w < 3 (see footnotes 15 and 16). In the asymmetric equilibrium with

R&D competition, profits of the more R&D intensive and the less R&D intensive

firm are Π
N
=
(a(λ2(2+θ3−2θ2−θ)−3)−3c(1−θ))2

(9−2λ2(2+θ3−2θ2−θ))2 − (9c−λ
2(2−θ)(2c(1−θ)+aθ))2

λ2(9−2λ2(2−θ)(1−θ2))2 , and ΠN =

(9−λ2(4+θ2−4θ))(a−2c(1−θ))2
(9−2λ2(2+θ3−2θ2−θ))2 , respectively. Total profits under the joint lab are equal

to ΠJ = 2(a−c)2
9−2λ2 . Observe further that the difference between the joint profits at the

asymmetric equilibrium with R&D competition and with the joint lab has the same

sign as

∆Π ≡ (w(λ
2(2+θ3−2θ2−θ)−3)−3(1−θ))2
(9−2λ2(2+θ3−2θ2−θ))2 − (9−λ

2(2−θ)(2(1−θ)+wθ))2
λ2(9−2λ2(2−θ)(1−θ2))2

+
(9−λ2(4+θ2−4θ))(w−2(1−θ))2

(9−2λ2(2+θ3−2θ2−θ))2 − 2(w−1)2
9−2λ2 .

Taking derivatives with respect to w yields ∂∆Π

∂w = 2 k(w,θ,λ)+z(θ,λ)

(2λ2−9)(9−2λ2(2−θ−2θ2+θ3))2 ,

where k (w, θ,λ) ≡ 2λ6 4− θ 7θ − 8θ2 − 2θ3 + 4θ4 − θ5 + 4 +

λ4 θ 21θ − 12θ2 − 4θ3 + 4θ4 − θ5 + 24 − 36 − 9λ2 2θ − 9θ2 + 6θ3 − θ4 − 4

and z (θ,λ) ≡ 9λ2 13θ − 47θ2 + 29θ3 − 5θ4 + 12 +

2λ4 θ + 57θ2 − 53θ3 − 3θ4 + 16θ5 − 4θ6 − 14 − 81 3θ − θ2 + 1 .

Given Assumptions 1 and 2, the denominator of the previous expression is neg-

ative. In addition, if λ2 > 3
(2−θ)(1−θ) , then k (w, θ,λ) + z (θ,λ) > 0, and hence

∂∆Π

∂w < 0. Define finally w∗ (λ) ≡ 45
2(9+λ2)

. Substituting 1− θ2 w∗ (λ) for w in ∆Π,

yields ∆Π
w=(1−θ2)w∗(λ) < 0, for any admissible parameter.
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