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Abstract

We study a problem in a procurement setting in which an Original Equipment

Manufacturer (OEM) wants to procure a set of items from a set of suppliers. Each

supplier incurs a cost for supplying any subset/bundle of items, and each supplier’s cost

information is known only to him. The goal is to determine (i) an efficient allocation

of suppliers to items and (ii) appropriate payments for suppliers. We formulate the

problem of determining which supplier should supply what items as an integer program.

We develop a method, which is based on the ellipsoid method, that solves the dual of

the linear relaxation of the problem in polynomial time. We also show that the linear

relaxation has an integral optimal solution.
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1 Introduction

Recently a large number of companies have moved to Internet enabled procurement. With

the growth of the Internet, the use of reverse auctions on the Internet for procurement has

also increased. Often, companies need to procure a set of items simultaneously, but in current

practice each item is procured separately. This leads to loss in efficiency and higher costs

of procurement. In this paper, we seek to answer the following question. How can a set of

items be procured simultaneously and efficiently from a set of suppliers?”

The model considered involves a customer or an Original Equipment Manufacturer (OEM)

who wants to procure a set of n distinct heterogeneous items. In the context of this paper,

an item is any indivisible object. By “indivisible”, we mean that the object needs to be

procured as one item, even though the actual object can be a collection of entities (like a

lot of metal sheets, for example). There are m suppliers who can supply the items. Each

supplier incurs a cost for supplying any subset (or bundle) of items. We are interested in

answering the following two questions:

(Q1) Which supplier should supply what items?

(Q2) What prices should the suppliers be paid?

In this paper, we attempt to design a mechanism that answers these two questions.

We aim at a mechanism that ensures that the suppliers report their true costs. We call

this the procurement economy problem. The main difficulty is that the suppliers may not

maximize their individual utilities by reporting their true costs. In mechanism design theory,

suppliers are paid an amount that ensures that they have no incentive to misreport their

costs 1. We apply the principle of mechanism design to answer (Q1) and (Q2). To answer

(Q1), we formulate the problem as an Integer Program (IP). The objective is to minimize

the total cost of supplying the items. We show that under certain conditions, the linear

relaxation of the IP gives an optimal solution of the IP. To solve the linear program, we

develop an algorithm that is based on the famous ellipsoid method for linear programming.

To answer (Q2), we consider two pricing schemes. One is a pricing scheme from economics

known as the Walrasian equilibrium pricing. The other is the well-known pricing scheme

from mechanism design called the Vickrey-Clarke-Groves (VCG) mechanism [23, 4, 9]. In

the VCG mechanism, allocation is done optimally (by solving the underlying optimization

problem) and agents are paid in such a way that their net utility is equal to their marginal

contribution to the system. Such a pricing scheme makes submission of true costs by suppliers

a (weakly) dominant strategy. We propose an algorithm to compute Walrasian equilibrium

prices and the VCG payments.

1Readers not familiar with mechanism design theory are suggested to read [12] for a quick introduction.
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1.1 Related Work

Most of the prior research related to our work is done in a buyers-seller setting. In a buyers-

seller setting/economy, a seller is selling a set of items to a set of buyers who each have

values on subsets of items (bundles). The question in that case becomes who should be

assigned which item and at what price. The buyer-seller setting is a natural counterpart of

our setting, and many results of that setting can also be derived for our setting.

The buyers-seller problem has been studied in a simplified setting where each buyer wants

to buy at most one item. The concept of the VCG mechanism can be directly applied to

such a setting. Leonard [16] discusses such a pricing scheme in the setting of labor markets.

In a labor market, a set of positions need to be filled by a set of individuals who have

private valuations on positions. He shows that the VCG prices in such a setting constitute

the dual solution of a linear programming assignment problem. He further shows that such

prices constitute the Walrasian equilibrium price. Later, Demange et al. [7] proposed two

ascending-price auctions for such a setting. One of them achieves exact VCG prices and the

other achieves them approximately. The advantages of these mechanisms are that they can

be implemented in a distributed manner and do not require buyers to report their valuations

directly.

The results of the unit demand case in a buyers-seller setting have been extended (to

some extent) to the case of multiple item demands. Kelso and Crawford [13] introduced a

condition, called the gross substitutes (GS) condition, under which Walrasian equilibrium

will exist in such an economy. Gul and Stacchetti [10, 11] have two papers in this setting. In

their earlier paper [10], they give equivalent conditions to the GS condition and show that

the Walrasian equilibrium price vectors form a lattice. In the same paper they show that

the payment by a buyer in any Walrasian equilibrium pricing scheme is always at least his

payment in the VCG mechanism. They show that this gap vanishes for large economies.

In their second paper [11], they show a strong relationship between their work and matroid

theory. They propose an ascending-price auction which converges to the minimum Walrasian

equilibrium price vector. They give conditions under which this auction inherits the good

incentive properties of the VCG mechanism. Bikhchandani et al. [3] model this problem

as an integer program (IP). They give various strong formulations and show that under a

condition called agents are substitutes, one of the formulations has dual variables which

relate to the VCG prices. They also give an IP formulation that has an integral optimal

solution if the GS condition (or equivalently any of the conditions in [10]) hold. They propose

primal-dual based algorithms to discover these prices. Parkes [20] proposes an auction which

achieves the VCG outcome by maintaining personalized prices for buyers and prices for every
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bundle. Ausubel [1] has also proposed an iterative mechanism which discovers the VCG

prices. Recent work by Ausubel and Milgrom [2] and de Vries et al. [6] propose iterative

auctions under these models and give conditions under which these auctions achieve the

VCG outcome.

Finding the VCG payments is an NP-Complete problem in a multiple item demand case

(see for example [21]). Therefore much research has been done in addressing the computa-

tional complexity issue. Some of the research that discusses this issue includes [20, 3, 15, 22].

Most of this research is in developing mechanisms/algorithms of distributed nature or in de-

veloping efficient message protocols to elicit agents’ preferences to address the computational

complexity issue.

Comparing our contribution with the research in buyers-seller setting, we observe that

the fundamental optimization problem in the procurement economy is different. We are

concerned with finding an equilibrium price vector in our procurement setting. Bikhchandani

et al. [3] related a linear programming formulation and the gross substitutes property in

a buyers-seller setting. Similarly, in the buyers-seller setting, under the gross substitutes

condition, it is known that equilibrium prices can be found with polynomial number of calls

to the demand oracle [19]. In [17], the demand oracle is shown to be solvable in polynomial

time for a very specific type of valuation function of the buyers. More recently, Murota

and Tamura [18] gave a polynomial time algorithm to find equilibrium prices under gross

substitutes condition. Their algorithm relates concepts from discrete convexity to gross

substitutes condition (also see Danilov et al. [5] for connection of discrete convexity to the

gross substitutes condition).

1.2 Contribution of this Paper

In this paper, we answer some questions relating to the procurement economy problem. We

formulate the problem as an integer program (IP). We first show that if cost functions are

monotonic and satisfy a condition called no production complementarity (NPC), introduced

in Gul and Stacchetti [10], then the linear relaxation of IP has an integral optimal solution 2.

Moreover, we demonstrate that the dual variables of this LP relaxation corresponds to the

Walrasian equilibrium prices at optimality. This result is similar to earlier results in the

literature on the buyers-seller setting [3].

These results allow us to propose a technique based on the ellipsoid method to solve the

dual problem. The ellipsoid method solves the separation problem (that is, it either certifies

that a given vector is dual feasible, or it returns a violated dual inequality) a polynomial

2We will elaborate more on the NPC condition later.
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number of times. To solve the separation problem, in our setting, turns out to consist of

asking each supplier whether or not the dual vector satisfies all the dual constraints of the

supplier, and if not, to have the supplier deliver a dual constraint that is violated the most.

Even though there is an exponential number of dual constraints associated to each supplier,

the fact that the ellipsoid method only requires the solution of a polynomial number of

separation problems ensures that the overall method runs in polynomial time.

The method described above runs in a distributed manner. We prove that the VCG

prices paid to suppliers will always be (weakly) greater than the price that needs to be

paid in a Walrasian equilibrium pricing scheme. We show how to compute the maximum

Walrasian equilibrium prices and the VCG prices using the ellipsoid algorithm. We also

discuss incentive issues. This technique is non-conventional and it has some interesting

practical properties. It has nice properties of iterative mechanisms like reverse auctions as

it is distributed in nature and works on prices. Also, it carries the nice properties of sealed-

bid auctions (RFQ based procurement) in the sense that it reveals little information to the

public.

The rest of the paper is organized as follows. In Section 2, we formally define the problem.

In Section 3, we introduce the concept of Walrasian equilibrium and formulate the problem

as an integer program. In Section 4, we propose a method based on ellipsoid algorithm to

discover Walrasian equilibrium prices. Section 5 describes when the ellipsoid algorithm is

incentive compatible for suppliers. We summarize and describe future research directions in

Section 6.

2 Problem Statement

We assume there is a customer agent who needs to procure a set of n heterogeneous items.

Denote this set of items by A = {1, 2, . . . , n}. There is a set of m suppliers that can supply

each subset of these items. Let B = {1, 2, . . . ,m} be the set of suppliers. Let Ω be the power

set of A; so Ω = {S : S ⊆ A}. Each supplier has a cost of supplying a bundle S ∈ Ω. We

denote the cost of supplying S ∈ Ω by supplier i ∈ B as ci(S). We assume ci(∅) = 0 ∀ i ∈ B.

If a supplier does not have the capability to supply a bundle of items, the cost on that bundle

can be set to a very high amount. We denote the vector of all prices by p ∈ R
A
+, and the

price of a single item j ∈ A by pj. If a supplier i supplies a set of items S at price p, then his

payoff or utility is ui(S, p) =
∑

j∈S pj − ci(S). We assume the cost function for each supplier

is monotonically increasing, i.e., for any supplier i ∈ B, we have ci(S) ≤ ci(T ) ∀ S ⊆ T ∈ Ω.

Definition 1 The supply set at price vector p for a cost function c is defined as L(p) =
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{S : u(S, p) ≥ u(T, p) ∀ T ∈ Ω}.

Supply set contains the utility-maximizing set of bundles of items at a price vector. Using

the notion of supply set, we give some further definitions.

Definition 2 A cost function c : Ω → R+

(i) satisfies Gross Substitutes for Production (GSP) condition, if for any two price vectors

p and q with p ≥ q, and any S ∈ L(q), there exists a T ∈ L(p) such that {j ∈ (A \ S) : pj =

qj} ⊆ (A \ T ).

(ii) satisfies the Single Improvement (SI) property, if for any price vector p and any bundles

S /∈ L(p) there exists a bundle T such that u(T, p) > u(S, p) and |S \ T |, |T \ S| ≤ 1.

(iii) has No Production Complementarity (NPC), if for every price vector p, S, T ∈ L(p)

and Y ⊆ S \ T , there exists a Z ⊆ T \ S, such that (S \ Y ) ∪ Z ∈ L(p).

The NPC and SI conditions were introduced in [10]. The GS condition was introduced

in a buyers-seller economy by Kelso and Crawford [13]. We modify their condition to the

procurement setting. By the arguments in Section 6 and Theorem 1 of [10], if c is monotone,

then GSP, SI and NPC are equivalent.

These conditions, to a large extent, preclude the existence of items which are complements

of each other. For example, the SI condition says that we can improve a bundle not in the

supply set by either adding an item or deleting a item or doing both.

We assume that the customer has a reservation cost that indicates the maximum amount

the customer is willing to pay for a given bundle. We implement this idea using a dummy

supplier, 0. The dummy supplier has a cost function c0. We assume additive costs for the

dummy supplier, i.e., there are costs on individual items and the cost on a bundle S ∈ Ω

is simply c0(S) =
∑

j∈S c0j, where c0j is the cost on item j. Thus the prices on items are

bounded above by the cost of the dummy supplier. We will denote B0 = B ∪ {0} and

B−i = B \ {i}.

3 Walrasian Equilibrium

The economy E = (A; c0, c1, . . . , cm) consists of a finite collection of items, A, and the set of

suppliers B0 with their cost functions. The procurement problem can be formulated as the

following integer program (P).

min
∑

i∈B0

∑

S∈Ω

ci(S)y(i, S)
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s.t.
∑

S∈Ω

y(i, S) ≤ 1 ∀ i ∈ B

∑

S∈Ω:j∈S

∑

i∈B0

y(i, S) = 1 ∀ j ∈ A

y(i, S) = {0, 1} ∀ i ∈ B, ∀ S ∈ Ω

The first set of constraints of P say that each supplier in B must be assigned at most one

subset of items. The second set of constraints say that each item must be assigned exactly

once. It is clear that a feasible solution of P is a partitioning X = (X1, . . . , Xm) such that

y(i,Xi) = 1 ∀ i ∈ B and y(i, S) = 0 if Xi 6= S ∀ i ∈ B, ∀ S ∈ Ω.

Gul and Stacchetti [10] discuss Walrasian equilibria in such a setting. The Walrasian

equilibrium in such a setting can be defined as follows:

Definition 3 Let (p,X) be a tuple, where p ∈ R
n
+ is a price vector and X = (X0, X1, . . . , Xm)

is a partition of A with Xi representing the allocation of supplier i ∈ B. (p,X) is a Walrasian

equilibrium of the economy E = (A; c0, . . . , cm) if

• for every i ∈ B, Xi ∈ Li(p).

• pj ≤ c0j ∀ j ∈ A and if j ∈ X0, pj = c0j.

The price vector p is called the Walrasian equilibrium price vector.

Denote A0(p) = {j ∈ A : pj = c0j}. We can write the Walrasian equilibrium as a solution

(p, y) to the following set of equations (CE):

∑

S∈Li(p)

y(i, S) = 1 ∀ i ∈ B

∑

S3j

∑

i∈B

y(i, S) = 1 ∀ j /∈ A0(p)

∑

S3j

∑

i∈B

y(i, S) ≤ 1 ∀ j ∈ A0(p)

y(i, S) ∈ {0, 1} ∀ i ∈ B, ∀ S ∈ Ω

By Theorem 10 of [10], if ci is monotone and satisfies NPC/SI/GSP for every supplier

i ∈ B, then the Walrasian equilibrium of the economy E = (A; c0, . . . , cm) exists and the set

of Walrasian equilibrium prices form a complete lattice. Using this result, we can prove the

following theorem. A parallel result for the buyers-seller setting appears in [3].
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Theorem 1 If each supplier’s cost function is monotone and satisfies SI, then there exists

an optimal solution of LP which is an optimal solution of P.

Proof : If each supplier’s cost function is monotone and satisfies SI, then Walrasian equi-

librium exists [10]. We can find a (p, y) which is a Walrasian equilibrium. All the items

j ∈ A0(p) can be assigned to the dummy supplier. In particular define X0 = {j ∈ A0(p) :
∑

S3j

∑

i∈B y(i, S) = 0} and let y(0, X0) = 1. Now, y is feasible solution of LP. Consider

the dual of LP: (DP)

max
p,π

∑

j∈A

pj −
∑

i∈B

πi

s.t.

∑

j∈S

pj ≤
∑

j∈S

c0j ∀ S ∈ Ω (1)

∑

j∈S

pj − πi ≤ ci(S) ∀ i ∈ B, ∀ S ∈ Ω (2)

πi ≥ 0 ∀ i ∈ B

If (p, y) is a Walrasian equilibrium with pj ≥ 0 ∀ j ∈ A, define for every i ∈ B, πi =

ui(S, p) =
∑

j∈S pj − ci(S), where S ∈ Li(p). This means that (p, π) is a feasible solution to

DP. Now consider the complementary slackness (CS) conditions:

CS1 y(0, S)(
∑

j∈S[c0j − pj]) = 0 ∀ S ∈ Ω.

CS2 y(i, S)(πi − [
∑

j∈S pj − ci(S)]) = 0 ∀ i ∈ B, ∀ S ∈ Ω.

CS3 πi(1 −
∑

S∈Ω y(i, S)) = 0 ∀ i ∈ B.

CS1 is satisfied because, pj ≤ c0j and if y(0, S) = 1, then S = X0 and pj = c0j ∀ j ∈ X0.

CS2 is satisfied because, if y(i, S) = 1 then S ∈ Li(p). This means, πi =
∑

j∈S pj − ci(S).

CS3 is satisfied because of feasibility of CE and the first set of constraints in CE. This

means (p, π) is dual feasible, y is primal feasible and (p, π, y) satisfies CS conditions. By

duality theory, y is an optimal solution of P. �
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4 Distributed Ellipsoid Algorithm

To solve a linear program in polynomial time, a method known as the ellipsoid algorithm

was proposed by Khachiyan [14]. Grötschel, Lovász, and Schrijver [8] later showed that

the ellipsoid algorithm can solve a linear program in polynomial time if and only if a given

point can be separated from the feasible polyhedron in polynomial time. The problem of

separating a point is also called the separation problem 3. We will apply this idea to solve

DP (the dual of LP).

For the sake of brevity, we omit a detailed description of the general ellipsoid algorithm.

We now give a brief summary of how it would solve a linear program like DP. An initial

ellipsoid is defined so as to contain the entire feasible region. Starting from this initial

ellipsoid, the method can be seen as constructing a sequence of ellipsoids such that each

contains both the set of optimal solutions and one half of the volume of the preceding

ellipsoid in the sequence. The final ellipsoid will be small enough so that its center will be

an optimal solution, or close enough that it can be converted to one in polynomial time.

The important point for our discussion is that it can be shown that the number of

ellipsoids in the sequence is bounded by a polynomial in the number of variables (here, m

and n). Moreover, at each stage, the next ellipsoid in the sequence is constructed in part by

determining whether or not the center (p̂, π̂) of the current ellipsoid is a dual feasible point,

and (if not) identifying a violated dual inequality. This separation problem is the bottleneck

in defining the next ellipsoid, and therefore if this can be done in polynomial time, each

iteration of the ellipsoid can be define in polynomial time. Thus, although DP has an

exponential number of constraints, it is possible to solve it using an ellipsoid algorithm in

polynomial time if and only there is a polynomial time algorithm for the separation problem.

Observe that, given a vector (p̂, π̂), all constraints of the form (1) will be satisfied if and

only if each of the n constraints pj ≤ c0j, ∀ j ∈ A, are satisfied. Finding a violated inequality

of the form (1), or showing that there are none violated, is therefore trivial.

Our discussion of the separation problem for DP will therefore focus on the constraints

(2). We will state the separation problem as follows:

• For every supplier i ∈ B; either

– show that
∑

j∈S p̂j − π̂i ≤ ci(S) ∀ S ∈ Ω; or

– find an S∗ ∈ Ω for which the constraint
∑

j∈S∗ pj − πi ≤ ci(S
∗) is violated.

3In addition to containing a detailed development of the result just cited, [8] describes many other aspects

and consequences of using ellipsoid algorithms to solve combinatorial optimization problems
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Thus, to solve the separation problem for DP, each supplier solves a local separation problem.

Observe that for each supplier i ∈ B,

∑

j∈S

pj − πi ≤ ci(S) ∀ S ∈ Ω

⇐⇒ πi ≥
∑

j∈S

pj − ci(S) ∀ S ∈ Ω

⇐⇒ πi ≥ max
S∈Ω

[

∑

j∈S

pj − ci(S)
]

⇐⇒ πi ≥ max
S∈Ω

ui(S, p).

This means that, to solve the separation problem, every supplier needs to identify a bundle

which gives him the maximum utility (call it an optimal bundle). The ellipsoid algorithm

will therefore run in polynomial time if and only if, for any given price vector, each supplier

can find his optimal bundle in polynomial time.

To identify an optimal bundle for a given price vector p for some supplier i ∈ B, consider

the following simple search procedure. Choose any bundle S ∈ Ω. If S is not an optimal

bundle for i, then by single improvement, we can improve S in 3 ways:

• By adding an item to S (n − |S| choices).

• By deleting an item from S (|S| choices).

• By doing both of the above (|S|(n − |S|) choices).

A non-optimal bundle can therefore be improved in O(n2) time. We can keep improving

non-optimal bundles till we find an optimal bundle. If costs and prices are all integers and

costs are polynomial in (m,n) (the number of suppliers and items), then this search process

can find an optimal bundle in polynomial time. This gives us a pseudo-polynomial time

search procedure for the separation problem, and thus the ellipsoid algorithm will run in

pseudo-polynomial time. This immediately gives us our next observation.

Observation 1 Optimization of both DP and LP can be done in pseudo-polynomial time

using the ellipsoid algorithm.

Murota and Tamura [18] related discrete convexity to this kind of mathematical eco-

nomics. Using concepts from discrete convexity that can address submodular flow problems

9



effectively, they provide an algorithm to find competitive equilibrium prices in polynomial

time. This means that it is possible to solve both LP and DP in polynomial time using

their algorithm.

This also means that it is possible to solve the separation problem for DP in polynomial

time as well. For example, if (p̂, π̂) is not optimal for DP, it is possible to define a violated

constraint by using the algorithm of [18] to find an optimal bundle S for each supplier i.

This could be done for each i by running their algorithm on a reduced version of P that has

only variables related to suppliers i and 0 (the dummy supplier), and for which the costs on

these variables are modified to be −ui(S, p) for i and 0 for supplier 0, for each bundle S ∈ Ω.

While an important breakthrough, the algorithm in [18] does not have the following

two important aspects of the ellipsoid algorithm that we have described: (i) The ellipsoid

algorithm is a distributed method in which each supplier solves his own separation problem

and submits his violated constraint in each iteration. (ii) The ellipsoid algorithm uses a

minimal number of constraints required to solve DP, i.e., suppliers only submit constraints

that are necessary to solve DP. This means that suppliers will not reveal costs on all bundles,

but only on bundles for which constraints are submitted. This cost information revelation

is strategically important in a procurement setting. The algorithm in [18] assumes full

knowledge of cost functions of all suppliers.

In practice, it is unlikely that using a distributed ellipsoid algorithm will be practical or

desirable. However, it will be interesting to investigate how the following simple procedure

performs in practice in terms of number of iterations to converge to an optimal or near-

optimal assignment and price vector).

• Step 0: Start with an LP with the same set of variables and objective function as

DP, with constraints pj ≤ c0j ∀ j ∈ A, and with non-negativity constraints on the

variables. Find a solution vector (p̂, π̂) to this LP.

• Step 1: For every supplier i ∈ B, either

– show that
∑

j∈S p̂j − π̂i ≤ ci(S) ∀ S ∈ Ω; or

– find an S∗ ∈ Ω for which this constraint is most violated. Add
∑

j∈S∗ pj − πi ≤

ci(S
∗) as a cut to the LP.

(This can be done by the simple single improvement search procedure described above).

• Step 2: If no cuts were found in Step 1, we have found a dual optimal solution (p∗, π∗).

Using complementary slackness, we can find a feasible solution X to the primal and
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STOP. Else, solve the main problem with the added cuts to find the new solution (p̂, π̂)

and go back to Step 1.

5 Incentive Compatibility of Ellipsoid Algorithm

By Gul and Stacchetti [10], the Walrasian equilibrium prices of our economy form a complete

lattice. This means there exist unique minimum and maximum Walrasian equilibrium price

vectors. The ellipsoid algorithm converges to one of the Walrasian equilibrium price vectors.

The question is whether the suppliers can manipulate the algorithm to achieve higher utility

at the end of the algorithm. To analyze this, we first discuss a well-known strategyproof

payment scheme, called the Vickrey-Clarke-Groves (VCG) payment scheme [23, 4, 9]. Under

the VCG scheme, a mechanism implements an efficient (optimal) decision rule (allocation)

and pays the participating agents their marginal contributions. To understand the VCG

payments, in our setting, let V (X) denote the optimal objective value of formulation P

when a set of suppliers X ⊆ B are considered. V (B) is therefore the optimal objective value

when all suppliers are considered and V (B−i) is the optimal objective value when all but i

are considered. By the VCG scheme, if i is allocated Si in the optimal allocation, then he

should be paid ci(Si) + V (B−i) − V (B). (Note that the payments in such a scheme are a

map from suppliers to positive real numbers whereas Walrasian equilibrium prices are a map

from items to positive real numbers.) The VCG payment of supplier i, assigned to Si in the

optimal allocation of P, becomes (denote it as pvcg
i ):

pvcg
i = ci(Si) + V (B−i) − V (B). (3)

Now, we can prove a theorem which provides a relationship between Walrasian equilib-

rium prices and the VCG prices. A parallel theorem in the buyers-seller setting is proved by

Gul and Stacchetti [10].

Theorem 2 If supplier i ∈ B is allocated Si in a Walrasian equilibrium allocation, then

pvcg
i ≥

∑

j∈Si
pj, where p is the corresponding Walrasian equilibrium price vector.

Proof : If p is a Walrasian equilibrium, then there exists (π, y) such that y is an optimal

solution of P with y(i, Si) = 1 and (p, π) is an optimal solution of DP. By duality, πi ≤

V (B−i)−V (B). This is because V (B−i)−V (B) is the value of reducing the right hand side

of the corresponding primal constraint. This implies that pvcg
i = ci(Si) + [V (B−i)−V (B)] ≥

ci(Si) + πi = ci(Si) +
∑

j∈Si
pj − ci(Si) =

∑

j∈Si
pj. �
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The theorem proves that the VCG payment of a supplier is at least the maximum Wal-

rasian equilibrium price of the bundle assigned to the supplier. In general, there can be a

gap between the two types of payments.

5.1 Achieving Maximum Walrasian Equilibrium

The ellipsoid algorithm in the previous section achieves a Walrasian equilibrium. But we

did not mention how it can achieve a particular Walrasian equilibrium. Now we prove a

theorem which proves the necessity of achieving the maximum Walrasian equilibrium. First

we define some notation. Let C be the class of monotone and GS cost profiles. For the true

cost profile, c denotes the maximum Walrasian equilibrium price vector as pmax. We denote

the true submission of cuts by suppliers in the ellipsoid algorithm a straightforward strategy.

We say that the straightforward strategy is in ex post Nash equilibrium if for every supplier

i ∈ B, i can not gain more payoff by following some other strategy when all suppliers other

than i follow the straightforward strategy.

Theorem 3 Let the allocation of supplier i be denoted as Si. If pvcg
i =

∑

αi∈Si
pmax

i ∀ i ∈ B

and the ellipsoid algorithm converges to pmax (we will give an exact procedure to compute

pmax later), then the straightforward strategy is an ex post Nash equilibrium for each supplier

in every step of the ellipsoid algorithm.

Proof : Consider a supplier i ∈ B and his cost function ci ∈ C. Suppose supplier i misreports

at some iteration of the ellipsoid algorithm. As a result, let him be allocated T . Clearly, him

being allocated Si is weakly preferred to T = ∅. Now, consider a cost function of i which

allocates T in a Walrasian equilibrium of the economy. Specifically, consider the following

cost function:

c′i(S) = 0 if S ⊆ T

=
∑

j∈S

pj otherwise

Assigning T to i is a Walrasian equilibrium for this economy. This means that in an

optimal allocation of this economy, i can be assigned T . Let p̂vcg
i be the VCG payment of i

in such an economy and p̂ be the final price vector in the ellipsoid algorithm that supports a

Walrasian equilibrium in such an economy. Since the VCG mechanism is strategyproof and

assigns items using an optimal allocation, we get
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∑

j∈Si

pmax
j − ci(Si) = pvcg

i − ci(Si) ≥ p̂vcg
i − c′i(T )

By Theorem 2, p̂vcg
i ≥

∑

j∈T p̂j. This gives us

∑

j∈Si

pmax
j − ci(Si) ≥

∑

j∈T

p̂j − c′i(T )

This means following some other strategy weakly lowers payoff of i. �

The theorem shows that of all the Walrasian equilibrium price vectors, the maximum

Walrasian equilibrium price vector is the closest to achieving an ex post Nash equilibrium.

To achieve the maximum Walrasian equilibrium using an ellipsoid algorithm based approach,

first run the algorithm described in the previous section to obtain the optimal solution to

DP, and let its objective function value be VOPT . Now solve the following LP:

max
p

∑

j∈A

pj

s.t.

∑

j∈S

pj ≤
∑

j∈S

c0j ∀ S ∈ Ω (MAXCE)

∑

j∈A

pj −
∑

i∈B

πi = VOPT

∑

j∈S

pj − πi ≤ ci(S) ∀ i ∈ B, ∀ S ∈ Ω

πi ≥ 0 ∀ i ∈ B

Theorem 4 The optimal solution of MAXCE is the maximum CE price, and it can be

computed in polynomial time.

Proof : Clearly, every feasible solution of MAXCE is also a feasible solution of CE.

MAXCE looks for an optimal solution of CE which maximizes the sum of prices. Let

pmax be the maximum CE price and p be the optimal solution of MAXCE. By the lattice

nature of CE price space, the maximum CE price vector is unique and
∑

j∈A pmax
j >

∑

j∈A pj.

This means that p = pmax.
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Also, since the separation problem for MAXCE is essentially the same as that for DP,

we know from the previous section that it can be solved in polynomial time. Thus pmax can

be calculated in polynomial time. �

5.2 Calculating the VCG Prices

Since the ellipsoid algorithm runs in polynomial time, we can run it m+1 times to compute

the VCG prices. The first run of the ellipsoid algorithm involves all the suppliers in B.

In each of the subsequent m runs of the algorithm, a different supplier is removed, and

the problem is solved for the supplier set B−i. Each of these runs therefore computes the

marginal contribution of an agent i. At the end of these m + 1 runs, we can compute the

VCG prices. As proved earlier, behaving honestly at each stage of the ellipsoid algorithms

is an ex post Nash equilibrium for the suppliers. Finally, while it may be unlikely that

the ellipsoid algorithm will be useful in computing the VCG prices in practical scenarios, it

seems likely that a straightforward method like that described at the end of Section 4 would

be simple to implement, allow for limited information sharing, and be computationally fast.

6 Summary and Future Research

We formulated the procurement problem as an integer program and showed that under

monotonicity and single improvement, its linear relaxation gives an optimal solution. Using

this, we propose an ellipsoid algorithm based approach to solve its dual and we show how

the dual can be solved in polynomial time. We discuss the incentive compatibility issues of

the ellipsoid algorithm. The ellipsoid algorithm can be implemented in a distributed manner

and it asks the suppliers to submit the costs of bundles which are necessary to solve the

problem.

In the presence of monotonicity and GS condition, our ellipsoid algorithm runs in poly-

nomial time. We would like a more straightforward polynomial method that, for example,

directly exploits the single improvement property to solve the local separation problem for

each supplier. At present, however, we do not know of such an algorithm. We also want to

investigate how to apply the ellipsoid algorithm based approach to implement a non-linear

and non-anonymous pricing scheme (like the VCG pricing). Also, it will be interesting to

explore direct primal-based methods that allow distributed information sharing.
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