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Abstract

The theory of games against nature relies on complete preferences among all conceivable

acts, i.e. among all potential assignments of consequences to states of nature (case 1).

Yet most decision problems call for choosing an element from a limited set of acts. And

in games of strategy, the set of strategies available to a player is given and not amenable

to artificial extensions. In “Assessing Strategic Risk” (CORE DP 2005/20), R.J Aumann

and J.H. Drèze extend the basic result of decision theory (maximisation of subjectively

expected utility) to situations where preferences are defined only for a given set of acts,

and for lotteries among these and sure consequences (case 2). In this paper, we provide

a similar extension for two other situations: those where only the set of optimal elements

from a given set of acts is known (case 3); and those where only a single optimal act is

known (case 4). To these four cases correspond four nested sets of admissible subjective

probabilities over the states or the opponent’s strategies, namely a singleton in case 1 and

increasing sets in cases 2-4. The results for cases 3 and 4 also define the extent to which
1This paper is an outgrowth of joint research with R.J. Aumann (2005), and I regard it as joint work.

Because I wrote up the paper on my own (after some e-mail exchanges), Aumann tactfully declined to
appear as co-author. I had to agree, reluctantly, and I thank him warmly for the stimulating cooperation.
I have also benefitted from helpful discussions with Jean-Franois Mertens. I assume sole responsibility for
the contents.
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subjective probabilities must be specified in order to solve a given decision problem or play

a given game.
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1 Introduction

The standard model of decision theory, as used e.g. by Savage (1954) or Anscombe and

Aumann (1963), proceeds from preferences on a comprehensive set of acts. Specifically,

let S be the set of states of nature s and C be the set of pure consequences c. In Savage,

the set of acts F is the set of mappings f of S into C. In Anscombe-Aumann, it is the

set of probability distributions over F , say ∆(F ). Yet, a standard decision problem calls

for the choice of some element from a proper subset of F , say the set R of alternatives

really open to choice. Additional acts, elements of F \R or ∆(F )\∆(R), are introduced for

analytical convenience, and for the strength of conclusions thereby reached: preferences are

represented by subjectively expected utility, with utility u defined uniquely up to positive

linear transformations and subjective probability p defined uniquely.

More recently, Aumann and Drèze (2005) – hereafter ASR – have presented a parallel

analysis for decision in games of strategy (GoS). They look at a game from the view-

point of a single player, called “the protagonist”; all other players are combined into a

single “opponent”. Let then S be the set of the opponent’s strategies s, R be the set of

the protagonist’s strategies r, and C be the set of possible outcomes of the game for the

protagonist. Each strategy r ∈ R defines a mapping hr of S into C. ASR proceeds from

complete preferences over ∆(R∪C) and derives a subjective-expected-utility representation

of these preferences. Utility is still unique up to positive linear transformations. Subjective

probability is in general not unique: there may exist several probabilities, like p and p′, such

that the expected utilities up(r) = Σsps u(hr(s)) and up′(r) = Σsp
′
s u(hr(s)) are equal, for

each r ∈ R – a property labeled “effective uniqueness” in ASR (section 6.2). In such cases,

preferences over ∆(R∪C) do not permit discrimination between p and p′. And such cases

arise when the matrix [u(hr(s)], r ∈ R, s ∈ S, has rank less than S – a situation avoided

under a comprehensive set of acts.1

The reason for entertaining preferences over ∆(R∪C) is twofold: (i) introducing hypo-

thetical strategies r̃ 6∈ R changes the game, with potential consequences for preferences and

their expected-utility representation; (ii) R will typically fail to include constant strategies,
1F includes acts that “stake a prize” on a single state, and this feature applies to every s in S.
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with hr(s) = c ∀s ∈ S, some c ∈ C; accordingly, u(c) cannot be inferred from preferences

over ∆(R) alone; elements of ∆(R ∪ C), called “hybrid lotteries” in ASR, are introduced

to that end.2

The main theorem in ASR, hereafter MTASR, which asserts existence of a subjective-

expected-utility representation of preferences over ∆(R∪C) verifying effective uniqueness,

is of course applicable to games against nature (GAN) as well – although the motivation

for restricting attention there to preferences over ∆(R∪C) instead of the full ∆(F ) is less

compelling.3 Still, it is a useful result in that context, because the decision maker “might

have difficulty in forming meaningful preferences between highly hypothetical options” or

“might be reluctant to evaluate carefully acts that are clearly irrelevant”.4

In games of strategy, preferences over mixed strategies are meaningful: these are pre-

cisely the objects of choice open to the protagonist. Yet, these preferences are not “ob-

servable”, in particular not subject to (potentially) observable binary choices. The only

observable choices concern optimal strategies: the subset, say M ⊂ R, or ∆(M) ⊂ ∆(R),

some element of which the protagonist will actually play. Indeed, the protagonist must

choose some mixed strategy, and the set of preferred choices is ∆(M). Thus the definition

of M , and preferences over ∆(M ∪ C) are “operational” concepts. In fact, they are the

very concepts entertained, for a different context, in the “revealed-preferences” theory of

Samuelson (1950) and his followers.

Under a more restrictive notion of “operationalism”, one might regard a single element

of M as “observable”, namely the pure strategy, say r∗, actually played by the protagonist.

The present paper develops this revealed-preferences approach to decision theory for

both GAN and GoS (section 2), and relates it to standard decision theory as well as

to ASR (section 3). Our main result, theorem 1, provides a subjective-expected-utility

representation based on axiomatisation of M and of preferences that are complete only on

∆(M ∪C). Corollary 1 treats the case where preferences are complete only on ∆(r∗ ∪C).
2That preferences over ∆(R) ∪∆(C) ⊂ ∆(R ∪ C) would not quite do is a subtle point not relevant to

our purpose here.
3In particular, adding hypothetical acts does not affect nature’s choices.
4ASR, section 6.1. In particular, existence of a dominant strategy eliminates the need to assess alterna-

tives.
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2 Main Result

We adopt the notation of ASR, and interpret it indifferently for GAN’s or for GoS’s. A

game G consists of

• a finite set R with elements r (the pure strategies of the protagonist or the acts of

the decision maker),

• a finite set S with elements s (the pure strategies of the opponent or the states of

nature; states for short),

• a finite set C with elements c (pure consequences),

• a function h : R × S → C (the outcome function of the protagonist in a GoS or the

definition of the acts in a GAN).

Thus, G = (R,S,C, h). We write hr(s) for the consequence associated with the pair (r, s) ∈

R× S.

For a finite set A, the set of probability distributions on A is a denoted ∆(A), with

elements α. Thus, γ ∈ ∆(C) is a mixed consequence, and ρ ∈ ∆(R) is a mixed strategy in

a GoS or a lottery over acts in a GAN. By a slight abuse of notation, we write ρs for the

mixed consequence associated by ρ with state s. As for ∆(R ∪ C), with elements λ, it is

a set of hybrid lotteries defined by triplets (ρλ, γλ, tλ) ∈ ∆(R) ×∆(C) × [0, 1]. In state s,

the hybrid lottery λ entails the mixed consequence λs yielding ρλ
s with probability tλ and

γλ with probability (1− tλ); so, we write λs = tρλ
s + (1− t)γλ ∈ ∆(C).

In order to develop our “revealed preference” analysis, we start from a partial ordering

% on ∆(R∪C), which in particular separates a set of preferred mixed strategies ∆(M),M ⊆

R, from the remaining mixed strategies, ∆(R) \ ∆(M). The interpretation is that the

protagonist in the game G is indifferent between playing any strategy ρ ∈ ∆(M)but will not

play any ρ′ ∈ ∆(R) \∆(M).

Four assumptions will define fully our partial ordering % on ∆(R∪C). By definition, %

is transitive and reflexive, but not necessarily complete; it embodies the usual definitions

of indifference (∼) and strict preference (�).
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Assumption 1 There exists M ⊆ R,M 6= ∅, such that: ρ ∼ ρ′ ∀ ρ, ρ′ ∈ ∆(M) and

ρ � ρ′ ∀ ρ ∈ ∆(M), ρ′ ∈ ∆(R) \∆(M).

Assumption 1 amounts to the assertion that the protagonist is willing to play the game

(M 6= ∅), and reveals her full set of preferred strategies ∆(M).

Next, we define a complete preference ordering % on a set ∆(A) to be an N − M

preference ordering if it satisfies the standard axioms of utility theory, as stated for instance

in von Neumann and Morgenstern (1944) or Luce and Raiffa (1957). And we define an

N − M utility on ∆(A) to be a real-valued u on ∆(A) such that, ∀ α, α′ ∈ ∆(A) and

∀ t ∈ [0, 1],

• α % α′ iff u(α) ≥ u(α′);

• u(tα + (1− t)α′) = tu(α) + (1− t) u(α′).

As is well known, and N −M preference admits an N −M utility representation.

Assumption 2 The restriction of % to ∆(M ∪ C) is an N −M preference.

Thus, on ∆(M ∪ C), the preference ordering is complete and admits an N − M utility

representation.

Assumption 3 For λ, λ′ ∈ ∆(R ∪ C), if λs % (�)λ′s ∀s ∈ S, then λ % (�)λ′.

Assumption 3 introduces a condition of monotonicity which extends our partial preference

ordering to some elements of ∆(R ∪ C) \∆(M ∪ C), namely those elements among which

a preference domination holds. Note that λs % λ′s is well defined in view of assumption 2,

applied to ∆(C) ⊂ ∆(M ∪ C). Assumption 3 embodies the “reversal of order” condition

of Anscombe and Aumann (1963) and a weak form of the “sure-thing principle” of Savage

(1954).5

5Beside GAN and GoS, there exist one-person games where the occurence of the “states” is influenced
by the strategy choices of the decision maker. (Think about record-breaking performances in sports or
athletics.) Such games are called “games of strength and skill” by von Neumann and Morgenstern (1944);
they are called “games with moral hazard” by Drèze (1987), where strategies are not observable. In such
situations, “reversal of order” fails, and is replaced in Drèze (1987) by the weaker assumption of “non-
negative value of information”. No doubt, the developments in the present paper have a counterpart under
moral hazard; but we have not attempted to spell out that counterpart, which is apt to be complex. The
same remark applies for state-dependent preferences, the other generalisation covered in Drèze (1987).
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Assumptions 1-3 have an important implication, worth stating formally.

Proposition 1 Let ρ, ρ′, ρ′′ ∈ ∆(R) be such that, for some t ∈ (0, 1), ρs ∼ tρ′s + (1− t)ρ
′′
s

for all s ∈ S; then, ρ ∈ ∆(M) if and only if ρ′ ∈ ∆(M) and ρ′′ ∈ ∆(M).

Proof By assumption 3, ρ is indifferent to ρ′ + (1 − t)ρ”. If ρ ∈ ∆(M), then ρ′ + (1 −

t)ρ” ∈ ∆(M). Accordingly, by assumption 2, ρ ∼ ρ′ and ρ ∼ ρ”, so that ρ′ ∈ ∆(M) and

ρ” ∈ ∆(M). Conversely, either ρ′ /∈ ∆(M) or ρ” /∈ ∆(M) implies ρ /∈ ∆(M). �

This is a natural property: in GAN, ρ could not be part of the preferred set ∆(M) if

it is a convex combination (preference wise) of a preferred and a discarded strategy, or of

two discarded strategies. The status of this property in GoS is discussed in section 4.2.

Theorem 1 Under assumptions 1, 2 and 3, there exist:

• an N −M utility u on ∆(C),

• a non-empty convex set Γ ⊂ ∆(C) such that γ ∈ Γ and ρ ∈ ∆(M) imply γ ∼ ρ,

• a non-empty convex set P3 of probabilities on S such that, for all p ∈ P3:

(i) up(ρ) := Σs∈S ps u(ρs) = u(γ) ∀ρ ∈ ∆(M), γ ∈ Γ;

(ii) up(ρ) > up(ρ′) ∀ ρ ∈ ∆(M), ρ′ ∈ ∆(R) \∆(M).

This theorem establishes that the choice by the protagonist of the set M of preferred

strategies is sustained by a subjective expected utility analysis, where probabilities are

in general not unique, but satisfy effective uniqueness over ∆(M). Indeed, (i) implies

u(γ) = up(ρ) = up′(ρ) ∀ p, p′ ∈ P3 and ρ ∈ ∆(M). Theorem 1 covers case 3 in the abstract

(hence the notation P3).

Proof of theorem 1 Assume w.l.o.g. that C contains γ, γ′ with γ � γ′. (Otherwise,

take u to be identically 0, and P3 the set of all probability distributions on S.)

From assumption 2, we obtain directly the utility u, which we normalize (arbitrarily),

and the set Γ. Next, we eliminate temporarily from consideration any state ŝ ∈ S such
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that there exist ρ ∈ ∆(R), ρ′ ∈ ∆(M) with ρs % ρ′s ∀s and ρŝ � ρ′ŝ.
6 Indeed, it will be the

case that pŝ = 0 ∀ p ∈ P3. Denote by S̄ the set of remaining states, i.e. those not thereby

eliminated.

Convention: for the rest of this proof, we represent a hybrid lottery λ by the S̄-vector of

the (expected) utilities u(λs) of its mixed consequences in states s ∈ S̄. Thus, λ is a point

in Euclidean S̄-space <S̄ .

Preference relations among consequences are thus replaced by inequalities among util-

ities; every hybrid lottery in ∆(R ∪ C) is defined by a point in <S̄ ; and every γ ∈ ∆(C)

is a point on the main diagonal of <S̄ . We henceforth write γ̃ for the unique point of the

main diagonal of <S̄ corresponding to Γ. As for ∆(R), it is a convex compact set in <S̄ .

The proof of theorem 1 rests on the concept of “admissibility”, introduced in Arrow et

al. (1953).

Definition 1 Let A,B be convex sets in <S̄ with A ⊆ B. Then A is an admissible set for

B if and only if there do not exist λ ∈ A, λ′ ∈ B with λ′ > λ. 7

Lemma 1 ∆(M) is an admissible set for ∆(R).

Proof Using assumptions 1 and 3, and the definition of S̄, if ρ ∈ ∆(M), then there does

not exist ρ′ ∈ ∆(R) with ρ′ > ρ. Thus ∆(M) is an admissible set for ∆(R). �

An alternative statement of lemma 1 is: for every ρ ∈ ∆(M), {ρ + <S̄
+} ∩∆(R) = {ρ}.

We now consider the sets of hybrid lotteries ∆(M ∪ Γ) and ∆(R ∪ Γ) ∈ <S̄ . These

subsets of ∆(M ∪ C) and ∆(R ∪ C) respectively correspond to the convex hulls of the

union M , respectively R, with the point γ̃ on the main diagonal of <S̄ defining the utility

of a mixed consequence indifferent to playing the game G.

The properties of ∆(M) ⊆ ∆(R) also hold for ∆(M ∪ Γ) ⊆ ∆(R ∪ Γ), in particular

proposotion 1 and lemma 1.

Lemma 2 Let λ, λ′, λ′′ ∈ ∆(R ∪ Γ) be such that, for some τ ∈ (0, 1),
6Of course, ρ as defined also belongs to ∆(M).
7Notation: ρ′ ≥ ρ if ρ′

s ≥ ρs ∀ s; ρ′ > ρ if ρ′ ≥ ρ and ρ′ 6= ρ; ρ′ � ρ if ρ′
s > ρs ∀s.
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λs = τλ′s + (1 − τ)λ′′s ∀s ∈ S̄; then, λ ∈ ∆(M ∪ Γ) if and only if λ′ ∈ ∆(M ∪ Γ) and

λ′′ ∈ ∆(M ∪ Γ).

Proof With λ = tρ + (1 − t)γ̃, λ′ := t′ρ′ + (1 − t′)γ̃ and λ = τλ′ + (1 − τ)λ′′, let

τ̂ := τt′+(1−τ)t′′ ∈ (0, 1) and ρ̂ = τt′ρ′+(1−τ)t”ρ”
τ̂ , so that λ = τ̂ ρ̂+(1−τ̂)γ̃. If λ ∈ ∆(M∪Γ)

so that λ ∼ ρ ∼ γ̃, then λ ∼ τ̂ ρ + (1− τ̂)γ ∼ τ̂ ρ̂ + (1− ρ̂)γ̃ implying ρ ∼ ρ̂. By proposition

1, ρ ∈ ∆(M) if and only if ρ′, ρ′′ ∈ ∆(M) hence λ′, λ′′ ∈ ∆(M ∪ Γ). �

Lemma 3 ∆(M ∪ Γ) is an admissible set for ∆(R ∪ Γ).

Proof Let λ ∈ ∆(M ∪ Γ), λ′ ∈ ∆(R ∪ Γ) \∆(M ∪ Γ) with λ′ = t′ρ′ + (1 − t′)γ̃ > λ =

tρ+(1−t)γ̃ ∼ t′ρ+(1−t′)γ̃. This implies ρ′ % ρ, contradicting λ′ ∈ ∆(R∪Γ)\∆(M∪Γ). �

An alternative statement of lemma 3 is: for every λ ∈ ∆(M∪Γ), {λ+<S̄
+}∩∆(R∪Γ) = {λ}.

Lemma 4 Either ∆(M) = ∆(R) or ∆(M ∪ Γ) ∩ ri∆(R ∪ Γ) = ∅.

where ri stands for “relative interior”.

Proof Let ∆(R) \∆(M) 6= ∅. If ∆(M ∪Γ) is a singleton (γ), then it is an extreme point

of ∆(R∪Γ) and the lemma is true. Otherwise, let λ ∈ ∆(M ∪Γ), λ′ ∈ ∆(R∪Γ)\∆(M ∪Γ).

If λ ∈ ri ∆(R ∪ Γ), there exists µ > 1 such µλ + (1− µ)λ′ := λ′′ ∈ ∆(R ∪ Γ) (Rockafellar,

1970, theorem 6.4); and there exists τ = 1
µ ∈ (0, 1) such that λ = τλ′ + (1 − τ)λ′′. But

lemma 2 then implies λ′ ∈ ∆(M ∪ Γ), a contradiction. �

To prove theorem 1, let then M∗ := ∪λ∈∆(M∪Γ) {λ + <S̄
+}, a convex set. By lemma

3 and lemma 4, ri M∗ ∩ ri ∆(R ∪ Γ) = ∅. Accordingly there exists a hyperplane, say B

separating M∗ from ∆(R∪Γ) (Rockafellar, 1970, theorem 11.3), and containing ∆(M∪Γ) =

M∗∩∆(R∪Γ). Accordingly, there exists a normal vector to B, say p̄, with p̄ > 0, Σs∈S̄ p̄s =

1, p̄λ = p̄λ′ ∀ λ, λ′ ∈ ∆(M ∪Γ) and p̄λ > p̄λ′ ∀ λ ∈ ∆(M ∪Γ), λ′ ∈ ∆(R∪Γ) \∆(M ∪Γ).

Denote by P̄3 the set of all vectors in <S̄
+ verifying these four properties. We have just

shown that P̄3 is non-empty. Also, P̄3 is convex because each of the four defining properties

is preserved under convex combinations.8

8Actually P̄3 is (i) the union of the normal cones to the set of hyperplanes containing ∆(M) and

separating ∆(R) from {x + RS̄
+, x ∈ ∆(M)}, (ii) intersected with the unit simplex of <S̄

+.
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Abandoning our convention, let P3 ⊂ <S be the set of vectors p defined by :

∃ p̄ ∈ P̄3, pS̄ = p̄; ps = 0 ∀ s ∈ S \ S̄. That is, the restriction of P̂3 to <S̄ is given by P̄3

and the restriction of P3 to <S\S̄ is the zero vector. Then P3 satisfies conclusions (i) and

(ii) of theorem 1. �

Remark It is not claimed that P3 is closed. For instance, if ∆(M) is an extreme point of

∆(R), P3 does not include the vectors normal to the faces of ∆(R) adjacent to the extreme

point.

3 Nested Identification of Subjective Probabilities

3.1

To cover case 4 in the abstract, we now state and prove the corollary to theorem 1 holding

when assumptions 1 and 2 are weakened as follows.

Assumption 1* There exists r∗ ∈ < such that r∗ % ρ ∀ ρ ∈ ∆(R).

Assumption 2* The restriction of % to ∆(r∗ ∪ C) is an N-M preference.

Corollary 1 Under assumptions 1*, 2* and 3 there exist:

• an N-M utility u on ∆(C).

• a non-empty convex set Γ ⊂ ∆(C) such that γ ∈ Γ implies γ ∼ r∗,

• a non-empty convex set P4 of probabilities on S, P4 ⊇ P3, such that, for all p ∈ P4 :

(i) up(r∗) = Σs∈S psu(r∗s) = u(γ) ∀ γ ∈ Γ :

(ii) up(r∗) ≥ up(ρ) ∀ ρ ∈ ∆(R).

Proof Repeating step by step the reasoning in the proof of theorem 1, with M systemat-

ically replaced by {r∗}, we obtain successively the N −M utility u on ∆(C), the set Γ and

a non-empty convex set of probabilities P4 satisfying conclusions (i) and (ii) of corollary 1.

Furthermore, P4 ⊇ P3 because every p ∈ P3 satisfies conclusions (i) and (ii) in corollary 1,

and P4 is comprehensive. �

Remark When r∗ is a dominant strategy, P4 is the unit simplex of <S (and S̄∗ = S).
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3.2

Turning to case 2 in the abstract, ASR rests on assumption 3 and

Assumption 2’ There is an N −M preference % on ∆(R ∪ C).

Theorem 2 Under assumptions 2’ and 3, there exist

• an N-M utility on ∆(C),

• a non-empty convex set P2 ⊆ P3 such that, for all λ, λ′ ∈ ∆(R ∪ C), λ % λ′ iff, for

each p ∈ P2, up(λ) ≥ up(λ′),

• for all λ ∈ ∆(R ∪ C), for all p, p′ ∈ P2, up(λ) = up′(λ).

Proof See main theorem and section 6.2 in ASR. That P2 is convex follows from up(λ) ≡

up′(λ). That P2 ⊆ P3 follows from the facts that every p ∈ P2 verifies conclusions (i) and

(ii) of theorem 1, at unchanged u and Γ; and P3 is comprehensive. �

Theorem 3 When ∆(R) ⊂ <S̄ owns an indifference class spanning an (S̄−1)-dimensional

hyperplane, then P2 is a singleton; when the indifference class ∆(M) has that property, P3

is a singleton, hence P3 = P2 = {p̃}.

Proof An (S − 1)-dimensional hyperplane in <S̄ has a unique normal vector. �

Remark If R is comprehensive, i.e. owns every map of S into C, then ∆(R) owns

indifference classes spanning (S̄ − 1)-dimensional (parallel) hyperplanes. That sufficient

condition is not necessary, however.

4 Conclusions

In GAN, one can apply the N − M axioms to preferences over four nested sets, namely

∆(r∗∪C), ∆(M∪C), ∆(R∪C) and ∆(F ) ≡ ∆(F ∪C) – thereby obtaining four nested sets

of subjective probabilities, P4, P3, P2 and the singleton {p̃}. There exist special situations

where P4 = P3 = P2 = {p}. In general, the set inclusions are proper: P4 ⊃ P3 ⊃ P2 ⊃ {p̃}.
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The standard analysis, based on ∆(F ), brings out the logic of subjective-expected-

utility analysis in the most demanding case: when P3 = {p̃}, precise assessment of prob-

abilities is needed to solve the decision problem. Yet, typical decision situations are less

demanding. The sets P4 and P3 then define the extent to which probabilities need be specified

in order to sustain an optimal decision.

By way of illustration, let S = {s, t} and R = {r, r′, r′′} where the three acts r, r′, r′′

entail the respective utility vectors (4
3 , 1

2), (1, 1), (1
2 , 4

3) in states (s, t). Then r % r′ iff

ps ≥ 3
5 and r′ % r′′ iff ps ≥ 2

5 . The information about ps needed to choose an optimal

act amounts to locating ps relative to the interval [25 , 3
5 ] This is less demanding than point

estimation.

In the same illustration, assume that M = {r′} = {(1, 1)}. Then, P3 = (2
5 , 3

5). Assume

further (assumption 2’) that r ∼ (11
12 , 11

12). Then P2 = {p̃} = {1
2}.

Assuming instead that M = {r}, and r ∼ (9
8 , 9

8), then P3 = P2 = {p̃} = 3
4 . In GoS,

there are only three nested sets over which preferences are meaningfully defined, namely

∆(r∗∪C), ∆(M∪C) and ∆(R∪C); the corresponding nested sets of subjective probabilities

are P4, P3 ⊆ P2 and P2 ⊆ P3. But only P4 and P3 reflect observable preferences.

The nature of preferences among pure or mixed strategies in GoS is discussed at some

length in ASR. A significant comment is related to assumption 4. Consider the simple two-

person, zero-sum game of “matching pennies”, where r ∈ {1, 2}, s ∈ {1, 2}, and hr(s) = 1

for r = s, hr(s) = −1 for r 6= s. What ultimately matters to each player in this game is

that the opponent not be able to “guess” what he himself will play. That is, each player

wants his opponent to assign equal probabilities to both of his own strategies. A simple

way of achieving that goal is to adopt the mixed strategy (1
2 , 1

2). The clear decision by

a player to play according to that mixed strategy might be construed as a violation of

assumption 4, because the pure strategies “heads” or “tail” appear discarded in favor of

the mixed strategy. It is simply

The proper interpretation of assumption 4 is different. It is simply claimed that a

player adopting the mixed strategy (1
2 , 1

2) thereby reveals indifference between eventually

playing “head” or “tail”. Such indifference is consistent with the assignment of equal

11



probabilities to the opponent playing “head” or “tail”, and difficult to reconcile with any

other assignment. Assumption 4 claims neither more nor less.

In every game situation, a full analysis of the game is needed to form reasonable ex-

pectations about the choice(s) of an opponent. We argue here that, under reasonable

assumptions, these expectations admit a subjective probability representation, sustaining

the retained strategy(ies) as maximising expected utility. The role of game theory in guid-

ing expectations in GoS is then seen as logically equivalent to that of (Bayesian) statistics

in GAN.
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