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Abstract

We consider here the mixing set with flows:

s + xt ≥ bt, xt ≤ yt for 1 ≤ t ≤ n; s ∈ R1
+, x ∈ Rn

+, y ∈ Zn
+.

It models the “flow version” of the basic mixing set introduced and studied by Günlük
and Pochet, as well as the most simple stochastic lot-sizing problem with recourse, and
more generally is a relaxation of certain mixed integer sets that arise in the study of
production planning problems.

We study the polyhedron obtained by convexifying the above set. Specifically we
provide a system of inequalities that gives its external description and characterize its
vertices and rays.
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1 Introduction

We give an external and internal description for the convex hull of the mixing set with flows
XFM :

s + xt ≥ bt for 1 ≤ t ≤ n

xt ≤ yt for 1 ≤ t ≤ n

s ∈ R1
+, x ∈ Rn

+, y ∈ Zn
+

where 0 < b1 ≤ . . . ≤ bn.

This set is a relative of the mixing set, XMIX :

s + yt ≥ bt for 1 ≤ t ≤ n

s ∈ R1
+, y ∈ Zn

+

introduced formally by Günlük and Pochet [3] and studied by Pochet and Wolsey [5] and
Miller and Wolsey [4] for which an internal and external description is known.

So the “flow version” of the mixing set that we study here models the fact that the
(production) variables are continuous, but are bounded from above by the installment of
capacities, that can take only discrete values. In fact, conv(XMIX) is a face of conv(XFM ).
Notice that for each of these sets, the matrix associated with the defining constraints is
totally unimodular (indeed a very special one): so the problem studied here is a special case
of the more general question of characterizing the internal and external description of a mixed
integer sets that can be formulated using a totally unimodular system of linear inequalities.
Miller and Wolsey [4], and Van Vyve [6] have introduced and studied a different extension of
the mixing set: their model is again a mixed integer set which satisfies a totally unimodular
system of constraints.

Now we show how it models the simple lot-sizing problem with recourse. Specifically
suppose that the demand forecast of sales for some item for the coming season are bt with
probability φt for t = 1, . . . , n. The problem is to select the stock level s that will be available
already at the beginning of the season, and then if the demand bt is realized, the second
stage is to satisfy the demand by producing a quantity xt so as to satisfy the demand where
the demand is in batches of capacity (C = 1). If the unit preseason production and storage
cost is h, and then the unit production costs and batch costs during the season are p and q
respectively, the problem of minimizing the total expected cost of satisfying the demand is:

min{hs +
n∑

t=1

φt[pxt + qyt] : (s, x, y) ∈ XFM}.

Note that the production costs during the season can also be treated as uncertain. The
uncapacitated case when bt ≤ 1 for all t has been treated in Guan et al. [2].

The unrestricted mixing set with flows XUFM is defined by the same constraint set as the
mixing set with flows, except that the nonnegativity requirements on x are dropped. That
is, XUFM is the following set:

s + xt ≥ bt for 1 ≤ t ≤ n

xt ≤ yt for 1 ≤ t ≤ n

s ∈ R1
+, x ∈ Rn, y ∈ Zn

+
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where 0 < b1 ≤ . . . ≤ bn.
The next proposition shows that the unrestricted mixing set with flows and the mixing

set are essentially the same set.

Proposition 1 For an unrestricted mixing set with flows XUFM and the mixing set XMIX

defined on the same vector b, we have:

conv(XUFM ) = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}.

Proof: Let P = {(s, x, y) : (s, y) ∈ conv(XMIX); bt − s ≤ xt ≤ yt, 1 ≤ t ≤ n}. The inclusion
conv(XUFM ) ⊆ P is obvious. In order to show that P ⊆ conv(XUFM ), we prove that the
extreme rays (resp. vertices) of P are rays (resp. feasible points) of conv(XUFM ).

Since the recession cone of a mixed integer set and of its linear relaxation coincide, the
cone: {s ∈ R1

+, x ∈ Rn, y ∈ Rn
+ : −s ≤ xt ≤ yt, 1 ≤ t ≤ n} is the recession cone of both P and

conv(XUFM ). (Incidentally, its extreme rays are: (1, 0 . . . 0, 0 . . . 0), (0, 0 . . . 0, ei), (0, ei, ei),
(1, eS , 0 . . . 0), where eS is a representative vector of a subset S of N = {1, . . . , n}).

We now prove that if (s∗, x∗, y∗) is a vertex of P , then (s∗, x∗, y∗) belongs to conv(XUFM ).
It is enough to show that y∗ is integer. We do so by proving that (s∗, y∗) is a vertex of
conv(XMIX). If not, there exists a nonzero vector (u,w) ∈ Rn+1 such that (s∗, y∗)± (u,w) ∈
conv(XMIX) and wt = −u whenever y∗t = bt − s∗. Define a vector v ∈ Rn as follows: If
x∗t = bt − s∗, set vt = −u and if x∗t = y∗t , set vt = wt. (Since x∗t satisfies at least one of
these 2 equations, this assignment is indeed possible). It is now easy to check that, for ε > 0
sufficiently small, (s∗, x∗, y∗)±ε(u, v, w) ∈ P , a contradiction. Therefore (s∗, y∗) is a vertex of
conv(XMIX) and thus (s∗, y∗) ∈ XMIX . Then (s∗, x∗, y∗) ∈ XUFM and the result is proved.
2

So an internal or external description of conv(XMIX) yields a corresponding description for
conv(XUFM ). The problem here is to study what happens when the polyhedron conv(XUFM )
is intersected with the set of inequalities xt ≥ 0, 1 ≤ t ≤ n.

2 Some Equivalences of Polyhedra

We seek to relate the polyhedra conv(XFM ) and conv(XMIX). However, the relation will not
be as simple as the one stated in Proposition 1: we will need some polyhedral equivalences
that we introduce here.

For a polyhedron P in Rn and a ∈ Rn, let µP (a) be the value min{ax, x ∈ P} and MP (a)
be the face {x ∈ P : ax = µP (a)}, where MP (a) = ∅ whenever µP (a) = −∞.

Lemma 2 Let P ⊆ Q be two nonempty polyhedra in Rn and let a be a nonzero vector in Rn.
Then the following conditions are equivalent:

1. µP (a) = µQ(a);

2. MP (a) ⊆ MQ(a).

Proof: Suppose µP (a) = µQ(a). Since P ⊆ Q, every point in MP (a) belongs to MQ(a). So if
1. holds, then 2. holds as well. The converse is obvious. 2
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Lemma 3 Let P ⊆ Q be two nonempty polyhedra in Rn, where P is not an affine variety.
Suppose that for every inequality ax ≥ β that is facet-inducing for P , at least one of the
following holds:

1. µP (a) = µQ(a)

2. MP (a) ⊆ MQ(a).

Then P = Q.

Proof: We prove that if MP (a) ⊆ MQ(a) for every inequality ax ≥ β that is facet-inducing for
P , then every facet-inducing inequality for P is a valid inequality for Q and every hyperplane
containing P also contains Q. This shows Q ⊆ P and therefore P = Q. By Lemma 2, the
conditions µP (a) = µQ(a), MP (a) ⊆ MQ(a) are equivalent and we are done.

Let ax ≥ β be a facet-inducing inequality for P . Since MP (a) ⊆ MQ(a), then β = µP (a) =
µQ(a) and ax ≥ β is an inequality which is valid for Q. Now let cx = δ be a hyperplane
containing P . If Q 6⊆ {x : cx = δ}, then there exist x̄ ∈ Q such that cx̄ 6= δ. We assume
w.l.o.g. σ = cx̄ − δ > 0. Since P is not an affine variety, there exists an inequality ax ≥ β
which is facet-inducing for P (and so it is valid for Q). Choose λ > 0 such that λ(ax̄−β) < σ.
Then the inequality (λa− c)x ≥ λβ − δ is also facet-inducing for P , so it is valid for Q. This
is a contradiction, as (λa− c)x̄ = λax̄− cx̄ < λβ + σ − cx̄ = λβ − δ. 2

If P is not full-dimensional, for each facet F of P there are infinitely many distinct
inequalities that define F . (Two inequalities are distinct if their associated halfspaces are
distinct: i.e. if one is not the positive multiple of the other). Observe that the hypotheses
of the lemma must be verified for all distinct facet-defining inequalities (not just one facet-
defining inequality for each facet), otherwise the result is false. For instance, consider the
polyhedra P = {(x, y) : 0 ≤ x ≤ 1, y = 0} ( Q = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. The
hypotheses of Lemma 2 are satisfied for the inequalities x ≥ 0 and x ≤ 1, which define all the
facets of P .

Also notice that the assumption that P is not an affine variety cannot be removed: indeed,
in such case P does not have proper faces, so the hypotheses of the lemma are trivially satisfied,
even if P 6= Q.

Corollary 4 Let P ⊆ Q be two pointed polyhedra in Rn, with the property that every vertex
of Q belongs to P . Let Cx ≥ d be a system of inequalities that are valid for P such that for
every inequality cx ≥ δ of the system, P 6⊂ {x ∈ Rn : cx = δ}.

If for every a ∈ Rn such that µP (a) is finite but µQ(a) = −∞, Cx ≥ d contains an
inequality cx ≥ δ such that MP (a) ⊆ {x ∈ Rn : cx = δ}, then P = Q ∩ {x ∈ Rn : Cx ≥ d}.

Proof: We first show that dim(P ) = dim(Q). If not, there exists a hyperplane ax = β
containing P but not Q. W.l.o.g we can assume that µQ(a) < β = µP (a). So µQ(a) = −∞,
otherwise there would exist an a-optimal vertex x̄ of Q such that ax̄ < β, contradicting the
fact that x̄ ∈ P . Now the system Cx ≥ d must contain an inequality cx ≥ δ such that
P = MP (a) ⊆ {x ∈ Rn : cx = δ}, a contradiction.

Let Q′ = Q ∩ {x ∈ Rn : Cx ≥ d}. Notice that P ⊆ Q′ ⊆ Q, thus dim(P ) = dim(Q′) =
dim(Q). Let ax ≥ β be a facet-inducing inequality for P . If µQ(a) is finite, then Q contains an
a-optimal vertex which is in P and therefore β = µP (a) = µQ′(a) = µQ(a). If µQ(a) = −∞,
the system Cx ≥ d contains an inequality cx ≥ δ such that MP (a) ⊆ {x ∈ Rn : cx = δ} and
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P 6⊆ {x ∈ Rn : cx = δ}. It follows that cx ≥ δ is a facet-inducing inequality for P and that
it defines the same facet of P as ax ≥ β (that is, MP (a) = MP (c)). This means that there
exist ν > 0, a vector λ and a system Ax = b which is valid for P such that c = νa + λA and
δ = νβ +λb. Since dim(P ) = dim(Q′) and P ⊆ Q′, the system Ax = b is valid for Q′, as well.
As cx ≥ δ is also valid for Q′, it follows that ax ≥ β is valid for Q′ (because a = 1

ν c− λ
ν A and

β = 1
ν δ − λ

ν b). Therefore β = µP (a) = µQ′(a).
Now assume that P consists of a single point and P 6= Q. Then Q is a cone having P as

apex. Chosen a ray a of Q, µP (a) is finite while µQ(a) = −∞, so the system Cx ≥ d contains
an inequality cx ≥ δ such that P ⊆ {x ∈ Rn : cx = δ}, a contradiction. So we can assume
that P is not a single point and thus P is not an affine variety, as it is pointed. Now we can
conclude by applying Lemma 3 to P and Q′. 2

We remark that in the statement of Corollary 4 the condition that the two polyhedra are
pointed is not necessary: if we replace the property “every vertex of Q belongs to P” with
“every minimal face of Q belongs to P”, the proof needs a very slight modification to remain
valid. (However, in this case we should assume that P is not an affine variety, so that we can
apply Lemma 3 in the proof.)

We also observe that the condition “for every inequality cx ≥ δ of the system, P 6⊂ {x ∈
Rn : cx = δ}” is necessary. For instance, consider the polyhedra P = {(x, y) : 0 ≤ x ≤ 1, y =
0} ( Q = {(x, y) : x ≥ 0, y = 0} and the system consisting of the single inequality y ≥ 0.

3 An external description of XFM

3.1 A relaxation of XFM

Consider the set Z:

s + yt ≥ bt for 1 ≤ t ≤ n

s + xk + yt ≥ bt for 1 ≤ k < t ≤ n

s + xt ≥ bt for 1 ≤ t ≤ n

s ∈ R1
+, x ∈ Rn, y ∈ Zn

+.

Proposition 5 Let XFM and Z be defined on the the same vector b. Then XFM ⊆ Z and
XFM = Z ∩ {(s, x, y) : 0 ≤ x ≤ y}.

Proof: To see that XFM ⊆ Z, observe that for (s, x, y) ∈ XFM , s + yt ≥ s + xt ≥ bt, so
s + yt ≥ bt is a valid inequality. Also as s + yt ≥ bt and xk ≥ 0, s + xk + yt ≥ bt is a valid
inequality. The only inequalities that define XFM but do not appear in the definition of Z
are the inequalities 0 ≤ x ≤ y. 2

Observation 1 The extreme rays of conv(XFM ) are the following 2n+1 vectors: (1, 0 . . . 0, 0 . . . 0),
(0, 0 . . . 0, ei), (0, ei, ei). The 2n + 1 extreme rays of conv(Z) are (0, 0 . . . 0, ei), (0, ei, 0 . . . 0),
(1,−1 . . .−1, 0 . . . 0). Therefore both recession cones of conv(XFM ), conv(Z) are full-dimensional
simplicial cones, thus showing that conv(XFM ) and conv(Z) are both full-dimensional poly-
hedra.
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Observation 2 Let (s∗, x∗, y∗) be a vertex of conv(Z). Then

s∗ = max





0
bt − y∗t , 1 ≤ t ≤ n
bt − x∗t , 1 ≤ t ≤ n
bt − y∗t − x∗k, 1 ≤ k < t ≤ n





x∗k = max
{

bk − s∗

bt − s∗ − y∗t , k < t ≤ n.

}

Lemma 6 Let (s∗, x∗, y∗) be a vertex of conv(Z). Then 0 ≤ x∗ ≤ y∗.

Proof: Assume x∗k < 0 for some index k. Then s∗ > 0, otherwise, if s∗ = 0, the constraints
s + xk ≥ bk, bk ≥ 0 imply x∗k ≥ 0.

We now claim that there is an index t such that s∗ = bt−y∗t . If not, s∗ > bt−y∗t , 1 ≤ t ≤ n,
and there is an ε 6= 0 such that (s∗, x∗, y∗) ± ε(1,−1 . . . − 1, 0 . . . 0) belong to conv(Z), a
contradiction.

So there is an index t such that s∗ = bt − y∗t > 0. Since bt − y∗t ≥ bt − y∗t − x∗k, 1 ≤ k < t,
this implies x∗k ≥ 0, 1 ≤ k < t. Observation 2 also implies bt − y∗t ≥ bk − x∗k, 1 ≤ k ≤ n.
Together with y∗t ≥ 0 and bt ≤ bk, k ≥ t, this implies x∗k ≥ y∗t ≥ 0, k ≥ t. This completes the
proof that x∗ ≥ 0.

Assume x∗k > y∗k for some index k. Then y∗k ≥ 0 implies x∗k > 0. Assume x∗k = bk − s∗.
Then y∗k ≥ bk − s∗ implies that x∗k ≤ y∗k, a contradiction. Therefore by Observation 2,
x∗k = bt − s∗ − y∗t for some t > k. Since x∗k > 0, then bt − s∗ − y∗t > 0, a contradiction to
s∗ + y∗t ≥ bt. This shows x∗ ≤ y∗ and the proof is complete. 2

We now can state the main theorem of this section:

Theorem 7 Let XFM and Z be defined on the the same vector b. Then conv(XFM ) =
conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y}.

Proof: By Proposition 5, conv(XFM ) ⊆ conv(Z). By Lemma 6 and Proposition 5, every
vertex of conv(Z) belongs to conv(XFM ).

Let a = (h, p, q), h ∈ R1, p ∈ Rn, q ∈ Rn be such that µconv(XFM )(a) is finite and
µconv(Z)(a) = −∞. Since by Observation 1, the extreme rays of conv(Z) that are not rays of
conv(XFM ) are (0, ei, 0 . . . 0) and (1,−1 . . . − 1, 0 . . . 0), then either pk < 0 for some index k
or h <

∑n
t=1 pt.

If pk < 0, then Mconv(XFM )(a) ⊆ {(s, x, y), xk = yk}.
If h <

∑n
t=1 pt, let N+ = {j : pj > 0} and k = min{j : j ∈ N+}. We show that

Mconv(XFM )(a) ⊆ {(s, x, y) : xk = 0}. Suppose that xk > 0 in some optimal solution. As
the solution is optimal and pk > 0, we cannot just decrease xk and remain feasible. Thus
s + xk = bk, which implies that s < bk. However this implies that for all j ∈ N+, we have
xj ≥ bj − s > bj − bk ≥ 0 as j ≥ k. Now as xj > 0 for all j ∈ N+, we can increase s by
ε > 0 and decrease xj by ε for all j ∈ N+. The new point is feasible in XFM and has lower
objective value, a contradiction.

To complete the proof, since conv(XFM ) is full-dimensional, the system 0 ≤ x ≤ y does
not contain an improper face of conv(XFM ). So we can now apply Corollary 4 to conv(XFM ),
conv(Z) and the system 0 ≤ x ≤ y. 2
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3.2 The intersection set

The following set is the intersection set XINT :

σk + yt ≥ bt − bk for 0 ≤ k < t ≤ n

σ ∈ Rn+1
+ , y ∈ Zn

+.

where 0 = b0 ≤ b1 ≤ . . . ≤ bn.
Notice that XINT is the intersection of the following n + 1 mixing sets XMIX

k , each one
associated with a single variable σk:

σk + yt ≥ bt − bk for k < t ≤ n

σk ∈ R1
+, y ∈ Zn−k+1

+ .

Theorem 8 Let XINT be an intersection set and XFM be defined on the same vector b.
The linear transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n, maps conv(XFM ) into
conv(XINT ) ∩ {(σ, y) : 0 ≤ σk − σ0 + bk ≤ yk, 1 ≤ k ≤ n}.
Proof: Let Z be defined on the same vector b. It is straightforward to check that the linear
transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n, maps conv(Z) into conv(XINT ). By
Theorem 7, conv(XFM ) = conv(Z) ∩ {(s, x, y) : 0 ≤ x ≤ y} and the result follows. 2

The above theorem shows that an external description of conv(XFM ) can be obtained
from an external description of conv(XINT ). Such a description is known:

Proposition 9 (Günluk and Pochet [3]) Consider the mixing set XMIX :

s + yt ≥ bt for 1 ≤ t ≤ n

s ∈ R1
+, y ∈ Zn

+

For t = 1, . . . , n we define ft := bt − bbtc. Let T ⊆ {1, . . . , n} and suppose that i1, . . . , i|T | is
an ordering of T such that 0 = fi0 ≤ fi1 ≤ · · · ≤ fi|T |. Then the mixing inequalities

s ≥
|T |∑

t=1

(fit − fit−1)(bbitc+ 1− yit)

and

s ≥
|T |∑

t=1

(fit − fit−1)(bbitc+ 1− yit) + (1− fi|T |)(bbi1c − yi1)

are valid for XMIX . Moreover, adding all mixing inequalities to the linear constraints defining
XMIX gives the convex hull of XMIX .

Proposition 10 (Miller and Wolsey [4]) Let XMIX
k (nk, sk, yk, bk) for k = 1, . . . , n be n

mixing sets with some or all y variables in common. Let X∗ = ∩n
k=1X

MIX
k . Then

conv(X∗) = ∩n
k=1conv(XMIX

k ).

Observation 3 Günluk and Pochet [3] have shown that the polyhedron conv(XMIX) admits
a compact formulation, see also [1]. Therefore it follows from Theorem 8 and Proposition 10
that a compact formulation of conv(XFM ) can be obtained by writing the compact formulations
of all the mixing polyhedra conv(XMIX

k ), together with the inequalities 0 ≤ σt − σ0 + bt ≤
yt, 1 ≤ t ≤ n and then applying the transformation s = σ0 and xt = −s + σt + bt, 1 ≤ t ≤ n.
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4 An internal description of XFM

Since the extreme rays of conv(XFM ) are described in Observation 1, in order to give a
complete internal description of conv(XFM ) we have to characterize its vertices. First we
state a result concerning the vertices of any mixed integer set.

Lemma 11 Let P = {(x, y) ∈ Rn × Zp : Ax + By ≤ c}. If (x∗, y∗) is a vertex of conv(P ),
then x∗ is a vertex of the polyhedron P (y∗) = {x ∈ Rn : Ax ≤ c−By∗}.

Proof: If x∗ is not a vertex of P (y∗), there exists a nonzero vector ε ∈ Rn, ε 6= (0 . . . 0), such
that A(x∗ ± ε) ≤ c − By∗. But then (x∗, y∗) ± (ε, 0 . . . 0) is in P and thus (x∗, y∗) is not a
vertex of conv(P ). 2

In the following, given a point p = (s̄, x̄, ȳ) in conv(XFM ), we denote by fs̄ the fractional
part of s̄. Furthermore, we define Tp to be the set of inequalities s + xt ≥ bt which are tight
for p: that is, Tp = {t : s̄ + x̄t = bt}. Given I ⊆ {1, . . . , n}, we define eI =

∑
t∈I et.

Claim 12 Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ > 0 then Tv 6= ∅ and there
exists an index j ∈ Tv such that fs∗ = fj.

Proof: By Lemma 11, (s∗, x∗) is a vertex of the polyhedron P (y∗) defined by

s + xt ≥ bt for 1 ≤ t ≤ n

xt ≤ y∗t for 1 ≤ t ≤ n

s ∈ R1
+, x ∈ Rn

+

Then among the constraints defining P (y∗) there exist n + 1 inequalities which are tight for
(s∗, x∗) and whose left-hand sides form a nonsingular (n + 1)× (n + 1) matrix. Therefore, if
s∗ > 0 then there exists an index j such that s∗+x∗j = bj (that is, j ∈ Tv) and either x∗j = y∗j
or x∗j = 0. Therefore x∗j ∈ Z and thus fs∗ = fj . 2

Claim 13 Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

y∗t = max{0, dbt − s∗e}. (1)

Proof: Suppose bt − s∗ < 0. Then either x∗t = 0 or x∗t = y∗t . Now if y∗t ≥ 1, in the first
case both points v± (0, 0, et) are in XFM , in the second case both points v± (0, et, et) are in
XFM ,a contradiction.

Suppose bt − s∗ ≥ 0. If y∗t ≥ dbt − s∗e + 1 then, setting ε = min{x∗t − (bt − s∗), 1}, both
points v ± (0, εet, et) are in XFM , a contradiction. 2

Claim 14 Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Then for 1 ≤ t ≤ n

x∗t =
{

0 if bt − s∗ < 0
bt − s∗ or dbt − s∗e if bt − s∗ ≥ 0

(2)

8



Proof: By Lemma 11, (s∗, x∗) is a vertex of the polyhedron P (y∗) defined above and so, among
the constraints defining P (y∗), there exist n + 1 inequalities which are tight for (s∗, x∗) and
whose left-hand sides form a nonsingular (n + 1) × (n + 1) matrix. It is easy to verify that
then for each t one of the following holds: either s∗ + x∗t = bt or x∗t = 0 or x∗t = y∗t =
max{0, dbt−s∗e} (where the last equality follows from Claim 13). It follows that if bt−s∗ < 0
then x∗t = 0 (otherwise inequality x∗t ≥ 0 would be violated) and that if bt − s∗ ≥ 0 then
x∗t ∈ {bt − s∗, dbt − s∗e} (otherwise inequality s∗ + x∗ ≥ bt would be violated). 2

Claim 15 Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). Suppose s∗ > 0 and fs∗ = fj. Let
b∗ = max{bt : ft = fj , 1 ≤ t ≤ n}. Then s∗ ≤ b∗.

Proof: By Claim 12 we may assume j ∈ Tv. Then s∗ ≤ bj ≤ b∗. 2

Given a point p = (s̄, x̄, ȳ) in conv(XFM ), we define the following subsets of {1, . . . , n}:
Np = {t : −1 < bt − s̄ ≤ 0},
Pp = {t : 0 < bt − s̄ < 1}.

Claim 16 Let v = (s∗, x∗, y∗) be a vertex of conv(XFM ). If s∗ ≥ 1 then Nv ∪ Pv 6= ∅.
Moreover, if s∗ ≥ 1 and Nv = ∅ then there exists t ∈ Pv such that 0 < x∗t < 1.

Proof: Suppose s∗ ≥ 1 and Nv ∪ Pv = ∅. Then |bt − s∗| ≥ 1, 1 ≤ t ≤ n. Let I be the set
of indices t such that bt − s∗ ≥ 1. Notice that if t ∈ I then x∗t ≥ 1 and that if t /∈ I then
s∗ + x∗t ≥ bt + 1. It follows that both points v ± (1,−eI ,−eI) are in XFM , a contradiction.
Now suppose s∗ ≥ 1 and Nv = ∅ and assume that for every t ∈ Pv either x∗t = 0 or x∗t ≥ 1.
Then (2) implies that x∗t = 1 for every t ∈ Pv. If t /∈ Pv then either bt−s∗ ≤ −1 or bt−s∗ ≥ 1,
as Nv = ∅. Let I be the set of indices t such that bt− s∗ ≥ 1. Notice that if t ∈ I then x∗t ≥ 1
and that if t /∈ Pv ∪ I then s∗+x∗t ≥ bt +1. From all these considerations it follows that both
points v ± (1,−ePv∪I ,−ePv∪I) are in XFM , a contradiction. 2

We need the following Lemma.

Lemma 17 Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of p satisfy both
conditions (1) and (2). If for every convex combination of points in XFM giving p, all the
points appearing with nonzero coefficient have s-component equal to s̄, then p is a vertex of
conv(XFM ).

Proof: Consider any convex combination of points in XFM giving p and let C be the set of
points in XFM appearing with nonzero coefficient in such combination. Let t ∈ {1, . . . , n}.
Either ȳt = 0 or ȳt = dbt − s̄e. If ȳt = 0 then, since all points in C satisfy yt ≥ 0, they all
satisfy yt = 0. If ȳt = dbt − s̄e then, since all points in C satisfy yt ≥ dbt − s̄e, they all satisfy
yt = dbt − s̄e. Thus all points in C have the same y-components. As to the x-components,
either x̄t = 0 or x̄t = bt − s̄ or x̄t = dbt − s̄e. If x̄t = 0 then, since all points in C satisfy
xt ≥ 0, they all satisfy xt = 0. If x̄t = bt − s̄ then, since all points in C satisfy xt ≥ bt − s̄,
they all satisfy xt = bt − s̄. If x̄t = dbt − s̄e then x̄t = ȳt and so, since all points in C satisfy
xt ≤ yt, they all satisfy xt = yt. Thus all points in C have the same x-components. Therefore
all points in C are identical, that is, the considered combination does not express p as convex
combination of points different from p. Since this happens for every convex combination of
points in XFM giving p, such a point is a vertex of conv(XFM ). 2
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Claim 18 Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Suppose that the components of p satisfy both
conditions (1) and (2). If s̄ = 0, or s̄ = fj for some j, or s̄ = bj for some j, then p is a
vertex of conv(XFM ).

Proof: Let us consider an arbitrary convex combination of points in XFM giving p and let C
be the set of points appearing with nonzero coefficient in such combination. Suppose s̄ = 0.
Then all points in C satisfy s = 0. Thus, by Lemma 17, p is a vertex of conv(XFM ). Suppose
s̄ = fj for some j. Condition (1) implies that s̄ + ȳj = bj . Then all points in C satisfy
s+ yj = bj and thus they all have fs = fj , in particular s ≥ fj . It follows that they all satisfy
s = fj . The conclusion now follows from Lemma 17. Suppose s̄ = bj for some j. Then x̄j = 0,
thus all points in C satisfy xj = 0 and so they satisfy s ≥ bj . It follows that they all satisfy
s = bj . Again the conclusion follows from Lemma 17. 2

Claim 19 Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m + fj, where 0 < m < bbjc, m ∈ Z.
Suppose that there exists an index h such that 0 < bh− s̄ < 1. Suppose that the components of
p satisfy both conditions (1) and (2) and that x̄h = bh− s̄. Then p is a vertex of conv(XFM ).

Proof: Let us consider an arbitrary convex combination of points in XFM giving p and let C
be the set of points appearing with nonzero coefficient in such combination. Since bj − s̄ ≥ 0,
condition (1) implies that s̄ + ȳj = bj ; then all points in C satisfy s + yj = bj and thus they
all have fs = fj = fs̄. Since s̄ + x̄h = bh, all points in C satisfy s + xh = bh. Suppose that
there exists a point in C satisfying s 6= s̄. Then there exists a point in C satisfying s > s̄, i.e.
s ≥ s̄ + 1. Therefore, for such point, xh = bh − s ≤ bh − s̄− 1 < 0, a contradiction. Thus all
points in C satisfy s = s̄. Lemma 17 concludes the proof. 2

Claim 20 Let p = (s̄, x̄, ȳ) ∈ conv(XFM ). Let s̄ = m + fj, where 0 < m < bbjc, m ∈ Z.
Suppose that there exists an index h such that −1 < bh− s̄ < 0. Suppose that the components
of p satisfy both conditions (1) and (2). Then p is a vertex of conv(XFM ).

Proof: Let us consider an arbitrary convex combination of points in XFM giving p and let C
be the set of points appearing with nonzero coefficient in such a combination. Since bj− s̄ ≥ 0,
condition (1) implies that s̄ + ȳj = bj ; then all points in C satisfy s + yj = bj and thus they
all have fs = fj = fs̄. Since bh − s̄ < 0, condition (2) implies that x̄h = 0; then all points in
C satisfy xh = 0. Suppose that there exists a point in C satisfying s 6= s̄. Then there exists a
point in C satisfying s < s̄, i.e. s ≤ s̄− 1. Therefore, for such point, s + xh = s ≤ s̄− 1 < bh,
a contradiction. Thus all points in C satisfy s = s̄. Lemma 17 concludes the proof. 2

Theorem 21 The point p = (s∗, x∗, y∗) is a vertex of conv(XFM ) if and only if its compo-
nents satisfy one of the following conditions:

(i) s∗ = 0
x∗t = bt or x∗t = dbte for 1 ≤ t ≤ n
y∗t = dbte for 1 ≤ t ≤ n

(ii) s∗ = fj for some 1 ≤ j ≤ n

x∗t =
{

0 if bt − fj < 0
bt − fj or dbt − fje if bt − fj ≥ 0

y∗t = max{0, dbt − fje} for 1 ≤ t ≤ n

10



(iii) s∗ = bj for some 1 ≤ j ≤ n

x∗t =
{

0 if bt − bj < 0
bt − bj or dbt − bje if bt − bj ≥ 0

y∗t = max{0, dbt − bje} for 1 ≤ t ≤ n

(iv) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < bbjc, m ∈ Z, and 0 < bh − s∗ < 1 for
some 1 ≤ h ≤ n

x∗t =





0 if bt − s∗ < 0
bt − s∗ or dbt − s∗e if bt − s∗ ≥ 0 and t 6= h
bt − s∗ if t = h

y∗t = max{0, dbt − s∗e} for 1 ≤ t ≤ n

(v) s∗ = m + fj for some 1 ≤ j ≤ n, where 0 < m < bbjc, m ∈ Z, and −1 < bh − s∗ < 0
for some 1 ≤ h ≤ n

x∗t =
{

0 if bt − s∗ < 0
bt − s∗ or dbt − s∗e if bt − s∗ ≥ 0

y∗t = max{0, dbt − s∗e} for 1 ≤ t ≤ n

Proof: Claim 18 shows that points of types (i), (ii) and (iii) are vertices of conv(XFM ).
Claim 19 and Claim 20 show that points of types (iv) and (v) are vertices of conv(XFM ). It
remains to prove that there are not other vertices. If p = (s∗, x∗, y∗) is a vertex of conv(XFM )
then its components satisfy conditions (1) and (2). By Claim 12, either s∗ = 0 or fs∗ ∈
{f1, . . . , fn}. If s∗ = 0, p satisfies the conditions of case (i). If s∗ = fj for some j, p satisfies
the conditions of case (ii). If s∗ = bj for some j, then p satisfies the conditions of case (iii).
Suppose that fs∗ = fj for some j, s∗ ≥ 1 and s∗ 6= bt, 1 ≤ t ≤ n. We can choose j
such that bj = max{bt : ft = fj , 1 ≤ t ≤ n}. Then, by Claim 15, s∗ = m + fj , where
0 < m < bbjc, m ∈ Z. Claim 16 implies that Np ∪ Pp 6= ∅. If Np 6= ∅ then p satisfies the
conditions of case (v). Otherwise Pp 6= ∅ and Claim 16 implies the existence of an index
h ∈ Pp such that 0 < x∗h < 1. But then necessarily x∗h = bh − s∗ and thus p satisfies the
conditions of case (iv). 2

Observation 4 It follows from Theorem 21 that if (s∗, x∗.y∗) is a vertex of conv(XFM ), then
s∗ can take O(n2) possible values. Once s∗ is fixed, then y∗ is also fixed and a component
of x∗ can take at most 2 values. This shows that the problem minhs + px + qy : (s, x, y) ∈
conv(XFM ) can be solved as follows: If h < 0 or pt + qt < 0 or qt < 0 for some 1 ≤ t ≤ n, the
solution is unbounded. Else enumerate the possible values of s (and corresponding y). Now
for 1 ≤ t ≤ n, the sign of pt determines the value of xt.

5 A Final Remark

Consider the set:

W = {s ∈ R1
+, x ∈ Rn

+, y ∈ Zn : li ≤ yi ≤ ui, αij ≤ yi − yj ≤ βij for all 1 ≤ i, j ≤ n}
where li, ui, αij , βij ∈ Z∪{+∞,−∞} and assume that for every index i, W contains a vector
with yi > 0.

The set:

XBFM = XFM ∩W
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models the mixing set with upper bounds and “dual network” constraints on the integer
variables yi. We now have the following:

Theorem 22 Let XINT , XBFM be defined on the same vector b and W be a set satisfying
the above conditions. The linear transformation σ0 = s and σt = s + xt − bt, 1 ≤ t ≤ n,
maps conv(XBFM ) into conv(XINT ) ∩ {(σ, y) : li ≤ yi ≤ ui, αij ≤ yi − yj ≤ βij , 1 ≤ i, j ≤
n} ∩ {(σ, y) : 0 ≤ σk − σ0 + bk ≤ yk, 1 ≤ k ≤ n}.

The proof of Theorem 22 is identical to the proof of Theorem 8. The condition that for
every index i, W contains a vector with yi > 0, shows that none of the inequalities 0 ≤ xi ≤ yi

defines an improper face of conv(XBFM ) and Corollary 4 can still be applied.
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