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ABSTRACT

Liquidity co-movements are studied within three different market capitalization in-

dices, each made up of 100 NYSE stocks. Long-run liquidity co-movements are quan-

tified in each class and compared to short-run liquidity co-movements. To condition the

analysis of systematic liquidity upon index volatility, three regimes of volatility are de-

fined using the Markov-switching methodology. Our results show that the magnitude of

liquidity co-movements is on average positively related to the market capitalization of

the index. There are significant differences between short-run and long-run liquidity co-

movements, and between spread-based measures and depth-based measures. Finally, the

volatility regime bears on the liquidity co-movements relationships.
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I Introduction

In asset pricing theory, expected stock returns are sensitive to variations of some key ‘state’

variables. Market-wide liquidity has been shown to be such a priced state variable in both theo-

retical and empirical studies. For instance, Amihud and Mendelson (1986) and Jacoby, Fowler,

and Gottesman (2000) provide theoretical arguments to show how liquidity impacts financial

market prices. Using a wide variety of liquidity measures, a number of empirical studies have

confirmed these theoretical findings (Amihud, 2002; Pastor and Stambaugh, 2003; Gibson and

Mougeot, 2004). An important motive for considering a market-wide liquidity measure as a

priced factor is evidence of the existence of co-movements of individual stock liquidity with

market-wide liquidity. Both academics and practitioners have drawn particular attention to

common liquidity fluctuations across stocks. This ‘systematic liquidity’, referred to as ‘com-

monality in liquidity’, is of interest for three main reasons. First, it may need to be accounted

for in asset pricing models. If liquidity shocks are non-diversifiable and have a varying impact

across individual securities, the more sensitive an asset’s return is to such shocks, the greater

must be its expected return. Whether and to what extent systematic liquidity has an impor-

tant bearing on asset pricing is still debatable. Second, it may be a useful consideration for

investors in forming their portfolios, as strong co-movements in liquidity among the assets

within their portfolio may considerably influence the much sought-after diversification effect.

The importance of the adverse effect of systematic liquidity on diversification has still to be

correctly estimated. Finally, it may provide explanations about major market incidents as such

events are traditionally accompanied by a large drop in market liquidity. However, the poten-

tial for commonality in liquidity to cause market collapse has not been rigorously explored in

the literature yet.

The first seminal paper by Chordia, Roll, and Subrahmanyam (2000) shows that individ-

ual liquidity is positively and significantly influenced by market-wide variations in liquidity

for around 55% of NYSE stocks (in 1992). Huberman and Halka (2001) obtain similar find-

ings, showing that liquidity across stocks has some systematic component in a sample of daily

NYSE data. Regarding the causes, Coughenour and Saad (2004) argue from a liquidity supply

perspective that common market makers are one reason for liquidity commonality. As for mar-
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kets without any designated liquidity supplier, Brockman and Chung (2002) and Bauer (2004)

also document the existence of liquidity commonality in the purely order-driven settings of

the Hong Kong Stock Exchange and the Swiss Stock Exchange, respectively.1 Brockman and

Chung (2006) shows that equity index inclusion is a significant source of commonality in liq-

uidity for stocks traded on the Hong Kong stock exchange. In contrast to Chordia, Roll, and

Subrahmanyam (2000), Hasbrouck and Seppi (2001) do not assign an a priori (explanatory)

role to the market or to any other factor. They conduct a principal component analysis and

canonical correlation analysis to investigate whether there are common factors in the order

flow, return and liquidity. Although the liquidity of the Dow 30 stocks in 1994 exhibits a

single common factor, the commonality in liquidity is not strong and is even weaker than the

commonality in stock return and order flow.

With respect to this fast growing body of empirical literature, this paper sheds further light

on liquidity co-movements in several ways. First, commonality in liquidity is studied within

three market capitalization classes: small, mid, and large caps. More precisely, we examine

whether, and to what extent, systematic liquidity risk is similar within each class of mar-

ket capitalization. For instance, this approach allows us to compare liquidity co-movements

among small caps to liquidity co-movements among large caps. This may be of importance for

portfolio managers and investors who commonly deal with market capitalization indices (such

as the S&P 100 or S&P 600 indices). Moreover, by using a different market liquidity index

for each class, we avoid potential measurement biases that are introduced when, for example,

a single value-weighted index is computed for all the stocks.2

Second, our analysis of systematic liquidity is conditioned on volatility regimes.3 By

defining three regimes of volatility (low, normal and high), we can investigate to what extent

co-movements in liquidity are affected by volatility fluctuations. This is a key issue for the

financial community as liquidity may co-move differently in volatile and quiet markets. First,

practitioners and regulators have a dire need for better understanding of how co-movements in

1Contrary to Coughenour and Saad (2004), Brockman and Chung (2002) argue that order-driven markets are
more prone to systematic liquidity due to the absence of market makers.

2Large caps automatically display stronger commonalities in liquidity than small caps when a unique value-
weighted index is employed.

3From an econometric point of view, the volatility regime states are determined by an endogenous classifica-
tion rule based on Markov switching models (see Section III).

2



liquidity evolve in periods of stress. Second, academics have come up with conflicting results

on the relationship between volatility and liquidity. At the individual stock level, both market

microstructure theories and empirical studies point to a positive relation between illiquidity

(e.g. spreads) and volatility (Tinic, 1972; Benston and Hagerman, 1974; Stoll, 1978a; Stoll,

1978b; Amihud and Mendelson, 1980; Ho and Stoll, 1981; Copeland and Galai, 1983; Ad-

mati and Pfleiderer, 1988; Foster and Viswanathan, 1990; Stoll, 2003). However, empirical

evidence at the aggregate level is mixed. For example, Pastor and Stambaugh (2003) show

that the empirical correlation between aggregate illiquidity and market volatility is a positive

0.57, while Chordia et al. (2001) document a negative relation between aggregate volatil-

ity and illiquidity. As Domowitz, Glen, and Madhavan (2001) argue, an exogenous increase

in volatility affects liquidity through its direct effect on transaction costs but also indirectly

through its impact on turnover: higher volatility increases costs, which reduces trading, but

may also lead to more turnover, so that the overall impact on liquidity of a shift on volatility

is unclear. To the best of our knowledge, these two aspects of our work are new.4

Our results can be summarized as follows. First, the magnitude of liquidity co-movements

is on average positively related to the market capitalization of the index: liquidity co-movements

are least intense among small caps and most intense among large caps. Although we do not

investigate index inclusion in this paper, these results seem to be in agreement with Brockman

and Chung (2006) as large caps belong to many indexes routinely traded by portfolio man-

agers. Compared to Chordia, Roll, and Subrahmanyam (2000), the magnitude of concurrent

liquidity co-movements is smaller, but the proportion of individual stocks that is positively

and significantly affected by concurrent class-wide liquidity shocks is larger. Second, long-

run liquidity co-movements are found to be greater than short-run liquidity co-movements in

all three market cap indices. Third, the magnitude of spread-based liquidity co-movements

are greater in quiet markets for both large and mid caps. Spread adjustments by liquidity

providers may therefore be more stock specific in stressful markets than in quiet markets. In

contrast, liquidity co-movements measured by the number of shares displayed at the best bid

and offer (BBO) are larger during stressful market times, implying that the size displayed at

4Closest to our study is perhaps Faff, Kalev, and Sujoto (2005) who investigate whether the liquidity beta is
different in up and down markets. They rely upon an ad hoc procedure whereby cut-off points computed from
excess market returns (EMR) are determined in such a way that the sample is evenly partitioned among up, down
and neutral markets.
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the BBO may be adjusted by liquidity providers in a more systematic manner in stressful than

in quiet markets. We conjecture that, in stressful markets, liquidity providers fight against an

increased risk of information asymmetry in a given stock by individually adjusting the spread

rather than the size displayed at the BBO. Conversely, liquidity providers in quiet markets

more often adjust the size than the spread on a stock-by-stock basis. Interestingly, a similar

proportion of individual stocks within each market cap class rejects the null hypothesis of no

difference in liquidity co-movements between the high and low volatility regimes.

The remainder of the paper is structured as follows. In Section II, we present the dataset

and describe the liquidity measures used in this paper. We discuss the empirical results in

Section III and conclude in Section IV.

II Data

Our dataset is built upon data extracted from the Trades and Quotes (TAQ) database provided

by the New York Stock Exchange. These data are extracted in the form of two separate files,

one for the trades and the other for the best bid and offer quotes. Trades are subsequently

matched with quotes and the direction of a trade is defined according to the widely-used Lee

and Ready (1991) algorithm. We follow the recommendation contained in SEC Rule 11Ac1-5,

assuming trades were recorded 5 seconds later than their actual execution time. Our sample

covers a five-year period starting on January 1, 1995 and ending on September 30, 1999, which

represents 1,199 trading days.

A Filters

Following Chakravarty, Van Ness, and Van Ness (2005) and Chordia, Roll, and Subrah-

manyam (2000), we only retain class A stocks and remove preferred stocks or shares, war-

rants, rights, derivatives, trusts, closed-end investment companies, American depositary re-

ceipts, units, shares of beneficial interest, holdings and realty trusts. We restrict our selection

to stocks whose price was higher than $5 and lower than $999. The remaining stocks are then

selected on the basis of market capitalization, leading to the creation of three portfolios: large,
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mid, and small. We use Standard and Poor’s criteria that set the market capitalization of large,

mid and small caps to be respectively above $4B, between $1B and $4B, and between $300M

and $1B. Each of these three portfolios is made up of the first hundred stocks in each category

at the beginning of each year.

Applying traditional filtering procedures (Chordia, Roll, and Subrahmanyam, 2001; Huang

and Stoll, 1996), we reject quotes exhibiting (a) price (at the bid or at the ask) lower than or

equal to 0; (b) size (at the bid or at the ask) lower than or equal to 0; (c) price at the bid

higher than price at the ask; (d) bid-ask spread greater than $4; (e) proportional bid-ask spread

greater than 40%. Trades are excluded if they satisfy at least one of the following conditions:

(a) trade price is lower than or equal to 0; (b) trade size is lower than or equal to 0; (c) trade is

not “regular”, i.e. it is subsequently corrected or canceled. We additionally remove any trade

or quote time-stamped outside regular trading hours on the NYSE, that is, before 9:30 AM and

after 4:00 PM (or 1:00 PM on the days the exchange closed early). Also, an absolute change

greater than 10% (in the trade price, the ask quote, or the bid quote) leads to the deletion of

the record. Finally, following Chordia, Roll, and Subrahmanyam (2001), we exclude records

for which the (proportional) effective spread was greater than four times the (proportional)

quoted spread. On average, those filters lead to the rejection of around 0.4% of the original

trade records and 0.06% of the original quotes.

B Transactional liquidity measures

Working on filtered records, we first measure liquidity at the transaction level and compute

the (proportional) quoted spread, and quoted depth. We also compute the (proportional) ef-

fective spread, applying SEC Rule 11Ac1-5 in the definition of the time difference between

the recording of trades and quotes. According to this rule, trades are assumed to be recorded,

on average, 5 seconds later than their actual execution time. Trades are signed according to

the methodology proposed by Lee and Ready (1991). We additionally report the number of

shares traded. Finally, we include some of the bidimensional liquidity measures introduced

by Hasbrouck and Seppi (2001), allowing liquidity to be a function of both spreads and depth.
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Quote slopes and log quote slopes therefore complete the set of our measures of liquidity.

Table I gives a brief description of these liquidity measures.

C Aggregated liquidity measures

We then aggregate these transactional liquidity measures over three intraday intervals: (1) the

morning interval, running from 9:30 AM until 12:00 AM, (2) the midday interval, from 12:00

AM until 2:00 PM, and (3) the afternoon interval, starting at 2:00 PM and ending at 4:00 PM.

Three aggregation techniques are applied. First, we compute EWLi, which is the equally-

weighted average of a liquidity measure, denoted by Lt . This technique puts equal weight on

every data point inside the interval. It is defined as follows:

EWLi =
1
T

T

∑
t=1

Lt , (1)

where t=1,. . . ,T is the tth L in interval i.

Following this technique, we compute the equally-weighted average of quoted spreads

(EWQS), proportional quoted spreads (EWPQS), effective spreads (EWES), quote slopes

(EWQSl) and log quote slopes (EWLQSl). Adding to our battery of liquidity measures, we

also compute the equally-weighted traded spread (EWTS) by combining the average effective

spreads of buy and sell orders over interval i (as in Stoll, 2003).

Second, we consider SWLi, the size-weighted (SW) average of a liquidity measure Lt .

This technique allows the weight of each data point to vary within the interval. It is defined as

follows:

SWLi = ∑T
t=1 Lt ∗Size Lt

∑T
t=1 Size Lt

, (2)

where t=1,. . . ,T is the tth L in interval i. Size-weighted proportional quoted spread (SWPQS)

are weighted by the depth available at the prevailing quotes while both size-weighted propor-

tional effective spreads (SWPES) and traded spreads (SWPTS) are weighted by the number

of traded shares.
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Finally, we compute a weighted average determined by the duration of the quote, i.e.

the number of seconds the quote prevails on the market. Time-weighted proportional quoted

spreads are computed in two steps: (1) we define ξt , the number of seconds the quotes re-

mained unchanged on the market (i.e. neither the price nor the size was changed); (2) we

define the time-weighted proportional quoted spread over interval i as:

TWPQSi = ∑T
t=1(ξt ∗QSt)

∑T
t=1 ξt

, (3)

where t=1,...T is the tth quote in interval i.

Table II gives some cross-sectional statistics of (time series) means for each of the 12

measures of liquidity defined above. All measures point to higher liquidity costs for small

caps than for large caps. Interestingly, the two bidimensional liquidity measures show that

differences in liquidity costs between small caps and large caps are stronger when liquidity

is defined as a function of both spreads and depth. Consistent with previous studies, there

is some right skewness, i.e. sample means exceeding medians. Right skewness seems to be

more pronounced for small caps than for large caps. As expected, the effective and traded

spreads are smaller than the equally-weighted (log) quoted spreads, for all three market cap

categories. Taking into account the cross-sectional average of mean price levels, liquidity cost

measures are more than three times higher for small caps than for large caps. This is a much

larger increase than in the case of non-proportional liquidity measures.

Size-weighted proportional quoted spreads are systematically larger than equally-weighted

proportional quoted spreads, meaning that larger spreads are posted for larger quoted sizes.

However, proportional quoted spreads are smallest when they are weighted by the number of

seconds they remain unchanged, implying tighter spreads are posted on average for longer

periods of time. These observations hold for all market cap categories. All in all, tighter

spreads are posted for smaller sizes over a longer time period, and larger spreads are posted

for larger sizes over a shorter time period. Also, size-weighted proportional traded spreads

are larger than corresponding effective spreads, in each of the three market cap categories.

Interestingly, depth and share volume point to the sharpest differences in liquidity between

large and small caps since both of them are more than 10 times lower for small caps than
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for large caps. As expected, coefficients of variation are higher for small caps than for large

caps. Finally, liquidity measures for large caps exhibit stronger first-order autocorrelation than

either mid and small caps.

D Standardization

The final step consists in removing the influence of intraday seasonality by standardizing the

data. The liquidity variables are standardized following Hasbrouck and Seppi’s (2001) two-

step procedure. First, we compute the equally-weighted average and the standard deviation

over the sample period within each of the three intraday intervals and for each aggregate

liquidity measure. Second, we obtain the standardized liquidity measure by subtracting the

equally-weighted mean from the aggregate liquidity measure and dividing by the standard

deviation.

To smooth out intraday peculiarities and to take into account volatility regimes, Table

III reports descriptive statistics on standardized liquidity measures in both the high and low

volatility regimes.5. Looking at the low volatility regime, all spread-based measures of liquid-

ity display standard deviations lower than 1, and have negative means and medians, consistent

with the fact that liquidity costs tends to fall in quiet markets. Interestingly, depth displays

negative means for mid and small caps and negative medians for all types of stock. In quiet

markets, displaying higher sizes at the best bid-offer (BBO) does not seem to be a systematic

behavior of liquidity providers. Besides, the standardized average number of shares traded is

lower than in normal markets.

In the high volatility regime, the means of nearly all spread-based standardized liquidity

measures are above 0, suggesting that illiquidity is positively correlated to volatility (as found

in e.g. Pastor and Stambaugh, 2003). In each market cap class, the EWLQSl bidimensional

liquidity measure exhibits the highest standardized mean and median, suggesting that depth (as

well as spread) depends upon volatility regimes. Indeed, depth exhibits negative standardized

means and medians in each market cap class, with standard deviations below one. This also

5The econometric methodology used to define the three regimes of volatility (low, normal, high) is explained
in Section III
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points to a positive correlation between illiquidity and volatility. While the average number

of shares displayed at the BBO shrinks in volatile markets, the standardized average number

of shares traded in the high volatility regime is higher than the unconditional standardized

average (equal to 0). Interestingly, the median values of EWES and EWTS for small caps

are negative, indicating that there are more (but smaller) price improvements during volatile

market times than during normal market times.

The cross-sectional means of the correlations between the standardized liquidity measures

in both high and low volatility regimes are reported in Tables IV to VI. All measures of

spread are positively correlated to each other across time and negatively correlated with depth.

Although spread-based liquidity measures in the high volatility regime are positively (albeit

only slightly) correlated with the number of traded shares (SVOLU), the picture is somewhat

different in the low volatility regime, with the equally-weighted effective and traded spreads

displaying a negative correlation. The two bidimensional liquidity measures (EWQSl and

EWLQSl) are negatively correlated with depth, and also with the number of traded shares (in

11 out of 12 cases). Finally, depth and the number of shares traded are positively correlated.

Although correlations between liquidity measures are higher overall (in absolute value) in the

high volatility regime than in the low one, the differences are not large. Finally, levels of

correlation are very similar across market capitalization classes.

III Empirical Analysis

The empirical analysis is carried out in three steps. First, co-movements within each market

capitalization class are assessed using ‘market model’ time series regressions à la Chordia,

Roll, and Subrahmanyam (2000). Second, a comparison is provided with Cartwright and Lee’s

(1987) approach that allows for the measurement of liquidity co-movements in the long-run.

Finally, the Markov-switching methodology is used to define three regimes of volatility which

the analysis of liquidity co-movements is conditioned upon.
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A Liquidity co-movements in market cap indices

To assess liquidity co-movements within each of the three market capitalization classes (small,

mid, and large), we first follow Chordia, Roll, and Subrahmanyam’s (2000) methodology. We

run simple ‘market model’ time series regressions, in which the liquidity proxy of an in-

dividual stock is regressed on the market wide liquidity proxy. The market wide liquidity

proxy is the value-weighted average of individual liquidity measures of all stocks belonging

to the same market capitalization class (excluding the dependent variable stock). However, the

Chordia, Roll, and Subrahmanyam methodology differs from ours in the sense that we follow

Hasbrouck and Seppi (2001) in taking spread-based measures of liquidity in levels, whereas

Chordia, Roll, and Subrahmanyam (2000) work with changes. Generally, variables are differ-

enced when it is suspected that they may contain unit-root (i.e., random-walk) components.

Spreads and other liquidity variables are usually not characterized as such. Overdifferencing

(i.e., differencing series that are already stationary) induces autocorrelation in computed resid-

uals. For these reasons, Hasbrouck and Seppi (2001) believe that analysis of levels is more

economically meaningful and statistically appropriate.

Tables VII and VIII report the cross-sectional results of estimating the following equation

for each individual stock j included in the large, mid or small market cap index:

L j,t = α j +β1, jLM,t +β2, jLM,t−1 +β3, jLM,t+1 + γ jV j,t +
+1

∑
i=−1

δi, jRM,t+i + ε j,t , (4)

where L j,t is the liquidity proxy in level form for stock j and time interval t; LM,t is the value-

weighted average liquidity in time interval t for all stocks (excluding stock j) that belong

to the same market capitalization class as stock j;6 LM,t+1 and LM,t−1 are one lead and one

lag of LM,t to capture any non-contemporaneous adjustment in liquidity commonality; V j,t is

the contemporaneous change in intradaily squared returns for stock j (acting as a proxy for

volatility); RM are market returns, of which the concurrent, lead, and lag values are included

to mitigate any bias caused by the association between liquidity measures and market returns.

6This is not a prerequisite in Chordia, Roll, and Subrahmanyam’s (2000) study.
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Tables VII and VIII show evidence of liquidity co-movements within market cap indices.7

For example, the equally-weighted quoted spread (EWQS) of large caps displays an aver-

age value of 0.291 for β1.8 The cross-sectional t-statistic for the average β1 exceeds the 5%

one-tailed critical value of 1.645. Moreover, 94% of the individual β1, j’s are positive and

statistically greater than zero at the 5% level. However, the 0.291 value for β1 is much lower

than the 0.69 value obtained by Chordia, Roll, and Subrahmanyam (2000) in 1992 for 1,169

stocks (mixing large, mid and small caps). Moreover, 0.291 is the highest average value that

we obtain throughout the different liquidity measures. All in all, we obtain smaller concur-

rent co-movements of liquidity, but the liquidity of a larger proportion of individual stocks are

positively and significantly affected by concurrent class-wide liquidity shocks.

The value and t-statistic of the combined coefficient (labeled ‘Sum’) confirms the findings

that liquidity co-movements are smaller in magnitude but statistically significant. Compared

to previous studies, the average R2 that we obtain is much higher, reaching 0.42 in the EWPQS

equation for large caps. On average, we find no statistical evidence of lagged or lead adjust-

ment in liquidity commonality within market cap categories. At the individual stock level, ev-

idence of non-contemporaneous adjustment in liquidity commonality is somewhat stronger as

the leading and/or lagged terms are positive and significant for a larger proportion of individ-

ual stocks than in Chordia, Roll, and Subrahmanyam (2000). Comparing liquidity measures

among them, the strongest evidence of liquidity co-movements is displayed by spread-based

measures that rely exclusively on quotes (i.e. EWQS, EWPQS, SWPQS, and TWPQS). Then,

come non-proportional spread-based measures that rely upon quotes and trades (i.e. EWES

and EWTS), and bidimensional liquidity measures that rely upon both quotes and sizes (i.e.

EWQSl and EWLQSl). Consistent with Chordia, Roll, and Subrahmanyam (2000), SWPES,

SWPTS, DEPTH and SVOLU show the weakest sign of liquidity co-movements.9

Comparing market cap classes, liquidity co-movements are most (least) intense among

large (small) caps. Liquidity co-movements among mid caps are in-between, but closer in

7Because the tables are already voluminous, we do not report coefficients for the nuisance variables: the
market return and squared stock return. As there was a tick size reduction (from 1/8th to 1/16th) on the 24th of
June 1997, we apply a Wald test for structural break. We find weak statistical evidence of such a break. All these
results are available upon request.

8β1 measures the average sensitivity of individual stock liquidity to contemporaneous market wide liquidity.
9The main difference between DEPTH and SVOLU, on the one hand, and SWPES and SWPTS, on the other,

is that the latter always have t-statistics higher than 1.645 for the combined coefficients (labeled ‘Sum’).
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magnitude to liquidity co-movements among small caps. Evidence of liquidity co-movements

among small caps is rather mixed. On the one hand, t-statistics for the combined coefficients

(‘Sum’) are higher than the 5% one-tailed critical value in 9 out of 12 liquidity measure equa-

tions. On the other hand, the cross-sectional t-statistic for the average β1 exceeds the 5%

one-tailed critical value in only 4 cases (out of 12), all related to the quoted spread. A recent

paper by Brockman and Chung (2006) links liquidity commonality to index inclusion. While

we do not tackle this issue here, it is well known that large cap stocks are, by definition, much

more traded by institutional investors and hence are the main constituents of actively traded

indexes. In light of these recent research developments, our results regarding large and small

caps are therefore not surprising.

Table IX reports the results of three tests. First, we apply a Wald test on a stock by

stock basis. The null hypothesis is defined as H0 : β1, j + β2, j + β3, j = 0. We report the

percentage of stocks which significantly reject the null at the 5% level. While the magnitude of

liquidity co-movements is measured by the β and SUM coefficients reported in Tables VII and

VIII, the Wald test gives information on the pervasiveness of liquidity co-movements within

market cap classes. Looking at proportional measures of liquidity, Table IX shows that the null

hypothesis is rejected equally often in all three market cap classes. Pervasiveness of liquidity

co-movements is therefore shown to be equivalent in all three categories, although the cross-

sectional β and SUM coefficients in Tables VII and VIII point to liquidity co-movements of

greater magnitude for large caps. This observation holds true for proportional quoted-spread

measures of liquidity for which evidence of liquidity co-movements based on cross-sectional

t-statistics was reported to be the strongest. Regarding non-proportional measures of liquidity,

co-movements in liquidity seem most pervasive for large caps and equally pervasive for small

and mid caps. We apply a second Wald test with the null hypothesis defined as H0 : γ j =

δ−1, j = δ0, j = δ1, j = 0. We also report the percentage of stocks which significantly reject the

null at the 5% level. This test gives stock-by-stock information on the influence of variables

unrelated to market liquidity. Such influence is shown to be equivalent across all three market

cap indices and even more pervasive than the influence of liquidity co-movements. Finally,

we apply a simple F-test and report the percentage of stocks, which significantly reject the
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null at the 1% level. Except for the DEPTH variable, the null is always rejected by more than

80% of the stocks.

B Long-run versus short-run liquidity co-movements in market cap in-

dices

In the above ‘market model’ time series regression, any non-contemporaneous adjustment in

liquidity commonality is assumed to be captured by the inclusion of one lag and one lead

of the ‘market liquidity’ index. In a returns-based asset pricing paper, Cartwright and Lee

(1987) provide a simple way to solve the problem related to the choice of the number of

leads/lags: they propose to replace them by a lagged value of the dependent variable. An

additional attractive feature of this approach is the ability to measure liquidity co-movements

in the long-run, through the so-called ‘long-run beta’.

Tables X and XI report the cross-sectional results of estimating the following equation for

each individual stock j included in the large, mid or small market cap index:

L j,t = α j +β jLM,t + γ jL j,t−1 +φ jV j,t +
+1

∑
i=−1

δi, jRM,t+i + ε j,t . (5)

The individual long run beta is computed as follows:10

βLR, j = β j/(1− γ j). (6)

For large caps, the proportion of stocks with significantly positive βLR, j ranges from 55%

(DDEP) to 83% (EWQS). The cross sectional average of the long run liquidity beta is consis-

tently significant and positive for all liquidity measures: the cross-sectional means range from

0.167 (SWPTS) to 0.565 (DEPTH). These findings provide reinforcing positive evidence re-

garding the pervasiveness of commonality in liquidity among large caps. Interestingly, the

adjusted R-squared values reported in Tables X and XI are even higher than those reported in

10For the interpretation of the long-run beta to be valid, the absolute value of γ j needs to be lower than one. In
our sample, this condition is satisfied for all stocks, in every market cap category. Although we do not report the
results to save space, they are available upon request.
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VII and VIII. In addition, the Durbin-Watson statistics indicate that the inclusion of the lagged

dependent variable alleviates concern about the goodness of fit of the regression (except in the

DEPTH equation).

Mid and small caps exhibit similar long-run liquidity co-movements, both in magnitude

and statistical significance. When compared to large caps, these long-run liquidity co-movements

are nevertheless weaker, both in magnitude and statistical significance. For example, no sign

of long-run liquidity co-movements is found when liquidity is approximated by DEPTH or

SVOLU. Results are also not significant for small caps in the EWQSL equation.

Interestingly, the cross-sectional average of γ j is positively significant for all liquidity mea-

sures. Moreover, the vast majority of individual γ j’s are also positive and significant. A

positive γ j points to positive autocorrelation in the evolution of liquidity co-movements as

it extends from the short-run to the long-run. This implies that βLR is greater than β j, or

that long-run liquidity co-movements are greater than short-run liquidity co-movements. In

the market microstructure literature (for example, see Madhavan, 2000), liquidity (or noise)

traders’ activity generates a transitory, short-run impact on liquidity while informed traders’

activity generates a permanent, long-run impact on liquidity. Informed traders’ activity on the

NYSE may therefore influence liquidity co-movements to a larger extent than noise traders.11

C Volatility regimes and liquidity co-movements in market cap indices

In this last section, a two-step procedure is applied to condition the analysis of liquidity co-

movements upon volatility regimes. We first measure volatility for each of the three market

cap indices. We follow Andersen and Bollerslev (1998) in defining volatility as the sum of

intraday squared returns over the required intervals. As shown by Andersen and Bollerslev

(1998), the realized volatility measure provides a model-free estimation of return volatility

over a given time interval. We compute the realized volatility (RV) of market cap index c over

interval i from 5-minute returns as follows:

RV c
i = r2,c

i,s+5 + r2,c
i,s+10 + ...+ r2,c

i,S , (7)

11Faff, Kalev, and Sujoto (2005) find the opposite for stocks included in the All Ordinaries Index (AOI) of the
pure order-driven Australian stock exchange (ASX).
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where i = [s,S] and rS is the last 5-minute return of interval i, i.e. the 5-minute return cor-

responding to the [S-5,S] time interval. We standardize the realized volatility measure as

described in Section D (as it also exhibits an recurring intraday pattern).

The second step consists in splitting our standardized measures of liquidity into three

volatility subsets: low, neutral and high. To construct these three sub-datasets, we apply a

three-state Markov switching model à la Hamilton (1989) to the standardized realized volatil-

ity series of each market cap index. Using the smoothed transition probabilities, we can im-

mediately determine which volatility observation belongs to which volatility regime. More

formally, the standardized measure of realized volatility is assumed to switch regime accord-

ing to an unobserved variable si, where regime 1 is the low-volatility state, regime 2 is the

neutral-volatility state, and regime 3 is the high-volatility state. We estimate the parameters

of the model using Krolzig’s (1997) MSVAR package based on the maximum likelihood EM

algorithm. The MSIAH specification with regime-dependent intercept and heteroscedasticity

is relied upon. In other words, the standardized realized volatility in state m is equal to µm,

with variance σ2
m.

Tables XII and XIII report the cross-sectional results of estimating the following equation

for each individual stock j included in the large, mid or small market cap index:

L j,t =
3

∑
k=1

Dk(α j,k +β j,kLM,t + γ j,kL j,t−1 +φ j,kV j,t +
+1

∑
i=−1

δi, j,kRM,t+i)+ ε j,t , (8)

where D1 (D2, D3) is a dummy variable taking the value of 1 in quiet (normal, volatile) markets

and 0 otherwise.

In the large cap index, the cross-sectional average of β j,1 is consistently significant and

positive for all liquidity measures. It ranges from 0.159 (SWPTS) to 0.263 (EWQS) and at

least 78% (53%) of large caps have a positive (and significant) β j,1. Liquidity commonal-

ities in quiet markets for large caps are undisputable. A comparison between liquidity co-

movements in the low and high regimes of volatility points to several differences. First, the

magnitude of spread-based liquidity co-movements for large caps is greater in quiet markets

than in volatile markets: β1 is greater than β3 for all spread-based liquidity measures. The

opposite is true for the DEPTH variable. Second, β3 is significantly different from zero in
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fewer cases than β1. For example, β3 is not significantly different from zero for bidimensional

liquidity measures and for proportional spread-based measures that rely on transaction prices

(i.e. SWPES and SWPTS). For the three proportional quoted spread measures of liquidity, β3

is only marginally significant.

Further evidence of the importance of volatility regimes for assessing liquidity commonal-

ities is given by the Wald test, of which the null hypothesis states that the magnitude of liquid-

ity co-movements is statistically equivalent in quiet and stressful markets. On average, around

25% of large caps reject the null. Such an effect is least obvious in the SVOLU equation: β1

and β3 are both significant and similar, with only 11% of stocks rejecting the null of the Wald

test. Nevertheless, liquidity co-movements for large caps do seem to depend upon the volatil-

ity regime of the index to which they belong. Large caps exhibit more spread-based liquidity

co-movements in quiet markets than in stressful markets. In contrast, liquidity co-movements

measured by the number of shares displayed at the BBO (DEPTH) are larger during stressful

than during quiet market times. Therefore, spread adjustments may be more stock specific

in stressful than in quiet markets. At the same time, the size displayed at the BBO may be

adjusted in a more systematic manner in stressful than in quiet markets. We conjecture that in

stressful markets, liquidity providers fight against an increased risk of information asymmetry

in a given stock by adjusting the spread rather than the size displayed at the BBO. Conversely,

liquidity providers in quiet markets would more often adjust the size rather than the spread,

on a stock-by-stock basis.

Consistent with the preceding unconditional analysis of liquidity co-movements, mid caps

exhibit smaller β coefficients than large caps. Again, the magnitude of liquidity co-movements

is greater in quiet markets. Statistical evidence points to sharp differences in liquidity co-

movements between the high and low volatility regimes: while β1 is significantly different

from zero in 10 out of 12 cases, β3 is positive but insignificant in all cases but one. The Wald

test for mid-caps reports similar results to those for large caps. Around 25% of mid-caps

reject the null of no difference in liquidity co-movements between the high and low volatility

regimes.

Interestingly, the cross-sectional average of β j,1 for small caps is smaller than the cross-

sectional average of β j,3. However, β3 is never statistically different from zero. Overall, cross-
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sectional statistical evidence of liquidity co-movements among small caps is weak in both high

and low volatility regimes. Liquidity commonality among small caps would therefore matter

during normal market times only, i.e. when the index volatility is neither in the high regime nor

in the low regime. The only relevant evidence of different liquidity co-movements between

the high and low volatility regimes is reported by the proportional quoted-spread measures of

liquidity, as β1 is significant while β3 is not. Although there is rather weak cross-sectional

evidence of different liquidity co-movements among small caps between the high and low

volatility regimes, the Wald test still reveals that around 20% of small caps reject the null of

no difference in liquidity co-movements between the two volatility regimes.

IV Conclusion

Liquidity co-movements are studied within three different market capitalization indices: small,

mid and large. The magnitude of liquidity co-movements is on average positively related

to the market capitalization of the index: liquidity co-movements are least intense among

small caps and most intense among large caps. The magnitude of concurrent liquidity co-

movements is smaller than that found in Chordia, Roll, and Subrahmanyam (2000), but the

proportion of individual stocks that is positively and significantly affected by concurrent class-

wide liquidity shocks is larger. Interestingly, all three market cap indices exhibit the same

degree of pervasiveness in liquidity co-movements. Long-run (vs. short-run) liquidity co-

movements within each market cap index are also quantified. In all three market cap indices,

we find positive autocorrelation in the evolution of liquidity co-movements as it extends from

the short run to the long run. Consequently, long-run liquidity co-movements are greater than

short-run liquidity co-movements.

In the last stage of the study, we condition our analysis of systematic liquidity upon volatil-

ity regimes. By defining three regimes of volatility (low, normal and high), we analyze how

liquidity co-movements among large, mid and small caps are affected by volatility fluctua-

tions. In all market cap indices, a comparison between liquidity co-movements in the low and

high regimes of volatility reveals notable differences.
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Among both large and mid caps, the magnitude of spread-based liquidity co-movements

are greater in quiet markets. Spread adjustments by liquidity providers may therefore be more

stock specific in stressful markets than in quiet markets. In contrast, liquidity co-movements

measured by the number of shares displayed at the BBO are larger during stressful market

times, implying that the size displayed at the BBO may be adjusted by liquidity providers in

a more systematic manner in stressful than in quiet markets. We conjecture that in stressful

markets, liquidity providers fight against an increased risk of information asymmetry in a given

(large or mid cap) stock by individually adjusting the spread rather than the size displayed at

the BBO. Conversely, liquidity providers in quiet markets more often adjust the size than

the spread on a individual, stock-by-stock basis. For small caps, cross-sectional statistical

evidence of liquidity co-movements is weak in both high and low volatility regimes. As a

consequence, liquidity commonality among small caps would essentially matter during normal

market times, i.e. when the index volatility is neither in the high nor in the low regime.

In contrast to large and mid caps, liquidity co-movements among small caps are greater in

stressful markets but coefficients are not statistically different from zero.
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Table I
Liquidity measures at the transaction level: definitions.

Name Symbol Definition Unit
Quoted Spread QSt Ot −Bt Dollar
Proportional Quoted Spread PQSt 100∗QSt/Mt Percent
Quoted Depth DEPT Ht (B Sizet +O Sizet)/2 Shares
Effective Spread ESt 2∗Dt ∗ (Pt −Mt−5) Dollar
Proportional Effective Spread PESt 100∗ESt/Mt−5 Percent
Share Volume SVOLUt P Sizet Shares
Quote Slope QSlt QSt/log(2∗Deptht) Dollar/Log Shares
Log Quote Slope LQSlt log(QSt)/log(2∗Deptht) Log Dollar/Log Shares
O denotes the best offer quote (i.e. the lowest, most aggressive selling price available in the market).
B denotes the best bid quote (i.e. the highest, most aggressive buying price available in the market).
M is the midquote, that is the sum of Offer and Bid divided by 2. P denotes the price of a trade
(i.e. an actual transaction). D stands for the direction of the trade: it is equal to 1 (-1) for buy (sell)
orders. O Size is the number of shares available at the best offer quote. B Size is the number of
shares available at the best bid quote. P Size is the number of shares actually traded. Subscript t
indicates time as displayed in TAQ.
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Table II
Aggregate liquidity measures: summary statistics.

Symbol Mean Median Stdev
L M S L M S L M S

EWQS 0.1498 0.1631 0.1906 0.1487 0.1620 0.1873 0.0223 0.0326 0.0513
EWES 0.1027 0.1058 0.1260 0.1017 0.1046 0.1215 0.0168 0.0249 0.0466
EWT S 0.1026 0.1067 0.1263 0.1016 0.1053 0.1212 0.0166 0.0244 0.0458
EWQSl 0.0236 0.0289 0.0457 0.0228 0.0278 0.0416 0.0060 0.0098 0.0227
EWLQSl 0.0004 0.0008 0.0016 0.0004 0.0008 0.0015 0.0001 0.0003 0.0008
EWPQS 0.2617 0.4754 0.7897 0.2576 0.4650 0.7539 0.0473 0.1154 0.2516
SWPQS 0.2684 0.4864 0.8037 0.2639 0.4741 0.7643 0.0511 0.1253 0.2686
TWPQS 0.2536 0.4589 0.7746 0.2492 0.4473 0.7367 0.0481 0.1169 0.2589
SWPES 0.1871 0.3344 0.5386 0.1817 0.3182 0.5006 0.0538 0.1358 0.2778
SWPT S 0.1930 0.3439 0.5558 0.1884 0.3295 0.5199 0.0487 0.1175 0.2459
DEPT H 8174 5695 4128 7192 4551 3067 4393 4172 3673
SVOLU 575406 131907 47371 471384 94558 29209 425132 142146 67771
Symbol Min Max AC(1)

L M S L M S L M S
EWQS 0.0967 0.0910 0.0881 0.2444 0.3153 0.4770 0.46 0.37 0.37
EWES 0.0585 0.0350 0.0146 0.2094 0.2523 0.4350 0.35 0.25 0.21
EWT S 0.0605 0.0398 0.0167 0.2084 0.2543 0.4371 0.35 0.25 0.21
EWQSl 0.0104 0.0095 0.0097 0.0510 0.0819 0.1950 0.48 0.40 0.44
EWLQSl 0.0002 0.0003 0.0004 0.0008 0.0024 0.0066 0.49 0.44 0.47
EWPQS 0.1569 0.2404 0.3289 0.4573 1.0176 2.1327 0.63 0.53 0.50
SWPQS 0.1555 0.2386 0.3275 0.4753 1.0970 2.3425 0.60 0.51 0.48
TWPQS 0.1524 0.2347 0.3249 0.4911 1.0397 2.1206 0.60 0.52 0.50
SWPES 0.0501 0.0442 0.0225 0.6191 1.4515 2.7557 0.30 0.22 0.21
SWPT S 0.0761 0.0786 0.0511 0.5294 1.1667 2.3099 0.36 0.28 0.27
DEPT H 1438 694 353 34889 35514 31781 0.45 0.44 0.50
SVOLU 76376 7255 1013 4621638 1758003 937346 0.25 0.26 0.23
L denotes the large cap portfolio, including the biggest 100 stocks on the NYSE in terms of market capitalization
(MC). M denotes the mid cap portfolio, including the first 100 stocks with $1B ≤ MC < $4B. S denotes the small
cap portfolio, including the first 100 stocks with $300M ≤ MC < $1B.
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Table III
Aggregate standardized liquidity measures in the high and low volatility regimes:

summary statistics.

Panel A: Low Mean Median Stdev
Volatility Regime L M S L M S L M S
EWQS -0.1310 -0.0556 -0.0601 -0.1348 -0.0983 -0.1365 0.9442 0.9777 0.9875
EWES -0.0952 -0.0421 -0.0693 -0.0652 -0.0612 -0.1566 0.9135 0.9737 0.9831
EWT S -0.0938 -0.0417 -0.0725 -0.0680 -0.0718 -0.1753 0.9109 0.9722 0.9815
EWQSl -0.1371 -0.0635 -0.0256 -0.2334 -0.1694 -0.1754 0.9459 0.9593 0.9791
EWLQSl -0.1616 -0.1321 -0.1348 -0.2404 -0.2374 -0.2774 0.9164 0.9200 0.9188
EWPQS -0.1327 -0.1410 -0.1963 -0.1607 -0.2025 -0.2808 0.9127 0.9202 0.8939
SWPQS -0.1094 -0.1271 -0.1836 -0.1440 -0.1966 -0.2725 0.9307 0.9278 0.8993
TWPQS -0.1392 -0.1415 -0.1922 -0.1770 -0.2166 -0.2840 0.9087 0.9257 0.8940
SWPES -0.0908 -0.0994 -0.1355 -0.1568 -0.2046 -0.2633 0.9433 0.9385 0.9164
SWPT S -0.0893 -0.1056 -0.1560 -0.1493 -0.2063 -0.2898 0.9298 0.9294 0.9057
DEPT H 0.0712 0.0063 -0.0359 -0.1639 -0.3070 -0.3281 0.9785 0.9840 0.9313
SVOLU -0.1410 -0.0755 -0.0390 -0.3615 -0.3248 -0.3013 0.9251 0.9273 0.9411
Panel B: High Mean Median Stdev
Volatility Regime L M S L M S L M S
EWQS 0.4658 0.2913 0.0805 0.3651 0.2238 0.0106 1.0304 1.0150 0.9741
EWES 0.3940 0.2559 0.0785 0.2488 0.1415 -0.0330 1.1830 1.0947 0.9988
EWT S 0.3851 0.2397 0.0735 0.2387 0.1144 -0.0492 1.1900 1.1106 1.0138
EWQSl 0.4742 0.4285 0.1577 0.3673 0.3097 0.0214 1.0475 1.0908 0.9977
EWLQSl 0.5812 0.5248 0.2613 0.4718 0.3973 0.1100 1.0806 1.1034 1.0311
EWPQS 0.4970 0.3810 0.1994 0.4041 0.2976 0.1112 1.0354 0.9815 0.9763
SWPQS 0.4139 0.3024 0.1632 0.3272 0.2281 0.0714 1.0214 0.9676 0.9683
TWPQS 0.5101 0.3695 0.1809 0.3997 0.2735 0.0964 1.0619 0.9757 0.9661
SWPES 0.3560 0.2742 0.1662 0.2127 0.1227 0.0165 1.0788 1.0300 1.0215
SWPT S 0.3727 0.3051 0.1823 0.2336 0.1481 0.0265 1.1035 1.0670 1.0455
DEPT H -0.1697 -0.1598 -0.1039 -0.3632 -0.3702 -0.3350 0.8249 0.8032 0.8000
SVOLU 0.4281 0.2899 0.1777 0.1884 0.0408 -0.0959 1.0491 0.9851 0.9612
L denotes the large cap portfolio, including the biggest 100 stocks on the NYSE in terms of market capitalization
(MC). M denotes the mid cap portfolio, including the first 100 stocks with $1B ≤ MC < $4B. S denotes the small
cap portfolio, including the first 100 stocks with $300M ≤ MC < $1B.
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Table IV
Aggregate standardized liquidity measures in the high and low volatility regimes:

correlation matrix for large caps.
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Table V
Aggregate standardized liquidity measures in the high and low volatility regimes:

correlation matrix for mid caps.
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Table VI
Aggregate standardized liquidity measures in the high and low volatility regimes:

correlation matrix for small caps.
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Table VII
Liquidity co-movements in market cap indices.

Symbol EWQS EWES EWTS
L M S L M S L M S

Concurrent 0.291 0.138 0.117 0.225 0.103 0.075 0.230 0.104 0.073
t-stat 4.401 2.154 2.244 3.278 1.767 1.572 3.292 1.707 1.488
% + 99.60 93.20 91.00 96.80 90.20 85.40 95.40 90.40 82.80
% + significant 94.00 63.40 62.80 75.20 51.60 48.00 77.60 50.20 46.60
Lag 0.031 0.031 0.027 0.025 0.026 0.028 0.022 0.029 0.032
t-stat 0.603 0.492 0.537 0.407 0.364 0.578 0.336 0.400 0.619
% + 66.00 63.20 61.20 62.00 60.40 64.20 59.80 61.40 65.60
% + significant 27.00 20.40 24.40 20.60 17.00 20.00 19.60 18.20 22.20
Lead 0.013 0.024 0.029 0.031 0.026 0.033 0.033 0.030 0.036
t-stat 0.208 0.346 0.601 0.404 0.326 0.704 0.463 0.391 0.745
% + 56.00 59.00 62.60 57.60 55.20 68.60 59.80 57.40 70.60
% + significant 24.00 20.20 23.40 23.40 18.20 22.40 25.20 18.20 22.40
Sum Mean 0.335 0.193 0.173 0.281 0.155 0.136 0.285 0.162 0.141
t-stat 5.901 3.539 2.995 4.712 2.907 2.430 4.541 3.063 2.550
Sum Median 0.302 0.148 0.158 0.210 0.102 0.107 0.220 0.101 0.109
t-stat 5.318 2.718 2.745 3.510 1.912 1.911 3.499 1.905 1.970
Adj. R2 Mean 0.336 0.200 0.146 0.344 0.220 0.160 0.348 0.225 0.164
Adj. R2 Median 0.289 0.156 0.119 0.323 0.180 0.130 0.324 0.182 0.132
Symbol EWQSl EWLQSl EWPQS

L M S L M S L M S
Concurrent 0.221 0.086 0.048 0.209 0.117 0.098 0.250 0.178 0.208
t-stat 4.007 1.816 1.131 3.418 1.714 1.632 3.255 1.997 2.267
% + 97.40 90.80 80.20 97.40 92.20 91.20 94.20 92.80 91.40
% + significant 89.00 54.40 35.00 86.00 53.00 48.40 79.20 62.80 68.00
Lag 0.025 0.015 0.017 0.040 0.042 0.033 0.062 0.075 0.039
t-stat 0.548 0.319 0.377 0.817 0.671 0.671 0.950 0.977 0.717
% + 63.80 60.20 61.20 72.20 70.60 65.00 76.00 74.60 66.60
% + significant 28.00 14.40 18.80 28.00 22.20 27.80 30.80 31.40 27.40
Lead -0.002 0.007 0.019 -0.002 0.030 0.035 0.031 0.060 0.035
t-stat 0.040 0.158 0.433 0.025 0.473 0.686 0.454 0.781 0.688
% + 50.00 54.00 61.80 46.20 62.80 66.40 59.40 70.20 63.40
% + significant 25.02 15.00 19.60 17.60 20.20 27.20 23.20 28.20 27.60
Sum Mean 0.243 0.108 0.083 0.248 0.190 0.165 0.342 0.313 0.282
t-stat 3.615 1.677 1.239 3.875 3.162 2.662 5.950 6.016 5.130
Sum Median 0.252 0.113 0.087 0.231 0.187 0.156 0.328 0.293 0.251
t-stat 3.755 1.752 1.286 3.620 3.120 2.516 5.694 5.635 4.555
Adj. R2 Mean 0.232 0.124 0.080 0.318 0.223 0.166 0.420 0.341 0.286
Adj. R2 Median 0.218 0.110 0.066 0.304 0.194 0.141 0.373 0.304 0.245
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corre-
sponding t-statistics. Newey and West (1987) heteroskedasticity and autocorrelation consistent standard
errors are computed, using Newey and West’s (1994) automatic truncation lag procedure. SUM = con-
current + lag + lead coefficients. ‘%+’ reports the percentage of positive slope coefficients while ‘%+
significant’ gives the percentage of positive slope coefficients which are statistically different from zero
at the 5% level.
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Table VIII
Liquidity co-movements in market cap indices.

Symbol SWPQS TWPQS SWPES
L M S L M S L M S

Concurrent 0.254 0.163 0.187 0.229 0.172 0.210 0.176 0.095 0.094
t-stat 3.263 1.863 2.014 2.957 1.910 2.290 2.806 1.541 1.546
% + 94.60 92.80 90.80 94.60 90.20 91.80 95.80 86.00 86.60
% + significant 81.60 58.40 60.60 77.60 61.60 65.60 65.60 49.00 46.60
Lag 0.052 0.074 0.043 0.064 0.074 0.041 0.001 0.029 0.029
t-stat 0.811 0.941 0.734 0.961 0.988 0.732 -0.025 0.463 0.500
% + 70.40 74.80 66.00 76.40 75.20 65.20 48.00 62.60 64.80
% + significant 27.00 31.40 28.00 32.00 29.80 29.80 14.20 19.00 20.00
Lead 0.026 0.062 0.040 0.038 0.063 0.034 0.009 0.031 0.025
t-stat 0.391 0.782 0.717 0.483 0.827 0.683 0.120 0.472 0.443
% + 61.60 67.80 62.80 60.00 68.00 64.20 52.00 59.80 61.00
% + significant 22.00 28.40 27.20 24.60 32.20 28.20 17.60 17.00 20.00
Sum Mean 0.331 0.299 0.270 0.330 0.310 0.284 0.186 0.155 0.147
t-stat 5.754 5.732 4.957 5.633 5.932 5.063 3.323 3.273 2.898
Sum Median 0.316 0.268 0.243 0.302 0.294 0.260 0.145 0.118 0.119
t-stat 5.492 5.148 4.465 5.158 5.636 4.623 2.595 2.494 2.352
Adj. R2 Mean 0.362 0.295 0.251 0.404 0.307 0.249 0.269 0.215 0.222
Adj. R2 Median 0.303 0.245 0.209 0.365 0.266 0.201 0.246 0.191 0.200
Symbol SWPTS DEPTH SVOLU

L M S L M S L M S
Concurrent 0.118 0.073 0.090 0.195 0.073 0.039 0.224 0.074 0.041
t-stat 1.631 0.993 1.331 3.285 1.190 0.639 4.462 1.580 0.933
% + 78.60 78.00 83.00 97.20 83.40 72.20 98.40 89.20 80.00
% + significant 45.40 32.00 42.60 79.80 35.80 19.40 89.60 48.40 26.20
Lag 0.032 0.056 0.046 0.021 0.024 0.022 -0.016 0.004 0.005
t-stat 0.500 0.808 0.709 0.404 0.309 0.302 -0.425 0.074 0.097
% + 61.80 72.60 70.20 57.80 58.40 57.40 37.80 55.00 55.20
% + significant 21.00 27.80 26.60 24.40 16.60 18.20 7.00 6.40 6.40
Lead 0.034 0.052 0.044 0.013 0.021 0.019 -0.010 0.003 0.008
t-stat 0.438 0.714 0.717 0.252 0.301 0.255 -0.241 0.031 0.151
% + 60.00 68.80 67.00 56.80 56.00 55.80 43.40 52.60 56.80
% + significant 21.00 24.60 27.40 23.20 16.60 16.20 7.20 6.00 8.00
Sum Mean 0.184 0.182 0.180 0.229 0.119 0.080 0.198 0.081 0.054
t-stat 3.367 3.870 3.503 3.924 1.895 1.179 2.871 1.361 0.926
Sum Median 0.145 0.132 0.156 0.212 0.091 0.062 0.195 0.082 0.053
t-stat 2.656 2.815 3.034 3.632 1.453 0.913 2.820 1.373 0.903
Adj. R2 Mean 0.299 0.258 0.257 0.137 0.067 0.045 0.215 0.128 0.118
Adj. R2 Median 0.275 0.233 0.231 0.088 0.035 0.021 0.194 0.110 0.090
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corre-
sponding t-statistics. Newey and West (1987) heteroskedasticity and autocorrelation consistent standard
errors are computed, using Newey and West’s (1994) automatic truncation lag procedure. SUM = con-
current + lag + lead coefficients. ‘%+’ reports the percentage of positive slope coefficients while ‘%+
significant’ gives the percentage of positive slope coefficients which are statistically different from zero
at the 5% level.
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Table IX
Liquidity co-movements in market cap indices: Wald and F-tests.

Symbol EWQS EWES EWTS
L M S L M S L M S

H0:β1, j +β2, j +β3, j = 0
% reject at 5% 82.40 63.80 64.60 71.20 49.40 51.00 70.80 49.60 51.00
H0:γ j = δ−1, j = δ0, j = δ1, j = 0
% reject at 5% 86.80 91.00 90.20 85.40 96.40 93.60 87.20 96.60 95.20
F-Test
% reject at 1% 98.40 94.20 94.40 94.80 95.80 92.20 94.60 95.00 92.80
Symbol EWQSl EWLQSl EWPQS

L M S L M S L M S
H0:β1, j +β2, j +β3, j = 0
% reject at 5% 75.60 53.00 43.00 80.80 68.80 62.20 83.80 81.20 80.20
H0:γ j = δ−1, j = δ0, j = δ1, j = 0
% reject at 5% 84.20 87.40 82.60 97.40 97.40 92.80 96.20 97.40 96.60
F-Test
% reject at 1% 95.80 91.20 80.20 99.20 98.00 95.40 100.00 99.00 99.40
Symbol SWPQS TWPQS SWPES

L M S L M S L M S
H0:β1, j +β2, j +β3, j = 0
% reject at 5% 83.00 77.00 79.80 83.80 81.00 81.80 59.60 58.20 60.00
H0:γ j = δ−1, j = δ0, j = δ1, j = 0
% reject at 5% 93.60 95.20 96.00 95.20 95.40 93.80 93.40 98.40 98.60
F-Test
% reject at 1% 99.80 98.20 98.20 99.60 98.00 98.00 98.80 99.00 98.40
Symbol SWPTS DEPTH SVOLU

L M S L M S L M S
H0:β1, j +β2, j +β3, j = 0
% reject at 5% 60.20 63.60 67.80 73.00 50.60 43.60 70.60 38.00 26.80
H0:γ j = δ−1, j = δ0, j = δ1, j = 0
% reject at 5% 94.20 99.00 98.00 56.20 50.20 41.20 85.20 87.80 89.00
F-Test
% reject at 1% 98.40 99.00 97.80 86.40 59.20 41.40 99.00 86.00 80.80
Each test is applied on a stock by stock basis. We report the percentage of stocks which significantly reject the null
hypothesis at the 5% level for the Wald tests and at the 1% level for the F-test.
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Table X
Long-run liquidity co-movements in market capitalization indices.

Symbol EWQS EWES EWTS
L M S L M S L M S

Beta LR 0.325 0.185 0.170 0.268 0.148 0.116 0.273 0.154 0.121
t-stat 7.579 4.137 3.433 6.281 3.511 2.582 6.365 3.775 2.789
% + 93.20 85.60 84.80 89.60 84.60 84.40 89.60 85.00 83.20
% + significant 83.40 66.60 65.80 70.80 56.80 54.00 71.60 55.20 53.20
Gamma 0.330 0.297 0.321 0.211 0.164 0.166 0.207 0.155 0.155
t-stat 8.440 7.656 8.025 4.852 4.122 3.973 4.779 3.866 3.703
% + 100.00 100.00 100.00 99.20 98.40 98.80 99.00 98.00 97.80
% + significant 100.00 99.60 99.40 91.20 87.40 87.20 90.20 82.20 83.60
DW Mean 2.015 2.027 2.041 1.976 1.984 2.002 1.970 1.981 2.000
DW Median 2.008 2.020 2.032 1.981 1.978 1.993 1.973 1.976 1.992
Adj. R2 Mean 0.423 0.281 0.244 0.382 0.246 0.188 0.385 0.249 0.189
Adj. R2 Median 0.404 0.252 0.227 0.381 0.218 0.161 0.379 0.215 0.159
Symbol EWQSl EWLQSl EWPQS

L M S L M S L M S
Beta LR 0.242 0.105 0.077 0.233 0.166 0.146 0.322 0.289 0.266
t-stat 3.781 1.703 1.234 3.825 2.797 2.452 6.863 6.293 5.461
% + 88.40 80.80 75.40 93.00 87.00 86.60 91.00 90.40 92.00
% + significant 73.80 52.80 43.40 82.00 67.80 61.40 80.00 80.00 79.20
Gamma 0.426 0.414 0.447 0.385 0.395 0.426 0.466 0.384 0.373
t-stat 11.516 10.708 10.964 10.244 10.164 10.474 13.879 10.426 9.653
% + 100.00 100.00 99.80 100.00 100.00 99.80 100.00 100.00 99.80
% + significant 100.00 99.60 99.60 100.00 99.60 99.20 100.00 99.60 99.40
DW Mean 2.062 2.058 2.078 2.044 2.056 2.068 2.132 2.108 2.093
DW Median 2.037 2.049 2.064 2.030 2.049 2.062 2.096 2.077 2.065
Adj. R2 Mean 0.394 0.291 0.279 0.442 0.362 0.333 0.586 0.458 0.400
Adj. R2 Median 0.386 0.282 0.271 0.438 0.334 0.317 0.583 0.442 0.360
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corresponding
t-statistics. Newey and West’s (1987) heteroskedasticity and autocorrelation consistent standard errors are
computed, using Newey and West’s (1994) automatic truncation lag procedure. ‘%+’ reports the percentage
of positive slope coefficients while ‘%+ significant’ gives the percentage of positive slope coefficients which
are statistically different from zero at the 5% level. DW statistic is the cross sectional average of the Durbin
Watson test statistic.

31



Table XI
Long-run liquidity co-movements in market capitalization indices.

Symbol SWPQS TWPQS SWPES
L M S L M S L M S

Beta LR 0.321 0.279 0.254 0.308 0.286 0.270 0.191 0.143 0.131
t-stat 6.937 6.082 5.221 5.958 6.137 5.364 3.947 3.544 3.209
% + 92.00 89.80 90.20 91.00 90.40 91.80 88.80 86.40 86.40
% + significant 81.40 77.80 77.60 79.80 80.40 81.20 62.80 62.80 61.00
Gamma 0.436 0.360 0.351 0.446 0.377 0.378 0.175 0.106 0.108
t-stat 12.445 9.457 8.835 12.163 9.951 9.668 4.042 2.551 2.553
% + 100.00 100.00 99.80 100.00 99.80 100.00 96.40 94.40 95.40
% + significant 100.00 99.60 99.20 99.60 98.80 99.20 82.00 66.80 65.40
DW Mean 2.153 2.108 2.092 2.126 2.110 2.099 2.048 2.024 2.020
DW Median 2.110 2.079 2.067 2.099 2.082 2.077 2.022 2.012 2.006
Adj. R2 Mean 0.515 0.400 0.354 0.557 0.420 0.366 0.303 0.227 0.235
Adj. R2 Median 0.502 0.374 0.316 0.572 0.396 0.327 0.284 0.201 0.214
Symbol SWPTS DEPTH SVOLU

L M S L M S L M S
Beta LR 0.167 0.160 0.157 0.565 0.713 0.246 0.255 0.082 0.052
t-stat 3.592 3.944 3.833 2.551 1.307 0.721 3.789 1.578 1.043
% + 75.80 82.20 84.40 86.39 78.60 65.58 93.40 86.40 79.60
% + significant 54.60 61.00 64.80 63.93 40.00 25.93 80.80 49.40 30.60
Gamma 0.218 0.145 0.146 0.644 0.663 0.669 0.429 0.320 0.258
t-stat 5.062 3.522 3.484 8.017 8.042 7.919 8.717 5.813 4.366
% + 99.20 97.80 98.40 100.00 100.0 100.00 100.00 100.00 98.00
% + significant 90.20 82.60 80.20 100.00 100.0 100.00 99.80 96.40 88.80
DW Mean 2.072 2.038 2.035 1.781 1.691 1.586 2.043 2.076 2.060
DW Median 2.042 2.019 2.015 1.779 1.699 1.593 2.038 2.059 2.050
Adj. R2 Mean 0.345 0.279 0.279 0.262 0.222 0.213 0.399 0.243 0.201
Adj. R2 Median 0.327 0.254 0.261 0.230 0.206 0.201 0.406 0.220 0.161
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corresponding
t-statistics. Newey and West’s (1987) heteroskedasticity and autocorrelation consistent standard errors are
computed, using Newey and West’s (1994) automatic truncation lag procedure. ‘%+’ reports the percentage
of positive slope coefficients while ‘%+ significant’ gives the percentage of positive slope coefficients which
are statistically different from zero at the 5% level. DW statistic is the cross sectional average of the Durbin
Watson test statistic.
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Table XII
Conditioning liquidity co-movements upon volatility regimes in market capitalization

indices.

Symbol EWQS EWES EWTS
L M S L M S L M S

β1 0.263 0.139 0.102 0.258 0.122 0.075 0.262 0.128 0.080
t-stat 4.636 2.881 1.662 4.344 2.385 1.125 4.364 2.519 1.205
% + 93.20 86.00 81.20 92.40 81.00 76.60 91.60 80.80 77.20
% + significant 80.20 54.40 49.00 71.40 44.20 32.80 72.80 44.40 34.60
β3 0.212 0.139 0.133 0.222 0.134 0.106 0.228 0.150 0.108
t-stat 2.162 1.143 1.158 2.628 1.385 0.966 2.677 1.445 0.961
% + 89.80 74.40 78.60 91.20 77.40 73.00 90.60 76.20 74.00
% + significant 57.00 32.60 36.60 64.40 40.20 29.20 67.40 40.20 29.20
Adj. R2 Mean 0.439 0.295 0.259 0.404 0.266 0.208 0.408 0.269 0.210
Adj. R2 Median 0.429 0.268 0.245 0.416 0.252 0.190 0.418 0.250 0.188
% reject H0:β1 = β3 at 5% 22.00 21.00 17.00 26.00 26.80 18.00 28.00 27.60 17.60
Symbol EWQSl EWLQSl EWPQS

L M S L M S L M S
β1 0.171 0.065 0.036 0.197 0.116 0.076 0.231 0.197 0.178
t-stat 3.044 1.296 0.680 3.273 2.080 1.202 4.447 3.867 2.499
% + 87.60 78.40 69.60 94.00 83.20 82.00 91.60 87.00 91.00
% + significant 69.40 39.80 23.80 76.60 56.80 38.40 80.60 73.20 67.20
β3 0.146 0.084 0.065 0.149 0.115 0.120 0.173 0.155 0.208
t-stat 1.564 1.005 0.549 1.556 0.985 1.027 1.780 1.080 1.563
% + 83.60 67.40 63.60 85.60 70.40 72.20 83.20 73.00 80.80
% + significant 47.20 31.80 23.60 44.20 33.80 35.00 50.80 38.40 45.00
Adj. R2 Mean 0.409 0.304 0.294 0.458 0.372 0.344 0.600 0.467 0.410
Adj. R2 Median 0.403 0.295 0.288 0.453 0.343 0.325 0.612 0.454 0.375
% reject H0:β1 = β3 at 5% 20.60 22.00 18.20 25.80 23.40 21.00 27.80 25.00 20.20
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corresponding
t-statistics. Newey and West’s (1987) heteroskedasticity and autocorrelation consistent standard errors are com-
puted, using Newey and West’s (1994) automatic truncation lag procedure. β1 measures the average sensitivity
of individual stock liquidity to contemporaneous market-wide liquidity in the low volatility regime (i.e. in quiet
markets). β3 measures the average sensitivity of individual stock liquidity to contemporaneous market-wide
liquidity in the high volatility regime (i.e. in stressful markets). ‘%+’ reports the percentage of positive slope
coefficients while ‘%+ significant’ gives the percentage of positive slope coefficients which are statistically
different from zero at the 5% level. For the Wald test, we report the percentage of stocks which significantly
reject, at the 5% level, the null hypothesis that β1 = β3.
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Table XIII
Conditioning liquidity co-movements upon volatility regimes in market capitalization

indices.

Symbol SWPQS TWPQS SWPES
L M S L M S L M S

β1 0.233 0.192 0.172 0.231 0.191 0.178 0.213 0.137 0.095
t-stat 4.432 3.761 2.400 4.323 3.703 2.517 3.573 2.591 1.466
% + 92.20 88.00 90.00 91.20 87.20 90.80 91.80 85.80 80.40
% + significant 79.60 71.40 64.00 80.40 70.60 68.40 71.20 52.80 44.00
β3 0.172 0.121 0.200 0.165 0.180 0.211 0.112 0.074 0.110
t-stat 1.667 0.923 1.436 1.732 1.074 1.559 1.135 0.635 0.888
% + 82.80 70.00 79.60 83.20 71.60 80.60 75.40 64.20 72.40
% + significant 48.80 35.00 41.80 48.60 37.80 44.60 32.60 23.60 30.80
Adj. R2 Mean 0.529 0.409 0.364 0.572 0.428 0.374 0.324 0.239 0.250
Adj. R2 Median 0.521 0.383 0.326 0.588 0.405 0.336 0.309 0.218 0.232
% reject H0:β1 = β3 at 5% 24.80 26.20 18.60 30.20 28.40 17.60 29.00 27.00 19.60
Symbol SWPTS DEPTH SVOLU

L M S L M S L M S
β1 0.159 0.140 0.106 0.165 0.096 0.042 0.199 0.064 0.033
t-stat 2.866 2.681 1.599 3.440 2.072 0.919 3.310 1.333 0.659
% + 78.00 80.20 77.60 97.20 87.20 71.20 99.00 84.00 72.60
% + significant 53.00 50.60 44.60 81.60 55.20 30.60 87.20 42.20 21.80
β3 0.120 0.086 0.152 0.268 0.200 0.118 0.203 0.091 0.080
t-stat 1.201 0.650 1.137 2.884 2.219 1.153 2.628 1.401 0.848
% + 75.80 64.00 74.20 94.80 87.80 79.40 93.00 76.60 71.60
% + significant 34.20 27.00 35.40 73.40 57.20 36.00 71.40 38.60 28.20
Adj. R2 Mean 0.365 0.292 0.294 0.321 0.272 0.259 0.423 0.258 0.220
Adj. R2 Median 0.348 0.267 0.277 0.299 0.252 0.228 0.426 0.241 0.188
% reject H0:β1 = β3 at 5% 24.40 26.20 20.80 21.40 25.80 17.80 11.00 19.60 14.80
Equally-weighted cross-sectional means of time series slope coefficients are reported, with their corresponding
t-statistics. Newey and West’s (1987) heteroskedasticity and autocorrelation consistent standard errors are com-
puted, using Newey and West’s (1994) automatic truncation lag procedure. β1 measures the average sensitivity
of individual stock liquidity to contemporaneous market-wide liquidity in the low volatility regime (i.e. in quiet
markets). β3 measures the average sensitivity of individual stock liquidity to contemporaneous market-wide
liquidity in the high volatility regime (i.e. in stressful markets). ‘%+’ reports the percentage of positive slope
coefficients while ‘%+ significant’ gives the percentage of positive slope coefficients which are statistically
different from zero at the 5% level. For the Wald test, we report the percentage of stocks which significantly
reject, at the 5% level, the null hypothesis that β1 = β3.
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