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1 Introduction

1.1 Motivation

A notable generalization of the variational inequality problem is the quasi-variational
inequality problem, introduced by Bensoussan et al. [2] in the context of impulse con-
trol problems. A thorough study of these problems can be found in [1, 5, 8]. Many
important and useful applications of these mathematical tools are known, which range
from Nash games to transportation network equilibria. For instance, we may refer to
Bensoussan [3] and Harker [6], who recognized the connection between generalized Nash
games and quasi-variational inequalities. Recently, Pang and Fukushima [18] applied this
result in order to formulate the noncooperative multi-leader-follower game in terms of
generalized Nash games, which in turn (under opportune assumptions), can be expressed
as a quasi-variational inequality. Kocvara and Outrata [7] dealt with a class of quasi-
variational inequalities with applications to engineering. Wei and Smeers [21] introduced
a formulation of a spatial oligopolistic electricity model with Cournot generators and reg-
ulated transmission prices in terms of quasi-variational inequalities. Bliemer and Bovy
[4] discussed a quasi-variational inequality formulation of the dynamic traffic assignment
problem. Applications to some economic and financial models can be found in [20], so
that a wide class of problems can be solved as a quasi-variational inequality.

From the point of view of solution methods, quasi-variational inequalities do not have
an extensive literature, we may address the reader only to few papers [4, 7, 15, 17, 19]. For
variational inequalities (VI), the situation is better. Recently, there were proposed two
new methods for solving VI with Lipschitz continuous operator [9, 13]. These methods can
be seen as an alternative to smoothing technique developed for accelerating the gradient-
type methods on large-scale structured convex optimization problems (see [12]). However,
up to now, there is almost no specialized methods for VI with strongly monotone operators.
The main goal of this paper is to close this gap. We also present a interesting application
of the developed schemes to quasivariational inequalities.

1.2 Contents

In Section 2 we consider the standard VI-problem with Lipschitz continuous strongly
monotone operator. For justifying the rate of convergence of numerical methods, we in-
troduce a new strongly convex merit function. For the value of this function, we update
recursively a simple quadratic model of our problem. Our technique can be seen as a
mixture of the approach from [13] and the elements of estimate functions (see Section
2.2 [11]). As a result, we obtain a simple method, which significantly outperforms the
straightforward gradient scheme. In Section 3 we introduce the problem of quasivaria-
tional inequality (QVI) and recall the main known existence results [16]. For the sake of
completeness, we present a complexity analysis of corresponding gradient scheme.

In Section 4 we show how to apply the results of Section 2 to QVI. For that, we intro-
duce a relaxation operator and establish the sufficient conditions for it to be a contraction.
These conditions allow to guarantee the existence of a unique solution to QVI for a much
wider class of problem as compared to [16]. On the other hand, we show that the simple
iteration scheme with approximately computed values of the relaxation operator is much
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more efficient than the usual gradient method. The required approximate values of the
operator are computed by a variant of the method developed in Section 2.

1.3 Notation

In this paper we denote by E a finite-dimensional real vector space. Notation E∗ is used
for the dual space. The value of a linear function s ∈ E∗ at x ∈ E (that is the scalar
product of s and x) is denoted by 〈s, x〉. The operator B : E → E∗ is positive definite if

〈Bx, x〉 > 0 ∀x ∈ E \ {0}.
It is self-adjoint if

〈Bx, y〉 = 〈By, x〉 ∀x, y ∈ E.

Using such an operator, we define on E and E∗ the Euclidean norms:

‖x‖ = 〈Bx, x〉1/2, x ∈ E,

‖s‖∗ = max
x∈E

{〈s, x〉 : ‖x‖ ≤ 1}

= 〈s, B−1s〉1/2, s ∈ E∗.

By πQ(x) we denote the Euclidean projection of point x onto the set Q. The necessary
and sufficient characterizations of the projection are as follows:

πQ(x) ∈ Q,

〈B(πQ(x)− x), y − πQ(x)〉 ≥ 0 ∀y ∈ Q.
(1.1)

2 Solving strongly monotone VI

Let Q be a closed convex set. Consider a continuous operator g(x) : Q → E∗, which is
strongly monotone:

〈g(x)− g(y), x− y〉 ≥ µ ‖x− y‖2, ∀x, y ∈ Q. (2.1)

The constant µ ≥ 0 is called the parameter of strong monotonicity of operator g. If µ = 0,
then g is a monotone operator. In what follows, we always assume µ > 0.

In this section, the problem of our interest is the following variational inequality (VI):

Find x∗(Q) ∈ Q : 〈g(x∗(Q)), y − x∗(Q)〉 ≥ 0 ∀y ∈ Q. (2.2)

In the absence of ambiguity, we often use a shortcut x∗ ≡ x∗(Q). Since g is strongly
monotone, the solution x∗ of problem (2.2) satisfies inequality

〈g(y), x∗ − y〉+ 1
2µ‖y − x∗‖2

(2.1)

≤ 〈g(x∗), x∗ − y〉 − 1
2µ‖y − x∗‖2

(2.2)

≤ 0, (2.3)

which is valid for all y ∈ Q. Since the main subject of this paper are numerical schemes,
we simply assume that the solution x∗ does exist. Clearly, in this case it is unique.

2



In order to speak about quality of approximate solutions to (2.2), we need to introduce
the following merit function:

f(x) = sup
y∈Q

{
〈g(y), x− y〉+ 1

2µ‖y − x‖2
}

. (2.4)

Theorem 1 Merit function f(x) is well defined and strongly convex on Q with convexity
parameter µ. Moreover, it is non-negative on Q and vanishes only at the unique solution
of variational inequality (2.2).

Proof:
Indeed, in view of strong monotonicity of operator g, at any x ∈ Q we have

〈g(y), x− y〉+ 1
2µ‖y − x‖2

(2.1)

≤ 〈g(x), x− y〉 − 1
2µ‖y − x‖2

≤ ‖g(x)‖∗ · ‖x− y‖ − 1
2µ‖y − x‖2 ≤ 1

2µ‖g(x)‖2∗.

Thus, the value f(x) is well defined. Further, function f(x) is strongly convex in x with
convexity parameter µ as a maximum of parametric family of strongly convex (in x)
quadratic functions:

f(x) = max
y∈Q

φy(x), φy(x) = 〈g(y), x− y〉+ 1
2µ‖y − x‖2, y ∈ Q.

Finally, if x ∈ Q, then clearly f(x) ≥ 0. Consider now x∗, the solution to (2.2). In
view of (2.3), we have f(x∗) = 0. On the other hand, if f(x̂) = 0 for some x̂ ∈ Q, then is
a solution to the weak variational inequality

〈g(y), y − x̂〉 ≥ 0 ∀y ∈ Q.

Since g(y) is continuous, this implies that x̂ is a solution to (2.2). 2

Let us show how we can generate points with small values of the merit function f(·).
Consider a sequence of arbitrary points {yi}N

i=0 ⊂ Q and a sequence of positive weights
{λi}N

i=0. Denote

SN =
N∑

i=0
λi, ỹN = 1

SN

N∑
i=0

λiyi,

∆N = max
x∈Q

{
N∑

i=0
λi

[
〈g(yi), yi − x〉 − 1

2µ‖x− yi‖2
] }

.

(2.5)

Note that the computation of ∆N can be reduced to finding a Euclidean projection on Q.

Lemma 1
f(ỹN ) ≤ 1

SN
∆N . (2.6)
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Proof:
Indeed, since g(x) is a strongly monotone operator, we have

f(ỹN ) = sup
x∈Q

{
〈g(x), ỹN − x〉+ 1

2µ‖x− ỹN‖2
}

= 1
SN

sup
x∈Q

{
N∑

i=0
λi〈g(x), yi − x〉+ 1

2µSN‖x− ỹN‖2

}

≤ 1
SN

sup
x∈Q

{
N∑

i=0
λi〈g(x), yi − x〉+ 1

2µ
N∑

i=0
λi‖x− yi‖2

}

(2.1)

≤ 1
SN

max
x∈Q

{
N∑

i=0
λi

[
〈g(yi), yi − x〉 − 1

2µ‖x− yi‖2
] }

≡ 1
SN

∆N .

2

Thus, our goal is to control the growth of ∆N as compared to the sum SN . For β > 0,
denote

ψβ
y (x) = 〈g(y), y − x〉 − 1

2β‖x− y‖2,

Ψk(x) =
k∑

i=0
λiψ

µ
yi

(x).

Note that ψβ
y (x) is a strongly concave quadratic function with concavity parameter β.

Function Ψk(x) is strongly concave with parameter µSk. Clearly, ∆k = max
x∈Q

Ψk(x).

Consider the following iteration:

xk = arg max
x∈Q

Ψk(x),

yk+1 = arg max
x∈Q

ψβ
xk

(x).
(2.7)

Theorem 2 If λk+1 ≤ µ
β Sk, then

∆k+1 ≤ ∆k + 1
2λk+1

[
1

µ+β‖g(yk+1)− g(xk)‖2∗ − β‖yk+1 − xk‖2
]
. (2.8)

Proof:
Note that Ψk+1(x) = Ψk(x) + λk+1ψ

µ
yk+1

(x). Hence,

∆k+1 = max
x∈Q

{
Ψk(x) + λk+1ψ

µ
yk+1

(x)
}

≤ ∆k + max
x∈Q

{
〈∇Ψk(xk), x− xk〉 − 1

2µSk‖x− xk‖2 + λk+1ψ
µ
yk+1

(x)
}

≤ ∆k + max
x∈Q

{
−1

2µSk‖x− xk‖2 + λk+1

[
〈g(yk+1), yk+1 − x〉 − 1

2µ‖x− yk+1‖2
]}

.
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In view of definition of yk+1, we have

〈−g(xk)− βB(yk+1 − xk), x− yk+1〉 ≤ 0 ∀x ∈ Q.

Therefore,

〈g(yk+1), yk+1 − x〉 − 1
2µ‖x− yk+1‖2

= 〈g(yk+1)− g(xk), yk+1 − x〉 − 1
2µ‖x− yk+1‖2 + 〈g(xk), yk+1 − x〉

≤ ‖g(yk+1)− g(xk)‖∗ · ‖yk+1 − x‖ − 1
2µ‖x− yk+1‖2 + β〈B(yk+1 − xk), x− yk+1〉.

Note that

2〈B(yk+1 − xk), x− yk+1〉 = ‖x− xk‖2 − ‖yk+1 − xk‖2 − ‖x− yk+1‖2.

Hence,
〈g(yk+1), yk+1 − x〉 − 1

2µ‖x− yk+1‖2

≤ 1
2(µ+β)‖g(yk+1)− g(xk)‖2∗ + 1

2β‖x− xk‖2 − 1
2β‖yk+1 − xk‖2.

Putting all inequalities together, and using the upper bound on λk+1, we obtain the
inequality (2.8). 2

Corollary 1 Assume that g(x) is Lipschitz continuous on Q:

‖g(x)− g(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ Q. (2.9)

Then for the choice
β = L, λk+1 = µ

L Sk,

we have ∆k+1 ≤ ∆k.

Now we are ready to write down an algorithmic scheme for solving the variational
inequality (2.2) with strongly monotone Lipschitz continuous operator. This method can
be seen as a combination of the dual extrapolation method [13] with the technique of
estimate functions (see Section 2.2 in [11]).

For simplicity, we assume that the constants µ and L are known. Denote by γ = L
µ ≥ 1

the condition number of the operator g.
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Method for strongly monotone VI

Input : Choose x̄ ∈ Q. Set λ0 = 1, and y0 = x̄.

Iteration (k ≥ 0):

xk = arg max
x∈Q

Ψk(x),

yk+1 = arg max
x∈Q

ψL
xk

(x),

λk+1 = 1
γ · Sk.

Output : ỹk = 1
Sk

k∑
i=0

λiyi.

(2.10)

Theorem 3 Under conditions (2.1) and (2.9), for any k ≥ 0, we have

µ
2 · ‖ỹk − x∗‖2 ≤ f(ỹk) ≤

[
f(x̄) + µ·(γ2−1)

2 · ‖x̄− x∗‖2
]
· exp

{
− k

γ+1

}

≤ f(x̄) · γ2 · exp
{
− k

γ+1

}
.

(2.11)

Proof:
The first and the last inequality in (2.11) follow from strong convexity of function f(x)
with parameter µ. Let us prove the middle one.

In view of Corollary 1 we have ∆k+1 ≤ ∆k for any k ≥ 0. Note that S0 = λ0 = 1, and

Sk+1 = Sk + λk+1 =
(
1 + 1

γ

)
Sk.

Hence,

f(ỹk)
(2.6)

≤ ∆k
Sk

≤ ∆0 ·
(
1− 1

γ+1

)k ≤ ∆0 · exp
{
− k

γ+1

}
.

It remains to estimate ∆0. Note that

∆0 = max
x∈Q

Ψ0(x) = max
x∈Q

ψµ
y0

(x) = max
x∈Q

{〈g(x̄), x̄− x〉 − µ
2 · ‖x− x̄‖2

}

= max
x∈Q

{〈g(x̄)− g(x∗), x̄− x〉+ 〈g(x∗), x̄− x〉 − µ
2 · ‖x− x̄‖2

}

(2.2)

≤ 〈g(x∗), x̄− x∗〉+ max
x∈Q

{〈g(x̄)− g(x∗), x̄− x〉 − µ
2 · ‖x− x̄‖2

}

(2.9)

≤ 〈g(x∗), x̄− x∗〉+ L2

2µ · ‖x̄− x∗‖2.

Since 〈g(x∗), x̄− x∗〉+ µ
2 · ‖x∗ − x̄‖2

(2.4)

≤ f(x̄), we obtain the middle part of (2.11). 2
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Note that the problem (2.2) can be solved by a standard gradient-type method:

x0 = x̄ ∈ Q,

xk+1 = πQ(xk − λB−1g(xk)), k ≥ 0.
(2.12)

However, it is well known that this method converges very slowly. For the reader conve-

nience, let us estimate its rate of convergence. Since x∗
(2.2)
= πQ(x∗−λB−1g(x∗)), choosing

the optimal step λ = µ
L2 , we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − λB−1g(xk)− (x∗ − λB−1g(x∗))‖2

= ‖xk − x∗‖2 − 2λ〈g(xk)− g(x∗), xk − x∗〉+ λ2‖g(xk)− g(x∗)‖2∗

(2.1),(2.9)

≤ (
1− 2λµ + λ2L2

) · ‖xk − x∗‖2 ≤ ‖xk − x∗‖2 · exp
{
− k

γ2

}
.

For big values of the condition number, this estimate is much worse than (2.11). Note that
the rate of convergence (2.11) cannot be improved by any black-box method as applied
to the problem class (2.1), (2.9) (see [10]). At the same time, from the viewpoint of
implementation, the method (2.10) is comparable with (2.12): at each iteration, it needs
two projections and two computations of the operator instead of one in (2.12).

3 Quasi-variational inequalities

Let Q : E → 2E be a multifunction with nonempty closed and convex values. We are
interested in the following quasi-variational inequality problem (QVI):

Find x∗ ∈ Q(x∗) : 〈g(x∗), y − x∗〉 ≥ 0, ∀y ∈ Q(x∗). (3.1)

For the reader convenience we recall the following existence result (see [16], Theorem 9).

Theorem 4 Suppose that the following assumptions hold:

(a) Operator g is Lipschitz continuous and strongly monotone on E with constants L
and µ > 0 respectively.

(b) There exists α < 1

γ(γ+
√

γ2−1)
such that

‖πQ(x)(z)− πQ(y)(z)‖ ≤ α‖x− y‖, ∀x, y, z ∈ E. (3.2)

Then the problem (3.1) has a unique solution.

We will get this result as a corollary of Theorem 5 justifying the rate of convergence of
the gradient method as applied to problem (3.1). Now we just mention that assumption
(3.2) is a kind of strengthening of the contraction property for multifunction Q(x). Let
us give an example of such a mapping.
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Lemma 2 Let function c(x) : E → E be Lipschitz continuous:

‖c(x)− c(y)‖ ≤ α‖x− y‖, x, y ∈ E.

And let Q̄ be a closed convex set. Then

Q(x) def= c(x) + Q̄

satisfies (3.2) with the same value of α.

Proof:
Indeed, for arbitrary x and z from E we have

πc(x)+Q̄(z) = c(x) + πQ̄(z − c(x))

Denote z1 = z − c(x), z2 = z − c(y). Since we project in Euclidean norm, we have

‖πc(x)+Q̄(z)− πc(y)+Q̄(z)‖2 = ‖c(x) + πQ̄(z − c(x))− c(y)− πQ̄(z − c(y))‖2

= ‖z2 − πQ̄(z2)− z1 + πQ̄(z1)‖2

= ‖z2 − z1‖2 − 2〈B(z2 − z1), πQ̄(z2)− πQ̄(z1)〉+ ‖πQ̄(z2)− πQ̄(z1)‖2.

Note that
〈B(z2 − z1), πQ̄(z2)− πQ̄(z1)〉 = 〈B(z2 − πQ̄(z2) + πQ̄(z2)− z1), πQ̄(z2)− πQ̄(z1)〉

(1.1)

≥ 〈B(πQ̄(z2)− πQ̄(z1) + πQ̄(z1)− z1), πQ̄(z2)− πQ̄(z1)〉
(1.1)

≥ ‖πQ̄(z2)− πQ̄(z1)‖2.

Hence, ‖πc(x)+Q̄(z)− πc(y)+Q̄(z)‖2 ≤ ‖z2 − z1‖2 ≤ α2‖x− y‖2. 2

Note that problem (3.1) can be solved by a standard gradient-type method:

xk+1 = πQ(xk)(xk − λB−1g(xk)), k ≥ 0. (3.3)

Let us estimate its rate of convergence.

‖xk+1 − x∗‖ = ‖πQ(xk)(xk − λB−1g(xk))− πQ(x∗)(x∗ − λB−1g(x∗))‖

= ‖πQ(xk)(xk − λB−1g(xk))− πQ(x∗)(xk − λB−1g(xk))

+πQ(x∗)(xk − λB−1g(xk))− πQ(x∗)(x∗ − λB−1g(x∗))‖

(3.2)

≤ α‖xk − x∗‖+ ‖πQ(x∗)(xk − λB−1g(xk))− πQ(x∗)(x∗ − λB−1g(x∗))‖.
Since g is strongly monotone and Lipschitz continuous, we have

‖πQ(x∗)(xk − λB−1g(xk))− πQ(x∗)(x∗ − λB−1g(x∗))‖2

≤ ‖(xk − λB−1g(xk))− (x∗ − λB−1g(x∗))‖2

= ‖xk − x∗‖2 − 2λ〈g(xk)− g(x∗), xk − x∗〉+ λ2‖g(xk)− g(x∗‖2

≤ (
1− 2λµ + λ2L2

) ‖xk − x∗‖2.
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Thus, we have proved the following theorem.

Theorem 5 If operator g is strongly monotone and Lipschitz continuous with constants
L and µ, and multifunction Q(x) satisfies condition (3.2) with α < 1

γ(γ+
√

γ2−1)
, then the

gradient method (3.3) with optimal stepsize λ = µ
L2 converges to the unique solution of

problem (3.1) with the following rate:

‖xk − x∗‖ ≤ exp
{
−k ·

(
1

γ(γ+
√

γ2−1)
− α

)}
· ‖x0 − x∗‖. (3.4)

Thus, we have seen that quasivariational inequality (3.1) is solvable by the gradient
scheme (3.3) only if the variation rate of the feasible set Q(x) is very small as compared
with inverse condition number of the operator g:

α < 1

γ(γ+
√

γ2−1)
≈ 1

2γ2 . (3.5)

In the next section we will see that this limitation can be significantly weakened.

4 Relaxation operator for QVI

For problem (3.1), let us introduce the relaxation operator T (x) def= x∗(Q(x)). In the case
of strongly monotone operator g, operator T (x) is fully defined by the following relations:

T (x) ∈ Q(x),

〈g(T (x)), y − T (x)〉 ≥ 0 ∀y ∈ Q(x).
(4.1)

Clearly, the solution of problem (3.1) is a fixed point of this operator:

x∗ = T (x∗).

It appears that under our standard conditions operator T (x) is Lipschitz continuous.

Theorem 6 Suppose that operator g is Lipschitz continuous and strongly monotone with
constants L and µ > 0 respectively. Assume that there exists some α ≥ 0 such that

‖πQ(x)(z)− πQ(y)(z)‖ ≤ α‖x− y‖, ∀x, y, z ∈ E. (4.2)

Then T (x) is Lipschitz continuous with constant αγ, where γ = L/µ.

Proof:
Let us fix two arbitrary points x1, x2 ∈ E. Denote

Ti = T (xi), gi = g(Ti), Qi = Q(xi), i = 1, 2.

Let us fix some λ > 0. By definition,

T1
(1.1),(4.1)

= πQ1(T1 − λB−1g1).
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Denote y2 = πQ2(T1 − λB−1g1). By condition (4.2), we have

‖y2 − T1‖ ≤ α‖x1 − x2‖. (4.3)

On the other hand, 〈B(y2 − (T1 − λB−1g1)), T2 − y2〉
(1.1)

≥ 0. Therefore,

〈B(y2 − T1), T2 − y2〉 ≥ λ〈g1, y2 − T2〉 = λ〈g1, y2 − T1〉+ λ〈g1, T1 − T2〉

(2.1)

≥ λ〈g1, y2 − T1〉+ λ〈g2, T1 − T2〉+ λµ‖T1 − T2‖2

(4.1)

≥ λ〈g1 − g2, y2 − T1〉+ λµ‖T1 − T2‖2.

Thus,
λµ‖T1 − T2‖2 ≤ λ〈g1 − g2, T1 − y2〉+ 〈B(y2 − T1), T2 − y2〉

≤ λ〈g1 − g2, T1 − y2〉+ 〈B(y2 − T1), T2 − T1〉

(2.9)

≤ (1 + λL) · ‖T1 − T2‖ · ‖y2 − T1‖.
Since λ can be chosen arbitrarily large, from (4.3) we obtain ‖T1−T2‖ ≤ αL

µ ‖x1−x2‖. 2

As a byproduct of our considerations, we get the following existence result.

Corollary 2 If α < γ−1, then there exists a unique solution to problem (3.1).

Proof:
Indeed, under conditions of the corollary, T (x) is a contraction. 2

Note that the latter statement significantly strengthen the statement of Theorem 4.
Moreover, we can combine it with the technique presented in Section 2 and develop an
efficient numerical scheme for problem (3.1). Let us start with one auxiliary statement.
In what follows, we always assume that operator g is Lipschitz continuous and strongly
monotone with constants L and µ respectively.

Lemma 3 Let x∗(Q) be a solution for VI (2.2). For x̂ ∈ Q define x̄ = arg max
y∈Q

ψβ
x̂ (y)

with some β > 0. Then

µ‖x̂− x∗(Q)‖2 + β‖x̂− x̄‖2 ≤ (β + L) · ‖x̂− x∗(Q)‖ · ‖x̂− x̄‖. (4.4)

Therefore
µ

β+L · ‖x̂− x∗(Q)‖ ≤ ‖x̂− x̄‖ ≤ β+L
β · ‖x̂− x∗(Q)‖. (4.5)

Moreover,
f(x̄) ≤ β2+L2

2µ ‖x̂− x̄‖2 ≤ (β2+L2)·(β+L)2

2µβ2 ‖x̂− x∗(Q)‖2. (4.6)
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Proof:
By definition,

〈g(x̂) + βB(x̄− x̂), y − x̄〉 ≥ 0 ∀y ∈ Q. (4.7)

Therefore,

β〈B(x̄− x̂), x∗(Q)− x̄〉 ≥ 〈g(x̂), x̄− x∗(Q)〉

= 〈g(x̂), x̄− x̂〉+ 〈g(x̂), x̂− x∗(Q)〉

(2.1)

≥ 〈g(x̂), x̄− x̂〉+ 〈g(x∗(Q)), x̂− x∗(Q)〉+ µ‖x̂− x∗(Q)‖2

(2.2)

≥ 〈g(x̂)− g(x∗(Q)), x̄− x̂〉+ µ‖x̂− x∗(Q)‖2

Hence,

µ‖x̂− x∗(Q)‖2 + β‖x̂− x̄‖2 ≤ β〈B(x̄− x̂), x∗(Q)− x̂〉+ 〈g(x̂)− g(x∗(Q)), x̂− x̄〉

(2.9)

≤ (β + L) · ‖x̂− x∗(Q)‖ · ‖x̂− x̄‖,

and (4.5) follows.
Further,

f(x̄) = max
y∈Q

{〈g(y), x̄− y〉+ 1
2µ‖y − x̄‖2}

(2.1)

≤ max
y∈Q

{〈g(x̄), x̄− y〉 − 1
2µ‖y − x̄‖2}

(4.7)

≤ max
y∈Q

{〈g(x̄)− g(x̂)− βB(x̄− x̂), x̄− y〉 − 1
2µ‖y − x̄‖2}.

Since g is monotone,

‖g(x̄)− g(x̂)− βB(x̄− x̂)‖2 = ‖g(x̄)− g(x̂)‖2 − 2β〈g(x̄)− g(x̂), x̄− x̂〉+ ‖x̄− x̂‖2

(2.9)

≤ (L2 + β2)‖x̄− x̂‖2.

Hence, f(x̄) ≤ β2+L2

2µ ‖x̂ − x̄‖2, and the remaining inequality follows from the second
inequality in (4.5). 2

Let us present a modified version of method (2.10). The main difference with the
original consists in a preliminary damping step in the spirit of [14]. This allows to obtain
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the efficiency estimates of the new scheme entirely in terms of distances to the solution.

Fixed-length method for strongly monotone VI

Input : Fix the number of steps N ≥ 1 and choose x̂ ∈ Q.
Set λ0 = 1, and y0 = x̄

def= arg max
x∈Q

ψL
x̂ (x).

For k = 0 to N − 1 do:

xk = arg max
x∈Q

Ψk(x),

yk+1 = arg max
x∈Q

ψL
xk

(x),

λk+1 = 1
γ · Sk.

Output : ỹN (Q, x̂) def= 1
SN

N∑
i=0

λiyi.

(4.8)

Theorem 7 Assume that the operator g satisfies conditions (2.1), (2.9). Then the me-
thod (4.8) as applied to VI-problem (2.2) converges as follows:

‖ỹN (Q, x̂)− x∗(Q)‖ ≤ 3γ exp
{
− N

2(γ+1)

}
· ‖x̂− x∗(Q)‖, N ≥ 1. (4.9)

Proof:
Indeed,

‖ỹN (Q, x̂)− x∗(Q)‖2
(2.11)

≤ 2
µ

[
f(x̄) + µ·(γ2−1)

2 · ‖x̄− x∗(Q)‖2
]
· exp

{
− N

γ+1

}

(4.6)

≤ 2
µ

[
4L2

µ + µ·(γ2−1)
2

]
· exp

{
− N

γ+1

}
· ‖x̂− x∗(Q)‖2

≤ 9γ2 exp
{
− N

γ+1

}
· ‖x̂− x∗(Q)‖2. 2

Let us discuss an efficient numerical strategy for solving a slowly changing QVI. The
complexity of this problem depends on the condition number γ = L

µ of the operator g and
on contraction gap

δ
def= 1− αγ, (4.10)

which we assume to be positive. If the rate of variation α of the sets Q(x) is very small,
then the gap can be close to one. For example, for QVI solvable by the gradient method
(3.3), this gap is at least 1

2 (see (3.5)).
Taking into account the estimate (4.9), let us define the minimal number of steps

N̂ = N(α, γ), satisfying condition

3γ exp
{
− N̂

2(γ+1)

}
≤ δ

4 ⇒ N̂ = b2(γ + 1) ln 12γ
1−αγ c+ 1. (4.11)
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Consider the following two-level numerical scheme:

Choose u0 ∈ E. For k ≥ 0 iterate:

x̂k = πQ(uk)(uk), uk+1 = ỹN̂ (Q(uk), x̂k).
(4.12)

Theorem 8 Assume that δ > 0. Then there exists a unique solution x∗ to QVI (3.1),
and method (4.12) converges as follows:

‖uk − x∗‖ ≤ 1
δ · exp

{
− δ

2k
}
· ‖u0 − T (u0)‖. (4.13)

Proof:
Denote rk = ‖uk − T (uk)‖. Note that

‖uk+1 − T (uk)‖
(4.9)

≤ δ
4 · ‖x̂k − T (uk)‖

(4.12)

≤ δ
4 · ‖uk − T (uk)‖,

‖T (uk+1)− T (uk)‖
T.6≤ αγ · ‖uk+1 − uk‖.

Therefore

rk+1 ≤ ‖uk+1 − T (uk)‖+ ‖T (uk+1)− T (uk)‖ ≤ δ
4 · rk + αγ · ‖uk+1 − uk‖

≤
(
αγ + δ

4

)
· rk + αγ · ‖uk+1 − T (uk)‖ ≤

(
1− δ

2

)
· rk.

Thus, rk ≤ exp
{
− δ

2k
}
· r0. On the other hand,

rk = ‖uk − T (uk)‖ ≥ ‖uk − x∗‖ − ‖T (x∗)− T (uk)‖
T.6≥ δ · ‖uk − x∗‖. 2

Corollary 3 In order to get a point uk with ‖uk − x∗‖ ≤ ε, method (4.12) needs at most

4(γ+1)
1−αγ · ln 12γ

1−αγ · ln ‖u0−T (u0)‖
ε·(1−αγ) (4.14)

computations of operator g(x).

It is easy to see that this estimate is much better than the corresponding result for
the gradient method (3.3).
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