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Abstract
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financial equilibrium problem when budget constraints are implicitly
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1 Introduction

We are concerned with investigating the time-dependent multi-agent port-
folio optimization problem formulated in terms of an infinite-dimensional
quasi-variational inequality. The problem of portfolio optimization, since
the seminal works by Markowitz (1952, 1959), has been extensively stud-
ied. Recently, it has been shown that the variational inequality theory may
be fruitfully exploited in order to describe and solve such a problem. Thus,
valuable results in both the formulation and the computation of competitive
financial equilibria have been achieved. In particular, the static multi-agent
and multi-activity financial equilibrium model was thoroughly examined by
Nagurney et al. (1992), Nagurney (1992, 1993), and Nagurney and Dong
(2002), who showed that the equilibrium may be characterized as the solu-
tion of an appropriate finite-dimensional variational inequality. The time-
dependent model was discussed in Daniele (2003, 2005), and Daniele at
el. (2005), where the equivalence with an infinite-dimensional variational
inequality problem was proved.

It is by now well-known that several problems are characterized by quasi-
equilibria so that they may be formulated as quasi-variational inequalities
(see Mosco (1976), Chan and Pang (1982), Baiocchi and Capelo (1984),
Harker and Pang (1990), Harker (1991), Yao (1991), and Scrimali (2004)
for a survey on theoretical and applicative aspects). Since the early seven-
ties, when quasi-variational inequalities were introduced by Bensoussan et
al. (1973) in the context of impulse control, their applications in numer-
ous different areas were studied and, particularly, in economics and finance.
The reader interested in some economics problems may, for instance, refer to
Pang and Fukushima (2005), who, exploiting the connection between gen-
eralized Nash equilibria and quasi-variational inequalities, discussed some
oligopolistic electricity models. For financial applications, we refer, among
the others, to Korn (1998), who examined the portfolio optimization with
transaction costs and suggested an impulse control approach.

Our aim is to deal with the time-dependent financial equilibrium prob-
lem in the most general case of non quadratic utility functions. The simplest
financial model is described by the mean value and the variance surrounding
the mean, which, in turn, reflects the agent’s risk assessment. Therefore, the
criteria underlying the behavioral choices of investors are given, on the one
hand, by the maximization of the profit and, on the other, by the minimiza-
tion of the risk associated with the portfolio selection. However, many prac-
tical situations can not be completely described by mean and variance and
thus the mean-variance model fails to represent the portfolio choice model.
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For this reason, as also suggested by Yao (1991) and Nagurney (1992) for
Euclidean spaces and, subsequently, by Daniele (2005) for Hilbert spaces we
were prompted to study a model which involves a more general operator.

The novelty of our viewpoint lies in the fact that we do not take into
consideration agents’ utility as a potential whose gradient represents the
operator of the quasi-variational inequality expressing the financial problem.
In fact, we directly focus on an operator which reflects the maximization
goal of agents, and only require monotonicity assumptions. Clearly, it is
possible to convert our general model to the model with gradient known in
the literature. However, the main advantage of our new perspective is that it
enables us to state clearly the equilibrium conditions underlying the model.
In other words, the equilibrium conditions which govern the trend of the
market are not deduced as in Nagurney et al. (1992), Daniele (2003, 2005),
and Daniele et al. (2005) by having recourse to the Lagrangian theory, but
are achieved in a simpler and more direct way.

Moreover, we assume that wealth is not fixed, as often appears in the
literature, but fluctuates as activity prices change. As a consequence, budget
constraints of agents are implicitly defined and depend on the equilibrium
activity price itself. Therefore, the resulting problem is formulated as an
infinite-dimensional quasi-variational inequality.

The paper is organized as follows. After introducing the model and the
optimality conditions, we prove the equivalence of the financial equilibrium
with a solution to an opportune quasi-variational inequality. We then pro-
vide a theorem for the existence of solutions which is of independent interest,
as it can be applied to numerous quasi-variational inequality problems.

2 The portfolio selection model and the equilib-

rium conditions

We start with defining the financial structure of the model. We consider
an economy with a set I = {1, . . . ,m} of agents and a set J = {1, . . . , n}
of activities. The typical agent is denoted by i and the typical activity by
j. Agents may operate financial transfers of wealth during the time interval
[0, T ], investing in the activities that can be held as assets or liabilities. For
technical reasons the functional setting of our model is the Hilbert space
of the real square-integrable functions defined on the closed interval [0, T ].
On the lines of the notations introduced by Nagurney et al. (1992), we
assume that xi

j(t) represents the amount of assets associated with activity

j in the portfolio of the ith agent and yi
j(t) denotes the amount of liabilities
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associated with activity j in the portfolio of the ith agent. To the end of
simplifying notations, we group the assets into the column vector

xi(t) = (xi
1(t), . . . , x

i
n(t))T ∈ L2(0, T ; Rn),

and the liabilities into the column vector

yi(t) = (yi
1(t), . . . , y

i
n(t))T ∈ L2(0, T ; Rn).

We further group the assets xi(t) into the matrix

x(t) = ((x1(t))T , . . . , (xm(t))T )T ∈ L2(0, T ; Rmn),

and, analogously, we introduce the matrix of liabilities

y(t) = ((y1(t))T , . . . , (ym(t))T )T ∈ L2(0, T ; Rmn).

Let us also suppose that some lower and upper bounds to the investments
held by the agents as both assets and liabilities are imposed. This is a
reasonable assumption since agents naturally try to control their expenses
as well as expected returns, forcing themselves not to invest less than a
minimum quantity and more than a fixed maximum one.

Hence, for each agent i, we introduce the functions xi(t), xi(t), yi(t),
yi(t) ∈ L2(0, T ; Rn), 0 ≤ xi(t) ≤ xi(t), 0 ≤ yi(t) ≤ yi(t), a.e. t ∈ [0, T ],
i = 1, . . . ,m.

Let p(t) = (p1(t), . . . , pn(t))T ∈ L2(0, T ; Rn) be the per-unit market
price vector of the activities, which is assumed to be exogenous to the
individual agent optimization problem. We also suppose that there is a
fixed minimum activity price p(t) ∈ L2(0, T ; Rn) and a fixed maximum one
p(t) ∈ L2(0, T ; Rn). Bounds imposed to prices deserve attention. In fact, if
we refer to assets, it means that a minimum profit is guaranteed and, at the
same time, a fixed maximum price value can not be exceeded. In addition,
agents are led to incur in a minimum amount of liabilities, but it is not ad-
missible to go beyond the fixed maximum price (see equilibrium condition
(3)).

As we assume that there is free disposal, it results that p(t) ≥ 0 a.e.
t ∈ [0, T ]. Let si(t, p(t)) : [0, T ] × L2(0, T ; Rn) denote the total wealth
available for the ith agent, which depends on time as well as on the activity
price vector p(t).

Let us consider the set

E =
{

(x(t), y(t), p(t)) ∈ L2(0, T ; R2mn+n) : xi
j(t) ≤ xi

j(t) ≤ xi
j(t),

yi

j
(t) ≤ yi

j(t) ≤ yi
j(t), p

j
(t) ≤ pj(t) ≤ pj(t),

i = 1, . . . ,m, j = 1, . . . , n, a.e. t ∈ [0, T ]
}

.
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It is easy to verify that E is a convex, bounded and closed subset of L2(0, T ; R2mn+n).
Let K : E → 2E be the following set-valued map

K(p) =

{[

x(t)
y(t)
p(t)

]

∈ E :

n
∑

j=1

ϕijx
i
j(t) = si(t, p(t)),

n
∑

j=1

ϕijy
i
j(t) = si(t, p(t)), i = 1, . . . ,m,

j = 1, . . . , n, a.e. t ∈ [0, T ]

}

,

where ϕij is such that ϕij is 1 if the ith agent invests in activity j and 0
otherwise.

We observe that conditions
n
∑

j=1

ϕijx
i
j(t) = si(t, p(t)),

n
∑

j=1

ϕijy
i
j(t) = si(t, p(t)),

which depend on price, represent the implicit budget constraints of agents.
Thus, wealth is supposed to be subject to the trend of activity prices eval-
uated by agents, who change their investment strategy according to the
greater or less possibility of profit.

In view of presenting a general financial equilibrium problem, without
involving agent utility functions and their gradients explicitly (as in Nagur-
ney et al. (1992), Daniele (2003, 2005), and Daniele et al. (2005)), we
introduce, ∀i = 1, . . . ,m, the following functions

U i(t, xi(t), yi(t), p(t)) = ui(t, xi(t), yi(t)) − p(t),

V i(t, x(t)i, yi(t), p(t)) = vi(t, xi(t), yi(t)) + p(t),

where ui(t, xi(t), yi(t)), defined on [0, T ] ×L2(0, T ; R2n), is measurable in t,
continuous and monotone in xi, whereas vi(t, xi(t), yi(t)), defined on [0, T ]×
L2(0, T ; R2n), is measurable in t, continuous and monotone in yi.

We group U i(t, xi(t), yi(t), p(t)) into the vector

U(t, x(t), y(t), p(t)) = (U1(t, x1(t), y1(t), p(t)), . . . , Um(t, xm(t), ym(t), p(t)))T ,

and V i(t, xi(t), yi(t), p(t)) into the vector

V (t, x(t), y(t), p(t)) = (V 1(t, x1(t), y1(t), p(t)), . . . , V m(t, xm(t), ym(t), p(t)))T .
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Remark 1 The advantage of our approach is that it allows us to see the
mappings describing the financial model under a new perspective, so that we
can directly state the equilibrium conditions, without applying the Lagrangian
theory. The relationship with the model with gradient known in the literature
is immediate. In fact, let us introduce the utility functions

Ωi(t, xi(t), yi(t), p(t)) = ωi(t, xi(t), yi(t)) + p(t)(xi(t) − yi(t)),

where ωi(t, xi(t), yi(t)) is defined on [0, T ] × L2(0, T ; R2n), measurable in t,
concave and continuous differentiable with respect to xi and yi. Then it
results

ui(t, xi(t), yi(t)) = −∇xiωi(t, xi(t), yi(t)),

vi(t, xi(t), yi(t)) = −∇yiωi(t, xi(t), yi(t)),

and hence

U i(t, xi(t), yi(t), p(t)) = −∇xiΩi(t, xi(t), yi(t), p(t)),

V i(t, xi(t), yi(t), p(t)) = −∇yiΩi(t, xi(t), yi(t), p(t)).

Example In the quadratic utility function model, denoted by Qi(t) =
(

Qi
11(t) Qi

12(t)
Qi

21(t) Qi
22(t)

)

the 2n × 2n symmetric and positive definite variance-

covariance matrix with entries in L∞(0, T ), it results that

ui(t, xi(t), yi(t)) = −2[Qi
11(t)]

T
j xi(t) − 2[Qi

21(t)]
T
j yi(t),

vi(t, xi(t), yi(t)) = −2[Qi
12(t)]

T
j xi(t) − 2[Qi

22(t)]
T
j yi(t).

Now we are ready to define the equilibrium concept which governs the
trend of the market.

Definition 1 A vector (x∗(t), y∗(t), p∗(t)) ∈ L2(0, T ; R2mn+n) is a finan-
cial equilibrium if and only if (x∗(t), y∗(t), p∗(t)) ∈ K(p∗) and the following
conditions are satisfied a.e. in [0, T ]

ui(t, x∗i(t), y∗i(t)) − p∗j(t)







≥ 0 if x∗i(t) = xi(t)
= 0 if xi(t) < x∗i(t) < xi(t)
≤ 0 if x∗i(t) = xi(t),

(1)
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vi(t, x∗i(t), y∗i(t)) + p∗j(t)







≥ 0 if y∗i(t) = yi
j
(t)

= 0 if yi(t) < y∗i(t) < yi(t)

≤ 0 if y∗i(t) = yi(t),

(2)

m
∑

i=1

(x∗i
j (t) − y∗ij (t))











≥ 0 if p∗j(t) = p
j
(t)

= 0 if p
j
(t) < p∗j(t) < pj(t)

≤ 0 if p∗j(t) = pj(t),

(3)

∀i = 1, . . . ,m, ∀j = 1, . . . , n.

It is worth noting that (3) is nothing but the price equilibrium condition
which regulates the activity market. Specifically, if the price of an activity is
minimum, then there may be an excess supply of that activity or the market
may clear. If the price of an activity is greater than the minimum and less
than the maximum, then the market must clear for that activity. Finally, if
the price of an activity reaches the maximum, then there may be an excess
demand of that activity or the market may clear.

3 The quasi-variational inequality formulation

In this section we provide a characterization of the equilibrium vector as a
solution to a suitable quasi-variational inequality. To this end, we introduce
the operator F : [0, T ] × L2(0, T ; R2mn+n) → L2(0, T ; R2mn+n)

F (t,X(t)) =

















F1(t,X(t))
...

F2mn+1(t,X(t))
...

F2mn+n(t,X(t))

















=















U(t, x(t), y(t), p(t))
V (t, x(t), y(t), p(t))
∑m

i=1(x
i
1(t) − yi

1(t))
...

∑m
i=1(x

i
n(t) − yi

n(t))















(2mn+n)×1

,

where X(t) = (x(t), y(t), p(t))T .

Remark 2 For the sake of generality, we change our notations as follows

K(p∗) = K(X∗) and s(t, p∗(t)) = s(t,X∗(t)).

Thus, the quasi-variational inequality associated with the financial equi-
librium problem with implicit budget constraints is given by

X∗(t) ∈ K(X∗) :

∫ T

0
〈F (t,X∗(t)),X(t) − X∗(t)〉dt ≥ 0,∀X(t) ∈ K(X∗),

(4)
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or equivalently

∫ T

0

{

m
∑

i=1

U i(t, x∗i(t), y∗i(t), p∗(t)) × (xi(t) − x∗i(t))

+

m
∑

i=1

V i(t, x∗i(t), y∗i(t), p∗(t)) × (yi(t) − y∗i(t))

+
n
∑

j=1

(

m
∑

i=1

(xi∗
j (t) − yi∗

j (t))
)

× (pj(t) − p∗j(t))
}

dt ≥ 0,

∀(x(t), y(t), p(t)) ∈ K(X∗).

The subsequent result shows the equivalence of the equilibrium vector with
a solution to (4).

Theorem 1 A vector (x∗(t), y∗(t), p∗(t)) ∈ K(X∗) is a financial equilibrium
if and only if it solves quasi-variational inequality (4).

Proof. First we suppose that (x∗(t), y∗(t), p∗(t)) is an equilibrium vector
and show that

U i(t, x∗i(t), y∗i(t), p∗(t)) × (xi(t) − x∗i(t)) ≥ 0, (5)

∀xi(t) and ∀i = 1, . . . ,m.
Three situations may occur:

1. x∗i(t) = xi(t), ∀i = 1, . . . ,m, a.e. t ∈ [0, T ].

According to (1), it follows that U i(t, x∗i(t), y∗i(t), p∗(t)) ≥ 0 and
xi(t) − x∗i(t) ≥ 0, hence (5) is verified.

2. xi(t) ≤ x∗i(t) ≤ xi(t), ∀i = 1, . . . ,m, a.e. t ∈ [0, T ].

By (1), it results that U i(t, x∗i(t), y∗i(t), p∗(t)) = 0.

3. x∗i(t) = xi(t), ∀i = 1, . . . ,m, a.e. t ∈ [0, T ].

In this case, again by the equilibrium conditions, we have that the
factors are non positive, thus relationship (5) is proved.

Analogously, involving (2) and (3), respectively, we prove that

V i(t, x∗i(t), y∗i(t), p∗(t)) × (yi(t) − y∗i(t)) ≥ 0,
m
∑

i=1

(x∗i
j (t) − y∗ij (t)) × (pj(t) − p∗j(t)) ≥ 0.
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Conversely, we suppose that the quasi-variational inequality is verified and
prove that equilibrium conditions (1), (2), (3) hold.

Let us fix i ∈ {1, . . . ,m} and suppose that p(t) = p∗(t), y(t) = y∗(t) and
xq(t) = x∗q(t), ∀q 6= i. Therefore quasi-variational inequality (4) becomes

∫ T

0
U i(t, x∗i(t), y∗i(t), p∗(t)) × (xi(t) − x∗i(t))dt

=

∫ T

0
(ui(t, x∗i(t), y∗i(t)) − p∗(t)) × (xi(t) − x∗i(t))dt ≥ 0.

In order to prove condition (1), we consider the following cases:

1. We assume that x∗i(t) = xi(t) a.e. t ∈ [0, T ] and show that

ui(t, x∗i(t), y∗i(t)) − p∗(t) ≥ 0.

We argue by contradiction and suppose that there exists a set of pos-
itive measure G ⊂ [0, T ] so that ui(t, x∗i(t), y∗i(t)) − p∗(t) < 0 a.e.
t ∈ G. Let us choose xi(t) as follows

xi(t)

{

> xi(t) if t ∈ G

= x∗i(t) if t ∈ [0, T ] \ G,

then we have
∫ T

0
(ui(t, x∗i(t), y∗i(t)) − p∗(t)) × (xi(t) − x∗i(t))dt

=

∫

G

(ui(t, x∗i(t), y∗i(t)) − p∗(t)) × (xi(t) − xi(t))dt < 0.

2. We suppose that x∗i(t) = xi(t) a.e. t ∈ [0, T ] and prove that

ui(t, x∗i(t), y∗i(t)) − p∗(t) < 0.

We argue by contradiction and consider a set of positive measure G ⊂
[0, T ] so that ui(t, x∗i(t), y∗i(t)) − p∗(t) > 0 a.e. t ∈ G. By choosing
xi(t) as follows

xi(t)

{

< xi
j(t) if t ∈ G

= x∗i(t) if t ∈ [0, T ] \ G,

it results that
∫ T

0
(ui(t, x∗i(t), y∗i(t)) − p∗(t)) × (xi(t) − x∗i(t))dt

=

∫

G

(ui(t, x∗i(t), y∗i(t)) − p∗(t)) × (xi(t) − xi(t))dt < 0.
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3. Finally, if we suppose that xi(t) < x∗i(t) < xi(t) a.e. t ∈ [0, T ], by
using the same technique as in the previous cases, it can be easily
proved that ui(t, x∗i(t), y∗i(t)) − p∗(t) can not be either positive or
negative on any set of positive measure.

Equilibrium conditions (2) and (3) may be analogously deduced. �

The most general case in which, for each agent i, equilibrium solutions
do not have the same behavior during the whole time interval, but take
different values in different subsets of [0, T ] with positive measures, can be
equally examined. It suffices to consider a partition of the interval [0, T ] and
combine together the above three cases.

4 An existence result

Before showing our result, for reader’s convenience, we recall the following
theorem adapted to our case (see Tan (1985)), which will be useful to prove
our main achievement (see also De Luca (1997)).

Theorem 2 Let Y be a topological linear locally convex Hausdorff space and
let E ⊂ Y be a convex, compact and nonempty subset. Let F : E → Y ′ be a
continuous function and let K : E → 2E be a closed lower semicontinuous
set-valued map with K(X),X ∈ E convex, compact and nonempty. Then,
there exists X∗ ∈ K(X∗)

〈F (X∗),X − X∗〉 ≥ 0, ∀X ∈ K(X∗).

Now we are able to prove the following result.

Theorem 3 Let us assume that the functions

F : [0, T ] × R
2mn+n → R

2mn+n

s : [0, T ] × R
2mn+n → R

m

satisfy the following conditions

a) F (t, v) is measurable in t ∀v ∈ R
2mn+n, continuous in v for t a.e. in

[0, T ],
∃γ ∈ L2(0, T ) : |F (t, v)| ≤ γ(t) + |v|;

b) s(t, v) is measurable in t ∀v ∈ R
2mn+n, continuous in v for t a.e. in

[0, T ],
∃ξ ∈ L2(0, T ) : |s(t, v)| ≤ ξ(t) + |v|;
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c) ∃ν ∈ L2(0, T ), ν(t) ≥ 0 a.e. t ∈ [0, T ]:

|s(t, v1) − s(t, v2)| ≤ ν(t)|v1 − v2|, ∀v1, v2 ∈ R
2mn+n;

d) F (t, v) is convex in v for t a.e. in [0, T ] and upper semicontinuous
with respect to the weak topology in v ∈ E for t a.e. in [0, T ];

e) s(t, v) is convex in v for t a.e. in [0, T ] and upper semicontinuous with
respect to the weak topology in v ∈ E for t a.e. in [0, T ].

Then the quasi-variational inequality problem (4) admits a solution.

Proof. We proceed using arguments of weak topology. First we observe
that under hypotheses a), b) and since X∗(t) ∈ L2(0, T ; R2mn+n), it results
that

F (t,X∗(t)) ∈ L2(0, T ; R2mn+n) and s(t,X∗(t)) ∈ L2(0, T ; Rn).

Moreover, by a) and b) it follows F and s belong to the class of Nemytskii
operators, therefore if {X∗k} stronly converges to X∗ in L2, then

‖F (t,X∗k(t)) − F (t,X∗(t))‖L2 → 0, ‖s(t,X∗k(t)) − s(t,X∗(t))‖L2 → 0,

and the functions F and s are continuous in L2 with respect to the strong
topology.

Now, in order to prove that K is a weakly closed set-valued map, we
show that it is strongly closed, i.e.

∀{X∗k} −→L
2

X∗, ∀{Xk} −→L
2

X with Xk ∈ K(X∗k) ∀k ∈ N,

then X ∈ K(X∗).
Let {X∗k}, {Xk} two arbitrary strongly convergent sequences. Since

Xk ∈ K(X∗k), we have that

xi
j(t) ≤ xik

j (t) ≤ xi
j(t),

yi

j
(t) ≤ yik

j (t) ≤ yi
j(t),

p
j
(t) ≤ pk

j (t) ≤ pj(t),

∀i = 1, . . . ,m, j = 1, . . . , n,

a.e. t ∈ [0, T ],

10



and the convergence of the sequence {Xk} in L2 implies that even X satisfies
the bound constraints. Moreover, ∀i = 1, . . . ,m the following relationships
hold

n
∑

j=1

ϕijx
ik
j (t) = si(t,X∗k(t)), a.e. t ∈ [0, T ],

n
∑

j=1

ϕijy
ik
j (t) = si(t,X∗k(t)), a.e. t ∈ [0, T ].

The left-hand sides converge almost everywhere to
∑n

j=1 ϕijx
i
j(t) and

∑n
j=1 ϕijy

i
j(t) respectively. By applying c) it follows that

‖si(t,X∗k(t)) − si(t,X∗(t))‖L2 −→ 0,

and thus we conclude that X ∈ K(X∗). In addition, it is easy to show that
K(X) is a convex subset of E, ∀X ∈ E. Therefore, being K(X∗) convex
and strongly closed, it is also weakly closed.

In order to prove that K(X∗) is a lower semi-continuous set-valued map
with respect to the weak topology, we show that ∀{X∗k} weakly convergent
to X∗ (briefly {X∗k} ⇀ X∗), ∀X ∈ K(X∗) there exists {Xk} so that

{Xk} ⇀ X with Xk ∈ K(X∗k) ∀k ∈ N.

Let us consider an arbitrary sequence {X∗k} ⇀ X∗, X ∈ K(X∗) and fix
k ∈ N, t ∈ [0, T ]. For any i = 1, . . . ,m we introduce the following sets

Ai = {j ∈ {1, . . . , n} : ϕij = 1},

Bi(k, t) = {j ∈ Ai : si(t,X∗(t)) − si(t,X∗k(t)) ≤ 0},

Ci(k, t) = {j ∈ Ai : 0 < si(t,X∗(t)) − si(t,X∗k(t)) < xi
j(t) − xi

j(t)},

Di(k, t) = {j ∈ Ai : xi
j(t) − xi

j(t) ≤ si(t,X∗(t)) − si(t,X∗k(t))}.

Let us also construct the sequence Xk(t) = (xk(t), yk(t), pk(t)), such that

xik
j (t) =



















xi
j(t) if j ∈ Bi ∪ Di,

xi
j(t) −

si(t,X∗(t)) − si(t,X∗k(t))
∑

l∈Ci

ϕil

if j ∈ Ci,

yik
j (t) =



















yi
j(t) if j ∈ Bi ∪ Di,

yi
j(t) −

si(t,X∗(t)) − si(t,X∗k(t))
∑

l∈Ci

ϕil

if j ∈ Ci,
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and pk
j (t) = pj(t), j = 1, . . . , n.

If j ∈ Bi ∪ Di, then Xk(t) = X(t) and, since X ∈ K(X∗), then the
assertion is proved. If j ∈ Ci, it is easy to show that Xk(t) satisfies the
bound constraints.

Moreover,

n
∑

j=1

ϕijx
ik
j (t) =

∑

j∈Ai

ϕijx
ik
j (t) =

∑

j∈Bi∪Di

ϕijx
i
j(t)

+
∑

j∈Ci

ϕij

(

xi
j(t) −

si(t,X∗(t)) − si(t,X∗k(t))
∑

l∈Ci

ϕil

)

=
∑

j∈Ai

ϕijx
i
j(t) −

(

si(t,X∗(t)) − si(t,X∗k(t))
)

= si(t,X∗k(t)).

We proceed analogously for yi
j(t). As also budget balance is verified, we

deduce that Xk ∈ K(X∗k) ∀k ∈ N.
In order to prove that {Xk} weakly converges to X, we show that

∀f(t) ∈ L2(0, T ), lim
k→∞

∫ T

0
f(t)(Xk(t) − X(t))dt = 0.

Due to the construction of the sequence, we have

∣

∣

∣

∣

∣

∫ T

0
f(t)(xk(t) − x(t))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0
f(t)

m
∑

i=1

∑

j∈Ai

(xik
j (t) − xi

j(t))dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0
f(t)

m
∑

i=1

[

∑

j∈Bi∪Di

(xik
j (t) − xi

j(t)) +
∑

j∈Ci

(xik
j (t) − xi

j(t))
]

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0
f(t)

m
∑

i=1

∑

j∈Ci

(

si(t,X∗(t)) − si(t,X∗k(t))
∑

l∈Ci

ϕil

)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T

0
f(t)

m
∑

i=1

(

si(t,X∗k(t)) − si(t,X∗(t))

)

dt

∣

∣

∣

∣

∣

.

Now, on the one hand strong continuity and convexity of s imply weak
lower semicontinuity; on the other hand assumption e) ensures weak upper
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semicontinuity. Thus, s is continuous with respect to the weak topology and
the last expression of the above equality chain converges to zero. Proceeding
analogously for y(t), we obtain that Xk weakly converges to X. Moreover,
as E is convex, closed and bounded, it is weakly compact and hence K(X)
is also weakly compact for all X ∈ E. Finally, assumption d) and strong
continuity of F imply that F is weakly continuous. Thus, by Theorem 2 the
existence of at least one solution is ensured. �

5 Conclusion

In this paper, we introduced a time-dependent financial equilibrium model
in the presence of implicit budget constraints, multiple agents and different
activities that can be held as assets or liabilities. We first derived the equilib-
rium conditions without any recourse to the Lagrangian theory, then showed
the equivalence with an infinite-dimensional quasi-variational inequality. It
is worth noting that we were led to consider such a formulation since we
were interested in a time-dependent setting and assumed budget constraints
to be variable and dependent on the expected profit of investments.

We subsequently proved a theorem for the existence of solutions, which
is of independent interest and can be applied to all the quasi-variational
inequality problems cast in the form (4).

The model, which extends and improves other results in the literature,
may have several important applications in the study of the decision-making
process of agents and especially in order to obtain a more reliable market
analysis.
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