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Abstract

We consider mixed-integer sets of the type MIXTV = {x : Az > b; x; integer,i € I},
where A is a totally unimodular matrix, b is an arbitrary vector and I is a nonempty
subset of the column indices of A. We show that the problem of checking nonemptiness
of a set MIXTY is NP-complete when A contains at most two nonzeros per column.

This is in contrast to the case when A is TU and contains at most two nonzeros
per row. Denoting the set by MIX?"Y we provide an extended formulation for the
convex hull of MIX?"Y whose constraint matrix is the dual of a network matrix, and
with integer right hand side vector. The size of this formulation depends on the number
|F'| of distinct fractional parts taken by the continuous variables in the extreme points
of conv(MIX?TV). When this number is polynomial in the dimension of the matrix A,
the formulation is of polynomial size and the optimization problem over MIX?TU lies
in P. We show that there are instances for which |F| is of exponential size, and we also
give conditions under which |F| is of polynomial size. Finally we show that these results
for the set MIX?"Y provide a unified framework leading to polynomial-size extended
formulations for several generalizations of mixing sets and lot-sizing sets studied in the
last few years.
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1 Introduction
We study mixed-integer sets of the type
MIXTY = {z: Az > b; x; integer,i € I},

where A is a totally unimodular (TU, for short) matrix, b is a vector that typically contains
fractional components and I is a nonempty subset of the column indices of A. (Definitions
and properties of TU matrices can be found in [12].)

We show that the problem of checking nonemptiness of a set MIXTV is NP-complete,
even if A is a TU matrix with at most two nonzero entries per column and b is a half-integral
vector, i.e. 2b is integral. Let conv(MIX™Y) be the convex hull of the set MIXTY. This,
together with the equivalence between separation and optimization, shows that finding an
explicit inequality description of the polyhedron conv(MIX TU) will most likely be an elusive
task.

Let MIX?"U be the mixed-integer set MIXTY with the additional restriction that A is
a TU matrix with at most two nonzero entries per row. We provide an extended formulation
for the polyhedron conv(MIX?TV).

We use the following terminology. A formulation of a polyhedron P (in its original space)
is a description of P as the intersection of a finite number of half-spaces. So it consists of a
finite set of inequalities such that P = {z : Cx > d}. A formulation of P is extended whenever
it gives a polyhedral description of the type @ = {(x, 1) : Az + By > d} in a space that uses
variables (z, ) and includes the original x-space, so that P is the projection of @ onto the
x-space.

The extended formulation of the polyhedron conv(MIX2?"V) takes explicitly into account
all possible fractional parts taken by the continuous variables at the vertices of conv(MIX?TY).
If the number of these fractional parts is small, we show that this extended formulation is
compact. This shows that optimizing a linear function over sets MIX?TV that have this
property can be carried out efficiently through linear programming.

For a mixed-integer set M, define a formulation (which may be extended) of the polyhe-
dron conv(M) to be compact if the size of its system of inequalities is polynomial in the size
of the original description of M (which typically is given as the set of mixed-integer vectors
that satisfy a given system of linear inequalities).

We construct mixed-integer sets of the type MIX?TV for which the length of the list of
all fractional parts taken by the continuous variables at the vertices of conv(MIX?TV) is
exponential with respect to the size of the description of the set. On the other hand, we also
give conditions guaranteeing that the list of fractional parts is of polynomial size.

We then introduce invertible linear transformations that map mixed-integer vectors into
mixed-integer vectors and we show that a host of mixed-integer sets that have been inves-
tigated in the past decade can be mapped with these transformations into sets of the type
MIX?TVU with a small number of fractional parts taken by the continuous variables. There-
fore our result provides a general setting for the compact extended formulations of all these
mixed-integer sets.



2 Network matrices

We recall here some basic facts about the matrices that are the object of this study. The
following characterization is due to Heller and Tompkins [9], see e.g. Theorem 2.8 in [12].

Theorem 1 Let A be a 0, £1-matriz with at most two nonzero entries per row, where {a;,j €
N} is the set of columns of A. Then A is totally unimodular if and only if the set N can be
partitioned into two classes (R, B) such that all entries of the vector ZjeR a; — ZjeB aj are
0,+£1.

A 0, £1-matrix A with at most two nonzero entries per row is a dual network matrix if A
has the following property:

If a;j, a;, are both nonzero, then a;j = —a;y.

Dual network matrices are the transpose of network matrices, the constraint matrices of
circulation problems on a network. Theorem 1 has the following well-known consequence:

Corollary 2 Let A be a 0, £1-matriz with at most two nonzero entries per row, where {a;, j €
N} is the set of columns of A. Then A is totally unimodular if and only if N contains a subset
R such that the matriz A%, obtained by multiplying by —1 the columns aj,j € R, is a dual
network matriz.

Proof: Let (R, B) be a partition of the column indices of A satisfying the condition of Theo-
rem 1. Then A% is a dual network matrix. O

3 Complexity

Let XV = {2 : Az > b; x; integer, i € I}, where A is a network matrix, I is a nonempty
subset of the column indices of A and b is a vector such that 2b is integral. In this section we
show the following;:

Theorem 3 The problem of deciding the nonemptiness of a set X" is NP-complete.

Proof: Since A is a TU matrix and b is half-integral, then X7, if nonempty, contains a vector
whose length is polynomial in the length of the encoding of (A | b). So the above problem is
in NP.

Consider the set

YN = {y: Ay > V'; y integer; y; even,i € I},

where b’ = 2b. Remark that X% is nonempty if and only if XV contains a vector = such that
2z is integral. Therefore XV and YV are either both empty or both nonempty.

Since A is a network matrix, deciding the nonemptiness of YV includes the following
problem:

Detecting whether a network (having A as node-arc incidence matriz), with integer re-
quirements on the nodes and integer capacities on the arcs (corresponding to the values of V'),
admits an integral circulation with the additional condition that the value of the circulation
is even on some subset of arcs (indexed with I), defined to be special.



We reduce CNF-SAT to the above problem in a manner similar to that introduced by Even
et al. in the proof that the edge-disjoint paths problem is NP-hard, see [6] and [10, p. 432].
Given a CNF-SAT formula over the variables x1, ..., x,, consisting of clauses Z1, ..., Z,,, we
construct a network D = (V, A) having some special arcs as follows:

e The set V' of nodes of D consists of a source s, a sink ¢t and a node zj, 1 < j < m, that
represents the corresponding clause.

Every variable x; appearing in true or negated form in clauses Z;,, ..., Z;, is represented
« out min out
by a “value node” v; and nodes % 1 Tidgr Tiigs Tiger 1 < < p;.

Finally there is an additional value node v, 1.
e The arcs of D that are not special (unspecified capacities are unlimited) are:

— The arcs sa:” » ST,

1<i<n, 1 <0< p;.

— The arcs z;t, 1 < j < m, having capacity 1.

_ out out
The arcs z . riq, and zin Ty

1<i<n,1</<p;, having capacity 2.

— If variable z; occurs as a positive literal in clause Z;,, there is an arc :Ef%z i I

variable z; occurs as a negative literal in clause Z;,, there is an arc wf?ztz .

e The following are the arcs of D that are special and carry a flow of even value:

1,1
t

— The arcs vz and v;zy;, 1 <i<n.

— The arcs xou Vit and 777 UZ_H , 1 <i<n.

o out .in —out =in
The arcs x75, x%,  and 2777275, 1<i<n,1<{<p;

e The circulation requirements are:

— An in-flow of value m in the source s and an out-flow of value m in the sink ¢.

— An in-flow of value 2 at v; and an out-flow of value 2 at v, y1.

Figure 1 shows the network relative to the CNF-SAT formula (z1 V Z2) A (22 V x3).

U out in out .
For 1 < i < n, define the upper path P’ to be v;,z} “,xi’il, s X XY Vi and the
L ~out =in Tout
lower path P;” to be v;, ”1,:5”1,... it x”p Vig1-

Observe that the special arcs force any feasible circulation F to satisfy the following
conditions:

e For every 1 < i < n, the special arcs of one among PiU and PiL carry a flow of value 2,
and the special arcs of the other carry a flow of value 0.

out
7 ]7 z ] )
and the upper path PV is discharged (that is, 1ts spemal arcs carry a flow of value 0),

(2
or a flow of value 1 along a path of the type s,z!™, 9%, z;,t and the lower path PZ-L is

B30 Vi,
discharged.

e For every 1 < j < m, F carries a flow of value 1 along a path of the type s, 2" 2j,t

To any truth assignment T that satisfies the CNF-formula, we assign a flow value of 2
to PF if x; = true in T and a flow value of 2 to PV if 2; = false in T. For each clause

Z; we choose a literal x; or ; which is true under T". Say x; occurs as a positive literal in



Figure 1: The network corresponding to the CNF-SAT formula (z1 V Z2) A (22 V x3). Thick
arcs are special arcs. Numbers on arcs are capacities.



Zj; and x; = true in T. Then PiU is discharged and a flow of value 1 can be routed along
out

s,xﬁz,xi’j , Zj, t.
It is immediate to see that the converse also holds: to any feasible circulation, a truth
assignment that satisfies all clauses can be derived in the above manner. O

4 The main result

Let F ={f1 > fo >---> fr} be alist of fractional parts (that is, 0 < f, < 1 for 1 < ¢ < k),
K =1{1,...,k} be its set of indices and N = {1,...,n}. Let X7 be the set of points 2 € R"
such that there exist uf, 6%, i € N, ¢ € K, satisfying the following constraints:

wi =+ b e, i€N (1)
S 0i=1,8>0, icN/LeK (2)
z; — x5 > lij, (i,7) € N¢ (3)

x; > 1, ic N (4)

x; < uy, ie N (5)

' integer, &) integer, i€ N,/ € K, (6)

where N¢ C N x N and N!, N* C N. In other words, X7 is the projection onto the z-space of
the mixed-integer set (1)—(6). We remark that the above system may also include constraints
of the type x; — x; < w;j, as this inequality is equivalent to x; — x; > l;; for l;; = —u;;. In
this section we give an extended formulation for the polyhedron conv(X7).

Consider the following unimodular transformation:
. . . . Z .
po = 1, u22u1+25;-, i€ N,l€K. (7)
j=1

Define fo =1 and fr11 = 0. For fixed ¢ € N, an equation in (1) becomes:

k

zi =Y py(fe = fen) (8)

=0
and the k + 1 inequalities in (2) become:
o — 1o =1, pp—pp_y >0, L€K. 9)

Given a real number «, we denote with f(a) = a — |a] its fractional part.

4.1 Modeling z; > [; and x; < u;
Let ¢;, be the highest index ¢ € {0,...,k} such that f, > f(I;). Now if z;, &}, uj satisfy (1),
(2), (6), (7), then z; > I; if and only if

po, = i) + 1. (10)

Similarly if ¢,,, is the highest index such that f; > f(u;), then constraint z; < w; is satisfied
if and only if ‘
b, < L) (11)



4.2 Modeling T — Xy Z lij

Define k;; to be the highest index ¢ € {0,...,k} such that f; + f(l;;) > 1. Given an index
t € K, define k; to be the highest index £ € {0,...,k} such that f, > f(f; + f(li)).

Lemma 4 Assume x;, x;, 05, 55, 1, ,uZ satisfy (1), (2), (6), (7). Then x; — x; > l;j if and
only if the following set of inequalities is satisfied:
e, — il > Ll +1, 1<t <k (12)
Pho — 1] > L], ki <t <k (13)
Proof: Substituting for x; and x;, the inequality x; — x; > l;; becomes
P> fubh =+ fb) + L)+ )
=1 =1
First we show that the inequality is valid for ¢ > k;;. As D, fe0h < fr,+1 and Zlgzl fgég >

> o<t fg5§ > [t i< 55, we obtain the valid inequality

P by = i+ 6+ L) + i) = fr

1<kt <t

Adding the valid inequality (1 — fi) > (1= f) >y« 5@ gives

i+ Z feby+1—fe > + Z(ﬂ + [Lij] + f(lij) = frps1-

1<kt 1<t

As by definition f(l;;) + fi > fr,+1 and &, (5Z > 0 for all £ € K, Chvatal-Gomory rounding
gives
WY Gz Y6+ )
0<ky 1<t
My = 117 + [lij] -
The argument when t < k;; is the same, except that f(l;;) — fr,+1 + fr > 1.
To establish the converse, we consider the case in which (53 1. Then ,u{ = ,ug + 1,

i—y = pjy and

HO+Z — ) ) fo= )+ fie

Inequali‘ty ,u};t > u{ + |l;;] implies thatAeither ph > u‘g) + 1+ [l;] or that p = ué + |li;] and
> i<k, 0y = 1. This implies that x; > i + [li;] + fr,- Now, assuming t > k;j,

Ti—x; = Mé—i‘UijJ-l'fkt—Mg—ft
= ]+ fo, — Jt
[lij] + f(lis),

as fx, > f(fe + f(lij)) and f; + f(l;;) < 1. Again the other case with t < k;; is similar. O

v
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Let @7 be the polyhedron on the space of the variables {(z;,%),i € N,¢ € K U{0}}
defined by the inequalities

(8),(9), ie N
(10), i€ N!
(11), i€ N

(12), (13), (i,4) € N°.

Theorem 5 The polyhedron conv(X7”) is the projection onto the space of the x-variables of

the polyhedron Q7 .

Proof: Since, for i € N, variable z; is determined by the corresponding equation (8), we only
need to show that the polyhedron defined by inequalities

(9), ieN
(10), i€ N!
(11), i€ N¥

(12),(13), (i,4) € N°©.

is integral. Let A, be the constraint matrix of the above system. By construction A, is a dual
network matrix. Since dual network matrices are totally unimodular and the right-hand-sides
of the above inequalities are all integer, the statement follows from the theorem of Hoffman
and Kruskal. O

5 An extended formulation for conv(MIX?*TV)

Let X = {x : Ax > b; z; integer,i € I} be a mixed-integer set, where (A | b) is a rational
matrix and I is a nonempty subset of the column indices of A. A list F = {f1 > fa--- > fi}
of fractional parts is complete for X if the following property is satisfied:

Every minimal face F of conv(X) contains a point T such that
for each i € N, f(Z;) = f; for some fj € F and for each i € I, f(Z;) = 0. (14)
In our applications, minimal faces are vertices and the above condition becomes:
If z is a vertex of conv(X), then for each i € N, f(Z;) = f; for some f; € F.

Since I is nonempty, every complete list F must include the value 0, thus fi = 0.

We now consider a mixed-integer set MIXPYN = {x : Az > b; x; integer,i € I}, where
A is a dual network matrix. That is, the system Ax > b is constituted by inequalities of the
type (3)—(5). We assume that we are given a list F = {f; > fo--- > fr} which is complete
for MIXPN . In order to obtain an extended formulation for conv(MIXPN), we consider the
following mixed-integer set:

zi =+ fedl, i€N (15)
Sk 8i=1,6.>0, ieN/LeK (16)
5, =0, icl, teK\{k} (17)
z; — xj > lj, (i,j) € N°¢ (18)
x> 1, ic N (19)

x; < uy, ie N (20)

u' integer, &) integer, i€ N,/ € K, (21)



where inequalities (18)-(20) constitute the system Az > b.

Let MIX7 be the set of vectors x such that there exist p’, 8¢, i € N,l € K satisfying the
above constraints. Note that equations (17) force variables z;,7 € I to be integer valued in
MIX7T.

Lemma 6 conv(MIXPN) = conv(MIX7).

Proof: If # € MIX” then 7 satisfies the system Az > b (i.e. the inequalities (18)—(20)).
Furthermore equations (17) force z;,i € I to be integer. So z € MIXPN. This shows
MIX7 € MIXPY and therefore conv(MIX”) C conv(MIXPN).

To prove the reverse inclusion, we show that all rays and minimal faces of conv(MIX DN )
belong to conv(MIX7%). If Z is a ray of conv(MIXPYN) then the vector defined by

T =T, i = Ti, 5@20, 1N, LeK

is a ray of the polyhedron which is the convex hull of the vectors satisfying (15)—(21). This
implies that Z is a ray of conv(MIX7).

Since the list F is complete, every minimal face F' of conv(MIXPYN) contains a point
T € MIX”. Furthermore F is an affine subspace which can be expressed as {z : = =
ir—i-z?:l Aere, ¢ € R} for some subset of rays 71, . .., rp, of conv(MIXPN). Since z € MIX”
and 71, ...,ry, are all rays of conv(MIX”), then F C conv(MIX7). O

Applying the unimodular transformation (7), inequalities (15)—(16) become inequalities
(8)—(9), while inequalities (18)—(20) become inequalities (10)—(13). Let @ be the polyhedron
on the space of the variables {(z;, 1%),i € N,¢ € KU{0}} defined by the inequalities (8)-(13)
corresponding to inequalities (15), (16), (18), (19), (20) under transformation (7) and let Q'
be the face of ) defined by equations

M@‘M%A:O’ ZGI,EEK\{]{?}, (22)
which are equivalent to equations (17) under transformation (7).

Theorem 7 The polyhedron conv(MIXPN) is the projection onto the space of the z-variables
of the face Q' of Q.

Proof: Theorem 5 shows that every minimal face of @) contains a vector (z, i) with integral
. So the same holds for Q!, which is a face of Q. By applying the transformation which is
the inverse of (7), this shows that every minimal face of the polyhedron defined by (15)-(20)

contains a point (Z, fi,d) where (fi,6) is integral. So the projection of this polyhedron onto
the z-space coincides with conv(MIX7%) and by Lemma 6 we are done. O

We now consider a mixed-integer set MIX?TVU = {x : Az > b; z; integer,i € I}, where
A is a TU matrix with at most two nonzero entries per row. By Corollary 2, A can be
transformed into a dual network matrix by changing signs of some of its columns. Then
MIX?U is transformed into a set of the type MIXPN. Notice that if F = {f1 > --- > fi}
is a list which is complete for MIX?TU | then the list {0; fo, 1 — fo, 1 < £ < k} is complete for
the transformed set MTXPN,

Then Theorem 7 has the following implication:

If a mized-integer set MIX?TVU admits a complete list F whose size is polynomial in the size
of its description (given by the system Ax > b), the extended formulation of the corresponding
set MIXPN given by the inequalities that define Q! is compact. Therefore the problem of
optimizing a linear function over such sets MIX?*TU can be solved in polynomial time.



6 On the length of a complete list

We prove here the following result:

Theorem 8 In the set of vertices of polyhedron Q defined by the following set of inequalities:

ai+rjz%, i,jeN (23)
0;>0,1;>0, i,jEN (24)

the number of distinct fractional parts taken by variable o, is exponential in n.

Observation 1 Since the constraint matriz of inequalities (23)—(24) is a TU matriz with at
most two nonzero entries per row, there exists a mized-integer set M of the type MIX?*TU
which is defined on continuous variables o;,rj,1,5 € N and integer variables yp,h € I such
that the polyhedron conv(M) N {(o,r,y) : yp = 0,h € I} is a nonempty face of conv(M)
described by inequalities (23)—(24). Therefore Theorem 8 shows that any extended formula-
tion of conv(M) that explicitly takes into account a list of all possible fractional parts of the
continuous variables will not be compact in the description of M.

3 . . o 3lU-Dnts
Now let b;; be as in the theorem, i.e. b;; = e

,i,j EN.

Observation 2 b;; < by if and only if (j,i) < (j',4'), where < denotes the lexicographic
order. Thus bj1 <bgoy -+ <bpi <big < -+ <bpn.

Lemma 9 (i) Suppose that a € Z% with oy < apyq for 1 < t < g —1, and (o) =
o1 (—1)97t3%. Then 33% > ®(a) > %3%,.

(ii) Suppose that « is as above and € Z% is defined similarly. Then ®(«) = ®(3) if and
only if a = (.

Proof: (i) Y05 " 30 = 35221 < 139, Now ®(ar) > 3% — 304,130 > 3% — 130 = 1300 apd
®(a) < 3% + 3503 < 3% 4 1300 = 3300,

(ii) Suppose a # 3. Wlog we assume ¢ > ¢'. Assume first (ag_g+1,...,04) = 3. Then ¢ > ¢
(otherwise a = ) and, after defining & = (a1,..., 04—y ), we have ®(a) — ®(3) = ®(a) > 0
by (i). Now assume (ag_g/41,-..,0q) # . Define h = min{7 : ag—r # By_,} and suppose

Qg—pn > By-n (the other case is similar). If we define the vectors & = (a1,...,a4-5) and
ﬁ = (617' . 'aﬁq/fh% (1) giVGS q)(a) - q)(ﬂ) = q)(@) - q)(ﬁ) > %3Olq7h - %36q/7h > Oa as
Qg_p > /Bq’—h' O

We now give a construction of an exponential family of vertices of @) such that at each
vertex variable o, takes a distinct fractional part. Therefore this construction proves Theo-
rem 8.

Let (i1,...,%m) and (j1,...,Jm—1) be two increasing subsets of N with i; = 1 and ,,, = n.
For i,7 € N, let p(i) = max{t : i; < i} and ¢(j) = max{t : j; < j}, with ¢(j) =0 if j < j1.

Consider the following system of equations:

oy, =0
O-it—i_/rjt:bitjt? 1<t<m-1
O-it+1+7ﬂ]'t:bit+1jt7 1<t<m-1
Tigiiyer T 75 = Vigyings JF {15y dm—1}

o + Ty = bijp(i)’ i i1, im ]
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The unique solution of this system is:

oy, =0

-1 -1
Oiy = Zbi2+1jl - Zbieje’ 2<t<m
/=1 (=1
t

t—1
T = Zbiejz - Zbie+1jz’ l<t<m-—1
(=1 /=1

g; = bijp(i) — T‘jp(i), ) §é {’il, ey Zm}

7 = Digyd ~ Tiggrer I E T dm1 )

As each of these variables o;,7; takes a value of the form ®(«)/ 37°+1 by Lemma 9 (i)
we have that o;, > %bitjt—l > 0for 2 <t < m,rj, > %bitjt >0forl <t <m-—1,
o; > %bijp(z') >0 for i ¢ {i1,...,9m}, and 7; > %biq(j)quj >0 for j ¢ {j1,-..,Jm-1}. Therefore
the nonnegativity constraints are satisfied.

Now we show that the other constraints are satisfied. Consider the ¢,j constraint with
Jj & {1, Jm-1} We distinguish some cases.

1 3
1. p(i) < q(j). Then oy +r; > r; > quﬂ > 5biy0y 05 = 5bij > by

2. p(i) > q(j) and i ¢ {i1,...,im}. Then o; +1; > 0; > by (i) 2 ébl]q(jﬂ—l > 3b;; > byj.

3. p(i) = q(j) + 1 and i = 4; for some 1 < ¢t < m (thus p(i) =t = q(j) + 1). In this case
the 7, j constraints is satisfied at equality by construction.

4. p(i) > q(j) + 1 and ¢ = i; for some 1 < ¢t < m (thus p(i) =t > ¢q(j) + 1). Then

1 1 3
o; +71; >0 > sz‘jFl > Qbijq(j)Jrl > Qbij > bij.

The argument with ¢ ¢ {i1,...,4,,} is similar.

Finally suppose that i = i; and j = j, with u ¢ {t —1,t}. Ifu>t, o5+71; > r; > b, j, >
%bitju > bij. Ifu<t-— 1, 0, + T >0 > %bithl > %bitju > bZ’j.

This shows that the solution is feasible and as it is unique, it defines a vertex of the above
polyhedron.

Now let a;j = (j — 1)n 41, so that b;; = 3% /371 and take

o = (ailhvaizjlv sy Qi Qg joy - - 7aimjm—1)'

As 0, = ®(a)/3" L, it follows from Lemma 9 (i) that in any two vertices constructed as
above by different sequences (i1, ...,%m), (j1,---sJm—1) and (41,...,4, ), (J1,---, 7, _1), the
values of o), are distinct numbers in the interval (0,1). As the number of such sequences is
exponential in n, this proves Theorem 8.

We now describe conditions that ensure the existence of a complete list for a mixed-integer
set MIX?TU which is compact. Since X is described by a linear system Az > b where A is
a TU matrix with at most two nonzero entries per row, the constraints defining X are of the

11



following type:

wi+ay > 5T (i,) e NTF (25)
wi—ay > 1T, (i,5) e NTT (26)
—r;—x; >, (6,j) € NTT (27)
x; > 1, i€ N!
x; < ug, 1€ NY
x; integer, 1e€1,

where N** N*t= N=~ C N x N and N/, N*, T C N. Wlog we assume that if (i,5) € N*+
then (j,7) ¢ Nt and if (i,5) € N~ then (j,1) ¢ N~ .

Let Gx = (V, E) be the undirected graph with node set V= L = N \ I corresponding to
the continuous variables of X. E contains an edge ij for each inequality of the type (25)—(27)
with ¢,j € L appearing in the linear system that defines X. Notice that since A is a TU
matrix, then, for fixed 4, j, the system Ax > b can contain either inequalities of type (26) or
inequalities of type (25),(27), but not both. Therefore, for each pair of nodes 4,5 in V, E
contains at most two parallel edges connecting ¢ and j.

We impose a bi-orientation w on Gx: to each edge e € E (corresponding to an inequality
a;x; + a;x; > l;;) and each endnode ¢ of e, we associate the value w(e,i) = tail if a; = 1,
the value w(e, i) = head otherwise. Thus each edge of G could have one head and one tail (if
corresponding to an inequality (26)), two tails (if corresponding to an inequality (25)) or two
heads (if corresponding to an inequality (27)).

Given a path P = (vg,e1,v1,€1,...,v¢) in Gx, where vy, ...,vy € V and e1,...,e; € E,
we want to define the w-length of P, I, (P). To do this, we first define the reverse of an edge
e € E as the edge obtained by turning each head (resp. tail) of e into a tail (resp. head).

We construct a path P’ = (vg, €}, v1,€],...,v;) from P by reversing some edges, so that
vp is a tail of er, and every node v;,1 < j < t is a head of one edge of P’ and a tail of the
other. Note that given P, the path P’ is unique.

Now we define [, (P) = Zj-:l (P, ej)le;, where [ is the right-hand-side of the inequality
corresponding to edge e and

(P.e;) —1 if e; has been reversed in P’
e(P,ej) =
J +1 otherwise.

We also define the list G = {g1,...,9¢} as the set of values f(l,(P)) for all paths P in Gx.

Theorem 10 Let X be a mized-integer set of the type MIX?*TU and define G as above.
Then X admits a list which is complete whose length is O(ml), where m is the number of
inequalities in the description of X and ¢ = |G|.

Proof: Let = (Zr,Z1) be a vertex of conv(X). Then Zy, is a vertex of the polyhedron defined
by the inequalities:

a;wi +ajrj > IFF (i,7j) e N, i,j €L (28)
air; > 15— ajz; (i,j) N ieL,jel (29)
a;jr; > I — a;%; (i,j)e N**,iel, jeL (30)
z; > ie LON* (31)
x; <y i€ LNNY, (32)
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where if the original inequality is of type (25), then a; = a; = 1 and *x stands for ++, and
the other cases are defined accordingly.

Let Sz be a set of |L| independent inequalities among (28)-(32) that define zr. Then it
is well known (and easy to see) that the edges corresponding to inequalities of type (28) in
Sz define a forest F; in Gx. Let Cz = (V(Cz), E(Cz)) be a connected component of such
a forest. Since |V (Cz)| = |E(Cz)| + 1, Cz contains a unique “root” node r whose value is
determined by one of the bounds (29)—(32) and therefore the fractional part of z, takes O(m)
possible values, where m is the number of inequalities in the description of X.

If v is a node of Cz distinct from r, then the value of Z, is determined by the value of Z,
and the tight inequalities (28) corresponding to the edges in the path P, in Cz having v as
first vertex and r as last vertex: if e is the edge in P,, incident with r and if P}, is constructed
from P, as described above, we have

(33)

Ty =

ly(Pyr) + 2, if ris a head of e
ly(Pyr) — Ty otherwise.

Since the list G has ¢ elements, this shows that the fractional part of each variable z, at a
vertex can take at most O(ml) values. O

XQTU

Corollary 11 Assume that a mized-integer set X of the type M1 satisfies at least one

of the following conditions:

(i) The number of paths connecting two nodes in Gx is bounded by a polynomial function
of the size of the description of X ;

(ii) The number of elements in the sets {f(I3}), (i,j) € N*™}, where »* € {++,+—,——},
s bounded by a constant.

(iii) Gx 1is bipartite with vertezx classes U,V and the inequalities defining X which contain
two continuous variables x,, x, (u € U,v € V) have the form z, + x, > b, — by for some
vector b with indices in U U V.

Then X admits a complete list of fractional parts which is compact.

Proof: If (i) holds, the length of the list G is bounded by a polynomial function. Then
Theorem 10 implies that there is a complete list for X which is compact.
Now suppose that (ii) holds and assume

U @), () e Ny ={f,.... fi}.

*k€{++,+—,——}

Each value [, (P,,) can be expressed as

t
lw(Prv) = Z ahfhv
h=1

where «y, is an integer for all h. Since Gx has |L| nodes, the maximum length of a path in G x
is |L|—1. This implies |ay,| < |L|—1 for all k. Then the length of the list G is at most (2|L|—1).
Thus, by Theorem 10 there is a complete list for X of size O(m(2|L| — 1)) = O(mn?), as t is
a constant.

13



Finally assume that (iii) holds. In this case it is easy to verify that for v € U UV,
ly(Pyr) = by — by (34)
and thus X admits a complete list which is compact. O

Observation 3 The example whose complete list has exponential length constructed in The-
orem 8 shows that if a mized-integer set of the type MIX?*TV does not satisfy any of the above
three conditions, then its complete list may be long.

Observation 4 If X is a mized-integer set of the type MIX?TU such that the size of all
connected components of Gx is bounded by a constant, then X satisfies condition (i) of the
above Corollary.

7 Examples

We show that several well-studied mixed-integer sets can be transformed into sets of the type
MIX?TU but first we give a precise meaning to the word “transformed”.

7.1 Mixed-integer linear mappings
/

(/) e R™H m+n=m+n" and A € R4 s nonsingular.

The following are equivalent:

Theorem 12 Consider the transformation defined by <

(i) For each (x,y) € R™™ y is integral if and only if y' is integral.

A1 A
0 U

(i) m=m/,n=n'" and A = [ }, where A1 € R™*™ is nonsingular, As € R™*™ and

U € R™" 45 unimodular.

Proof: (i)=(ii) Suppose A = [;411 ﬁz], where A; € R™*™ Ay € R™*", Az € R"*™ and
3 Ag
Ay € RV*If Az # 0, one of its entries is a nonzero number a. Wlog we assume that this

e1/2a
0

to 1/2 in the entry corresponding to yj, contradicting (i). Thus As = 0.

If B= [g; gz] is the inverse of A (B € R™*m' B, e Ran’j Bs € R™™ and By € Rnxn’)7

a similar argument shows that B3 = 0.

Thus we obtain 3y = Ay, y = Byy' for each y. We now prove that this implies n = n/'.

Equation y = B4A4y for all y yields B4Ay = I,,, thus tkA4s > n. Since Ay is n’ x n, this

implies n’ > n. Similarly, starting from v’ = A4B4y’ for all 3/, one obtains n > n’. Thus

n =n' and consequently m = m/. (i) then implies that A4 is unimodular.

(ii)=(i) The transformation and its inverse are

and
y' =Uy y=U""1y

entry is in the first row and first column of A3. Then A < ) contains a component equal

Since U is unimodular, these two transformations preserve the integrality of y and 7/. O
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Consider an arbitrary mixed-integer set X = {z : Az > b; x; integer,i € I} and let F be
a complete list of fractional parts which is compact for X. In general, if we apply a linear
mapping of the kind described in Theorem 12 to X, the transformed mixed-integer set X’ may
not have a complete list which is compact. For instance, let X = {z : 0 < z; <27% i € N}
(so here I = (); similar examples with I # () can be easily derived from this example). The
list F = {0; 27%,i € N} is complete for X and its size is linear in the size of the description
of X. The linear mapping 2} = z2 + --- + xp, 2} = 4,4 € N \ {1}, transforms X into
X'={2:0<a)—ahy— —al <271, 0< 2} <27 ie N\ {1}}. Now, for each subset
S C N\ {1} the vector

27 ifieS
7, =20 ifie (N\{1}H)\S
Yies2? ifi=1
is a vertex of X’. Since the values of the sum ) jes 277 are distinct numbers in the interval
[0,1) for each S, any complete list for X’ contains a number of fractional parts which is
exponential in the size of the description of X.

However, for the mixed-integer sets we study below (except the sets INT in Section 7.3
and BIP(I,L) in Section 7.5), we will consider linear mappings of the kind of Theorem 12
which give rise to mixed-integer sets of the type MIX?TU satisfying at least one of the
conditions of Corollary 11. Thus, in these cases the existence of a complete list which is

compact is guaranteed. Furthermore, for some of these sets a complete list which is compact
is explicitly given.

7.2 The continuous mixing set with flows
The continuous mixing set with flows CEFLOW MIX, studied in Conforti et al. [2], is
S—FTj—}—CCijj, ]EN
Ly < Yj, ] eN
$2>0,7r; >0, z; >0, y; > 0 integer, j € N.

As explained in [2], this set provides both a relaxation of the single item constant capacity
lot-sizing problem with backlogging and an exact formulation of the two stage stochastic
lot-sizing problem with constant capacities and backlogging.
The following observation shows that the above mixed-integer set can be transformed into
a set of the type MIX?TV . Let FLOW be the following set:
oj+xj > bj, JEN
$>0,0;—52>20,2; >0, y; >0 integer, j € N.
Since the constraint matrix of the above system is a TU matrix with at most two nonzero
entries per row, FLOW is a mixed-integer set of the type MI1X?TU.
Observation 5 The linear transformation:
s=s, 0j =8+, Tj=2j, Y=Yy, JEN

maps CFLOWMIX into FLOW .
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Remark that if X is a mixed-integer set of the type F'LOW, then the graph G x (as defined
in Section 6) is a tree, with leaves corresponding to variables x;. Therefore Gx satisfies
condition (i) of Corollary 11. Below we explicitly give a complete list for conv(F LOW') which
is compact.

Lemma 13 The list F = {0; f(b;), j € N; f(b; —bj), i,j € N} is complete for FLOW .

Proof: For a connected component Cz of Fj, the root r corresponds to a variable which
assumes an integer value. Then, by equation (33) we only need to compute the values f (I, (P))
for all P in Gx. It is easy to check that the list F = {0; f(b;), j € N; f(bi —b;), i,j € N}
includes all these values. O

Therefore the result of Section 5 provides an extended formulation of the set FLOW
which is compact. Applying the inverse of the above linear transformation gives an extended
formulation of CFLOW MIX which is compact.

We now introduce several faces of the polyhedron conv(CFLOW MIX) that have been
studied.

7.2.1 The continuous mixing set
The continuous mixing set is the mixed-integer set CMIX defined as follows:

8—|—7“j+ijbj, jJEN
s >0, r; >0, y; >0 integer, j € N.

Clearly the polyhedron conv(CMIX) is the face of conv(CFLOW MI1X) defined by the
equations z; = y;,7 € N. An extended formulation for conv(CMIX) which is compact
was given by Miller and Wolsey [11]. Later Van Vyve [17] gave a more compact extended
formulation and a linear inequality description of conv(C'MIX) in the original space.

7.2.2 The mixing set with flows
The mixing set with flows FLOW M1X is defined as follows:
s+ x; > by, JEN
s >0, z; >0, y; > 0 integer, j € N.

The polyhedron conv(FLOWMIX) is the face of conv(CFLOW MIX) defined by the
equations 7; = 0,7 € N. Conforti et al. [1] described conv(FLOW MIX) both with an
extended formulation and in the original (s, z,y)-space.

7.2.3 The >-mixing set
The >-mixing set MIXZ is defined as follows:
§+y; > bj, JEN
5 >0, y; > 0 integer, j € N.
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The polyhedron conv(MIX?Z) is the face of conv(FLOW MIX) defined by the equations
xj =y;,j € N. Such sets were first studied explicitly by Giinliik and Pochet [8].

The following observation shows that the >-mixing set admits a complete list that is
shorter than that of the sets described above.

Observation 6 If (5,7) is a vertex of conv(MIXZ=), then 5 = 0 or f(5) = f(b;) for some
j € N. Therefore {0; f(b;), j € N} is a complete list for MIX=.

7.3 The intersection set
The intersection set INT, discussed in Conforti et al. [2], is defined as follows:
oi+1j+y; > bij, ,jEN
0; 20, 7; 20, y; =0 integer, 4,5 € N.
Observation 7 The linear transformation:
Yi =Yj, 05 =04 pj=r1;+yj, 1,J €N
maps INT into the following mixed-integer set:
oi + pj = bij, i,j €N
pj —yj =0, jeN
0; >0, y; > 0 integer, 1,5 € N.
The above mized-integer set is of the type MIX?TV.

In Section 6 it has been shown that in general the set INT does not admit a complete
list F whose size is polynomial in the size of the description of INT (see Observation 1).

7.4 Lot-sizing
Van Vyve [18] showed that the set LOT
i1+ 50 iy >bj—b;, i,jE€N,j>i
s;>0,7; >0,y; €{0,1}, ¢,j€N
represents the dominant of the feasible solutions of a lot-sizing problem with constant capaci-

ties and backlogging, and provides an extended formulation for conv(LOT') which is compact.

Observation 8 The linear transformation:

J
ZOIO, ijzyu, O; = S8i — Zi—1, p]’:’l“j+2j, ’L',]'GN (35)

u=1
maps LOT into the following mized-integer set:
o;+pj=>bj—b, i,j€EN,j>1 (36)
oi+zi—1 >0, 1EN
pj— 2 20, jeN
0<z —2z-1<1, jeEN
zj 1nteger, JEN
The above mized-integer set is of the type MIX?TUV.
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Lemma 14 Let X be the above mized-integer set. The list F = {0; f(bi —b;), 4,5 € N} is
complete for X.

Proof: Again we use the same notation as in the proof of Theorem 10. The graph Gx is
bipartite with one vertex class corresponding to variables o; and the other corresponding to
variables p;. The structure of inequalities (36) shows that condition (iii) of Corollary 11 is
satisfied. Since all other constraints have integer right-hand-side, the root r corresponds to
a variable which assumes an integer value. Then, by equations (33) and (34), the list given
above contains all possible fractional parts taken by the variables at a vertex. O

By the above Lemma and the form of transformation (35), we immediately derive the
following result, which was shown by Van Vyve [18]:

Observation 9 The list F = {0; f(b; — b;), i,5 € N} is complete for LOT.

The above observation, together with the result of Section 5, provides an extended for-
mulation of LOT which is compact.

7.5 Bipartite cover inequalities

Given a bipartite graph G = (U, V; E), let (I, L) be a partition of U UV with I # () and let
BIP(I, L) be the mixed-integer set:

Ty + Ty > byy, uwv€EFE
Ty > 0, u € L
Ty > 0 integer, w € I.

The set BIP(I, L) is obviously a set of the type MIX?"V. The example of Section 6
shows that BIP(I, L) does not admit in general a complete list which is compact. However,
such a list exists in the following two special cases.

The first case is the set BIP(U,V) (i.e. the integer variables correspond to the nodes of
one side of the bipartition of G): Miller and Wolsey [11] show that for the set BIP(U,V)
the list {0; f(buw),uv € E} is complete and they also give a formulation of BIP(U,V) in the
x-space.

The second case is the set BIP(I, L) with the additional condition that 2b,, is integer for
all uv € E, that is, f(byy) is either 0 or 1/2 for all uv € E: this set satisfies condition (ii) of
Corollary 11. Conforti et al. [3] give a formulation in the z-space of this set.

8 Concluding Remarks

One outstanding question that remains concerns the complexity of the optimization problem
over the sets MIX?TU when the list of fractional parts has exponential size. More specifically,
whether the polyhedron conv(MIX?"V) admits an extended formulation which is compact,
even when the list of fractional parts has exponential size.

Another intriguing challenge is to understand under what conditions the formulation for
conv(MIX?TY) in the original z-space can be explicitly described (possibly by projecting
the extended formulation introduced in this paper). A fundamental result of this type is the
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formulation of conv(MIXZ) in the original space of Giinliik and Pochet [8]. Other results
for bipartite cover inequalities (i.e. for conv(BIP(I,L))) can be found in [3] and [11]. Van
Vyve [17] gives the formulation for conv(CMI1X), Conforti et al. [1] give the formulation for
conv(FLOWMIX). To the best of our knowledge, this is what is known so far.

Another aspect is the fact that a set MIX?TV is equivalent to a set MIXPYN and that the
extended formulation introduced in this paper involves a system of inequalities A(z, ) > b
where A is a dual network matrix and b is an integral vector. The associated optimization
problem can therefore be solved in the extended space as a dual of a network flow problem.
Can this be used to develop new algorithms for optimization and/or separation? Computa-
tionally, what is the most effective use of the formulation for MIX?"V when the description
of a set MIX?TU is a relaxation of a more complicated mixed-integer set? Should one use
the dual network formulation (9)—(13), the same formulation but with the § variables as in
(1)—(6) rather than the p variables, cutting planes and separation, or other?

A last question concerns the extension of our model. Recently it has been shown that
several problems that involve the optimization of a linear function over a generalization of
the mixing set MIXZ, but whose description does not involve a TU matrix, are solvable in
polynomial time. Two such sets are the mixing set with divisible capacities in Conforti and
Wolsey [4] and the mixing-MIR set with divisible capacities (Van Vyve [16], de Farias and
Zhao [5]). To what extent, if any, can the results here be extended to these problems?
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