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Abstract

We propose a new multivariate volatility model where the conditional distribution of a vector

time series is given by a mixture of multivariate normal distributions. Each of these distributions is

allowed to have a time-varying covariance matrix. The process can be globally covariance-stationary

even though some components are not covariance-stationary. We derive some theoretical properties

of the model such as the unconditional covariance matrix and autocorrelations of squared returns.

The complexity of the model requires a powerful estimation algorithm. In a simulation study we

compare estimation by maximum likelihood with the EM algorithm and Bayesian estimation with a

Gibbs sampler. Finally, we apply the model to daily U.S. stock returns.
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1 Introduction

Several authors have argued in favour of adding flexibility to the family of GARCH models by using the

idea of mixture models. For example, extending the model of Wong and Li (2000) and Wong and Li

(2001), Haas, Mittnik, and Paolella (2004a) propose a mixed normal conditional heteroskedastic model

where the conditional distribution of returns is a mixture of normal distributions, each of which has a

regime specific conditional variance specified as a GARCH equation. In this way, they avoid the problem

of path-dependence of the conditional variance of regime-switching GARCH models outlined by Gray

(1996). Other related papers are those of Haas, Mittnik, and Paolella (2004b) and Alexander and Lazar

(2004). All these articles deal with a univariate setting.

Multivariate mixture models have been frequently used in an iid context, but not, to the best of our

knowledge, for time series models of conditional volatility, in particular multivariate GARCH models. In

this paper, we try to fill this gap by extending the univariate model of Haas, Mittnik, and Paolella (2004a)

to the multivariate case. Mixing two or more conditionally normal and heteroskedastic components can

generate quite complex stochastic behavior, similar to the one often observed in financial time series. For

example, it may be that a component is covariance stationary, another is not, but mixing them might

again generate a covariance stationary process. It is possible that mixing many components, of which

some are non-stationary, produces behavior similar to processes with long memory, but we have not

investigated this issue further.

Note that our approach is different from the regime-switching model of Pelletier (2005), where the

unobserved state variable follows a Markov chain and where within a regime correlations are constant.

The paper is organized as follows. In Section 2, we define the model and derive its properties. In

Section 3, we present the estimation methods. In Section 4, we illustrate the estimation methods on

simulated data, and in Section 5, we present an application using daily data for two stocks. Proofs are

relegated in an Appendix.

2 The Model

Consider an N -dimensional vector time series {εt, t ∈ N}. A flexible model for the distribution of εt

conditional on the information set Ft−1 is given by

εt|Ft−1 ∼ f(λ1, . . . , λk, µ1, . . . , µk,Σ1t, . . . , Σkt) (1)

=
k∑

j=1

λjf(εt|µj , Σjt) (2)

where λj > 0, j = 1, . . . , k,
∑k

j=1 λj = 1 and f(εt|µj , Σjt) is a multivariate density with mean vector µj

and variance-covariance matrix Σjt. Note that λj is the probability of being in state j, characterized

by the density f(εt|µj ,Σjt), and λj is constant over time. Similarly, the means of each state density,

µ1, . . . , µk, are assumed constant over time. If εt is an error term, one would like to impose a restriction
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on the µj such that the conditional mean of εt is zero. For example, one such condition is

µk = −
k−1∑

j=1

(λj/λk)µj . (3)

The first two conditional moments of εt are then be given by

E[εt | Ft−1) = 0 (4)

Var[εt | Ft−1] =
k∑

j=1

λjΣjt (5)

The process εt is conditionally heteroskedastic as every Σjt is allowed to depend on the information

set. We model this dependence using multivariate GARCH (MGARCH) specifications. In particular, we

assume that Σjt is a function of εt−1 and of Σj,t−1, which can be called a ‘diagonality’ restriction since

the conditional variance of state j depends only on its own past. In principle, any MGARCH model

(VEC, BEKK, DCC,..., see Bauwens, Laurent, and Rombouts (2006)) can be used, but we focus here on

the VEC model. Each matrix Σjt is a VEC model, such that

hjt = vech(Σjt) (6)

has the dynamic structure

hjt = ωj + Ajηt−1 + Bjhj,t−1 (7)

where ωj is a vector of N∗ = N × (N +1)/2 parameters, Aj and Bj are square matrices of order N∗, and

ηt = vech(εtε
′
t). (8)

In words, we have k VEC models with common shocks that are a function of εt. We can write the model

compactly as

ht = ω + Aηt−1 + Bht−1, (9)

where

ht =




h1t

h2t

...

hkt




kN∗×1

ω =




ω1

ω2

...

ωk




kN∗×1

A =




A1

A2

...

Ak




kN∗×N∗

B =




B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk




kN∗×kN∗

. (10)

We refer to the process defined by equations (1)-(10) as the MN-MGARCH(VEC), for mixed normal

MGARCH (in VEC version), model.

For later reference, we provide the uncentered conditional second moment of εt,

E[ηt | Ft−1] = Λ′ht + c (11)

where c =
∑k

i=1 λivech(µiµ
′
i), and

Λ =




λ1IN∗

...

λkIN∗




kN∗×N∗

(12)
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Theorem 1 The process {εt} defined by (1)-(10) is covariance stationary if and only if the eigenvalues

of the matrix

C = AΛ′ + B (13)

are smaller than one in modulus. In that case,

h = E[ht] = (IkN∗ − C)−1(ω + Ac) (14)

and the unconditional covariance matrix is given by

E[ηt] = Λ′(IkN∗ − C)−1(ω + Ac) + c (15)

The crucial matrix to check is therefore C, written explicitly

C =




λ1A1 + B1 λ2A1 · · · λkA1

λ1A2 λ2A2 + B2 · · · λkA2

...
. . .

λ1Ak · · · λkAk + Bk




kN∗×kN∗

We can get results on the fourth moment structure of the model by assuming that the densities of the

individual states are spherical. For simplicity we assume that they are Gaussian with mean zero. Some

more notation is necessary. Denote by Λ̃ the N∗2 × kN∗2 matrix

Λ̃ =
(
λ1IN∗2 , · · · , λkIN∗2

)
.

Furthermore, let Pkq be the kq2×(kq)2 permutation matrix such that for any kq×kq matrix A, PkqvecA =

(vec(A1)′, . . . , vec(Ak)′)′, where Aj is the j-th q × q matrix on the block-diagonal of A.

Theorem 2 For the process defined by (1)-(10), assume that f(εt | µj ,Σjt) = N(0, Σjt). Then a neces-

sary and sufficient condition for finite fourth moments of εt is that the eigenvalues of the matrix

Z = (A⊗A)GN Λ̃PkN∗ + B ⊗B + B ⊗AΛ′ + AΛ′ ⊗B (16)

have modulus smaller than one, where

GN = 2{(D+
N ⊗D+

N )(IN ⊗ CNN ⊗ IN )(DN ⊗DN ) + IN∗2},

CNN is the commutation matrix, DN the duplication matrix and D+
N its generalized inverse. In that case,

the unconditional fourth moments of εt are given by

vec(Ση) = GN Λ̃PkN∗(IN∗2 − Z)−1γ,

where

γ = vec(ωω′ + ωh′ΛA′ + ωh′B + AΛ′hω′ + B′hω′)

and h is given by (14). Moreover, the autocovariance function of ηt, Γ(τ) = E[ηtηt−τ ] − E[ηt]E[ηt]′ is

given by

Γ(τ) = Λ′Cτ−1
{
AΣη + BΣhΛ− C(IkN∗ − C)−1ωω′(IkN∗ − C)−1Λ

}
,

where Σh = E[hth
′
t].
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3 Estimation

We describe how we perform estimation by the maximum likelihood (ML) method (section 3.1), by the

expectation-maximization (EM) algorithm (section 3.2) of Dempster, Laird, and Rubin (1977), and by

Bayesian inference (section 3.3). We assume that T observation vectors yt, for t = 1 to T , are available

for estimation. The link between yt and εt in (1) is given by εt = yt−E(yt|Ft−1). We suppose for ease of

presentation that the conditional mean is either known or estimated consistently in a first step, so that

the residuals εt are available for estimation of the parameters of the MN-MGARCH(VEC) model in the

second step. We denote by ε the vector of observations (ε′1, ε
′
2, . . . , ε

′
T )′. We do not write explicitly the

observations before t = 1, which are used as initial conditions where they should appear. The complete

parameter vector, called Ψ, regroups the parameters λj , µj , and θj for j = 1, . . . , k, where θ′j is the row

vector containing all the parameters of ωj , Aj and Bj , see equation (7). Thus, Ψ = (µ′, θ′, λ′)′, where

λ′ = (λ1, λ2, . . . , λk), µ′ = (µ′1, µ
′
2, . . . , µ

′
k), and θ′ = (θ′1, θ

′
2, . . . , θ

′
k).

3.1 ML estimation

The log-likelihood of ε for the MN-MGARCH(VEC) model is given by

L(Ψ; ε) =
T∑

t=1

log




k∑

j=1

λjφ(εt|µj , θj)


 , (17)

where φ(·|µj , θj) denotes a multivariate normal density with mean µj and variance-covariance matrix

denoted by hjt, see equation (6), hjt being a function of θj .

Numerical methods are needed to obtain Ψ̂ = arg maxL(Ψ; ε). To avoid the problem of label-

switching, we impose the identifying restrictions

λ1 > λ2 > . . . > λk. (18)

Because of these restrictions, we use the FSQP algorithm of Lawrence and Tits (2001) which allows

optimisation subject to constraints.

3.2 EM algorithm

In the EM framework, the observed data vector ε is considered as incomplete since we do not know from

which component of the mixture each observation is generated. This information is given by the latent

variable zt = (zt1, zt2, . . . , ztK)′ where ztk is a dichotomous variable taking the value 1 if εt comes from

the k-th mixture component, and 0 otherwise. The complete data log-likelihood is given by

Lc(Ψ; ε) =
T∑

t=1

k∑

j=1

ztj [log λj + log φj(εt|µj , θj)] . (19)

This simplifies the expression of the log-likelihood in (17) because we do not take the logarithm over the

entire sum but a sum of logarithms. Because zt is not observed, we proceed in two steps.
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E-step: Suppose that Ψ is known and equal to Ψ(i). We compute the expectation of the unobserved

value ztj given all the observations y. This is given by

E(ztj |ε, Ψ(i)) = τtj(ε; Ψ(i)) =
λ

(i)
j φ(εt|µ(i)

j , θ
(i)
j )

∑k
j=1 λ

(i)
j φ(εt|µ(i)

j , θ
(i)
j )

. (20)

Next, we substitute the latter for ztk in (19). This yields the observed complete data log-likelihood:

Q(Ψ,Ψ(i); ε) =
T∑

t=1

k∑

j=1

τtj(ε; Ψ(i)) [log λj + log φ(εt|µj , θj)] . (21)

M-step: We maximize numerically Q(Ψ, Ψ(i); ε) with respect to Ψ to get updated estimates of the

parameters, denoted by Ψ(i+1). Notice that we have to impose the constraints (18) and (3), so that the

maximization has to be done numerically with respect to all the parameters, including the probabilities.

The E-step and M-step are alternated repeatedly until convergence, see McLachlan and Peel (2000)

for a detailed description of the application of the EM algorithm to mixture models.

3.3 Bayesian estimation

We introduce for each observation a state variable St ∈ {1, 2, . . . , k} that takes the value j if the observa-

tion εt belongs to component j. Notice that St conveys the same information as zt in the EM algorithm.

The vector S contains the state variables for the T observations. The model specification assumes that

the state variables are independent given the group probabilities, and the probability that St is equal to

j is equal to λj . Thus, the joint density of the states given the parameters is

ϕ(S|λ) =
T∏

t=1

ϕ(St|λ) =
T∏

t=1

λSt . (22)

Given S and Ψ, the joint density of ε is

f(ε|Ψ, S) =
T∏

t=1

φ(εt|µSt , θSt). (23)

This would be the likelihood function to use if the states were observed. Since they are not, we treat S as

a parameter of the model. This technique is called data augmentation, see Tanner and Wong (1987) for

more details. Although the augmented model contains more parameters, inference is feasible by making

use of Markov chain Monte Carlo (MCMC) methods. In this paper we implement a Gibbs sampling

algorithm that allows to sample from the posterior distribution of S and Ψ by sampling from the full

conditional posterior densities of subsets of parameters, which are called the blocks of the Gibbs sampler.

The joint posterior distribution is given by

ϕ(S, µ, θ, λ|ε) ∝ ϕ(µ)ϕ(θ) ϕ(λ)
T∏

t=1

λStφ(εt|µSt , θSt), (24)

where ϕ(µ), ϕ(θ), ϕ(λ) are the corresponding prior densities. Thus we assume prior independence between

λ, µ and θ. We define these prior densities below while we explain the different blocks of the Gibbs

sampler.
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3.3.1 Sampling S from ϕ(S|µ, θ, λ, ε)

Given µ, θ, λ and ε, the posterior density of S is proportional to ϕ(S|λ)f(ε|Ψ, S). It turns out that the

St’s are mutually independent, so that we can write the relevant conditional posterior density as

ϕ(S|µ, θ, λ, ε) =
T∏

t=1

ϕ(St|µ, θ, λ, ε), (25)

where ϕ(St|µ, θ, λ, ε) is a discrete distribution explicitly defined as

P (St = j|µ, θ, λ, ε) =
λjφ(εt|µj , θj)∑k
i=1 λjφ(εt|µj , θj)

, (j = 1, . . . , k). (26)

To sample St we draw a random number from a uniform distribution on (0, 1) and decide which group j

to take according to (26).

3.3.2 Sampling λ from ϕ(λ|ST , µ, θ, ε)

The full conditional posterior density of λ is given by

ϕ(λ|S, ε) = ϕ(λ|S) ∝ ϕ(λ)
k∏

j=1

λ
xj

j (27)

where xj is the number of times that St = j. The prior ϕ(λ) is chosen to be a Dirichlet distribution,

Di(a10, a20 · · · ak0) with parameter vector a0 = (a10, a20 · · · ak0). As a consequence, ϕ(λ|S, ε) is also a

Dirichlet distribution, Di(a1, a2 · · · ak) with aj = aj0 +xj , j = 1, 2, . . . , k. Notice that it does not depend

on µ and θ. To sample a Di(a1, a2 · · · ak) distribution, we sample k independent gamma random variables,

Xj ∼ G(aj , 1), and transform them to (see Wilks (1962))

λj =
Xj

X1 + . . . + Xk
j = 1, . . . , k − 1

λk = 1− λ1 − λ2 − . . .− λk−1.

3.3.3 Sampling µ from ϕ(µ|S, λ, θ, ε)

We sample µ̃′ = (µ′1, µ
′
2, . . . , µ

′
k−1) and recover µk by use of (3) since λ is known. The likelihood

contribution to the full conditional posterior density of µ̃, given in (23), can be shown (see the Appendix)

to be proportional to a multivariate normal density with variance-covariance matrix A−1 and mean A−1b

defined below.

Theorem 3 f(ε|Ψ, S) ∝ exp
[− 1

2 (µ̃−A−1b)′A(µ̃−A−1b)
]
, where p = (k − 1)N ,

A = diag


 ∑

t∈{St=1}
Σ−1

1t , . . . ,
∑

t∈{St=k−1}
Σ−1

k−1,t


 +

λ̃λ̃′

λ2
k

∑

t∈{St=k}
Σ−1

kt , (28)

denoting λ̃ = (λ1, . . . , λk−1), and

b =




∑
t∈{St=1} Σ−1

1t εt − λ1
λk

∑
t∈{St=k} Σ−1

kt εt

...
∑

t∈{St=k−1} Σ−1
k−1,tεt − λk−1

λk

∑
t∈{St=k} Σ−1

kt εt


 . (29)
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The variance-covariance matrix A−1 is not block diagonal because of the restriction (3). From the

proposition, we deduce that if ϕ(µ̃) is either a normal density or is non-informative (i.e. proportional to

a constant), then ϕ(µ|S, λ, θ, ε), the full conditional posterior of µ, is also a normal density.

3.3.4 Sampling θ from ϕ(θ|S, µ, λ, ε)

By assuming prior independence between the θj ’s, i.e. ϕ(θ) =
∏k

j=1 ϕ(θj), it follows that

ϕ(θ|S, µ, λ, ε) = ϕ(θ|S, µ, ε) = ϕ(θ1|µ1, ε̃
1)ϕ(θ2|µ2, ε̃

2) · · ·ϕ(θk|µk, ε̃k) (30)

where ε̃j = {εt|St = j} and

ϕ(θj |µj , ε̃
j) ∝ ϕ(θj)

∏

t∈{St=j}
φ(εt|µj , θj). (31)

Since we condition on the state variables, we can simulate each block θj separately. We do this with the

griddy-Gibbs sampler, see Bauwens, Lubrano, and Richard (1999) for details. Note that lower and upper

bounds for each parameter must be selected. The choice of these bounds needs to be fine tuned in order

to cover the range of the parameter over which the posterior is relevant. The prior for each individual

parameter can be uniform between these bounds.

4 Illustration with simulated data

We illustrate the estimation methods on two bivariate two component data generating processes for which

we simulate one dataset each. The first one has one stable component with high probability and one

unstable component. The parameters are given by

DGP1

λ1 = 0.8, µ1 =


 0.1

0.05


 , ω1 =




0.001

0.005

0.02


 , A1 =




0.05 0.0 0.0

0.0 0.04 0.0

0.0 0.0 0.06


 , B1 =




0.92 0.0 0.0

0.0 0.9 0.0

0.0 0.0 0.85




λ2 = 0.2, µ2 =


−0.4

−0.2


 , ω2 =




0.015

0.01

0.05


 A2 =




0.25 0.0 0.0

0.0 0.2 0.0

0.0 0.0 0.3


 B2 =




0.85 0.0 0.0

0.0 0.75 0.0

0.0 0.0 0.8


 .

The largest eigenvalue of the matrix C in (13) is 0.96162 which is smaller than 1 so the overall process

is stationary, even if for example A2,11 + B2,11 is larger than 1. The implied unconditional standard

deviations for the first and second series are respectively 0.648 and 0.662 and the unconditional correlation

is 0.305.

The second DGP has the same first component as DGP1 but the second component is now less per-

sistent than the first one. This is done by lowering the values in A2 and B2. The parameters are given

by
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DGP2

λ1 = 0.8, µ1 =


 0.1

0.05


 , ω1 =




0.001

0.005

0.02


 , A1 =




0.05 0.0 0.0

0.0 0.04 0.0

0.0 0.0 0.06


 , B1 =




0.92 0.0 0.0

0.0 0.8 0.0

0.0 0.0 0.85




λ2 = 0.2, µ2 =


−0.4

−0.2


 , ω2 =




0.015

0.01

0.05


 A2 =




0.15 0.0 0.0

0.0 0.1 0.0

0.0 0.0 0.2


 B2 =




0.45 0.0 0.0

0.0 0.35 0.0

0.0 0.0 0.5




The largest eigenvalue of the matrix C in (13) is given by 0.96021 which is smaller than 1 so the overall

process is stationary which is not surprising here since both components are stable. The implied un-

conditional standard deviations for the first and second series are respectively 0.353 and 0.477 and the

unconditional correlation is 0.316.

We simulate T = 4000 observations for DGP1 and DGP2. The sample paths, marginal kernel density

estimates and sample autocorrelation functions of the data simulated using DGP 1 are given in Figure 1.

A bivariate kernel density estimate is given in Figure 2. This estimate is based on a Gaussian product

kernel with a scalar bandwidth computed using the rule of thumb. From the graphs we see that the

sample autocorrelations for the squared data persist less longer for the second series as we expect given

the DGP1 parameter values, and that there is a more negative skewness in the first series than in the

second. This is indeed confirmed by the summary statistics given in Table 1. The estimated kurtosis

coefficient is higher for the second series, though this is likely due to the high maximum in that series.

Note that the empirical second moments match the theoretical second moments reasonably well, for

example the estimated and theoretical correlation are respectively given by 0.314 and 0.305.

Table 1: DGP 1 summary statistics

T = 4000

first series second series

Mean 0.0462 0.0416
Standard Deviation 0.5695 0.63826
Maximum 2.5481 6.922
Minimum −3.3493 −3.7382
Skewness −0.45257 −0.03566
Kurtosis 5.298 7.8619

Descriptive statistics of the data simulated using DGP 1. The

estimated correlation coefficient is 0.31433.

We estimate the parameters of DGP1 using maximum likelihood (ML), the EM algorithm and by

Bayesian inference (Bayes), see Section 3 for details. The results are given in Table 2. The ML estimates
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Figure 1: Sample paths, kernel density estimates and sample autocorrelation functions of the data simu-

lated using DGP 1 (4000 observations).
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Figure 2: kernel density estimate of the data simulated using DGP 1 (4000 observations)

are reasonably close to the true parameter values given the standard errors which are computed via the

evaluation of the Hessian at the estimates. Note that the standard errors of the parameters in the second

component are drastically higher compared to those of the first component. The likelihood curvature is

indeed much smaller for the second component because only 800 = 0.2× 4000 observations are expected

to come from that component. The EM estimates are almost identical to the ML estimates. The EM

standard errors are computed in the same way as for the ML estimates so they also hardly differ. The

Bayes’ results are based on 2400 draws of which 400 were discarded to warm up the sampler. Though

these results are only indicative in the sense that the marginal posterior standard deviations are too

different from the ML standard errors. This is due to too tightly chosen supports, not displayed here, for

the parameters drawn using the griddy Gibbs sampler. Therefore, the bounds should be adapted to fully

cover the parameter supports. Nevertheless, the posterior standard deviations for the parameters λ1 and

µ1 which are sampled with an uninformative prior are reasonably close to their ML standard errors.

We now turn to DGP2. The sample paths, marginal kernel density estimates and sample autocor-

relation functions of the simulated data are given in Figure 3. A bivariate kernel density estimate is

given in Figure 4. Descriptive statistics are given in Table 3. The lower autocorrelations in the squared

data compared to DGP1 are not surprising given the now much less persistent second component in

the mixture. The standard deviations are also smaller compared to DGP1 because we keep the same

values in DGP2 for ω1 and ω2. Estimation results for DGP2 are given in Table 4. The ML parameter

estimates are again reasonably close to the DGP values. Regarding the EM estimates we find that the

parameters of the first component, that is ω̂1, Â1 and B̂1 are very close to the ML estimates. The other

EM parameter estimates, that is λ̂, µ̂1, ω̂2, Â2 and B̂2 are slightly closer to the true parameter values than

the ML estimates for this simulated dataset.
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Table 2: DGP1 Two components results

DGP1 ML EM Bayes

estimate std error estimate std error mean std dev.

λ1 0.8 0.81174 0.020487 0.81167 0.02050 0.81011 0.02110

µ1,11 0.1 0.10528 0.00803 0.10529 0.00803 0.10496 0.00868

µ1,21 0.05 0.05824 0.00923 0.05823 0.00924 0.05840 0.00870

ω1,11 0.001 0.00078 0.00053 0.00078 0.00053 0.00465 0.00017

ω1,22 0.005 0.00379 0.00097 0.00379 0.00097 0.00427 0.00012

ω1,33 0.02 0.01499 0.00378 0.01498 0.00378 0.01449 0.00244

A1,11 0.05 0.04380 0.00470 0.04380 0.00470 0.05330 0.00523

A1,22 0.04 0.03262 0.00516 0.03262 0.00516 0.03092 0.00095

A1,33 0.06 0.05240 0.00878 0.05239 0.00878 0.05031 0.00508

B1,11 0.9 0.92969 0.00752 0.92969 0.00753 0.89169 0.00795

B1,22 0.9 0.91584 0.01478 0.91585 0.01478 0.90754 0.00206

B1,33 0.85 0.87628 0.02097 0.87630 0.02097 0.87855 0.01327

ω2,11 0.015 0.01983 0.01023 0.01984 0.01023 0.01755 0.00228

ω2,22 0.01 -0.00283 0.00968 -0.00278 0.00971 0.00150 0.00056

ω2,33 0.05 0.09691 0.03842 0.09673 0.03836 0.09754 0.00704

A2,11 0.25 0.23442 0.05209 0.23441 0.05208 0.25606 0.04056

A2,22 0.2 0.19382 0.05696 0.19393 0.05692 0.19337 0.02325

A2,33 0.3 0.30244 0.07403 0.30198 0.07389 0.30289 0.02642

B2,11 0.85 0.82361 0.03878 0.82360 0.03877 0.82661 0.01794

B2,22 0.75 0.70363 0.09606 0.70273 0.09659 0.69606 0.02533

B2,33 0.8 0.72776 0.06823 0.72815 0.06815 0.72917 0.01470
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Figure 3: Sample paths, kernel density estimates and sample autocorrelation functions of the data simu-

lated using DGP 2 (4000 observations).
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Figure 4: kernel density estimate of the data simulated using DGP 1 (4000 observations)

Table 3: DGP 2 summary statistics

T = 4000

first series second series

Mean −0.01015 −0.00514
Standard Deviation 0.34385 0.48067
Maximum 1.2971 1.7524
Minimum −1.6771 −1.7772
Skewness −0.12201 0.01965
Kurtosis 3.2058 3.0245

Descriptive statistics of the data simulated using DGP 2. The

estimated correlation coefficient is 0.32746.
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Table 4: DGP2 Two components results

DGP2 ML EM

estimate std error estimate std error

λ1 0.8 0.81942 0.02863 0.81080 0.03019

µ1,11 0.1 0.08860 0.01207 0.09211 0.01247

µ1,21 0.05 0.05404 0.01172 0.05394 0.01203

ω1,11 0.001 0.00113 0.00057 0.00106 0.00056

ω1,22 0.005 0.00159 0.00082 0.00159 0.00082

ω1,33 0.02 0.02760 0.00688 0.02743 0.00691

A1,11 0.05 0.05721 0.00685 0.05700 0.00682

A1,22 0.04 0.03147 0.00877 0.03134 0.00876

A1,33 0.06 0.07890 0.01427 0.07813 0.01434

B1,11 0.9 0.91040 0.01030 0.91052 0.01029

B1,22 0.8 0.90690 0.03026 0.90759 0.03000

B1,33 0.85 0.79543 0.03871 0.79753 0.03880

ω2,11 0.015 0.01171 0.00555 0.01191 0.00560

ω2,22 0.01 0.00398 0.00462 0.00526 0.00494

ω2,33 0.05 0.04923 0.01948 0.05009 0.01931

A2,11 0.15 0.17075 0.04100 0.16976 0.04060

A2,22 0.1 0.09478 0.03682 0.09636 0.03637

A2,33 0.2 0.24119 0.05945 0.23755 0.05842

B2,11 0.45 0.43228 0.14142 0.44277 0.13984

B2,22 0.35 0.34712 0.19099 0.35254 0.18539

B2,33 0.5 0.44934 0.12669 0.45841 0.12265
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To be sure that the results are correct, we generate some extra sample paths for both DGP1 and

DGP2 of the same sample size and then we estimate the model parameters again, the results of which

are not reported here. It follows that the conclusions are the same as described above in this section.

5 Application

We model daily return data from the Bank of America and Boeing stocks using a sample from 01/01/1980

to 30/07/2003 implying 6152 observations downloaded from Datastream. Daily returns are measured

by log-differences of closing prices. The sample paths, marginal kernel density estimates and sample

autocorrelation functions of the data are given in Figure 5. A bivariate kernel density estimate is given in

Figure 6. Both companies share similar summary statistics which are given in Table 5. Some important

events between 1980 and 2003 give rise to several extreme values for both companies. These values are

not discarded from the sample. We start by fitting univariate one and two component models to learn

Table 5: Bank of America - Boeing summary statistics

01/01/1980−30/07/2003

T = 6152

Bank of America Boeing

Mean 0.05184 0.03044
Standard Deviation 1.8922 1.9732
Maximum 10.903 14.278
Minimum −20.458 −19.389
Skewness −0.17633 −0.28139
Kurtosis 8.0566 9.1044

Descriptive statistics for the Bank of America - Boeing data. The

estimated correlation coefficient is 0.25448.

more about the individual time series dynamics of both companies and also to get an idea of good starting

values for the multivariate mixture model. The ML estimates for the univariate models are displayed

in Table 6. We can also apply Bayesian inference or the EM algorithm but the results are very similar

to the ML estimates and are not reported. The one component model, or the usual GARCH model,

estimates for both Bank of America and Boeing imply stationary but highly persistent processes. The

two component mixture model parameter estimates reveal indeed that for both companies the second

component is not stable with probabilities belonging to that component respectively given by 0.165 and

0.079.

The estimation results for the bivariate one and two component models are given in Table 7. The

largest eigenvalue of the estimated matrix C in (13) is given by 0.98435 which implies a stationary

process. The implied estimated unconditional standard deviations for Bank of America and Boeing are
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Figure 5: Sample paths, kernel density estimates and sample autocorrelation functions for the Bank of

America - Boeing data
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Figure 6: kernel density estimate for the Bank of America - Boeing data

Table 6: Univariate estimation results

Bank of America Boeing

estimate std error estimate std error estimate std error estimate std error

λ1 - - 0.83546 0.02812 - - 0.92084 0.01597

µ1 - - 0.02161 0.01960 - - -0.00607 0.01678

ω1 0.13539 0.02952 0.03144 0.01298 0.05496 0.00172 0.02882 0.00879

A1,11 0.08175 0.01214 0.04652 0.00925 0.04009 0.00927 0.03010 0.00476

B1,11 0.88053 0.01901 0.91757 0.01721 0.94618 0.01640 0.94770 0.00859

ω2 - - 3.1304 0.94430 - - 2.6525 1.2180

A2,11 - - 0.69763 0.18304 - - 0.51102 0.20203

A2,11 - - 0.41636 0.12488 - - 0.73011 0.09004

Results for the one component (first two columns for each company) and two component (last two columns for each

company) univariate mixture GARCH(1,1) models. All the parameters are estimated by ML.
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respectively given by 1.8653 and 1.9716 and the unconditional correlation is 0.209, which is close to the

summary statistics reported in Table 5. Comparing the univariate one component estimates with their

equivalents in the bivariate one component model, or the usual diagonal VEC model, we see that they

differ only marginally as expected. Generally speaking, this is also true for the bivariate two component

model but to a lesser extent so for the second component which is now stable. The large difference in the

loglikelihood function values evaluated at their ML estimates between the one and the two component

models allows to reject easily a likelihood ratio test in favor of the more general model.

6 Conclusion

The multivariate mixture model we have proposed in this paper can be extended in several ways. One

can use other multivariate GARCH models for the components than the VEC formulation. We refer

to the survey of Bauwens, Laurent, and Rombouts (2006) for other multivariate GARCH models. One

advantage of the VEC specification is the ease with which moments can be derived. One could also

think of using non-normal distributions, but this may not be worth the effort since a mixture of normal

distributions allows for a lot of flexibility. The most important challenge at this stage is to improve

upon the estimation algorithms (especially the Bayesian one) and to test them with time series of higher

dimension. Another topic for future research is to evaluate the models on statistical and economic criteria,

in comparison with one-component models.

Appendix

Proof of Theorem 1: Let ut = ηt − Λ′ht − c and note that E[ut | It−1] = 0. Write (9) as

ht = ω + A(Λ′ht−1 + c + ut−1) + Bht−1

= (ω + Ac) + (AΛ′ + B)ht−1 + Aut−1

Denoting the lag operator by L and C = AΛ′ + B, this can be written as

(IkN∗ − CL)ht = (ω + Ac) + Aut−1. (32)

The linear operator (IkN∗−CL) is invertible if and only if all eigenvalues of C have modulus smaller than

one. In that case we can write ht = (IkN∗ −C)−1(ω + Ac) + (IkN∗ −CL)−1Aut−1, which is a VMA(∞)

representation of {ht} from which we directly deduce h = E[ht] = (IkN∗ −C)−1(ω +Ac). Premultiplying

both sides of (32) by the adjoint, (IkN∗ − CL)∗, we obtain

det(IkN∗ − CL)ht = (IkN∗ − C)∗(ω + Ac) + (IkN∗ − CL)∗Aut−1

Premultiplying by Λ′ and using Λ′ht = ηt − ut − c gives

det(IkN∗ − CL)(ηt − ut − c) = Λ′(IkN∗ − C)∗(ω + Ac) + Λ′(IkN∗ − CL)∗Aut−1

18



Table 7: Bank of America - Boeing results

ML EM

estimate std error estimate std error estimate std error

λ1 - - 0.85592 0.01889 0.84833 0.01954

µ1,11 - - 0.03675 0.01771 0.03720 0.01801

µ1,21 - - -0.01075 0.01907 -0.01290 0.01937

ω1,11 0.14562 0.02857 0.03041 0.00996 0.02957 0.00986

ω1,22 0.02617 0.00753 0.00372 0.00159 0.00365 0.00158

ω1,33 0.07300 0.01677 0.02810 0.00880 0.02768 0.00879

A1,11 0.08353 0.01124 0.04588 0.00754 0.04536 0.00746

A1,22 0.02587 0.00506 0.01146 0.00270 0.01137 0.00266

A1,33 0.04122 0.00535 0.02748 0.00439 0.02730 0.00441

B1,11 0.87564 0.01786 0.92578 0.01243 0.92609 0.01244

B1,22 0.93974 0.01312 0.97453 0.0052841 0.97451 0.00528

B1,33 0.94011 0.00891 0.94771 0.0088205 0.94761 0.00894

ω2,11 - - 3.5169 1.0715 3.3482 0.95338

ω2,22 - - 0.41860 0.29750 0.41166 0.27223

ω2,33 - - 2.2500 0.83084 2.1491 0.77734

A2,11 - - 0.60068 0.15838 0.58961 0.15030

A2,22 - - 0.13174 0.07384 0.12842 0.06905

A2,33 - - 0.25788 0.08024 0.25432 0.07685

B2,11 - - 0.36883 0.14227 0.38091 0.12996

B2,22 - - 0.78676 0.12018 0.78481 0.11659

B2,33 - - 0.72074 0.07796 0.72330 0.07600

Results for the one component (first two columns) and two component (last four columns)

bivariate mixture model. The value of the loglikelihood function evaluated at the ML es-

timates of the one and two component models are respectively given by −24663.714 and

−24177.475.
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The process is stable if and only if all roots of the characteristic equation det(IkN∗ −Cz) = 0 lie outside

the unit circle or, equivalently, all eigenvalues of C have modulus smaller than one. Finally, dividing both

sides by det(IkN∗ − CL) and rearranging yields

ηt = Λ′(IkN∗ − C)−1(ω + Ac) + c + Λ′(IkN∗ − CL)−1Aut−1 + ut

This is the VMA(∞) representation of {ηt} and we deduce directly the unconditional variance of {εt},
i.e.

vech(Var(εt)) = E[ηt] = Λ′(IkN∗ − C)−1(ω + Ac) + c

Proof of Theorem 2: First, vec(E[ηtη
′
t | Ft−1]) = GN

∑k
j=1 λjvec(hjth

′
jt) by application of Theorem 1

of Hafner (2003). Taking the expectation operator on both sides yields

vec(Ση) = GN Λ̃PkN∗vec(Σh) (33)

where Ση = E[ηtη
′
t] and Σh = E[hth

′
t]. Substituting the model for ht in Σh, one obtains

vec(Σh) = vec(ωω′ + ωh′ΛA′ + ωh′B + AΛ′hω′ + B′hω′)

+ (A⊗A)vec(E[ηt−1η
′
t−1]) + (B ⊗B)vec(E[ht−1h

′
t−1])

+ (B ⊗A)vec(E[ηt−1h
′
t−1]) + (A⊗B)vec(E[ht−1ηt−1])

= γ + (A⊗A)vec(Ση) + (B ⊗B)vec(Σh)

+ (B ⊗A)vec(E[E(ηt−1h
′
t−1 | Ft−1)]) + (A⊗B)vec(E[E(ht−1ηt−1 | Ft−1)])

= γ + (A⊗A)GN Λ̃PkN∗vec(Σh) + (B ⊗B)vec(Σh)

+ (B ⊗A)vec(E[Λ′ht−1h
′
t−1]) + (A⊗B)vec(E[ht−1h

′
t−1Λ])

= γ + (A⊗A)GN Λ̃PkN∗vec(Σh) + (B ⊗B)vec(Σh) + (B ⊗AΛ′)vec(Σh) + (AΛ′ ⊗B)vec(Σh)

= γ + Zvec(Σh).

Rearranging gives the result provided that IN∗2 − Z is invertible, which is the case if and only if all

eigenvalues of Z have modulus smaller than one. Finally, application of (33) yields the desired result for

Ση.

For the second part of the theorem, note that

E[ht | Ft−τ ] = (IkN∗ + C + · · ·+ Cτ−1)ω + Cτ−1(Aηt−τ + Bht−τ )

= (IkN∗ − Cτ )(IkN∗ − C)−1ω + Cτ−1(Aηt−τ + Bht−τ )

Now,

E[ηtηt−τ ] = E[E(ηt | Ft−1)η′t−τ ]

= E[Λ′htη
′
t−τ ]

= E[Λ′E(ht | Ft−τ )η′t−τ ]

= E[Λ′{(IkN∗ − Cτ )(IkN∗ − C)−1ω + Cτ−1(Aηt−τ + Bht−τ )}η′t−τ ]
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= Λ′(IkN∗ − Cτ )(IkN∗ − C)−1ωω′(IkN∗ − C ′)−1Λ + Λ′Cτ−1(AΣη + BΣhΛ)

Subtracting E[ηt]E[ηt]′ = Λ′{(IkN∗ − C)−1ωω′(IkN∗ − C ′)−1Λ, the result for Γ(τ) is obtained.

Proof of Theorem 3: We start from (23), where we substitute −∑k−1
j=1 (λj/λk)µj for µk and we neglect

all the factors that do not depend on µ̃. Given the state variables, we know to which group each

observation εt belongs and we denote by {St = j} the set of indices of the observations belonging to

group j. Thus, taking the logarithm of (23) and multiplying it by −2, we get

−2
T∑

t=1

log φ(εt|µSt
, θSt

)− C = −2
k∑

j=1

∑

t∈{St=j}
log φ(εt|µj , θj)− C

=
k−1∑

j=1

∑

t∈{St=j}
(εt − µj)′Σ−1

jt (εt − µj) +
∑

t∈{St=k}

(
εt + (

k−1∑

j=1

λj

λj
µj)

)′
Σ−1

jt

(
εt + (

k−1∑

j=1

λj

λj
µj)

)

=
k−1∑

j=1

∑

t∈{St=j}

[
Cj + µ′j

( ∑

t∈{St=j}
Σ−1

jt

)
µj − 2µ′j

( ∑

t∈{St=j}
Σ−1

jt εt

)]

+
∑

t∈{St=k}

[
Ck +

( k−1∑

j=1

λj

λk
µj

)′( ∑

t∈{St=k}
Σ−1

kt

)( k−1∑

j=1

λj

λk
µj

)
+ 2

( k−1∑

j=1

λj

λk
µj

)′( ∑

t∈{St=k}
Σ−1

kt εt

)]

=
k−1∑

j=1

[
µ′j

( ∑

t∈{St=j}
Σ−1

jt +
λ2

j

λ2
k

∑

t∈{St=k}
Σ−1

kt

)
µj

]
+

k−1∑

j=1

∑

i 6=j

µ′j

[(
λjλi

λ2
k

∑

t∈{St=k}
Σ−1

kt

)
µi

]

−2
k−1∑

j=1

[
µ′j

( ∑

t∈{St=j}
Σ−1

jt εt − λj

λk

∑

t∈{St=k}
Σ−1

kt εt

)]
+

k∑

j=1

Cj

= µ̃′Aµ̃− 2µ̃′b +
k∑

j=1

Cj = (µ̃−A−1b)′A(µ̃−A−1b) +
k∑

j=1

Cj − b′A−1b

where C and the Cj ’s are constants that do not depend on µ̃, while A and b are defined in (28) and (29).

Therefore, by taking the exponential of minus one half of the the last expression, and neglecting the two

irrelevant constant terms, we get

exp−1
2
(µ̃−A−1b)′A(µ̃−A−1b), (34)

which is the kernel of a Np(A−1b, A−1) density for µ̃.
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