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1 Introduction

Euclidean Jordan algebraic techniques are more and more used to generalize various results
previously obtained in the framework of symmetric matrices. These techniques apply now
in such different fields as statistics (e.g. [MN98]), positivity theory [GST04] or operation
research – Leonid Faybusovich has initiated with [Fay97] this new field of investigation, which
evolved rapidly by a large amount of contributions; among others, we can cite [Fay02], where
potential-reduction methods have been extended to the Euclidean Jordan algebraic framework,
and [Mur02, SA03], where Schmieta, Alizadeh, and Muramatsu have considered short- and
long-step interior point methods, or [Ran05], where Rangarajan has developed an infeasible
interior-point method. Among other adaptations, these extensions are performed by replacing
the eigenvalues of symmetric matrices with the more general eigenvalues defined in the context
of Euclidean Jordan algebras.

Some recent results of Nesterov tend to show that interior-point methods are not always the
best procedures to solve some very large scale linear problems [Nes05a]. Whereas the number
of iterations of these methods is predictably low, each of them requires so much work that
performing the very first one might already be out of reach. Essentially, Nesterov has managed
to combine the cheap iteration cost of subgradient methods and the efficiency of structural
optimization in a very efficient method for solving some non-smooth optimization problem
with a specific structure. In [Nes05a], he has designed a powerful scheme to minimize some
piecewise linear function, and he extended it to solve some non-smooth problems involving
symmetric matrices. Related problems have also been explored in the Master Thesis of Yu
Qi[Qi05]. A natural question arises: can Euclidean Jordan algebras help to further extend
this method ? We give a positive answer in this paper, and we particularize our study to the
sum-of-norms problem.

The paper is organized as follows. In Section 2, we briefly recall how the smoothing tech-
niques of Nesterov work. In Section 3, we present the few needed result from the theory of
Euclidean Jordan algebras. Section 4 contains the main result of the paper, namely, the in-
equality (3), which allows us to estimate the complexity of smoothing techniques on Jordan
algebras. We apply the obtained algorithm in Section 5 to solve the sum-of-norms problem,
obtaining, up to our knowledge, the first theoretical complexity result for this problem.

2 Smoothing techniques in non-smooth convex optimiza-
tion

The general problem of convex optimization can be formulated as follows. Given a convex
function f : Rn → R ∪ {+∞} and a nonempty convex set Q ⊆ Rn, find the minimal value
f∗ that f takes on Q, and, if possible, find a point of Q where this value is attained. On a
finite-arithmetic computer, this goal is typically unreachable, and we content ourselves with an
approximation of this minimal value: given an absolute tolerance ε > 0, the problem consists
in finding a point x̂ in Q such that f(x̂)− f∗ < ε.

The first methods designed for solving convex optimization problems that have been pro-
posed and studied were the subgradient schemes (see in [Sho85], or in Chapter 2 and 3 of [Nes03]
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for an exposition). It has been proved, by resisting oracle techniques, that these methods can-
not have a better complexity than O(1/ε2) in terms of number of iterations of the scheme
[NY83]. Now, suppose that the objective function f : Rn → R is smooth, more precisely that
its gradient exists and is Lipschitz continuous:

||∇f(x)−∇f(y)||∗ ≤ L||x− y|| for every x, y ∈ dom f

where || · || is a norm of Rn, || · ||∗ is the associated dual norm and the positive constant L
the gradient Lipschitz continuity constant. In this case, the complexity analysis of subgradient
schemes – we can actually call them gradient schemes in this case – shows that an approximate
solution can be found in no more than O(

√
L/ε) iterations (see in Chapter 3 of [Nes03]).

Later appeared the interior-point methods [NN93]. In contrast with subgradient schemes,
they explicitly exploit the structure of the problem: the construction of the self-concordant
barrier needed in the algorithm mimics the mathematical description of the specific problem
we have to solve. They have a complexity in the order of O(

√
ν ln(ν/ε)) iterations, where ν is

a structural parameter of the problem, usually a multiple of its dimension or of the number of
constraints.

Subgradient schemes for non-smooth problems may seem completely outshone by interior-
point methods. But the complexity of an iteration required by an interior-point method is much
larger than the cost of a subgradient scheme iteration: indeed, interior-point methods typically
require the resolution of a (typically sparse) linear system at each step, while subgradient
methods only need vector manipulations (addition, computation of scalar products, projections
on simple sets). Hence, very large-scale problems might be out of reach for interior-point
methods.

The smoothing method of Nesterov [Nes05a] has been designed to potentially solve this
issue, because, without affecting too severely the number of iterations, the iteration cost is
much cheaper. It can be applied to optimization problems with the following very specific
structure and performs at each iteration a cheap gradient-like step. We are given Q1 and Q2

two bounded convex set, respectively contained in the Euclidean vector spaces E1 and E2. The
objective function, to be minimized over Q1, is supposed to have the following form:

f(x) = max
u∈Q2

〈Ax, u〉 − φ̂(u),

where φ̂ is a smooth convex function and A a linear operator from E1 to E∗
2 . We assume that

an evaluation of f is not too costly, that is, that the maximization of 〈Ax, u〉 − φ̂(u) over Q2

can be performed very efficiently, or even that a closed form of the solution exists.
The idea is to replace the non-smooth objective function f by a smooth approximation of it

via a prox-function d2 of Q2, that is, a twice continuously differentiable function d2 : Q2 → R
whose minimal value is 0 and is attained in the relative interior of Q2. We also require for a
prox-function d2 of Q2 to be strongly convex on Q2:

for every u ∈ Q2 and h ∈ E2, 〈d′′2(u)h, h〉 ≥ σ2||h||2E2

for some norm || · ||E2 of E2 and some strong convexity constant σ2 > 0. We define for each
parameter µ > 0 the function:

fµ(x) := max
u∈Q2

〈Ax, u〉 − φ̂(u)− µd2(u).
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This family of functions approaches f from below as µ goes to 0 and has a Lipschitz continuous
gradient. We choose a norm || · ||E1 of E1 and define

||A||E1,E2 := max{〈Ax, u〉 : ||x||E1 ≤ 1, ||u||E2 ≤ 1}.
It can be proved (see Theorem 1 in [Nes05a]) that the Lipschitz constant of f ′µ equals Lµ :=
||A||2E1,E2

/(µσ2). So, we can apply to it a cheap gradient-like scheme in order to minimize it.
This gradient-like scheme requires a prox-function d1 of Q1, whose strong convexity constant

for the norm || · ||E1 will be denoted by σ1 and its minimizer by x0. The scheme updates at each
step three sequences of points (xk)k≥0, (yk)k≥0, and (zk)k≥0. Letting D1 := maxx∈Q1 d1(x)
and D2 := maxx∈Q2 d2(x), we put µ := ε/(2D2).

Algorithm 2.1 For k ≥ 0:

1. Compute f ′µ(xk).

2. Find yk := arg miny∈Q1

{
〈f ′µ(xk), y − xk〉+ Lµ

2 ||y − xk||2E1

}
.

3. Find zk := arg miny∈Q1

{
Lµ

σ1
d1(y) +

∑k
i=1

i+1
2 (〈f ′µ(xi), y〉)

}
.

4. Let xk+1 := k+1
k+3yk + 2

k+3zk.

Theorem 2.1 (Theorem 3 in [Nes05a]) For the sequence (yk)k≥0 generated by the algo-
rithm, we have that f(yN )− f∗ ≤ ε as soon as:

N + 1 ≥ 4||A||E1,E2

√
D1D2

σ1σ2
· 1

ε
.

In other words, this method is in O(1/ε), which is the best known complexity for this class of
non-smooth problems.

3 Euclidean Jordan algebras

In this work, we mostly deal with Euclidean Jordan algebras of finite dimension as they are
defined in standard textbooks such as [BK66], [FK94], [HOS84] or [Koe99]. We briefly recall
in this section the few needed basic results on these Jordan algebras. The reader can find in
each of the above references the definitions we do not provide here.

Throughout the text, J denotes a Euclidean Jordan algebra (or, equivalently, formally real
Jordan algebra) of finite dimension N and of rank r. Its unit element is denoted by e. To ease
the writing, we drop the multiplication symbol between elements of J .

We write L(u) for the multiplication operator by an element u ∈ J , so that L(u)v := uv for
all v ∈ J . Two elements u, v ∈ J are said to operator commute when L(u)L(v) = L(v)L(u).
The quadratic operator is represented by Qu := 2L(u)2−L(u2) and its polarization by Qu,v :=
(Qu+v −Qu −Qv)/2.
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Theorem 3.1 (Unique subspaces spectral decomposition theorem)
Let u ∈ J . There exists a system of idempotents {e1, e2, . . . , es} and distinct real numbers
ξ1 > . . . > ξs such that:

u =
s∑

i=1

ξiei.

This decomposition is unique in the following sense: if there exists a system of idempotents
{e′1, . . . , e′k} ∈ J and some distinct real numbers η1, . . . , ηk such that u =

∑k
j=1 ηje

′
j then k = s

and, up to a renumbering, ξj = ηj and ej = e′j for all 1 ≤ j ≤ s.

A proof of this statement can be found in [FK94], Theorem III.1.1 or in [Koe99], Theorem
VI.11.

Theorem 3.2 (Complete spectral decomposition theorem) For every u ∈ J , there ex-
ist a Jordan frame {c1, . . . , cr} and real numbers λ1(u) ≥ · · · ≥ λr(u) such that:

u =
r∑

i=1

λi(u)ci.

If there exists a Jordan frame {c′1, . . . , c′r} and real numbers η1 ≥ · · · ≥ ηr for which u =∑r
i=1 ηic

′
i, then ηi = λi(u) for all i and

∑
{j|ηj=ξ} c′j =

∑
{j|ηj=ξ} cj for every real number ξ.

See Theorem III.1.2 in [FK94] for a proof.
It can be proved with the help of Theorem 3.1 that the vector λ(u) := (λ1(u), . . . , λr(u))T is

uniquely defined for every u of J . The components of this vector are called the eigenvalues of
u. By convention, we assume that they are always ordered decreasingly. In view of Proposition
II.2.1 of [FK94], each function λi is continuous. The sum of the eigenvalues of u is called the
trace of u and is denoted by tr(u).

Proposition 3.1 The trace is a linear function. It is also associative: for all u, v, w ∈ J , we
can write tr((uv)w) = tr(u(vw)). In particular, tr(Quv) = tr(u2v).

This proposition merges results from Proposition II.2.1 and Proposition II.4.3 of [FK94].
It is possible to obtain variational characterizations of the eigenvalues in Jordan algebras,

similar to Fischer’s formulas for Hermitian matrices (see [Hir70]). It is also possible to extend
Ky Fan’s inequalities in this framework (see [Bae04]). In this paper, we need the following
basic characterization, which lies in fact at the intersection of these two results.

Proposition 3.2 Let K := {v ∈ KJ |tr(v) = 1} be the Jordan algebraic extension of the
standard simplex. For every element u of J , we have:

λ1(u) = max
h∈K

tr(uh).
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The two spectral decomposition theorems allows us to construct the main object of interest
in this paper, namely spectral functions. We mean by symmetric set of Rr a set that is invari-
ant with respect to permutations of the components of its elements. Similarly, a symmetric
function is here a function that remains unchanged under permutations of the components of
its argument.

Definition 3.1 Suppose that we are given a symmetric set Q ⊆ Rr and a symmetric function
f : Q → R. The spectral function generated by f is the function F whose domain is K :=
{v ∈ J |λ(v) ∈ Q} and such that F (v) := f(λ(v)) for every v ∈ K.

It is not difficult to deduce from Theorem 3.1 and from the required symmetry property of f
that the definition of F (v) does not depend on the particular complete spectral decomposition
of v we have taken. The needed properties of this construction are exposed at the end of this
section.

Proposition 3.3 Two elements u, v of J operator commute if and only if there exist a Jordan
frame {c1, . . . , cr} and two vectors γ, δ ∈ Rr for which u =

∑r
i=1 γici and v =

∑r
i=1 δici.

This is Theorem 27 of [SA03].

Definition 3.2 An element of J that has r different eigenvalues is called a regular element.

Definition 3.3 The Zariski topology of RN is the topology for which a set A ⊆ RN is open if
and only if there exists a polynomial p : RN → R with real coefficients such that its set of roots
is exactly J \A.

Proposition 3.4 Let J be a power-associative algebra. The set of regular elements of J is a
Zariski nonempty open set of J . Since J is an algebra over R, this set is dense in J for the
Euclidean topology.

This statement is proved in [FK94], Proposition II.2.1.
The trace defines a scalar product represented here by 〈u, v〉J := tr(uv), or by 〈u, v〉 when

there is no ambiguity about the considered scalar product. We denote the related norm by
||u||J or by ||u||. The associativity of the trace is equivalent to the fact that L(u) is self-adjoint
with respect to the Jordan scalar product. The quadratic operator is self-adjoint too.

In the statement of the two next theorems the notation A ◦B means the set {uv|u ∈ A, v ∈
B} when subsets A and B belongs to J .

Theorem 3.3 (First Pierce decomposition theorem) Let c be an idempotent of J . We
define J1(c) := QcJ , J1/2(c) := (I −Qc −Qe−c)J = 2Qc,e−cJ and J0(c) := Qe−cJ . Then:

1. J = J1(c)⊕ J1/2(c)⊕ J0(c);

2. Jα(c) = {u ∈ J |L(c)u = αu} for α = 1, 1/2, 0;

3. J1(c) and J0(c) are subalgebras of J and J0(c) ◦ J1(c) = {0};
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4. L(u) and L(c) commute if and only if u ∈ J0(c)⊕ J1(c);

5. J1/2(c) ◦ (J0(c)⊕ J1(c)) ⊆ J1/2(c);

6. J1/2(c) ◦ J1/2(c) ⊆ J0(c)⊕ J1(c);

7. if u ∈ J1/2(c), then tr(u) = 0.

A proof of this statement can be found in [Koe99], Theorem III.8.

Theorem 3.4 (Second Pierce decomposition theorem)
Let {e1, . . . , en} be a system of idempotents of J . We put Jij := Qei,ej

J .
If 1 ≤ i, j, k, l ≤ n, we have:

1. Jii = J1(ci) and Jij = J1/2(ci) ∩ J1/2(cj) = Jji if i 6= j;

2. J =
⊕

1≤i′≤j′≤n Ji′j′ ;

3. Jij ◦ Jkl = 0, if {i, j} ∩ {k, l} = ∅;
4. Jij ◦ Jjk ⊆ Jik, if i, j and k are different;

5. Jij ◦ Jij ⊆ Jii + Jjj;

6. Jii ◦ Jij ⊆ Jij.

This is Theorem IV.2.1 in [FK94].

Corollary 3.1 Let {e1, . . . , en} be a system of idempotents, and let h ∈ J . We denote hij :=
Qei,ej h for every 1 ≤ i, j ≤ n. Then tr(hijh) = 2tr(h2

ij) if i 6= j, and tr(hiih) = tr(h2
ii).

Proof
From item 7 of Theorem 3.3 and item 1 of Theorem 3.4, we deduce that the subspaces Jij :=
Qei,ejJ are orthogonal each other with respect to the Jordan scalar product. Hence,

tr(hiih) = 〈hii, h〉 = 〈hii,

r∑

j,k=1

hjk〉 = 〈hii, hii〉 = tr(h2
ii).

If i 6= j, we have:
tr(hijh) = 〈hij , hij + hji〉 = 2〈hij , hij〉 = 2tr(h2

ij).

Proposition 3.5 (Eigenvalues and eigenspaces of L(u)) Let u =
∑n

i=1 ξiei be the decom-
position of an element u ∈ J given by the unique eigenspaces spectral decomposition Theorem,
and let Jij := Qei,ejJ be the subspaces given by the second Pierce decomposition theorem for
the system of idempotents {e1, . . . , en}.

The eigenvalues of L(u) are {(ξi + ξj)/2|1 ≤ i ≤ j ≤ n}. The corresponding eigenspaces are
{Jij |1 ≤ i ≤ j ≤ n} respectively.
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A proof can be found in Section V.5 of [Koe99].
This result can be used to characterize the spectral decomposition of Qu. In fact, we deduce

here an interesting generalization of this decomposition practically for free.
Let u, v ∈ J be two elements that operator commute. From Proposition 3.3, we know that

there exist a system of idempotents {e1, . . . , en} and real numbers ξ1, . . . , ξn, ξ′1, . . . , ξ
′
n for

which u =
∑n

i=1 ξiei and v =
∑n

i=1 ξ′iei, where we assume that the pairs (ξi, ξ
′
i) are different.

Corollary 3.2 With the above notation, the operator Qu,v has as eigenvalues
{

ξiξ
′
j + ξjξ

′
i

2

∣∣∣∣ 1 ≤ i ≤ j ≤ n

}
.

The eigenspace corresponding to (ξiξ
′
j+ξjξ

′
i)/2 is the direct sum of the subspaces Jkl := Qek,el

J
with ξkξ′l + ξlξ

′
k = ξiξ

′
j + ξjξ

′
i.

Proof
Let us fix 1 ≤ i ≤ j ≤ n. On the subspace Jij , the operator Qu,v reduces to the following:

Qu,v|Jij = [L(u)L(v) + L(v)L(u)− L(uv)]|Jij = [2L(v)L(u)− L(uv)]|Jij

=
(ξi + ξj)(ξ′i + ξ′j)

2
I − ξiξ

′
i + ξjξ

′
j

2
I =

ξiξ
′
j + ξjξ

′
i

2
I,

where I is the identity operator on Jij . The statement is hereby proved. In particular, if u = v,
the eigenvalues of Qu are {ξiξj : 1 ≤ i ≤ j ≤ n}.

We denote the (closed) cone of square elements of J by KJ . The following theorem sum-
marizes the needed properties of this set.

Theorem 3.5 For every u ∈ KJ , there exist v ∈ KJ such that v2 = u. We have KJ = {u ∈
J |λr(u) ≥ 0}. Moreover, for every u ∈ J and v ∈ KJ , the element Quv is in KJ .

See [FK94], Proposition III.2.2 for a demonstration.

Example 3.1 (Jordan spin algebra)
The Jordan spin algebra, or spin factor, or quadratic terms algebra is widely used in applica-
tions, ranging from statistics to relativistic mechanics. Optimizers utilize this algebra when
they deal with second-order optimization problem, that is, optimization problems involving a
convex quadratic objective to minimize on a convex quadratic set. We consider here the vector
space X := Rn+1, where n ≥ 1. By convention, we denote by convention every vector v̄ of X
with an overline. The first component of v̄ is written v0, and the n-dimensional vector formed
by its other components is written v, so that v̄ = (v0, v

T )T .
Consider an orthogonal basis {b̄0, b̄1, . . . , b̄n} of the vector space.We define the following

multiplication in X.

ū ◦ v̄ =
(

u0

u

)
◦

(
v0

v

)
:=

(
u0v0 + uT v
u0v + v0u

)
, or L(ū) :=

(
u0 uT

u u0In

)
.
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It is not difficult to prove that Sn := (X, ◦) is an Euclidean Jordan algebra. Its unit element
is ē := b̄0 = (1, 0, . . . , 0)T , and that every idempotent c̄ of J different from ē has the form

c̄ =
1
2

(
1
u

)
,

where u is an n-dimensional vector of Euclidean norm 1.
The trace of an element ū is tr(ū) = 2u0, the determinant is det(ū) = u2

0 − ||u||2, and the
eigenvalues are λ1(ū) = u0 + ||u|| and λ2(ū) = u0 − ||u||; here || · || represents the Euclidean
norm in Rn. The quadratic operator can be written as:

Qū,v̄ =
(

u0v0 + uT v u0v
T + v0u

T

u0v + v0u uvT + vuT

)
+ (u0v0 − uT v)

(
0 0
0 In

)
.

Von Neumann’s inequality, and especially the description of the equality case, plays an
important role in the computation of subdifferentials of spectral function. In this work, we
need it in the derivation of a bound for the Hessian of a prox-function; the description of the
equality case is unnecessary. The interested reader can find a proof in [LKF03], although it
only covers the case where J is a simple Jordan algebra. An alternative demonstration can be
found in [Bae04].

Theorem 3.6 Let u, v ∈ J . We have:

r∑

i=1

λi(u)λi(v) ≥ tr(uv). (1)

We have proved in [Bae04] and in [Bae05] that a symmetric function f transmits several
properties to the spectral function F it generates. In this paper, we need to deal with their
conjugate and their differentiability.

Let f : Rn → R. Provided that Rn is endowed with a scalar product 〈·, ·〉, we define the
conjugate function of f as follows:

f∗ : Rn → R, s 7→ f∗(s) := sup
x∈dom f

〈s, x〉 − f(x) = sup
x∈Rn

〈s, x〉 − f(x).

It is possible to relate the conjugate of a symmetric function to the conjugate of the spectral
function it generates. The following theorem has been proved in [Bae04] using the argument of
the proof of Lewis [Lew96a], who has obtained the same result in the framework of Hermitian
matrices.

Theorem 3.7 Let Q be a nonempty symmetric set of Rr, let f : Q → R be a symmetric
function and let F be the spectral function generated by f . Then F ∗ is the spectral function
generated by f∗.

The following theorem has been proved in [Bae04], following an idea of Lewis [Lew96b], and
reproved independently by [SS04].
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Theorem 3.8 Let Q ⊆ Rr be an open symmetric set and f : Q → R be a symmetric func-
tion. We define K := {v ∈ J |λ(v) ∈ Q} and F : K → R, v 7→ F (v) := f(λ(v)). Let
u =

∑r
i=1 λi(u)ci ∈ K. If the function f is differentiable in λ(u), then the function F is

differentiable in u and

F ′(u) =
r∑

i=1

f ′i(λ(u))ci. (2)

This last theorem is proved in [Bae05].

Theorem 3.9 Let Q ⊆ Rr be an open symmetric set and f : Q → R be a twice differentiable
symmetric function. We define K := {v ∈ J |λ(v) ∈ Q} and F : K → R, v 7→ F (v) :=
f(λ(v)). Let u be an element of K, with a complete spectral decomposition as follows: u =∑r

i=1 λi(u)ci, and a unique eigenspaces spectral decomposition as: u =
∑s

α=1 λkα
(u)eα. We

denote f ′′(λ(u)) = diag(b) + B. We have for every h ∈ J :

¦ QeαF ′′(u)h = bkαQeαh +
∑s

β=1 Bkαkβ
tr(Qeβ

h)eα.

¦ Qeα,eβ
F ′′(u)h =

f ′kα
(λ(u))− f ′kβ

(λ(u))

λkα(u)− λkβ
(u)

Qeα,eβ
h.

Let v, w ∈ J and vαβ := Qeα,eβ
v, wαβ := Qeα,eβ

w. Then:

〈F ′′(u)v, w〉 =
s∑

α=1

bkαtr(vααwαα) +
s∑

α,β=1

Bkαkβ
tr(vββ)tr(wαα)

+2
∑

α 6=β

f ′kα
(λ(u))− f ′kβ

(λ(u))

λkα(u)− λkβ
(u)

tr(vαβwαβ).

Corollary 3.3 With the same notation as in the previous statement, if f is twice continuously
differentiable, then F is twice continuously differentiable.

4 An upper bound on the Hessian of power function

We generalize in this section to Euclidean Jordan algebras an inequality obtained recently by
Nesterov [Nes05b] in the framework of symmetric matrices.

For every nonnegative integer k and every real r-dimensional vector λ, we let:

pk(λ) := λk
1 + · · ·+ λk

r .

The spectral function generated by pk is denoted by Pk:

Pk : J → R
u 7→ Pk(u) := tr(uk).

The main result of this section is the following inequality.
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For every integer k ≥ 2, for every element u =
∑r

i=1 λi(u)ci of J , and for every
direction h of J , we have:

〈P ′′k (u)h, h〉 ≤ k(k − 1)〈|u|k−2h, h〉, (3)

where |u| := ∑r
i=1 |λi(u)|ci.

Its consequences will allow us to extend the smoothing techniques in the framework of Jordan
algebras, and to determine a complexity bound for the obtained scheme.

Lemma 4.1 Let p and q be two nonnegative integers. For every u ∈ J , the operator L(|u|p+q)−
Qup,uq is positive semidefinite. In other words, for every h ∈ J , we have:

〈|u|p+qh, h〉 ≥ 〈Qup,uqh, h〉.
Proof
Let us fix an element u ∈ J , and let us consider one of its complete spectral decomposition
u =

∑r
i=1 λi(u)ci. For the sake of notational simplicity, we write λ for λ(u). From Proposition

3.5 and Corollary 3.2, we know that L(|u|p+q) and Qup,uq have the same eigenspaces, which
are direct sums of the subspaces Jij := Qci,cjJ . The eigenvalues corresponding to Jij are
respectively (|λi|p+q + |λj |p+q)/2 for L(|u|p+q), and (λp

jλ
q
i + λp

i λ
q
j)/2 for Qup,uq . Observe that:

(|λi|p − |λj |p)(|λi|q − |λj |q) ≥ 0,

so that:
|λi|p+q + |λj |p+q ≥ |λj |p|λi|q + |λi|p|λj |q ≥ λp

jλ
q
i + λp

i λ
q
j .

In other words, the eigenvalue of L(|u|p+q)−Qup,uq are nonnegative.

Proposition 4.1 For every u and h of J , the inequality (3):

〈P ′′k (u)h, h〉 ≤ k(k − 1)〈|u|k−2h, h〉

holds true for all k ≥ 2.

Proof
Since the Hessian is continuous, it suffices to show the inequality for regular elements u, because
they form a dense set in J . Let us fix a regular element u =

∑r
i=1 λi(u)ci of J , and let us

compute 〈P ′′k (u)h, h〉 using the formula for the Hessian.
We easily get:

[p′k(λ)]i = kλk−1
i and [p′′k(λ)]ij = δijk(k − 1)λk−2

i ,

where δij is the Kronecker symbol. Let h be an element of J , and let hij := Qci,cj h, so
that h =

∑r
i,j=1 hij . The second Pierce decomposition of h with respect to the Jordan frame

{c1, . . . , cr} is thus:

h =
r∑

i=1

hii + 2
∑

i<j

hij .

10



We have by regularity of u:

〈P ′′k (u)h, h〉 =
r∑

i=1

k(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k
λk−1

i − λk−1
j

λi − λj
tr(h2

ij)

= k




r∑

i=1

(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k−2∑

l=0

λl
iλ

k−l−2
j tr(h2

ij)




= k




r∑

i=1

(k − 1)λk−2
i tr(h2

ii) + 2
∑

i 6=j

k−2∑

l=0

λl
iλ

k−l−2
j + λl

jλ
k−l−2
i

2
tr(h2

ij)


 .

Observe now that, for every nonnegative integers p and q, we can write:

〈Qup,uqh, h〉 =
r∑

i,j=1

λp
i λ

q
j + λp

jλ
q
i

2
tr(hijh) =

r∑

i=1

λp+q
i tr(h2

ii) +
∑

i 6=j

λp
i λ

q
j + λp

jλ
q
i

2
tr(h2

ij).

With this relation, we can continue as follows:

〈P ′′k (u)h, h〉 = k

(
r∑

i=1

(k − 1)λk−2
i tr(h2

ii) +
k−2∑

l=0

(
〈Qul,uk−l−2h, h〉 −

r∑

i=1

λk−2
i tr(h2

ii)

))

= k

k−2∑

l=0

〈Qul,uk−l−2h, h〉 ≤ k

k−2∑

l=0

〈L(|u|k−2)h, h〉 = k(k − 1)〈|u|k−2h, h〉,

where the inequality comes from Lemma 4.1.
The following corollaries are simple but very useful consequences of the previous proposition.

Their proof follows closely those of [Nes05b].

Corollary 4.1 Let f : R→ R be a function that has a power series expansion

f(t) =
∑

k≥0

aktk

such that all the coefficients ak are nonnegative. Let us denote the domain of f by I, and the set
containing all the elements of J that have their eigenvalues in I by K. We define F : K → R,
u 7→ F (u) :=

∑r
i=1 f(λi(u)). For every u ∈ K and all h ∈ J , we have:

〈F ′′(u)h, h〉 ≤
r∑

i=1

f ′′(|λi(u)|)λi(h)2.

Proof
By Proposition 4.1, we can write:

〈F ′′(u)h, h〉 =
∑

k≥2

ak〈P ′′k (u)h, h〉 ≤
∑

k≥2

r∑

i=1

k(k − 1)aktr(|u|k−2h2)

11



The von Neumann inequality gives us tr(|u|k−2h2) ≤ ∑r
i=1 |λi(u)|k−2λi(h2), from which we

get:

〈F ′′(u)h, h〉 ≤
∑

k≥2

r∑

i=1

k(k − 1)ak|λi(u)|k−2λi(h2).

Now, since f ′′(t) =
∑

k≥2 k(k − 1)aktk−2, we conclude:

〈F ′′(u)h, h〉 ≤
r∑

i=1

f ′′(|λi(u)|)λi(h2).

Corollary 4.2 Consider the function F : J → R, u 7→ F (u) :=
∑r

i=1 exp(λi(u)), and the
function E(u) := ln F (u). Then

〈E′′(u)h, h〉 ≤ λ1(h2)

for every u and h of J .

Proof
A straightforward computation gives us:

〈E′′(u)h, h〉 =
〈F ′′(u)h, h〉

F (u)
− 〈F ′(u), h〉2

F (u)2
≤ 〈F ′′(u)h, h〉

F (u)
.

Suppose preliminarily that u ∈ KJ . It is well-known that the coefficients of the power-series
expansion of exp are positive. Using then the previous corollary, we can continue as follows:

〈E′′(u)h, h〉 ≤ 〈F ′′(u)h, h〉
F (u)

≤
∑r

i=1 exp(|λi(u)|)λi(h2)∑r
i=1 exp(λi(u))

≤ λ1(h2).

Now, observe that the element u− Te is always in the cone of squares when T is smaller than
λr(u). Note also that E(u− Te) = E(u)− T . Hence, the above inequality holds true even for
elements u that are not in KJ .

Corollary 4.3 Let K := {v ∈ KJ |tr(v) = 1} be the Jordan algebraic extension of the standard
simplex. The function d : K → R, v 7→ d(v) :=

∑r
i=1 λi(v) ln λi(v) satisfies, for all h ∈ J and

all u ∈ K, the following inequality:

〈d′′(u)h, h〉 ≥ ||h||21,

where ||h||1 :=
∑r

i=1 |λi(h)| is the norm generated by the 1-norm in Rr.

Proof
Let η(λ) := ln

∑r
i=1 exp(λi) for every λ ∈ Rr. The conjugate of the function η is δ(λ) :=∑r

i=1 λi lnλi on the standard simplex

Q := {λ ∈ Rr|
r∑

i=1

λi = 1, λi ≥ 0 for every i}.
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The function d is then the conjugate of the spectral function E defined in the previous corollary.
It is well-known (see Theorem 4.2.2 in [HUL93]) strong convexity and Lipschitz continuity of
the gradient are dual notions. In other words, suppose that the function f : RN → R ∪ {+∞}
is twice differentiable; then:

〈f ′′(x)h, h〉 ≤ L

2
||h||2 ∀x ∈ dom f and h ∈ J

if and only if:

〈f∗′′(x)h, h〉 ≥ 1
2L
||h||2∗ ∀x ∈ dom f∗ and h ∈ J ,

where || · ||∗ is the dual norm of || · ||. As the dual norm of ||h||∞ :=
√

λ1(h2) is the norm || · ||1,
we get that 〈d′′(u)h, h〉 ≥ ||h||21.

Let us consider the function:

φ(x) := max
u∈K

〈Ax, u〉 − 〈b, u〉,

that maps Rm to R; the set K is, like in the above corollary, the Jordan algebraic extension of
the standard simplex. The linear application A maps Rm to J , and the element b belongs to
J . The scalar products should be understood as Jordan scalar product. In view of Proposition
3.2, the function φ is exactly equal to λ1(Ax− b).

Using the prox-function d2(u) :=
∑r

i=1(λi(u) ln λi(u)) + ln r for K, we get:

φµ(x) := max
u∈K

〈Ax, u〉 − 〈b, u〉 − µd2(u) = µd∗2((Ax− b)/µ),

or, when µ > 0,

φµ(x) = µ ln

(
r∑

i=1

exp(λi(Ax− b)/µ)

)
− µ ln(r).

The above corollary ensures that the strong convexity constant σ2 related to this smooth-
ing equals 1 for the best possible norm (i.e. with the smallest unit ball), namely ||h||E2 :=∑r

i=1 |λi(h)|.

5 Sum of norms problem

The sum of norms problem can be formulated as follows. Given p real matrices {A1, . . . , Ap}
of dimension m × n and p real m-dimensional vectors {b1, . . . , bp}, we need to minimize the
function

f(x) :=
p∑

j=1

||Ajx− bj ||

over Q1 := {x ∈ Rn : ||x|| ≤ R}, where || · || stands for the standard Euclidean norm of
E1 := Rn or over Rm.
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In this paper, we propose to solve this problem by using the smoothing function techniques
in the Jordan spin algebra J := Sm. To do so, we define for all j the following elements:

Āj =
(

0
Aj

)
and b̄j =

(
0
bj

)
.

We also introduce the function:

f̄ : Rn → R

x̄ 7→ f̄(x) :=
p∑

j=1

λ1(Ājx− b̄j),

where λ1 is the largest eigenvalue of its argument in the Euclidean Jordan algebra Sm. Observe
that minimizing f̄ over Q1 is completely equivalent to the sum of norms problem.

Since λ1 is the support function of the Jordan algebraic version of the standard simplex:

∆ := {ū ∈ Sm|λ1(ū) + λ2(ū) = 1, λ2(ū) ≥ 0} =
{

ū =
(

1/2
u

)
∈ J : ||u|| ≤ 1/2

}
,

we can rewrite our function f̄ as follows:

f̄(x̄) =
p∑

j=1

λ1(Ājx− b̄j) =
p∑

j=1

max
ūj∈∆

〈ūj , Ājx− b̄j〉J .

Now, we define

A :=




Ā1

...
Āp


 and b :=




b̄1

...
b̄p


 .

Our expression of f̄ then becomes f̄(x) = maxū∈∆p〈Ax, ū〉J p−〈b, ū〉J p , and our problem enters
into the class of those for which smoothing techniques are applicable.

In the notation of Section 2, we let || · ||E1 be the Euclidean norm, and we let the prox-
function for Q1 be:

d1(x) :=
||x||2E1

2
.

It is easy to compute that the constant σ1 equals 1 and that D1 = max{d1(x)|x ∈ Q1} = R2/2.
The space E2 will be J p. For the set Q2 := ∆p, we propose the following prox-function:

d2(ū) :=
p∑

j=1

||Ā∗j || · [λ1(ūj) ln(λ1(ūj)) + λ2(ūj) ln(λ2(ūj)) + ln 2],

and the following norm:

||ū||E2 :=

√√√√
p∑

j=1

||Ā∗j || · ||ūj ||21.
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We have used the notation || · ||1 to designate the spectral norm generated by the 1-norm on R2.
The number ||Ā∗j || denotes here the maximum value that 〈Ā∗juj , x〉 can take when ||uj ||1 ≤ 1

and ||x||E1 ≤ 1. A straightforward computation shows that it equals
√

λmax(A∗jAj), i.e. the
maximal singular value of Aj .

We know from Corollary 4.3 that for every h̄1, . . . , h̄p ∈ J :

p∑

j=1

||Ā∗j ||〈[λ1(ūj) ln(λ1(ūj)) + λ2(ūj) ln(λ2(ūj))]′′h̄j , h̄j〉 ≥
p∑

j=1

||Ā∗j || · ||h̄j ||21 = ||h̄||2E2
.

Hence, we can take σ2 := 1. Now, D2 = max{d2(ū)|ū ∈ Q2} =
∑r

j=1 ||Ā∗j || ln 2. It remains to
compute the quantity ||A||E1,E2 :

||A||E1,E2 = max{〈Ax, ū〉J p : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1}

= max





p∑

j=1

〈Ājx, ūj〉J : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1





≤ max





p∑

j=1

||Ā∗j || · ||ūj ||1 · ||x||E1 : ||x||E1 ≤ 1,

p∑

j=1

||Ā∗j || · ||ūj ||21 ≤ 1





≤ max





p∑

j=1

||Ā∗j || · ||ūj ||1 :
p∑

j=1

||Ā∗j || · ||ūj ||1 ≤
√√√√

p∑

j=1

||Ā∗j ||


 =

√√√√
p∑

j=1

||Ā∗j ||.

The last inequality comes from the Cauchy-Schwarz relation:




p∑

j=1

||Ā∗j || · ||ūj ||1




2

≤



p∑

j=1

||Ā∗j ||






p∑

j=1

||Ā∗j || · ||ūj ||21


 .

Letting M :=
∑p

j=1 ||Ā∗j ||, we can now conclude that the Algorithm 2.1 has the following rate
of convergence:

f̄(ȳN )− f̄∗ ≤ 4||A||
N + 1

√
D1D2

σ1σ2
=

4
√

ln 2MR

N + 1
= O

(
RM

N

)
.

If the matrices Aj are scaling matrices, that is, matrices of the form Aj := mjI, Nesterov
has shown that the same order of convergence can be predicted with the following smoothed
version of f :

fµ(x) :=
p∑

i=1

mjψµ(||x− cj ||),

with ψµ(t) =
{

t2/2µ if 0 ≤ t ≤ µ,
t− µ/2 if µ ≤ t.
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Observe that the problem:

min
||x||≤R

p∑

j=1

|〈aj , x〉 − bj |

is a particular case of the problem we have considered – it suffices to take m = 1. In this case,
the constant M is the sum of Euclidean norms of the vectors aj .
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