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Abstract

In this paper we question the role of a joy-of-giving bequest motive of a
privately-owned renewable resource for sustainability. We model an overlapping
generations economy in which individuals are endowed with a renewable resource.
This resource can be exploited at no cost by the young households and provided to
production or bequeathed to the next generation. We highlight two main results.
First, the mere existence of a bequest motive does not guarantee a sustainable
outcome. Second, when the resource is preserved in equilibrium, its level does
not necessarily coincide with the efficient one. Whether the resource stock is too
high or too low the capital stock should be lower than the golden rule level.
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1 Introduction

In this article we ask whether a privately-owned renewable productive resource can be
conserved and managed optimally when households have a joy-of-giving (Andreoni,
1989) resource bequest motive.

In matter of environmental issues, it is probably exaggerate to say that all indi-
viduals are purely selfish. On the other hand, it may be equally unrealistic to assume
that they have a perfectly universal concern for the entire posterity. It seems however
reasonable to assume that they enjoy the idea to accomplish their duty regarding fu-
ture generations because they experience a “warm glow” or a “joy-of-giving” from
fulfilling their duty. Andreoni (1989) used this idea to model the so-called joy-of-
giving bequest motive and applied it to charities giving and transfers inside the
family. In this article, we investigate the micro-foundations of a growth model and
build a framework in which individuals have some dose of interest for future genera-
tions. We use the joy-of-giving bequest motive to model the bequest of resource from
one generation to the other. We model an overlapping generations (OLG) economy
in which individuals are privately-endowed with a renewable resource. This resource
can be extracted at no cost by the young households and provided to production
as a source of revenue. However, the joy-of-giving bequest motive motivates the
transfer of the unexploited resource to the heirs so as to let them the opportunity
to raise their own revenues from the resource. The exploited resource is combined
with man-made capital and labor to produce a consumption/investment good. The
issue of substitution between the forms of capital is addressed, as well as the issue
of selfishness versus altruism and their implications on the opportunity sets left to
future generations.

Despite the importance of bequests (Löfgren, 1991) there are few studies that
incorporate them into the analysis. Hultkrantz (1992) examines the implications
of bequests in an OLG economy with forest and timber bequest occurring in the
form of unharvested forest stock. Amacher et al. (1999) introduce a more complex
forest management with harvesting and silviculture investment. The representative
landowner derives utility both from consuming and leaving a timber bequest for the
next generation, the indirect utility of the next generation entering its own utility
function. In all these papers (see also Jouvet et al., 2000), however, bequest motives
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always rely on the assumption of altruism à la Barro (1974). As Becker (1993)
himself admits, this form of intergenerational concern requires human capacities that
are beyond the capacities of the most prescient. The joy-of-giving bequest motive
does not make this implicit assumption.

The paper is organized as follows. In section 2 we describe an OLG economy
with physical capital and a renewable resource, in which households have a resource
bequest motive. Section 3 and section 4 present the main two results of our analysis.
Section 5 concludes.

2 An economy with a resource bequest motive

The economy is of the Diamond’s (1965) type with a constant population, but with
the two extensions of an extracted resource and a joy-of-giving bequest motive. The
young households at time t = 0 hold the global stock of resource Z−1. This stock is
shared equally between the N first young: z−1 = Z−1/N . This section presents the
natural resource dynamics, the agents’ and the firms’ behavior and characterize the
equilibrium.

2.1 The natural resource dynamics

We consider a renewable natural resource. Its stock is shared equally between the
N first young individuals: z−1 = Z−1/N . Let us first, in this section, describe the
resource own dynamics, i.e without human exploitation. Tthe extraction decision
will be studied in the next section. The equation which governs the evolution of each
individual endowment in the renewable resource, with zero extraction, is given by
zt = zt−1 + h (Zt−1) zt−1, where Zt−1 is the aggregate resource stock inherited from
time t − 1, zt−1 is the individual stock inherited from time t − 1 by each of the N

time t young individuals and where the function h (.) is the resource natural return.
Since the function h is assumed linear, we can also write this equation as

zt = zt−1 + Nh (zt−1) zt−1 (1)

We make the following hypotheses on the function h: ∃z > 0 : h (z) = −1/N and
h′′ (z) < 0, ∀z. We adopt the notation H (.) for RHS of (1). Hence these dynamics
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of the individual resource stock in the absence of extraction are given by

zt = H (zt−1) zt−1 (2)

Example 1 The quadratic specification - Let us consider a quadratic specifica-
tion for the total natural return which is added to the existing stock each period

zt = zt−1 + N (µ− νzt−1) zt−1 (3)

These dynamics can be represented by a bell-shape curve. Their properties are the
following. The stock zt−1 must belong to the interval (0, zmax) , where zmax is the
threshold value of zt−1 such that the total natural return is negative and annihilates
all the existing stock: zmax + N (µ− νzmax) zmax = 0, i.e. zmax = (Nν)−1 (1 + Nµ) .

The maximum of these dynamics is reached when zt−1 = z̄ = (2Nν)−1 (1 + Nµ) .

The steady state is given by zne = µ/ν, where the upper-script “ne” stands for “no
extraction” of the resource. At the steady state zne, the total natural return is equal
to zero. The steady state may be on any side of the bell-shape dynamics. If zne ≤ z̄

then the slope of the dynamics at the steady state is positive. If zne > z̄ then the
slope at the steady state is negative. The resource own dynamics are explosive only
when the slope at the steady state is smaller than −1. This occurs under the following
condition 1 + Nµ− 2Nνzne < −1⇔ µ > 2/N.

Insert here figure 1: Phase diagram for the natural resource.

2.2 Households’ behavior

Each individual lives for two periods: youth and old age. He is endowed with one unit
of labor which he supplies inelastically during his first period of life for a real wage wt.
He is also endowed with the total available individual resource stock H (zt−1) zt−1,
composed of his parents’ bequest zt−1 augmented by it natural return Nh (zt−1) zt−1.
He decides how much to extract of this inherited stock. Extraction is costless. He
provides the amount extracted et to the production process for a real price qt. There
are two possible uses for his first-period total income, wt + qtet: consumption ct and
savings st. When old, the individual bequeathes the unextracted resource stock zt to
his heir, invests his savings in productive capital and receives capital income Rt+1st,
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where Rt+1 = 1+rt+1 is the interest factor. He consumes all his second-period income
and then dies. This is summarized by the youth and old-age budget constraints

wt + qtet = ct + st (4)

Rt+1st = dt+1 (5)

and by the equation of motion of the individual resource stock with extraction

H (zt−1) zt−1 = et + zt (6)

The individual’s preferences are defined on youth and old-age consumption, ct

and dt+1, and on the level of the unextracted resource stock bequeathed to his heir,
zt. They are represented by the following additively separable utility function

Ut = (1− β) log ct + β log dt+1 + γ log zt (7)

The parameter β ∈ (0, 1) reflects the weight attached to consuming when old while
γ > 0 is the degree of the joy-of-giving bequest motive.

One interpretation of the joy-of-giving bequest motive is that the individual has
the feeling of doing his duty by abstaining from consuming the whole family good.
He feels he has to preserve the resource for the sake of his heir. By doing so he makes
sure that he does not threaten the opportunities of his descendant. It should be
emphasized that the bequest motive we assume here is substantially different from
a concern for the resource or the environment as a whole. Indeed, not only the
individual does not care about the other individuals’ resource stocks, but also he gets
utility only from his own bequest.

Two decisions characterize the individual’s problem: the saving decision and the
extraction decision. Considering prices as given, the individual chooses st and et

in order to maximize his utility. By substituting ct, dt+1 and zt by their respective
expressions, we get the following maximization problem:

max
{st,et}

(1− β) log (wt + qtet − st) + β log (Rt+1st) + γ log (H (zt−1) zt−1 − et) (8)

and the first-order conditions write

1− β

wt + qtet − st
=

β

st
(9)
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(1− β) qt

wt + qtet − st
≤ γ

H (zt−1) zt−1 − et
(10)

with equality if et ≥ 0. Solving the first equation for st as a function of et yields:
st = β (wt + qtet) . If extraction is unconstrained, the solution to the maximization
problem is given by

et =
H (zt−1) zt−1

1 + γ
− γ

1 + γ

wt

qt
(11)

st =
β

1 + γ
[wt + qtH (zt−1) zt−1] (12)

If optimal extraction is constrained, the saving decision simply writes st = βwt. It is
never optimal for the individual to extract all the resource since we would then get
an infinitely low utility.

The extraction decision depends on two elements. First, it is increasing in the
inherited stock. Second, it is decreasing in the relative price of labor with respect to
the price of the resource, wt/qt. The condition of non-negativity of et is given by

γ ≤ qtH (zt−1) zt−1

wt
(13)

The right-hand side of the non-negativity constraint on et is the ratio of the inherited
resource stock valued at price qt on the wage income. This ratio reflects the relative
importance of the two individual’s sources of income when young. It increases as the
individual’s dependence on the bequeathed resource increases.

2.3 Firms’ behavior

There is a representative firm which produces the consumption/investment good. The
technology of production displays constant returns to scale of the three production
factors: capital K, labor L and extracted resource E. It is represented by a linearly
homogeneous production function: F (Kt, Lt, Et). The profit of the representative
firm is πt = F (Kt, Lt, Et)−RtKt − wtLt − qtEt. The firm maximizes its profit with
respect to Kt, Lt and Et considering prices as given. The first-order conditions are
given by: F ′

K (Kt, Lt, Et) = Rt, F
′
L (Kt, Lt, Et) = wt and F ′

E (Kt, Lt, Et) = qt. We
shall assume a CES specification for the production function,

F (Kt, Lt, Et) = A
(
αKK−ρ

t + αLL−ρ
t + αEE−ρ

t

)−1/ρ
(14)
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In intensive terms, the FOC’s read as follows

αK

Aρ

[
f (kt, et)

kt

]1+ρ

= Rt (15)

αE

Aρ

[
f (kt, et)

et

]1+ρ

= qt (16)

αL

Aρ
f (kt, et)

1+ρ = wt (17)

where f (kt, et) = A
(
αKk−ρ

t + αL + αEe−ρ
t

)−1/ρ
.

2.4 The competitive equilibrium

We first study the equilibrium of period t. What is given in period t is the inherited
resource stock zt−1 and the productive capital kt. We determine the following time t

variables: the prices wt, Rt and qt, the individuals’ resource supply, the bequeathed
stock and consumptions: et, zt, ct and dt, and the representative firm’s factor demands
and output supply Kt, Lt, Et and Yt. The labor market equilibrium implies Lt = N .
Hence, kt = Kt/N and et = Et/N in equilibrium and the equilibrium expressions of
factor prices are given by the marginal productivities valued at these kt and et.

Proposition 1 (i) In equilibrium, the individual’s optimal extraction is unconstrained.
(ii) Individual’s optimal extraction does not depend on capital:

et = e

(
zt−1
+/−

, γ
−
, ρ
−

)
(18)

(iii) An increase in the inherited resource stock zt−1 increases the extraction if the
inherited stock is low enough (zt−1 < z̄). Beyond the threshold value z̄, an increase
in the inherited resource stock decreases extraction.
(iv) An increase in the degree of bequest motive γ decreases extraction.
(v) As substitutability between factors decreases (increasing ρ), extraction decreases.

Proof. See appendix “Extraction in equilibrium”.

The fact that the equilibrium extraction does not depend on capital is due, at first,
to the fact that the relative price wt/qt is independent of kt in equilibrium. Indeed
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the ratio of the marginal productivities of labor and resource only depends on et.

Second, the additive separability of the log-linear utility function is also responsible
for this feature.

At a steady state equilibrium the economy reproduces itself each period. Extrac-
tion is equal to the natural return which is added each period to steady stock, i.e.,
per capita:

e (z, γ, ρ) = Nh (z) z (19)

The dynamics of the economy is as follows. At each period, we solve for et as a
function of zt−1 and we determine zt and kt+1. The dynamics of zt and kt+1 are given
by

zt = H (zt−1) zt−1 − e (zt−1, γ, ρ) (20)

kt+1 =
β

(1 + γ) Aρ

[
αLf [kt, e (zt−1, γ, ρ)]1+ρ

+αEf [kt, e (zt−1, γ, ρ)]1+ρ H (zt−1) zt−1

e (zt−1, γ, ρ)1+ρ

]
(21)

The dynamics of zt are independent of capital. Given the initial conditions, i.e. given
z−1 and k0, we determine the intertemporal equilibrium. We illustrate the equilibrium
by using a Cobb-Douglas production function.

Example 2 The Cobb-Douglas-quadratic example

Assume the Cobb-Douglas special case of the CES production function : f (kt, et) =
AkαK

t eαE
t . Then equilibrium prices read Rt = αKAkαK−1

t eαE
t , wt = αLAkαK

t eαE
t

and qt = αEAkαK
t eαE−1

t . Together with a quadratic resource dynamics et + zt =
[1 + N (µ− νzt−1)] zt−1, et, zt and kt+1 write as follows

et = ε (γ) [1 + N (µ− νzt−1)] zt−1 (22)

zt = [1− ε (γ)] [1 + N (µ− νzt−1)] zt−1

kt+1 =
β

1− β
ε (γ)αE

(
αL +

αE

ε (γ)

)
AkαK

t [(1 + N (µ− νzt−1)) zt−1]
αE

where ε (γ) = αE (αE + αEγ + αLγ)−1 ∈ (0, 1).
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At a steady state equilibrium we have N (µ− νz) z = ε (γ) [1 + N (µ− νz)] z. We
can solve for z and deduce e

z =
µ

ν
− 1

Nν

αE

γ (1− αk)
(23)

e =
αE

(1− αK)
z (24)

The steady state equilibrium value of k is the solution of s = k where s = β (1− αk) AkαK eαE :

k = (β (1− αK) AeαE )
1

1−αK (25)

Two issues can be stressed out. First, it may happen that, despite the bequest
motive towards the natural resource, this resource collapses, thus compromising the
ability of forthcoming generations to fulfill their own needs. Second, the possibility
for reaching the maximum steady state consumption level through the competitive
equilibrium is not guaranteed. These issues are discussed in the two following sections.

3 Resource extinction despite altruism

The possibility to reach a trivial equilibrium where the resource stock is equal to zero
cannot be ruled out.

Proposition 2 Let the resource own dynamics be quadratic,

zt = zt−1 + N (µ− νzt−1) zt−1.

(i) in the case where factors are strong substitutes (ρ ∈ (−1, 0)), the resource extinc-
tion never occurs, whatever γ > 0;
(ii) in the case where factors are poor substitutes (ρ > 0), the resource extinction
never occurs only if the concern for the bequeathed resource is higher than the follow-
ing threshold

γ =
1

Nµ
(26)
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Proof. See appendix “Dynamics of zt”.

The mere existence of a taste for bequeathing the resource is not always sufficient
to avoid the extinction of the resource. More importantly, when factors are poor
substitutes the taste for bequest must not only be positive, but larger than the
minimum threshold γ to guarantee preservation. This minimum value depends on the
technology of production (ρ), the resource’s productivity (µ) and the population level
(N). The reason for the γ threshold is the following. As the resource stock tends to
zero the equilibrium price of the extracted resource tends to infinity when factors are
high substitutes, whereas it tends to a finite value when factors are complementary.

Interestingly, this proposition sheds light on the interplay between sustainability
concepts and factors substitutability in an equilibrium analysis. When factors are
substitutes within the production process, the resource is not essential to production.
From a technological point of view it would be possible to maintain consumption op-
portunities of future generations even if the resource is exhausted. Such a technology
is compatible with a weak sustainability criterion (Hartwick, 1977). However, our
analysis concludes that the intertemporal competitive equilibrium will never lead
to such an outcome. A positive resource stock will be maintained in the long run
irrespective of the degree γ of the bequest motive. Thus, in equilibrium a strong
sustainability criterion will also be satisfied. When factors are poor substitutes, the
resource is essential to production, but what does matter is the value of γ. The
equilibrium will lead to a sustainable outcome with a preserved resource stock only
if γ > γ. The teaching of this result is that the technological possibilities of substi-
tution between production factors is only one part of the story. We show that it is
misleading to exclusively rely on them to study sustainability. What matters in the
interaction between technology and preferences at equilibrium.

Insert here figure 2. Phase diagram with extraction.

4 A preserved but misused resource

In this section we assume there exists a single long run positive equilibrium level of
the resource stock. What ensures that this preserved resource stock maximizes con-
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sumption level in the long run? Let us first study the productive efficiency stationary
path and then the conditions on preferences to decentralize this path.

4.1 Dynamic efficiency of steady state

Dynamic efficiency in the long run consists in maximizing the net stationary produc-
tion defined as the difference between production per head and investment in capital
per head, i.e. φ(k, z) = f [k, H (z) z − z]− k. This problem writes:

max
{k,z}

φ(k, z) = f [k, H (z) z − z]− k (27)

Under suitable conditions on the limit properties of capital marginal productivity
f ′k (i.e. limk→+∞ f ′k (k, .) = 0 and limk→0 f ′k (k, .) = +∞) there exists an interior
solution to the consumption maximization problem. The first-order conditions for an
interior maximum are the following:

f ′k (k∗,H (z∗) z∗ − z∗) = 1 (28)

H ′ (z∗) z∗ + H (z∗) = 1 (29)

The first equation in k and z is the equivalent of the standard condition defining
the Golden rule capital stock. The choice of efficient capital stock is determined by
the usual trade-off between the marginal productivity of capital and the population
growth rate (here 1). The second equation only depends on z and always has an
interior solution. At z∗, the steady exploitation e is maximized. The trade-off for
the extracted resource is similar to the one for capital. The marginal natural re-
turn (H ′ (z∗) z∗ + H (z∗)) must equal the marginal effort to leave the resource stock
unchanged next period (i.e. 1). We illustrate these properties with a simple example.

Example 3 The Cobb-Douglas-quadratic example - Assume a Cobb-Douglas
production function, y = AkαK eαE , with A > 0 the multi-factor productivity in-
dex and αK and αE the elasticities of capital and extracted resource intensities;
assume further that the resource evolves according to the quadratic function z =
[1 + N (µ− νz)] z − e, with µ > 0 and ν > 0. In this case, we have

z∗ =
µ

2ν
(30)
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e∗ =
Nµ2

4ν
(31)

k∗ =
(
αKA (e∗)

αE
) 1

1−αK (32)

We adopt the following definition:

Definition 1 An economy is said to be resource-conservative (resp. resource con-
suming) in steady state if its resource stock is larger (resp. smaller) than the stock
z∗ which maximizes net production.

A resource-conservative economy could increase the consumption of all genera-
tions, including the present one, by just raising resource extraction. The unextracted
resource closely parallels the unconsummed numeraire: it is invested to restore the
next period stock. For this reason, we could label this case “over-accumulation” of
resource. The inverse holds for a resource-consuming economy. Resource exploitation
should be temporarily reduced to let the resource reach the higher z∗ level. At that
level, exploitation is eventually run at a higher level than initially. This case could be
labelled “under-accumulation” of resource. In this case, the economy could reach a
higher a level of consumption per head, but at the expense of the current generation.

4.2 Efficiency of the equilibrium

The following proposition establishes conditions on preferences to decentralize the
efficient stationary path steady state with a Cobb-Douglas production function.

Proposition 3 With a Cobb-Douglas production function and a quadratic resource
dynamics, there exists a system of individuals’ preferences (β∗, γ∗) which maximizes
net stationary production. This system of preferences is such that

γ = γ∗ ≡ 2αE

Nµ (1− αK)
(33)

β = β∗ ≡ αK

1− αK
∈ (0, 1) (34)

This implies that αK ∈ (0, 1
2)

Proof. See appendix “Conditions on preferences”.

12



Most of the time, the preferences will drive the economy to another long run
equilibrium. Assume an inefficient competitive equilibrium in which the natural
resource is under-accumulated (z < z∗). This may come from a taste for bequeathing
the resource lower than γ∗. Whatever the level of capital per head, the net product
is not maximized. What is the capital stock k which maximizes the consumption per
head? According to the Hartwick rule, one should expect k to be larger than k∗. The
following proposition shows that it is never the case.

Proposition 4 Whenever an economy under-accumulate or over-accumulate its nat-
ural resource, the level of capital which maximizes net production is always lower than
k∗.

Proof. See appendix: “Conservationists” vs “exploitationists”.

What explains this result is that, as long as the resource stock is not equal to
z∗, extracted resource is not maximized (e < e∗). Indeed, only z∗ leads to the
maximum sustainable yield. Since e is lower than e∗, the marginal productivity of
the capital stock k∗ is lower than the marginal cost of reproducing k∗ each period.
As a consequence, only a lower capital stock can make it.

The Hartwick rule addresses the issue of the role of substitutability between nat-
ural and man-made capital stocks (see e.g. Asheim et al. (2003)). This question, in
fact, should be considered from two points of view: from a technological perspective,
as done above, but also from the point of view of the contribution of each stock to
sustainability, i.e. from their capacity to raise revenues.

Let consider a world where people are eager to fulfill their duty towards future
generations by preserving a high level of the natural resource. Call this a conservative
economy (i.e. conservative with respect to the natural resource). Formally, this
economy is such γ > γ∗. The previous proposition shows that, when people are too
conservative (γ > γ∗ and z > z∗), it follows that e < e∗ and that it is not necessary
to maintain a capital stock as high as k∗: a smaller capital stock would maximise
the consumption level (β < β∗). Let us now consider a world where people are
relatively selfish or short-sighted in the sense that they neglect their duty towards
the future generations. Call this an exploitationist economy (agents over-exploit the
natural resource for their own welfare). Formally we have γ < γ∗. In this case, one
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should expect that it might be helpful to maintain a capital stock higher than k∗ as a
compensation. Actually, our proposition reveals that an excessive selfishness (γ < γ∗

and z < z∗), and thus a low resource stock, would recommend also a lower capital
stock (through β < β∗). Be the economy conservative or exploitationist, the capital
stock which maximizes the net product is always lower than k∗.

5 Conclusion

We model an overlapping generations economy in which individuals are privately-
endowed with a renewable resource. This resource can be extracted at no cost by
the young households and provided to production as a source of revenue. However, a
joy-of-giving bequest motive motivates the transfer of the unexploited resource to the
heirs so as to let them the opportunity to raise their own revenues from the resource.
The purpose was to analyze whether a decentralized decision-making process with
environmental constraint may fulfill the necessary condition for sustainability. The
main findings are the following.

In the long run, the bequest motive does not systematically guarantee sustainabil-
ity. When production factors are high substitutes and thus when extracted resource
is inessential to production, any degree of the bequest motive is compatible with a
preserved resource. So, both weak (consumption preservation) and strong sustain-
ability (resource stock preservation) are satisfied. On the contrary, when factors are
poor substitutes, i.e. when the resource is essential to production, strong sustain-
ability (resource preservation) is required in order to have weak sustainability. We
derive a condition on the degree of the bequest motive for strong sustainability to
hold.

There exists a system of preferences which decentralizes the target of the consumption-
maximizing path in the long run. But in most cases preferences will differ from this
and the economy will converge to a sub-optimal long run equilibrium. As we showed,
resource-conservative economies, which run a high steady resource stock, should com-
pensate with a lower capital stock to maximize the second-best consumption level
(substitutability result). On the contrary, resource-consuming economies, which run
a low level of steady resource stock, should also keep a lower capital stock to maximize
second-best consumption per head (complementarity result).
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This paper illustrated the insights of an intertemporal equilibrium analysis for
the study of the issue of sustainability. In particular, we studied the implications
for sustainability of a joy-of-giving bequest motive applied to a privately-owned re-
newable resource. Despite this bequest motive there is room for corrective public
policies. This requires further research.

6 Appendices

6.1 Extraction in equilibrium

Proof of point (i) - At an unconstrained-extraction time t equilibrium, there is a
unique finite positive quantity et which equalizes the prices from the inverted re-
source supply and demand functions on the factor market and which is inferior to
H (zt−1) zt−1. From the expression of aggregate resource supply

Net = N (1 + γ)−1 H (zt−1) zt−1 −N (1 + γ)−1 γq−1
t wt

and from the equilibrium value of the real wage rate wt = (αL/Aρ) f (kt, et)
1+ρ , we

derive the inverted resource supply

qt =
γ (αL/Aρ) f (kt, et)

1+ρ

H (zt−1) zt−1 − (1 + γ) et
(35)

and the inverted resource demand verifies

qt =
αE

Aρ

f (kt, et)
1+ρ

e1+ρ
t

(36)

Equating the above two expressions of the price qt yields:

γαL

H (zt−1) zt−1 − (1 + γ) et
=

αE

e1+ρ
t

(37)

The LHS tends to αLγ/H (zt−1) zt−1 as et tends to 0, while the RHS tends to +∞
as et tends to 0. The LHS is increasing in et until the value

(1 + γ)−1 H (zt−1) zt−1 (< H (zt−1) zt−1)

at the limit of which it tends to +∞ ; from the other side, as et tends to (1 + γ)−1 H (zt−1) zt−1,

the LHS tends to −∞. Beyond (1 + γ)−1 H (zt−1) zt−1, as et increases the LHS in-
creases until 0 at the limit; but this is economically meaningless, since extraction
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cannot be larger than the stock. The RHS decreases as et increases and tends to 0 as
et tends to +∞. As a result, there always exists a finite positive et ≤ H (zt−1) zt−1,

such that the two curves cross.
Proof of point (ii) - Extraction, i.e. et = (1 + γ)−1 H (zt−1) zt−1−γ (1 + γ)−1 wtq

−1
t ,

in equilibrium, is given by

et −
H (zt−1) zt−1

1 + γ
+

γ

1 + γ

αL

αE
e1+ρ
t = 0 (38)

which is obtained by substituting wtq
−1
t with its equilibrium value, i.e.

αLA−ρf (kt, et)
1+ρ

αEA−ρf (kt, et)
1+ρ e

−(1+ρ)
t

=
αL

αE
e1+ρ
t (39)

This equation in et is independent of capital. Its solution is a function e (zt−1, γ, ρ) .

Proof of point (iii) - The solution of this equation is a function of zt−1, γ and ρ:
et = e (zt−1, γ, ρ) . Let us study the derivative of this function w.r.t. zt−1:

det

dzt−1
=

(1 + γ)−1 [H ′ (zt−1) zt−1 + H (zt−1)]
1 + γ (1 + γ)−1 αLα−1

E (1 + ρ) eρ
t

(40)

or
det

dzt−1
= ε (zt−1, γ, ρ)

[
H ′ (zt−1) zt−1 + H (zt−1)

]
(41)

where
ε (zt−1, γ, ρ) =

αE

αE + αEγ + αLγ (1 + ρ) e (zt−1, γ, ρ)ρ (42)

belongs to the interval (0, 1) . Thus the derivative det/dzt−1 has the same sign as
the derivative of the dynamics without extraction zt = φ (zt−1, ) , i.e. φ′ (zt−1) =
H ′ (zt−1) zt−1 + H (zt−1) , i.e. first increasing for for values zt−1 ∈ (0, z] and then
decreasing for zt−1 ∈ (z,H (zt−1) zt−1) .

Proof of point (iv) - The derivative of e (zt−1, γ, ρ) w.r.t. γ is given by:

det

dγ
= −

H (zt−1) zt−1 (1 + γ)−2 + αLα−1
E e1+ρ

t (1 + γ)−2

1 + γ (1 + γ)−1 αLα−1
E (1 + ρ) eρ

t

< 0 (43)

Proof of point (v) - From (38) it is straightforward that the higher ρ ∈ (−1,+∞),
the lower et.
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6.2 Dynamics of zt

The dynamics of the individual resource stock with extraction in equilibrium is zt −
H (zt−1) zt−1 + e (zt−1, γ, ρ) = 0. They have a bell shape, increasing on (0, z) and
decreasing on (z, zmax). The slope of these dynamics are given by:

dzt

dzt−1
= [1− ε (zt−1, γ, ρ)]

[
H ′ (zt−1) zt−1 + H (zt−1)

]
(44)

It is therefore a fraction of H ′ (zt−1) zt−1 + H (zt−1) . This last expression is the
derivative of the function φ (zt−1) which is the dynamics of the resource without
extraction. It is positive for zt−1 ∈ (0, z) and negative for zt−1 ∈ (z, zmax) . The
limits are:

lim
zt−1→0

zt = 0 (45)

lim
zt−1→zmax

zt = 0 (46)

We consider the slope of the dynamics as zt−1 tends to 0 in the case of quadratic
resource own dynamics given by zt = zt−1 + N (µ− νzt−1) zt−1. Since

ε (zt−1, γ, ρ) =
αE

αE + αEγ + αLγ (1 + ρ) e (zt−1, γ, ρ)ρ (47)

and
H ′ (zt−1) zt−1 + H (zt−1) = 1 + N (µ− 2νzt−1) (48)

we have
lim

zt−1→0

[
H ′ (zt−1) zt−1 + H (zt−1)

]
= 1 + Nµ (49)

lim
zt−1→0

ε (zt−1, γ, ρ) =

{
0 if ρ ∈ (−1, 0)

1
1+γ if ρ > 0

(50)

Hence, in the quadratic case, the slope of the dynamics as zt−1 → 0 is given by

lim
zt−1→0

[1− ε (zt−1, γ, ρ)]
[
H ′ (zt−1) zt−1 + H (zt−1)

]
=

{
1 + Nµ if ρ ∈ (−1, 0)
γ(1+Nµ)

1+γ if ρ > 0
(51)

If ρ ∈ (−1, 0) this slope (1 + Nµ) is greater than 1 independently of γ. If ρ > 0 this
slope is greater than 1 iff

γ >
1

Nµ
(52)

Since the dynamics are continuous and concave and end up with negative slope,
starting with positive slope larger than 1, there exists a non-trivial steady state z.
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6.3 Conditions on preferences

We have z = z∗ if and only if

z =
µ

ν
− 1

Nν

αE

γ∗ (1− αK)
=

µ

2ν
= z∗ (53)

which leads to the following condition

γ∗ =
2αE

Nµ (1− αK)
(54)

and then, taking e = e∗ = αE (1− αK)−1 z∗ we have k = k∗if and only if

k = (β∗ (1− αK) A (e∗)αE )
1

1−αK = (αKA (e∗)αE )
1

1−αK = k∗ (55)

which leads to the following condition

β∗ =
αK

1− αK
(56)

The condition for a positive stationary natural stock z is given by

γ∗ > γ ⇔ αE >
1− αK

2
(57)

and having β ∈ (0, 1) requires

0 <
αK

1− αK
< 1⇔ 0 < αK <

1
2

(58)

6.4 ‘Conservationists’ vs ‘exploitationists’

Let z̃ 6= z∗, then by definition ẽ < e∗. With a CES production function we have
f
′′
ke > 0 and so f ′k (k∗, ẽ) < 1. As a result, k̃ solution of f ′k

(
k̃, ẽ
)

= 1 is such that

k̃ < k∗.
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