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Abstract

We consider the semiparametric regressionXtβ+φ(Z) where β and φ(·) are unknown

slope coefficient vector and function, and where the variables (X,Z) are endogeneous.

We propose necessary and sufficient conditions for the identification of the parameters

in the presence of instrumental variables. We also focus on the estimation of β. An

incorrect parametrization of φ generally leads to an inconsistent estimator of β, whereas

consistent nonparametric estimators for β have a slow rate of convergence. An additional

complication is that the solution of the equation necessitates the inversion of a compact

operator which can be estimated nonparametrically. In general this inversion is not

stable, thus the estimation of β is ill-posed. In this paper, a
√
n-consistent estimator

for β is derived under mild assumptions. One of these assumptions is given by the so-

called source condition which we explicit and interpret in the paper. Finally we show

that the estimator achieves the semiparametric efficiency bound, even if the model is

heteroskedastic.
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1 Introduction

The instrumental variable regression is characterized by a relation

Y = ϕ(Z) + U (1.1a)

together with a mean independence condition

E(U |W ) = 0 (1.1b)

where W are the instruments, Y and Z are endogeneous variables and ϕ is a nonparametric

function that defines the relationship of interest.

One difficult question is to give regularity conditions in order to determine the speed

of convergence of the estimator of φ. This speed of convergence is typically related to the

smoothness of φ and the dependence between W and Z. The latest is described by the

sequence of singular values on the conditional expectation operator1 and on the regularity

of ϕ characterized by the possibility to represent ϕ(Z) as a conditional expectation. These

conditions are difficult to interpret in the underlined economic model. Moreover, from an

i.i.d. sample of n data, the speeds of convergence are typically slower than
√
n in particular

cases2. The usual curse of dimensionality also applies in that model, in particular through

the dependence scheme between Z and W : The bigger is the dimension of Z, the weaker is

this dependence.

In standard regression models, a classical method to reduce the dimensionality of the

problem is to impose more restrictions on the object of interest. One possibility is to assume

that ϕ has an additive structure, that is we can find two sets of endogeneous variables (Z,X)

such that ϕ(Z,X) = φ(Z)+ψ(X) for some functions φ and ψ. More specifically, this paper

analyses the situation where ψ takes a linear structure. Then the model considered in this

paper is

Y = φ(Z) +Xtβ + U (1.2a)

where the random variables Y ∈ R, Z ∈ R
p, X ∈ R

k, and where U is an error term with

finite variance such that

E (U |W ) = 0 (1.2b)

for some instrumental variable W ∈ R
q. In the following, we consider the nonparametric

estimation of φ and the estimation of the parameter β from an i.i.d. sample of the vector

(Y,Z,X,W ).

An elementary application of the model (1.2a) arises when φ = 0. This case includes the

parametric analysis of instrumental variable regression which has been extensively studied

1i.e. the λj such that there exists ϕj satisfying E{E(ϕj(Z)|W )|Z} = λ2
jϕj .

2This is for instance the case when (Z, W ) is jointly normally distributed and the function ϕ is poorly

approximated by polynomials.
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under the assumption Cov(U,W ) = 0 (see standard textbooks in econometrics, e.g. Chapter

3 of Hayashi (2000)). The weaker condition (1.2b) has been less considered and treats the

joint distribution of (Z,W ) nonparametrically.

The model (1.2a–1.2b) can be viewed as an extension of the so-called partially linear

model defined with E(U |X,Z) = 0. This situation has been the subject of considerable

study (see, e.g. Härdle, Liang, and Gao (1990)). In that context,
√
n-consistent estimator

of the parameter β is derived in Robinson (1988) under the strong conditions that U is

independent from X and Z, and φ belongs to some smoothness class.

Model (1.2a) with partial endogeneity has also been studied in some papers. For in-

stance, Chen, Linton, and Van Keilegom (2003) consider the situation where the variable

X only is endogeneous, while Ai and Chen (2003) study the case where the variable Z is

endogeneous.

In the following, we consider the case where both X and Z are endogeneous. There

is however another deeper contrast between our approach and the aforementioned papers.

This difference lies in the underlying assumption specified for the space of parameters. This

question is connected to the notion of well- or ill-posedness that we discuss now.

1.1 Well-posed versus Ill-posed problem

The target function φ and parameter β are solution of the functional equation

E (Y |W ) = E (φ(Z)|W ) + E
(
Xtβ|W

)
(1.3)

which links β ∈ R
k with functions assumed to be elements of Hilbert spaces. In this paper,

all Hilbert spaces are L2 spaces with respect to some specifice measure. If this measure

is the joint probability density f of the data generating process, then we write L2
f (Y ) or

L2
f (Z) to denote for example functions depending on Y or Z only.

Equation (1.3) is an integral equation which can be rewritten as

∫
dy yfY |W (y) =

∫
dz φ(z)fZ|W (z) +

∫
dx xtβfX|W (x)

where fY |W denotes the conditional density of Y given W , and similarly for fZ|W and fX|W .

The estimation of φ and β first require a (nonparametric) estimator of the conditional

densities involved in the integral equation. However, once these estimators are defined, it

remains a set of intrinsic difficulties in order to solve this equation for (φ, β). As noted, for

instance, by Newey and Powell (2003) or Florens (2003), one of these problems lies in the

noncontinuity of the resulting estimators. This lack of continuity is usually referred as the

ill-posedness of the problem. In particular it implies that, even if we can find consistent

estimators for the conditional densities, it will not lead to a consistent estimator for φ or β.

One solution to avoid ill-posed problems is to assume that φ lies in a compact set of

functions, see e.g. Tikhonov, Goncharsky, Stepanov, and Yagola (1995). This assumption
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automatically eliminates ill-posedness of the problem and leads to a well-posed problem3.

This type of assumption is used, e.g., in Newey and Powell (2003), Ai and Chen (2003)

or Chen (2006) to circumvent the inherent instability of the problem. The compactness

assumption is however an extremely strong assumption which, in addition, is difficult to

test.

It is however possible to deal with the ill-posedness, and a large literature on tech-

niques exists to stabilize the inversion of the integral equations such as equation (1.3). In

econometric contexts, we refer to Carrasco, Florens, and Renault (2006) for an overview of

different methods. The treatment of the fully nonparametric model (1.1a–1.1b) with this

approach can be found in Darolles, Florens, and Renault (2002), Florens (2003) and Hall

and Horowitz (2005). See also Blundell and Horowitz (2004) for an application to a test of

exogeneity.

In this paper, we propose estimators of φ and β in the partially linear model (1.2a–1.2b)

in the framework of ill-posed inverse problems. It is first helpful to give a definition of the

functional operators involved in (1.3).

1.2 Operators

Note that equation (1.3) may be reformulated in different ways (namely by multiplication

with functions of W ) and leads to different choices of function spaces. One important result

of the present paper is to relate this choice to the optimality of the estimator.

Let π and τ be two probability densities. We define

TX : R
k → L2

τ (R
q) : β̃ 7→ E{X ′β̃|W = ·}fW (·)

τ(·) (1.4)

TZ : L2
π(Rp) → L2

τ (R
q) : φ̃ 7→ E{φ̃(Z)|W = ·}fW (·)

τ(·) (1.5)

where L2
τ (R

q) and L2
π(Rp) are Hilbert spaces of square integrable functions with respect to

the measure τ or π respectively. We can then write (φ, β) as the solution of

r = TZφ+ TXβ. (1.6)

where r = E(Y |W )fW/τ . As we shall prove in this paper, the choice of τ is related to some

optimality for the estimation of β.

It is also useful to introduce the corresponding adjoint operators:

T ⋆
X : L2

τ (R
q) → R

k : g 7→ E{Xg(W )} (1.7)

T ⋆
Z : L2

τ (R
q) → L2

π(Rp) : g 7→ E{g(W )|Z = ·}fZ(·)
π(·) (1.8)

3i.e. the estimators of φ or β depend continuously on the estimators of the conditional densities in the

integral equation.
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One interesting point with the introduction of the two functions π and τ is that it allows

us to cover different viewpoints taken in the literature. If π = fZ and τ = fW , then we

adopt the setting of Darolles, Florens, and Renault (2002)4. If π and τ are U [0, 1], then we

fit to the setting of Hall and Horowitz (2005).

There is however one more fundamental reason to introduce these probability measures

in our definition of the operators. The choice of π is related to identification issues, as it is

shown in Section 2 below. In particular, we obviously have that φ can only be identified on

suppπ∩ supp fZ (the intersection between the supports of fZ and π). Moreover, the choice

of τ will have no influence on the rate of convergence of the proposed estimators, but is

related to their asymptotic efficiency, as showed in Section 3.

Throughout the paper, we assume that the operators TX , TZ , their dual, and r are

well-defined. This point is formalized by the following assumption.

Assumption 1.1. With the above notations, we assume that r ∈ L2
τ (R

q) and that both

functions

E (ψ(Z)|W = ·) fW (·)
τ(·) and E (Xi|W = ·) fW (·)

τ(·)

belong to L2
τ (R

q) for all ψ ∈ L2
π(Rp) and i = 1, . . . , k.

We illustrate this assumption in the next two examples, where we state sufficient con-

ditions such that all quantities are well-defined.

Example 1.1. Assumption 1.1 holds true if both Cov(X) and Var(Y ) are finite and if there

exists some positive constants C1 and C2 such that fW 6 C1 · τ on the support of τ and

fZ 6 C2 · π on the support of π. If we set to zero functions outside the support of π and τ ,

then these conditions imply respectively L2
π(Rp) ⊆ L2

f (Z) and L2
τ (R

q) ⊆ L2
f (W ). �

Example 1.2. Assumption 1.1 holds true if both Cov(X) and Var(Y ) are finite and the

following Hilbert-Schmidt conditions are fullfiled:

(i)

∫
dy

∫
dw

(
fY W (y,w)

fY (y)τ(w)

)2

fY (y)τ(w) <∞ ,

(ii)

∫
dx

∫
dw

(
fXW (x,w)

fX(x)τ(w)

)2

fX(x)τ(w) <∞ ,

(iii)

∫
dz

∫
dw

(
fZW (z,w)

π(z)τ(w)

)2

π(z)τ(w) <∞ .

In particular, these conditions imply the compactness of T ⋆
ZTZ . The Hilbert-Schmidt con-

ditions hold true for instance when all variables are Normal. �

4Except Appendix C, where a similar generalisation is provided in Appendix C of Darolles, Florens, and

Renault (2002) in order to model unbounded densities.
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1.3 Objectives of the paper

Below we show that the estimation of φ in the partially linear model (1.2a–1.2b) is very

similar to the estimation of ϕ in the fully nonparametric model (1.1a–1.1b) using estimators

and results of Darolles, Florens, and Renault (2002) or Carrasco, Florens, and Renault

(2006). Estimation of β however leads to a set of new important issues among which is the

question whether the parametric speed of convergence can be recovered.

The first question we address in Section 2 is the identification of the parameters in the

partially linear model. Then we address the question of finding a consistent estimator of

β and the paper shows that it is possible to construct an estimator of the parameters of

the linear part that exhibits
√
n consistency. Efficiency of the estimator is discussed next,

including the situation where the error term is conditionaly heteroskedastic. All proofs are

written in an appendix.

It is worth mentionning that the results are derived under mild and realistic assumptions.

One of these assumptions is given by the so-called source condition which measure how ill-

posed is the problem at hand. We give this condition explicitly in Section 2 and propose

some econometric interpretations on simple models.

2 Existence and Identification

In this section we give conditions for the existence of solutions and for the identification of

the parameters from the partial linear model model (1.2a–1.2b). Recall that (φ, β) are the

solution of the equation

r = TZφ+ TXβ.

where r = E(Y |W )fW/τ . A necessary and sufficient condition for the existence of solutions

is to assume

r ∈ R(TZ) + R(TX) =
{
ψZ + ψX such that ψZ ∈ R(TZ) and ψX ∈ R(TX)

}

where R(T ) denotes the range of the operator T . However, this condition is obviously not

always satisfied, therefore we define the parameters of interest (φ, β) as

(φ, β) = arg min
{
‖r − TZ φ̃− TX β̃‖L2(W ) such that φ̃ ∈ L2

π(Rp) and β̃ ∈ R
k
}
. (2.1)

This solution is called minimal norm solution, and is not necessary unique5.

The next assumption is a necessary and sufficient condition for the identification of the

parameters.

5The general problem of non identifiable nonparametric inverse problems is considered in Johannes (2005),

where an estimator of the space of solutions is derived.
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Assumption 2.1. The two following conditions hold true:

(i) The operators TX and TZ are injective, i.e. TXβ = 0 ⇒ β = 0 and TZφ = 0 ⇒ φ = 0,

(ii) R(TX) ∩R(TZ) = {0}.

Theorem 2.1. Suppose the model is well-defined (Assumption 1.1). Then Assumption 2.1

is necessary and sufficient for the identification of the function φ and the vector β in the

model (1.2a)–(1.2b).

Assumption 2.1 gives conditions on operators, but can be interpreted as conditions on

random variables. The two following assumptions are together equivalent to Assumption

2.1(i):

(a) The vector Z is strongly identified by W with respect to π, that is

∀h ∈ L2
π(Rp) such that

fW

τ
E{h(Z)|W} = 0 τ -a.s. =⇒ h(Z) = 0 τ -a.s.

(b) The matrix

Ω := E

{
E(X|W )

fW (W )

τ(W )
E(Xt|W )

}
(2.2)

has full rank.

Condition (a) refers to the concept of strong identification of random variables and corre-

sponds to the notion of complete statistics in the statistical literature (see, e.g., Lehmann

and Scheffe (1950)). This condition is weaker than to require the strong identification of

X,Z by W (as used, e.g., in Darolles, Florens, and Renault (2002) or Hall and Horowitz

(2005)). Note also that the matrix Ω of condition (b) is the asymptotic variance of the Gen-

eralized Method of Moment estimator for the heteroskesdastic model with Var(U |W )fW = τ

(see Chamberlain (1987)).

Finally observe that, if (Z,X) is jointly strongly identified by W , then the condition (ii)

follows if the random variables X and Z are measurable separable6. A standard reference

on this concept is Chapter 5 of Florens, Mouchart, and Rolin (1990) and a more recent

discussion can be found in San Mart́ın, Mouchart, and Rolin (2006).

3 Estimation

Suppose we observe iid vectors (Yi, Zi,Xi,Wi), i = 1, . . . , n from the model (1.2a)–(1.2b)

and suppose that the parameters of the model are identified. Recall the definition of the

operators in Section 1.2. The minimal norm solution (2.1) is such that

T ⋆
Zr = T ⋆

ZTZφ+ T ⋆
ZTXβ (3.1a)

T ⋆
Xr = T ⋆

XTZφ+ T ⋆
XTXβ. (3.1b)

6X and Z are measurable separable when any function of Z a.s. equal to Xtβ for a given β is equal to a

constant a.s.
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Note that, analogously to the case of the linear regression model, this system projects the

problem (1.6) onto the parameter spaces R
k and L2

π(Rp) using the adjoint operators.

To define our estimators, we shall consider two situations, depending on the behavior

of the cross terms T ⋆
ZTX and T ⋆

XTZ in the linear system (3.1a)–(3.1b). First, we consider

the situation where T ⋆
ZTX = T ⋆

XTZ = 0. An equivalent condition is that the range of TX

is orthogonal to the range of TZ , i.e. R(TX) ⊥ R(TZ). In that situation, we can separate

the estimation of β from the estimation of φ. The general situation where R(TX) is not

orthogonal to R(TZ) is discussed next.

3.1 Estimation when R(TX) ⊥ R(TZ) or φ = 0

We first consider the situation where R(TX) ⊥ R(TZ), and discuss the case φ = 0 at the end

of this section. The orthogonality condition R(TX) ⊥ R(TZ) holds true for instance when

we can find two independent sets of instruments for X and Z, i.e. when W = (W1,W2)

such that Z ⊥⊥ W |W1, X ⊥⊥ W |W2 and W1 ⊥⊥ W2. However note that we are not limited

to this particular case.

When R(TX) ⊥ R(TZ) we can study separately the estimation of β and of φ, which are

given by

φ = (T ⋆
ZTZ)−1T ⋆

Zr (3.2a)

β = (T ⋆
XTX)−1T ⋆

Xr. (3.2b)

The estimation of φ is an ill-posed problem because the inversion of T ⋆
ZTZ is not stable.

This situation has been extensively studied and we refer to Darolles, Florens, and Renault

(2002), Florens (2003) or Hall and Horowitz (2005) for the estimation of this quantity via

regularization methods.

However, the estimation of β is not standard given our assumption E (U |W ) = 0 (see

(1.2b)). We first introduce a nonparametric estimator of T ⋆
XTX and T ⋆

Xr. In the following

we consider the estimator of T ⋆
XTX given by

M̂ =
1

n(n− 1)

∑

i6=j

XiX
t
j

Kh (Wi −Wj)

τ(Wi)

where Kh(·) = h−qK(·/h) for a given bandwidth h = h(n) > 0 and a multiplicative kernel

K (see Definition 3.1 below). Similarly, an estimator of T ⋆
Xr is given by

v̂ =
1

n(n− 1)

∑

i6=j

YiXj
Kh (Wi −Wj)

τ(Wi)

Finally, our estimator of β is

β̂ = M̂−1v̂ (3.3)

The definition of the multivariate K involved in the estimators is given below (see Scott

(1992)).
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Definition 3.1. For all w = (w1, . . . , wq) ∈ R
q, K is a multiplicative kernel of order r,

i.e. K(w) = Πq
i=1ℓ(wi) where ℓ is a univariate, continuous, bounded, positive function such

that
∫
du ℓ(u) = 1,

∫
du uiℓ(u) = 0

for all i = 1, . . . , r − 1 and there exists two finite constants sr
K and CK such that

∫
du urℓ(u) = sr

K ,

∫
du ℓ(u)2 = CK .

Together with sufficient regularity assumptions on the kernel K,
√
n-consistency is

achieved if we impose some regularity conditions on the joint density f . The next defi-

nition provides the suitable space of regularity for f in order to prove all the results of this

paper (see also Definition 2 of Robinson (1988)).

Definition 3.2. For a given function γ and for α > 0, s > 0, the space G
s,α
γ (Rℓ) is the class

of functions g : R
ℓ → R satisfying: g is everywhere (m−1)-times partially differentiable for

m− 1 < s 6 m; for some ρ > 0 and for all x, the inequality

sup
y:|y−x|<ρ

|g(y) − g(x) −Q(y − x)|
|y − x|s 6 ψ(x), (3.4)

holds true where Q = 0 when m = 1 and Q is an (m−1)th-degree homogeneous polynomial in

y−x with coefficients the partial derivatives of g at x of orders 1 through m−1 when m > 1;

ψ is uniformly bounded by a constant when α = 0 and the functions g and ψ have finite αth

moments wrt 1/γ when α > 0, i.e.
∫
dx gα(x)/γ(x) < ∞ and

∫
dx ψα(x)/γ(x) < ∞. We

also write G
s,α(Rl) when γ ≡ 1.

In the next results we use a kernel of order 2 to derive the
√
n-consistency of β̂ and a

central limit theorem for β̂.

Theorem 3.1. Suppose T ⋆
ZTX = T ⋆

XTZ = 0 in the system of equations (3.1a–3.1b). If

the function g1 = E(U + φ(Z)|W )fW (W ) belongs to G
2,2
τ (Rq) and each component of the

function g2 = TX belongs to G
2,2(Rq), then the estimator (3.3) constructed with kernels of

order 2 and with a bandwidth h = O(n−1/2) is such that
√
n‖β̂ − β‖ = Op(1).

The assumption of the theorem involves the second derivative of fW as it is usual in

the context of kernel density estimation. This type of assumption comes to simplify a

second-order expansion in the proof of the result and can be relaxed to milder assumption

at the price of a more sophisticated estimation procedures with more technical proofs. This

condition then does not appear as a structural restriction on the model.

Theorem 3.2. Under the assumptions of Theorem 3.1,

√
n(β̂ − β)

d−→ N
(
0, (T ⋆

XTX)−1Λ(T ⋆
XTX)−1

)

where Λ := Var(XTZφ+ (U + φ(Z))TX ).
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The asymptotic variance of the theorem is not optimal, in the sense that it does not

achieves the semiparametric efficiency bound. It is the consequence of the nuisance term

φ(Z) which cannot be avoided even in the orthogonal situation R(TX) ⊥ R(TZ). This phe-

nomenon actually appears in even simpler situations, for instance when φ takes a parametric

form. This setting is considered in the following remark.

Remark 3.1. When φ has a parametric form, the model becomes Y = Ztγ + Xtβ + U

for some random variables Y ∈ R, Z ∈ R
p, X ∈ R

k, and U ∈ R such that E (WU) = 0

for some instrumental variable W ∈ R
q. The parameters γ and β are the solutions of the

moment equation E(WY ) = E(WZt)γ + E(WXt)β. Using a positive definite q × q weight

matrix V , the parameters are equivalently characterized as minimizer of the quadratic form

E[W (Y −Ztγ−Xtβ)]tV −1
E[W (Y −Ztγ−Xtβ)]. If we observe an i.i.d. sample of the random

vector (Y,Z,X,W ), we can replace the expectations in the quadratic form by their empirical

counterparts. It is well known that the moment estimator of γ, β obtained as the minimizers

of the empirical counterpart of the quadratic form is consistent and asymptotically normal,

but only efficient if we use the specific weigth matrix V = Cov(WU). Note, that the weight

matrix V plays the same role as the density τ used in our definition of the above operators

(see equation (1.4)). Moreover, the parameters γ, β minimize the quadratic form if and only

if they solve the following system of linear equations:

E(ZW t)V −1
E(WY ) = E(ZW t)V −1

E(WZt)γ + E(ZW t)V −1
E(WXt)β︸ ︷︷ ︸

(i)

,

E(XW t)V −1
E(WY ) = E(XW t)V −1

E(WZt)γ︸ ︷︷ ︸
(ii)

+E(XW t)V −1
E(WXt)β.

(3.5)

As in the general nonparametric case that we have treated above, in this system of equations

we have projected the moment condition onto the parameter space and the projectors are

the adjoint operators, here given by the transposed matrices. The orthogonality condition

corresponds now to the case where (i) and (ii) in (3.5) vanish. This situation arises for

instance when we can separate the instruments into two sets of variables, W = (W1,W2),

such that (a) W1 and W2 are uncorrelated, (b) W1 and X are uncorrelated, and (c) W2

and Z, are uncorrelated. In the orthogonal case, the estimator β̂ of β = M−1v with

M = E(XW t)V −1
E(WXt) and v = E(XW t)V −1

E(WY ) is then given by replacing the

theoretical expectations by their empirical counterparts. The asymptotic variance of this

estimator is again M−1Λ◦M−1, with

Λ◦ := E(XW t)V −1
Cov

(
W (U + Ztγ)

)
V −1

E(WXt).

Similarly to what happens in Theorem 3.2, the asymptotic variance of the estimator is

affected by the parameter α, which prevents to reach the efficiency bound. Note that

this phenomenon also appears in the classical parametric regression without instrumental

variables. �
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The asymptotic variance of the central limit theorem simplifies when the nuisance term

disappears, that is when φ = 0. The following result considers this particular situation.

Corollary 3.1. Under the assumptions of Theorem 3.1, if φ ≡ 0, then

√
n(β̂ − β)

d−→ N
(

0, (T ⋆
XTX)−1T ⋆

X

[
v2fW

τ
TX

]
(T ⋆

XTX)−1

)

where v2(·) := Var(U |W = ·).
From this result, we see that if τ is such that v2(·)fW (·) = σ2τ(·) for some σ2 > 0, then

the asymptotic covariance simplifies and the central limit theorem becomes

√
n(β̂ − β)

d−→ N
(
0, σ2Ω−1

)
,

where Ω is the matrix T ⋆
XTX , see (2.2). In this particular case, the estimator β̂ is optimal

because it is identical to the GMM estimator constructed with optimal instruments in the

homoskedastic setting. Indeed, the moment conditions in the homoskedastic model are

E(Y − X ′β|W ) = 0. This condition on the conditional moments can be replaced by the

following condition on the marginal moments: E{ψ(W )(Y − X ′β)} = 0 for all functions

ψ. The optimal GMM estimator corresponds to ψ(·) = E(X|W = ·), in which case the

estimator is the solution of

E
{
E(X|W )(Y −X ′β)

}
= 0

which is equivalent to T ⋆
XTXβ = T ⋆

Xr. This shows that our estimator β̂ corresponds to the

optimal GMM estimator in the homoskedastic model. More details can be found in Newey

(1990a).

The next section gives an estimator in the general setting, that is for general function φ,

and with no orthogonality condition. The proposed estimator achieves the semiparametric

efficiency bound.

3.2 Estimation in the general case

In the general case, we consider the system (3.1a–3.1b), where the cross-terms T ⋆
ZTX and

TXT
⋆
Z do not vanish. This linear system is equivalent to

T ⋆
Z (I − PX) r = T ⋆

Z (I − PX)TZφ (3.6a)

T ⋆
X (I − PZ) r = T ⋆

X (I − PZ)TXβ (3.6b)

where PX = TX(T ⋆
XTX)−1T ⋆

X is the orthogonal projection operator onto the closure of the

range R(TX) of TX and, similarly, PZ = TZ(T ⋆
ZTZ)−1T ⋆

Z is the projection onto the closure

of the range R(TZ).

Below we introduce estimators for the operators involved in this system.

From (3.6a), we see that the estimation of φ is again an ill-posed problem since here the

inversion of T ⋆
Z(I − PX)TZ is not stable. We refer to the standard literature on estimation
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and regularization in nonparametric instrumental regression models, which offer a complete

solution to this problem.

The interesting and new fact arises from the equation (3.6b), in which the inversion

of (T ⋆
ZTZ) is a source of instability. In consequence, the estimation of β is also ill-posed

and a regularized estimate is necessary in order to get a consistent estimator. Ill-posedness

however may lead to a very slow rate of convergence of the estimator of β. In the following we

give regularity conditions on TZ , TX and φ such that we get a
√
n-consistent, asymptotically

Normal estimate.

In order to define these regularity conditions, we assume that the operator TZ is compact,

which allows to write its singular value decomposition. Namely, there exists a system {ϕj}
of functions of L2

π(Rp) and a system {ψj} in L2
τ (R

q) such that

TZφ =

∞∑

j=1

λj〈φ,ϕj〉ψj for all φ ∈ L2
π(Rp) (3.7)

where the coefficients λj are the strictly positive singular values of TZ . As the operator TX

is always compact, we also consider a system of eigenvector {ej} in Rk and a system {ψ̃j}
in L2

τ (R
q) such that

TXβ =
k∑

j=1

µj〈β, ej〉ψ̃j for all β ∈ R
k

where the coefficients µj are the strictly positive singular values of TX .

Assuming TZ to be compact allows us to estimate this operator using a kernel smooth-

ing procedure7. A sufficient condition for compactness is to assume TZ to be a Hilbert-

Schmidt operator, see Example 1.2 above. In the singular value decomposition of TZ , the

ill-posedness comes from the behavior of the singular values λj which tend to 0 as j in-

creases. Also, note that the systems of eigenfunctions {ϕj} and {ψj} are infinite, while the

systems {ej} and {ψ̃j} contain k elements.

The following assumption presents the regularity conditions for TZ , TX and φ.

Assumption 3.1 (Source conditions). There exists η > 0 and ν > 0 such that

max
i=1,...,k

∞∑

j=1

〈ψ̃i, ψj〉2
λ2η

j

<∞ , (3.8)

and

∞∑

j=1

〈φ,ϕj〉2
λ2ν

j

<∞ . (3.9)

7A sufficient condition for the compactness of TZ is given by the Hilbert Schmidt condition, see Example

1.2.
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Since this type of assumption is new in econometrics8, we will discuss its relevance and

some interpretations in the next paragraphs.

The condition (3.8) means that the operator TX is “adapted” to the operator TZ , and

this adaptation is controled by the parameter η. An equivalent condition is to impose that

each function ψ̃i ∈ R((TZT
⋆
Z)η/2)⊗Ker(T ⋆

Z), where Ker(T ⋆
Z) stands for the null space of T ⋆

Z .

This last condition is often called the source condition in the numerical literature on ill-

posed inverse problems (see e.g. Engl, Hanke, and Neubauer (2000)). For specific (λj , ψj),

there is a characterization of the source condition in terms of the differentiability of the

ψ̃i’s, see Johannes and Vanhems (2005). The second condition (3.9) can also be viewed as

a source condition for φ, i.e. φ ∈ R((T ⋆
ZTZ)ν/2).

If R(TX) and R(TZ) are orthogonal, then η = ∞ and this case has been discussed

above. Then the parameter η may be interpretated as a degree of colinearity between Z

and X through the projection onto the instruments W : roughly speaking, the bigger the

parameter η, the more orthogonal are the ranges R(TX) and R(TZ).

In addition to this interpretation, the following examples illuminate Assumption 3.1 in

some particular cases.

Example 3.1. Suppose X can be written as X = m(V ) for a given function m and a

p-dimensional random variable V such that the linear operator

TV : L2
fV

(Rp) → L2
τ (R

q) : g 7→ E{g(V )|W = ·}fW (·)
τ(·)

has a singular value decomposition given by TV g =
∑∞

j=1 γj〈g, κj〉ψj for all g ∈ L2
fV

(Rp).

Note that {ψj} is the singular system of TZ and TV . Denote by mi the i-th component of

the vector valued function m and assume that mi ∈ L2
fV

(Rp) for i = 1, . . . , k. In that case,

by orthonormality of the system {ψj}, condition (3.8) is equivalent to

max
i=1,...,k

∞∑

j=1

γ2
j

λ2η
j

〈mi, κj〉2 <∞

and a sufficient condition is to check whether γj/λ
η
j 6 C for some constant C. �

The relevance of this example comes from the fact that the parameters µi and λi are

estimable from the data, and then this assumption is testable. Moreover, these parameters

are linked to the correlation between the instruments W and the variables X and Z respec-

tively. The two following examples illustrate this point in some particular cases starting

with the Normal model.

8With one noticeable exception for condition (3.9) that already appears in Darolles, Florens, and Renault

(2002).
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Example 3.2 (Normal model). Suppose X,Z are univariate Normal and W = (W1,W2) is

bivariate standard Normal with (X,Z,W1,W2) ∼ N (0,Σ) and

Σ =




1 0 ρX,1 ρX,2

0 1 ρZ,1 0

ρX,1 ρZ,1 1 0

ρX,2 0 0 1




for 0 < |ρX,1|, |ρX,2|, |ρZ,1| 6 1. Here, note that Z ⊥⊥ W2 and the case ρX,1 = 0 corresponds

to the situation where R(TX) ⊥ R(TZ) which has been treated above. We also take π ∈
N (0, 1) and τ ∼ N (0, I2) where I2 denotes the 2 × 2 identity matrix. The singular system

of TX reduces to {µ1, e1, ψ̃1} where e1 ≡ 1 and ψ̃1(w1, w2) = (ρX,1w1 + ρX,2w2)/µ1 with

corresponding singular value µ2
1 = ρ2

X,1 +ρ2
X,2. Moreover, the singular system of TZ is given

by the (univariate) Hermite polynomials Hj in both L2
π(R) and L2

τ (R
2), i.e. ψj(w1, w2) =

Hj(w1) for all w1, w2. The corresponding singular values are λj = ρj
Z,1. Since H1(w1) = 1

and H2(w1) = 2w1, the orthonormality property of the Hermite polynomials simplifies the

regularity condition (3.8) as

∞∑

j=1

〈ψ̃1, ψj〉2
ρ2jη

Z,1

=

∞∑

j=1

ρ2
X,1

4ρ2jη
Z,1

〈H2, ψj〉2 =
ρ2

X,1

4ρ4η
Z,1

,

which is obviously finite for every η. In conclusion, this example always satisfies the source

condition for all η. �

Example 3.3. The preceeding example can be generalized to the case where the k-dimen-

sional random variable X is not normally distributed. Suppose that X = m(V ), where

(V,Z,W1,W2) ∼ N (0,Σ) and

Σ =




1 0 ρV,1 ρV,2

0 1 ρZ,1 0

ρV,1 ρZ,1 1 0

ρV,2 0 0 1




for 0 < |ρV,1|, |ρV,2|, |ρZ,1| 6 1 similarly to Example 3.2. The function m is vector-valued

with components in L2
fV

(R) as in Example 3.1. Combining the above Examples 3.1 and 3.2,

we see that the source condition is satisfied for all η when m takes a polynomial form. For

a general function m, a sufficient condition for (3.8) is to require that ρV,1/ρ
η
Z,1 is bounded

by some constant C. The source condition is then directly related to the correlation scheme

between the random variables, and this property can be easily tested. �
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We now consider nonparametric estimator of the operators and define our estimator of

β. Let K be a multivariate kernel (Definition 3.1) and set

T̂X β̃ =
1

n

n∑

i=1

Xt
i β̃

KhW
(Wi − ·)
τ(·) for all β̃ ∈ R

k , (3.10)

T̂ ⋆
Xψ =

1

n

n∑

i=1

Xi

∫
dw KhW

(Wi −w)ψ(w) for all ψ ∈ L2
τ (R

q) , (3.11)

T̂Z φ̃ =
1

n

n∑

i=1

KhW
(Wi − ·)
τ(·)

∫
dz KhZ

(Zi − z)φ̃(z) for all φ̃ ∈ L2
π(Rp) , (3.12)

T̂ ⋆
Zψ =

1

n

n∑

i=1

KhZ
(Zi − ·)
π(·)

∫
dw KhW

(Wi − w)ψ(w) for all ψ ∈ L2
τ (R

q) , (3.13)

r̂ =
1

n

n∑

i=1

Yi
KhW

(Wi − ·)
τ(·) , (3.14)

for some bandwidth parameters hW , hZ that depend on n. It is worth mentioning that

these estimators are constructed such that the dual of T̂X (resp. T̂Z) is precisely given by

T̂ ⋆
X (resp. T̂ ⋆

Z). This fact is used in the proof of the next theorems. Moreover, with the

standard choice for the parameter h, these estimators achieve sufficiently good convergence

properties, see Lemma A.3 in the Appendix for details on this convergence. Of course,

one could consider other nonparametric estimators and this choice is directly related to the

smoothness assumptions we allow on the density f .

The paramater β is then estimated by

β̂ = M̂−1
α v̂α

where v̂α is an estimator of the left hand side of (3.6b) given by

v̂α := T̂ ⋆
X

(
I − T̂Z(αI + T̂ ⋆

Z T̂Z)−1T̂ ⋆
Z

)
r̂

and M̂α is an estimator of the RHS given by

M̂α := T̂ ⋆
X

(
I − T̂Z(αI + T̂ ⋆

Z T̂Z)−1T̂ ⋆
Z

)
T̂X

for a positive parameter α that depends on n. We refer to α as the regularization parameter.

Note that here we used the Tikhonov regularization method to stabilize the inversion of

T ⋆
ZTZ . It is of course possible to consider here other scheme of regularization, such as

the Landweber-Fridman iterative regularization for instance (see Carrasco, Florens, and

Renault (2006)).

Theorem 3.3. Consider the nonparametric estimators (3.10–3.14) constructed using a mul-

tivariate kernel of order r (Definition 3.1) and for j = 1, . . . , k suppose (i) the functions∫
x2

jf(x, ·)dx and
∫
y2f(y, ·)dx belong to G

1,1
τ (Rq); (ii) the functions

∫
xjf(x,w)dx and∫

yf(y, ·)dx belong to G
s,2
τ (Rq); (iii) the function fZW belongs to G

1,1
π·τ (R

p+q)∩G
s,2
π·τ (R

p+q).
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In addition, define ρ := r ∧ s and assume that the bandwidth parameters are such that

hW = O(n−1/(p+q+2ρ)) and hZ = O(n−1/(p+q+2ρ)). Suppose that the source condition (As-

sumption 3.1) is satisfied for some ν > 0 and η > 1. Moreover, if η > 2 and 2ρ > p+ q, we

assume

α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = O(1), α2 · n = O(1)

while, if 1 6 η < 2, we assume

αη−2 · n
p+q−2ρ

p+q+2ρ = O(1), α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = O(1), α2 · n = O(1) .

Then
√
n‖β̂ − β‖ = Op(1).

To illustrate this result, we first give some sufficient conditions on the parameter α to

get
√
n-consistency. Consider the situation where the source conditions (Assumption 3.1)

are fulfiled with η > 2 and 2ρ > p + q. Then α = O(n−1) is a sufficient rate to get the
√
n-consistency. It is interesting to note that α can tend to zero arbitrarily fast (at least

faster than n−1+(ν∧2)ρ/(p+q+2ρ) and no lower bound is necessary for this convergence. This

phenomenon is due to the regularity condition imposed on the problem in terms of source

condition (η > 2). In this situation, a regularization parameter is mandatory in order to

have
√
n-consistency, but this parameter can be arbitrarily small. Moreover, note that ν = 0

is also possible. This means that
√
n-consistency is also achieved when no source condition

on φ is assumed.

The situation differs if 1 6 η < 2, that is if the problem is less regular. In that case the

constraint

αη−2 · n
p+q−2ρ

p+q+2ρ = O(1)

impose that α cannot converge arbitrarily fastly to zero. This implies that, in contrast to

the previous case, the rate O(n−1) is then no longer valid for all choice of p, q, ρ. Still,

the regularity parameter should converge faster than n−1+(ν∧2)ρ/(p+q+2ρ). In conclusion of

this case,
√
n-consistency resulting from the above theorem requires that ν > 0 in some

situations. In other words the source condition on φ is a sufficient assumption in that

situation.

A few more constraints on (α, hW , hZ) give the following Central Limit Theorem for

β̂. In particular, we will need some assumptions on the singular value decomposition of

the compact operator T ⋆
X(I − PZ). We denote by {µj , gj ∈ L2

τ (R
q), ej ∈ R

k, j = 1, . . . , k}
of T ⋆

X(I − PZ) this singular value decomposition (similarly to the decomposition (3.8) for

instance).

Theorem 3.4. Consider the nonparametric estimators (3.10–3.14) constructed using a mul-

tivariate kernel of order r (Definition 3.1). Suppose assumptions (i) - (iii) of Theorem 3.3

are satisfied. In addition, define v2(·) = Var(U |W = ·) and assume that (iv) the func-

tions v2fW and fW belong to ∈ G
1,1
τ (Rq); (v) the eigenfunctions gj of T ⋆

X(I − PZ) belong
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to G
1,0
τ (Rq) and (vi) gj

√
v2 · fW/τ belong to L2

τ (R
q) for all j = 1, . . . , k. Moreover, define

ρ := r ∧ s and suppose that the bandwidth parameters are such that hW = O(n−1/(p+q+2ρ))

and hZ = O(n−1/(p+q+2ρ)). Suppose in addition that the source conditions (Assumption

3.1) are satisfied for some ν > 0 and η > 1. If η > 2 and 2ρ ≥ p+ q, assume

α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = o(1), α2 · n = o(1)

while, if 1 6 η < 2, assume

αη−2 · n
p+q−2ρ

p+q+2ρ = o(1), α · n
p+q+(2−ν∧2)ρ

p+q+2ρ = o(1), α2 · n = o(1) .

Then we have

√
n(β̂ − β)

d−→ N
(

0,M−1T ⋆
X(I − PZ)

[
v2 · fW

τ
(I − PZ)TX

]
M−1

)
,

where M = T ⋆
X(I − PZ)TX .

As illustration of the last theorem consider the situation where the source condition

(Assumption 3.1) are satisfied with η > 2 and 2ρ > p + q. Then the rate α = o(n−1)

is sufficient to get the central limit theorem. Again no lower bound is needed for α and

the only constraint is that the regularization parameter should be faster than the rate

n−1+(ν∧2)ρ/(p+q+2ρ). Moreover, as in the consistency theorem if η > 2 and 2ρ > p + q

there is no regularity condition on φ necessary to obtain the asymptotic normality. The

situation differs when 1 6 η < 2. In this less regular problem, α cannot converge arbitrarily

fastly to zero due to the constraint αη−2 · n
p+q−2ρ

p+q+2ρ = o(1), but has to converge faster than

n−1+(ν∧2)ρ/(p+q+2ρ).

Theorem 3.4 shows explicitely the influence of the function τ on the asymptotic variance

of the estimator. If we take for instance τ such that Var(U |W )fW (W ) = σ2τ(W ), then

the asymptotic distribution reduces to N (0, σ2M−1). In the next section we show that this

choice for τ gives an estimator that reaches the semiparametric efficiency bound.

3.3 Efficiency of β̂

In the following we address the question of the efficiency of our estimator β̂. Semiparametric

efficiency bounds have now a long history and we refer to Newey (1990b) or Bickel, Klaassen,

Ritov, and Wellner (1993) for standard references on this concept.

Suppose φ = gγ is a known function of Z depending on a l-dimensional unknown parame-

ter vector γ and partially differentiable in γ. If (γ̂GMM , β̂GMM ) denotes in this parametrized

model the optimal GMM estimator of (γ, β) derived from the optimal unconditional mo-

ment condition, then it is well known that under regularity conditions the optimal covariance

matrix in the limiting normal distribution of
√
n[(γ̂GMM , β̂GMM ) − (γ, β)] is

(
E
{
∂γgγ(Z)v−2(W )E(∂γgγ(Z)|W )t

}
E
{
∂γgγ(Z)v−2(W )E(X|W )t

}

E
{
Xv−2(W )E(∂γgγ(Z)|W )t

}
E
{
Xv−2(W )E(X|W )t

}

)−1

,
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see, e.g., Chamberlain (1987). If we assume Cov(∂γgγ(Z)) <∞, then the operator

Tgγ(Z) : R
l → L2

τ (R
q) : θ 7→ fW (W )

τ(W )
E(∂γgγ(Z)|W )t θ

is well-defined and its adjoint operator is given by

T ⋆
gγ(Z) : L2

τ (R
q) → R

l : ψ 7→ E{∂γgγ(Z)ψ(W )} .

With these notations, the optimal covariance matrix can be written



 T ⋆
gγ(Z)

[
τ

v2·fW
Tgγ(Z)

]
T ⋆

gγ(Z)

[
τ

v2·fW
TX

]

T ⋆
X

[
τ

v2·fW
Tgγ(Z)

]
T ⋆

X

[
τ

v2·fW
TX

]




−1

.

By standard matrix calculation we obtain the optimal covariance matrix Mgγ(Z) in the

limiting normal distribution of
√
n(β̂GMM − β) wich is given by

M−1
gγ(Z) = T ⋆

X

[
τ

v2 · fW
TX

]
−

T ⋆
X

[
τ

v2 · fW
Tgγ(Z)

]
·
(
T ⋆

gγ(Z)

[
τ

v2 · fW
Tgγ(Z)

])−1
· T ⋆

gγ(Z)

[
τ

v2 · fW
TX

]
.

Note that in the heteroscedastic case with τ choosen such that v2(·)fW (·) = σ2τ(·) the

optimal covariance matrix is given by

σ2M−1
gγ(Z) = T ⋆

XTX − T ⋆
XTgγ(Z) ·

(
T ⋆

gγ(Z)Tgγ(Z)

)−1
· T ⋆

gγ(Z)TX

and in the particular homoscedastic case, i.e., v2(·) = σ2, we recover

σ2M−1
gγ(Z) = E

{
E(X|W )E(X|W )t

}
− E

{
E(X|W )E(∂γgγ(Z)|W )t

}
·

·
(

E
{
E(∂γgγ(Z)|W )E(∂γgγ(Z)|W )t

})−1
· E
{
E(∂γgγ(Z)|W )E(X|W )t

}
.

We can now state the efficiency result.

Theorem 3.5. Consider the nonparametric estimators (3.10–3.14) constructed using a mul-

tivariate kernel of order r (Definition 3.1). Suppose assumptions (i) - (vii) of Theorem 3.4

are satisfied and the parameters α, hZ and hW are choosen according to Theorem 3.4.

If the density τ satisfies Var(U |W )fW (W ) = σ2τ(W ), then the estimator β̂ achieves the

semiparametric efficiency bound, i.e., there exists a parametric model gγ for φ such that

Mgγ(Z) = σ2[T ⋆
X(I − PZ)TX ]−1.

4 Final comments

One important conclusion from the above results is the usefulness of defining appropriate

function spaces in order to define optimal estimators. This definition depends on the two
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probability densities π and τ introduced in (1.4) and (1.5). By doing so, we include and ex-

tend in particular the setting of Darolles, Florens, and Renault (2002) or Hall and Horowitz

(2005) and allow, for instance, that the random variables are Normally distributed. In par-

ticular we show that the choice of the density τ has no influence on the rate of convergence

of the estimator, but is related to the asymptotic efficiency. With that respect, the density

τ plays the same role as the weight matrix of GMM estimators. As in two steps GMM

estimation, a two steps procedure would be a natural extension of our approach, in which

an estimator of the optimal density τ would be used.

The paper also defines an appropriate assumption on φ given by the source condition that

relates the behavior of φ and the conditional expectation operator TX with the conditional

expectation operator TZ (see Assumption 3.1). When the operator TX is sufficiently regular

with respect to TZ (η > 2), the source condition assumption on φ is not necessary to get

a
√
n-consistent estimator of β. If TX is less regular, then the source condition on φ is a

sufficient assumption for the
√
n-consistent estimation of β. It is worth mentioning that no

regularity on φ is assumed in terms of smoothness. The only regularity on φ required for

the consistency is the source condition in some situations when TX is not regular enough.

The source condition has a simple interpretation in some models, including the Normal

model. It may be viewed as a measure of the dependence between the endogeneous variables

(X,Z) and the instruments W . It assumes in particular the compactness of the operator

TZ . If this operator is not compact9, then the source condition can be replaced by an

assumption of the type ψ̃i ∈ R((TZT
⋆
Z)η/2) ⊗ Ker(T ⋆

Z), where ψ̃i are the eigenfunctions

of the (always compact) operator TX . If TZ is not a compact operator but we have an

estimator that converges with an appropriate rate10, the regularization procedure derived

in this paper would still lead to a
√
n-consistent estimator of β.

A Appendix: Proofs

Proof of Theorem 2.1. Define the operator T : L2
π(R

p) ⊗ Rk → L2
τ (R

q) : (ψ, γ) 7→ TZψ + TXγ.

Note that an equivalent condition for the identification of the parameters (φ, β) in the model (1.2a–

1.2b) is to assume that T is an injective operator.

First prove the necessary condition and consider a pair (φ, β) such that T (φ, β) = 0 or equiva-

lently TZφ = −TXβ. The condition (ii) of Assumption 2.1 implies TZφ = TXβ = 0 and thus, from

condition (i), φ = 0 and β = 0. Then T is injective.

We now prove the sufficient condition and suppose that T is an injective operator. If TX or TZ
was not injective, then T would not be injective, this condition (i) of Assumption 2.1 is fulfilled. It

reminds to show condition (ii). Suppose this condition does not hold, i.e. there exists a non-null

function ψ in R(TZ)∩R(TX). This would imply the existence of φψ ∈ L2
π(R

p)\{0} and βψ ∈ Rk\{0}
such that φ = TZφψ = TXβψ. Then T (ψφ − βψ) = 0 and, since T is injective, ψφ = 0 and βψ, thus

we get a contradiction. �

9Non compactness of TZ appears for instance when there is at least one common variable between the

endogeneous variables Z and the instruments W .
10This appropriate rate is given in Lemma A.3 below.
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Lemma A.1. Under the assumptions of Theorem 3.1, and if h→ 0 as n→ ∞,

Ev̂ = T ⋆Xr +O
(
h2
)
, (A.1)

E‖v̂‖2 = ‖T ⋆Xr‖2 +O
(
h2
)

+O
(
n−1

)
, (A.2)

EM̂ = T ⋆XTX +O
(
h2
)
, (A.3)

E‖M̂‖2 = ‖T ⋆XTX‖2 +O
(
h2
)

+O
(
n−1

)
. (A.4)

Proof. The proof is an application of standard techniques that can be found in the large literature

on nonparametric kernel smoothing, see for instance Pagan and Ullah (1999). We only give whole

details for the proof of (A.1). Using iterative conditional expectations, we can write

Ev̂ =
1

n(n− 1)

∑

i6=j

E

[
YiXjE

{
Kh (Wi −Wj)

τ(Wi)

∣∣∣YiXj

}]
.

With g1(w) :=
∫
dy yfWY (w, y) and g2(w) :=

∫
dx xfWX(w, x) (in vector notations),

Ev̂ =

∫∫
dw1dw2

τ(w1)
g1(w1)g2(w2)Kh (w1 − w2) .

We now change variables and define u such that w2 = w1 + uh. We then write g2(w + uh) as g2(w)

plus a reminder term. Since g2 ∈ G
2,2
τ and using that the kernel K integrates to 1, this leads to

Ev̂ = T ⋆Xr +R, with11

R .

∫∫
dw1 du

τ(w1)
g1(w1)

{
Q(uh) + ψ(uh)(uh)2

}
K(u)

=

∫∫
dw1 du

τ(w1)
g1(w1)ψ(uh)(uh)2K(u)

where the last equality comes from the fact thatQ(uh) is a homogeneous polynomial of order one and

that
∫
uK(u)du = 0. By definition of the multivariate kernel, and because g is uniformly bounded,

R has rate O(h2). The proof of the other results is very similar but longer and we skip the details.

�

Lemma A.2. Under the assumptions of Theorem 3.1, if h→ 0 as n→ ∞, then

√
n(v̂ − M̂β)

d−→ N (0,Λ)

where Λ = Var(XTZφ+ (U + φ(Z))TX).

Proof. A straightforward expansion leads to

v̂ − M̂β =
1

n(n− 1)

∑

i6=j

Xi (Uj + φ(Zj))
Kh(Wi −Wj)

τ(Wi)
. (A.5)

This U -statistic can be written e := 2n−1(n− 1)−1
∑
i<j H(Si, Sj) where Si = (Wi, Xi, Ui, Zi) and

H(Si, Sj) =
1

2

{
Xi

τ(Wi)
(Uj + φ(Zj)) +

Xj

τ(Wj)
(Ui + φ(Zi))

}
Kh (Wi −Wj) .

11We write A . B is there exists a positive constant c such that A 6 cB.
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By the asymptotic distribution theory of U -statistics (see Section 5.5 of Serfling (1980)),
√
n(e −

Ee)
d−→ N (0, 4ζ) where ζ = Varf Ef {H(S1, S2)|S1} . It remains to compute ζ. With s1 =

(w1, x1, u1, z1), we define H(s1) := Ef{H(s1, S2)}. If g1(w̃) :=
∫∫

du dz (u + φ(z))fWUZ(w̃, u, z)

and g2(w̃) :=
∫
dx xfXW (x, w̃)/τ(w̃), we can write

H(s1) =
x1

2τ(w1)

∫
dw Kh(w1 − w)g1(w) +

u1 + φ(z1)

2

∫
dw Kh(w1 − w)g2(w)

As in the proof of Lemma A.1, we define v such that w = w1 + vh and use that g1 ∈ G
2,2
τ and

g2 ∈ G
2,2 to write

H(s1) =
x1

2τ(w1)
g1(w1) +

u1 + φ(z1)

2
g2(w1) +R(s1)

with |R(s1)| . h2x1ψ1(w1)/τ(w1) + (u1 + φ(z1))h
2ψ2(w2) for some functions ψ1 and ψ2 given in

Definition 3.2. Using E(U |W ) = 0 we can also write

H(S) =
1

2

fW (W )

τ(W )
XE(φ(Z)|W ) +

1

2

fW (W )

τ(W )
(U + φ(Z))E(X |W ) +R(S)

The leading term of H(S) is XTZφ + (U + φ(Z))TX and leads to the result since VarR(S) = o(1)

as h tends to zero. �

Proof of Theorem 3.1. Follows from the proof of Theorem 3.2. �

Proof of Theorem 3.2. Denote M := T ⋆XTX and v := T ⋆Xr and consider the decomposition

β̂ − β = M̂−1v̂ − M̂−1M̂β

= M−1(v̂ − M̂β) + M̂−1(M − M̂)M−1(v̂ − M̂β)

Using Lemma A.2, the first term of this decomposition leads to the result if we show that the

second term is op(n
−1/2). Lemma A.1 with h = n−1/2 implies the mean square convergence of

‖M̂ − M‖. In particular, it holds ‖M̂ − M‖ = Op(n
−1/2). Moreover Lemma A.2 implies that

‖v̂− M̂β‖ = Op(n
−1/2). Thus the second term is op(n

−1/2), as ‖M̂−1‖ is bounded in probability. �

Proof of Corollary 3.1. Conditionning on W , the matrix Λ becomes

Λ = E

[
Var

{
fW (W )

τ(W )
UE(X |W )

∣∣∣W
}]

+ Var

[
E

{
fW (W )

τ(W )
UE(X |W )

∣∣∣W
}]

where the second term cancels out using again E(U |W ) = 0. An expansion of the first term leads to

4ζ = E

{(
fW (W )

τ(W )

)2

E(X |W ) Var(U |W )E(X |W )t

}

which gives the announced result. �

Lemma A.3. (i) If
∫
x2
jf(x,w)dx ∈ G

1,1
τ (Rq) and

∫
xjf(x,w)dx ∈ G

s,2
τ (Rq) for each component

xj of x, then

E‖T̂X − TX‖2
L2

τ(Rq) = O
(
(nhqW )−1 + h2ρ

W

)
, (A.6)

E‖T̂ ⋆X − T ⋆X‖2
Rk = O

(
(nhqW )−1 + h2ρ

W

)
; (A.7)
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(ii) If fZW ∈ G
1,1
π·τ (R

p+q) and fZW ∈ G
s,2
π·τ (R

p+q), then

E‖T̂Z − TZ‖2
L2

τ(Rq) = O
(
(nhqWh

p
Z)−1 + (hZ ∨ hW )2ρ

)
, (A.8)

E‖T̂ ⋆Z − T ⋆Z‖2
L2

π(Rp) = O
(
(nhqWh

p
Z)−1 + (hZ ∨ hW )2ρ

)
(A.9)

where a ∨ b = max(a, b);

(iii) If
∫
y2f(y, w)dx ∈ G

1,1
τ (Rq) and

∫
yf(x,w)dx ∈ G

s,2
τ (Rq), then

E‖r̂ − r‖2
L2

τ (Rq) = O
(
(nhqW )−1/2 + hρW

)
. (A.10)

Proof. We only give the details for the proof of (A.8). Denote f̂ZW = n−1
∑
iKhW

(Wi −
w)KhZ

(Zi − z). Using the Cauchy Schwarz inequality,

E‖T̂Z − TZ‖2
L2

τ(Rq) 6

∫∫
dz

π(z)

dw

τ(w)

[
Var{f̂ZW (z, w)} + {Ef̂ZW (z, w) − fZW (z, w)}2

]
.

Then using fZW ∈ G
1,1
π·τ (R

p+q) the first term is of order O((nhqWh
p
Z)−1) and with fZW ∈ G

s,2
π·τ (R

p+q)

the second term is bounded by O((hW ∨ hq)2ρ). The proof of the other results is very similar and

we skip the details. �

Lemma A.4. Under Assumption 3.1 and as α tends to zero with n→ ∞,

‖T ⋆X(I − PαZ )‖ = O
(
α(η∧2)/2

)
, (A.11)

‖T ⋆X(I − PαZ )PZTX‖ = O
(
αη∧1

)
, (A.12)

‖(I − PαZ )TZφ‖ = O
(
α1∧(ν+1)/2

)
. (A.13)

Proof. The proof uses the properties
∥∥(TZT ⋆Z)−η/2TX

∥∥ < ∞ and
∥∥(T ⋆ZTZ)−ν/2φ

∥∥ < ∞ which are

direct consequences of Assumption 3.1. To show (A.11), we use the decomposition

‖T ⋆X(I − PαZ )‖ 6
∥∥∥(I − PαZ )(TZT

⋆
Z)η/2

∥∥∥ ·
∥∥∥(TZT ⋆Z)−η/2TX

∥∥∥

where the first factor is O(α(η∧2)/2) by Theorem 4.3 of Engl, Hanke, and Neubauer (2000) and the

second factor is finite. The proof of the other results is similar and we skip the details. �

Proof of Theorem 3.3. Define the operators P̂αZ := T̂Z(αI + T̂ ⋆Z T̂Z)−1T̂ ⋆Z and PαZ := TZ(αI +

T ⋆ZTZ)−1T ⋆Z . The proof is based on the decomposition

β̂ − β = M̂−1
α

{
T̂ ⋆X

(
I − P̂αZ

)(
r̂ − T̂Xβ − T̂Zφ

)
+ T̂ ⋆X

(
I − P̂αZ

)
T̂Zφ

}
. (A.14)

Denote M = T ⋆X(I − PZ)TX . Below we show the three following asymptotic convergences:

‖M̂−1
α −M−1‖ = Op

({
1 + α

η∧2

2

}
·
{

(nhqW )−1/2 + hρW

}

+ α
η∧2

2
−1 ·

{
(nhqWnh

p
Z)−1/2 + (hW ∨ hZ)ρ

}
+ αη∧1

)
, (A.15)

‖T̂ ⋆X
(
I − P̂αZ

)(
r̂ − T̂Xβ − T̂Zφ

)
‖ = Op

(
α

η∧2

2
−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

)2

+ α
η∧2

2 ·
(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

))
(A.16)
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and

‖T̂ ⋆X
(
I − P̂αZ

)
T̂Zφ‖ = Op

(
α1/2 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

) ν∧2
2

+ α1∧ 1+ν
2

)
(A.17)

under the assumptions of the theorem. The conditions of the theorem on α, hW and hZ ensure that

(A.15) has the rate op(1) while (A.16) and (A.17) have the rate Op(n
−1/2).

Proof of (A.15). First note the inequality

‖M̂−1
α −M−1‖ 6 ‖M−1‖ · ‖M̂−1

α ‖ · ‖M̂α −M‖ .

As ‖M−1‖ is bounded and ‖M̂−1
α ‖ is bounded in probability we focus on the control of ‖M̂α −M‖:

‖M̂α −M‖ 6 ‖T̂ ⋆X − T ⋆X‖ ·
∥∥∥(I − P̂αZ )T̂X

∥∥∥+
∥∥∥T ⋆X{(I − P̂αZ ) − (I − PαZ )}T̂X

∥∥∥

+ ‖T ⋆X(I − PαZ )‖ ·
∥∥∥T̂X − TX

∥∥∥+ ‖T ⋆X{(I − PαZ ) − (I − PZ)}TX‖ .

Since (I − P̂αZ )T̂X is bounded in probability, the first term is controled by a direct application of

Lemma A.3. To bound the second term, we make use of the following relations:

(I − P̂αZ ) − (I − PαZ ) =
1

α
(I − PαZ )

{
T̂Z T̂

⋆
Z − TZT

⋆
Z

}(
I − P̂αZ

)
(A.18)

which allows to bound the second term by

1

α
‖T ⋆X(I − PαZ )‖·

∥∥∥T̂Z T̂ ⋆Z − TZT
⋆
Z

∥∥∥·
∥∥∥(I − P̂αZ )T̂X

∥∥∥ = O
(
α(η∧2)/2−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

))

where the rate comes from Lemma A.3, equation (A.11) of Lemma A.4 above and the relation

‖T̂ZT̂ ⋆Z−TZT ⋆Z‖ = O(max{‖T̂Z−TZ‖, ‖T̂ ⋆Z−T ⋆Z‖}). By similar arguments, the third term is of order

O
(
α(η∧2)/2 · ((nhqW )−1/2 + hρW ))

)
. To bound the fourth term we use the identity (I−PαZ )−(I−PZ) =

(I − PαZ )PZ and, using equation (A.12) of Lemma A.4, find the rate Op(α
η∧1).

Proof of (A.16). Set ê = r̂− T̂Xβ − T̂Zφ. We have ‖ê‖ 6 ‖r̂− r‖+ ‖T̂X − TX‖+ ‖T̂Z − TZ‖ and

hence Lemma A.3 implies that ‖ê‖ is of order Op((nh
q
Wh

p
Z)−1/2 + (hW ∨ hZ)ρ). Consider now the

decomposition

T̂ ⋆X

(
I − P̂αZ

)
ê =

{
T̂ ⋆X

(
I − P̂αZ

)
− T ⋆X (I − PαZ )

}
ê+ T ⋆X (I − PαZ ) ê . (A.19)

The norm of first term is bounded by

∥∥∥T̂ ⋆X − T ⋆X

∥∥∥ ·
∥∥∥I − P̂αZ

∥∥∥ · ‖ê‖ +
∥∥∥T ⋆X

(
(I − P̂αZ ) − (I − PαZ )

)∥∥∥ · ‖ê‖

= Op

(
α

η∧2

2
−1 ·

(
(nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ

)2
)

where the rate is derived similarly to the rate of (A.15) and we use, that the first term is negligible

wrt. to the second. Analogously the second term of (A.19) is of order Op(α
(η∧2)/2 · ((nhqWh

p
Z)−1/2 +

(hW ∨ hZ)ρ)).

Proof of (A.17). From Assumption 3.1, in particular (3.9), there exists g ∈ L2
π(R

p) such that

φ = (T ⋆ZTZ)ν/2g for some ν > 0. Then we can write

∥∥∥T̂ ⋆X
(
I − P̂αZ

)
T̂Zφ

∥∥∥ =
∥∥∥T̂ ⋆X

∥∥∥ ·
∥∥∥
(
I − P̂αZ

)
T̂Z

∥∥∥ ·
∥∥∥(T ⋆ZTZ)ν/2 − (T̂ ⋆Z T̂Z)ν/2

∥∥∥ · ‖g‖

+
∥∥∥T̂ ⋆X

∥∥∥ ·
∥∥∥
(
I − P̂αZ

)
T̂Z(T̂ ⋆Z T̂Z)ν/2

∥∥∥ · ‖g‖.
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Theorem 4.3 in Engl, Hanke, and Neubauer (2000) leads to ‖(I − P̂αZ )T̂Z‖ = O(α1/2). Moreover,

from Section 5.2 of this last reference we get ‖(T ⋆ZTZ)ν/2 − (T̂ ⋆Z T̂Z)ν/2‖ 6 ‖T ⋆ZTZ − T̂ ⋆Z T̂Z‖(ν∧2)/2,

thus the first term is of order α1/2((nhqWh
p
Z)−1/2 + (hW ∨ hZ)ρ)(ν∧2)/2 from Lemma A.3. Similarly

Theorem 4.3 in Engl, Hanke, and Neubauer (2000) gives the rate α1∧(1+ν)/2 for the second term. �

Lemma A.5. Denote v2(·) = Var(U2|W = ·), ê := r̂ − T̂Xβ − T̂Zφ and

êU :=
1

n

∑

i

Ui
τ(·)KhW

(Wi − ·) .

(i) If v2fW ∈ G
1,1
τ (Rq), then E‖êU‖2

L2
τ(Rq) = O((nhqW )−1).

(ii) Let {µj , gj ∈ L2
τ (R

q), ej ∈ Rk, j = 1, . . . , k} be the singular value decomposition of the com-

pact operator T ⋆X(I − PZ) (see the decomposition (3.7) for instance). If gj ∈ G
1,0
τ (Rq) and

gj
√
v2 · fW /τ ∈ L2

τ (R
q) for all j = 1, . . . , k, then

√
n (T ⋆X(I − PZ)eU )

d−→ N
(

0, T ⋆X(I − PZ)

[
v2 · fW
τ

(I − PZ)TX

])
. (A.20)

Proof. We prove the two results separately.

Proof of (i). Using iterative conditional expectation and by definition of v2 we can write

E‖êU‖2
L2

τ (Rq) =
1

n

∫
dw

τ(w)
E

(
v2(W )K2

hW
(W − w)

)
.

With the standard change of variables, if we denote g(u) := v2(u)fW (u),

E‖êU‖2
L2

τ (Rq) =
1

nhqW

∫
dw

τ(w)

∫
dw̃ K2(w̃)g(w + hW w̃)

=
1

nhqW

{∫ dw

τ(w)
g(w)

∫
dw̃ K2(w̃) +R

}

where R is such that |R| ≤
∫

dw
τ(w)

∫
dw̃ K2(w̃)|g(w+hW w̃)−g(w)|. Using that g belongs to G

1,1
τ (Rq)

the first term and |R| are bounded, which proves (i).

Proof of (ii). Using the singular value decomposition of T ⋆X(I − PZ) we can write

T ⋆X(I − PZ)êU =
1

n

∑

i

Ui

k∑

j=1

µjej

∫
dw gj(w)Kh(Wi − w)

=
1

n

∑

i

Ui

k∑

j=1

µjejgj(Wi) +R , (A.21)

where the reminder R = 1
n

∑
i Ui

∑k
j=1 µjej

∫
dw {gj(w)−gj(Wi)}Kh(Wi−w) has expectation zero

and variance

1

n

k∑

i,j=1

µiµjeie
t
jE

[{∫
dw (gj(w) − gj(W1))Kh(W1 − w)

}2

v2(U1|W1)

]
.

Using gj ∈ G
1,0
τ (Rq), the reminder R has VarR = O(h2

Wn
−1 Var(U1) · ∑k

i=1 µ
2
i ) and hence is

negligible. We derive the asymptotic law by applying a standard central limit theorem on the

first term in (A.21) where each summand has a vanishing expectation and a finite variance by
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assumption gj
√
v2 · fW /τ ∈ L2

τ (R
q). It remains to calculate the asymptotic covariance matrix.

Using the singular value decomposition of T ⋆X(I − PZ) we obtain

Cov



U1

k∑

j=1

µjejgj(W1)



 =
k∑

i,j=1

µiei

〈
gi,

v2 · fW
τ

gj

〉

L2
τ

µje
t
j

= T ⋆X(I − PZ)

[
v2 · fW
τ

(I − PZ)TX

]
,

which proves (ii). �

Proof of Theorem 3.4. Part of this proof is similar to the proof of Theorem 3.3. Here again,

we consider the decomposition (A.14). The assumptions of Theorem 3.4 give the rate op(1) for

(A.15) and the rate op(n
−1/2) for (A.17). The treatment of (A.16) however requires a different

decomposition which is considered now.

Denote ê = r̂ − T̂Xβ − T̂Zφ. We consider the following decomposition of (A.17):

T̂ ⋆X

(
I − P̂αZ

)
ê =

{
T̂ ⋆X

(
I − P̂αZ

)
− T ⋆X (I − PαZ )

}
ê+ T ⋆X (I − PαZ ) {ê− êU}

+ T ⋆X {(I − PαZ ) − (I − PZ)} êU + T ⋆X (I − PZ) êU ,

where êU is defined in Lemma A.5. The norm of the first term is controled as in the proof of

Theorem 3.3 and has the rate op(n
−1/2) under the assumptions of the theorem. Using Lemma A.4

and Lemma A.5 above the second term is of order Op(α
(η∧2)/2 · ((nhqWh

p
Z)−1/2 + (hW ∨ hZ)ρ)) . To

control the third term we use (I −PαZ )− (I −PZ) = (I − PαZ )PZ and thus by Lemmas A.4 and A.5,

this term is negligible with respect to the second term. With our assumptions on α, hZ and hW ,

the first two terms together are op(n
−1/2). The last term of the decomposition leads to the central

limit result by Lemma A.5. �

Proof of Theorem 3.5. In this proof we construct the function gγ explicitely. If the system

{ψ̃i ∈ L2
τ (R

q)}i=1,...,k are the eigenfunctions from the spectral decomposition of TX , then the source

condition with η > 1 (Assumption 3.1) implies PZψ̃i ∈ R(TZ) for i = 1, . . . , k. In other words, there

exists for each i = 1, . . . , k a function φ̃i ∈ L2
π(R

p) such that PZ ψ̃i = TZ φ̃i. For each γ ∈ Rk we

define gγ(Z) := γ1φ̃1 + · · · + γkφ̃k. Note that gγ is differentiable w.r.t. γ and is such that

Tgγ(Z)v =

k∑

i=1

viTZ φ̃i

for all v ∈ Rk. The range of the operator Tgγ(Z), R(Tgγ (Z)), given by the k-dimensional linear

subspace lin{TZ φ̃i, i = 1, . . . , k} is by definition a subset of R(TZ). Hence the projection Pgγ (Z)

onto R(Tgγ (Z)) is the restriction of PZ onto R(Tgγ (Z)) and since PZ ψ̃i ∈ R(Tgγ (Z)), we also have

PZ ψ̃i = Pgγ (Z)ψ̃i. This implies PZTX = Pgγ(Z)TX or, equivalently, M = Mgγ(Z), and the result is

proved. �
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