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Abstract

In this paper we derive efficiency estimates of the regularized Newton’s method as
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k3 ), where k is the iteration counter. We derive also
the efficiency estimate of a second-order scheme for smooth variational inequalities. Its
global rate of convergence is established on the level O( 1
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1 Introduction

Motivation. Starting from the very beginning [1], the behavior of the Newton’s method
was studied mainly in a small neighborhood of non-degenerate solution (see [4]; a com-
prehensive exposition of the state of art in this field can be found in [2, 3]). However, the
recent development of cubic regularization of the Newton’s method [8] opened a possibil-
ity for global efficiency analysis of the second order schemes on different problem classes.
After [8], the next step in this direction was done in [7]. Namely, it was shown that, on the
class of smooth convex unconstrained minimization problems, the rate of convergence of
one-step regularized Newton’s method [8] can be improved by a multistep strategy from
O( 1

k2 ) up to O( 1
k3 ), where k is the iteration counter. It is interesting that a similar idea

is used for accelerating the usual gradient method for minimizing convex functions with
Lipschitz-continuous gradient (see Section 2.2. in [6]).

In this paper we analyze the global efficiency of the second-order schemes as applied to
convex constrained minimization problems and to variational inequalities. For generalizing
the regularized Newton’s step onto the constrained situation, we compute the next test
point as an exact minimum of the upper second-order model of the objective function,
taking into account the feasible set. This approach is based on the same idea as gradient
mapping, which is employed in many first-order schemes (see, for example, Section 2.2.3
[6]).

Contents. In Section 2 we present different properties of cubic regularization of the
support functions of convex sets. Our results can be seen as an extension of the standard
approach based on regularization by strongly convex functions, which is intensively used in
the first-order methods (see, for example, Section 2 [5]). In Section 3 we introduce a cubic
regularization of the Newton step for a constrained variational inequality problem with
sufficiently smooth monotone operator. Section 4 is devoted to the second-order schemes
for constrained minimization problems. We derive the efficiency estimates for one-step
regularized Newton’s method and for its accelerated multistep variant. In Section 5 we
present a second-order scheme for a variational inequality with smooth monotone operator.
We show that the schemes converges with the rate O( 1

k ). We analyze also its efficiency
as applied to strongly monotone operators. In the end of the section we prove the local
quadratic convergence of the regularized Newton method. In the last Section 6 we discuss
some implementation issues.

Notation. In what follows E denotes a finite-dimensional real vector space, and E∗ the
dual space, which is formed by all linear functions on E. The value of function s ∈ E∗ at
x ∈ E is denoted by 〈s, x〉.

Let us fix a positive definite self-adjoint operator B : E → E∗. Define the following
norms:

‖h‖ = 〈Bh, h〉1/2, h ∈ E,

‖s‖∗ = 〈s,B−1s〉1/2, s ∈ E∗,

‖A‖ = max
‖h‖≤1

‖Ah‖∗, A : E → E∗.
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For a self-adjoint operator A = A∗, the same norm can be defined as

‖A‖ = max
‖h‖≤1

|〈Ah, h〉|. (1.1)

Further, for function f(x), x ∈ E, we denote by ∇f(x) its gradient at x:

f(x + h) = f(x) + 〈∇f(x), h〉+ o(‖h‖), h ∈ E.

Clearly ∇f(x) ∈ E∗. Similarly, we denote by ∇2f(x) the Hessian of f at x:

∇f(x + h) = ∇f(x) +∇2f(x)h + o(‖h‖), h ∈ E.

Of course, ∇2f(x) is a self-adjoint linear operator from E to E∗. We keep the same
notation for gradients of functions defined on E∗. But then, of course, such a gradient is
an element of E.

Finally, for a nonlinear operator g : E → E∗, we denote by g′(x) is Jacobian:

g(x + h) = g(x) + g′(x)h + o(‖h‖), h ∈ E.

Thus, g′(x) can be seen as a linear operator from E to E∗. Clearly, (∇f(x))′ = ∇2f(x).

2 Cubic regularization of support functions

Consider the following cubic prox function

d(x, y) = 1
3‖x− y‖3, x, y ∈ E.

In accordance to Lemma 4 in [7], for any fixed x̄ ∈ E, we have

d(x̄, y) ≥ d(x̄, x) + 〈∇2d(x̄, x), y − x〉+ 1
6‖y − x‖3, x, y ∈ E, (2.1)

where ∇2 denotes the gradient of corresponding function with respect to its second vari-
able. Thus, d(x̄, ·) is a uniformly convex on E function of degree p = 3 with convexity
parameter σ = 1

2 .
Let Q be a closed convex set in E. We allow Q to be unbounded (for example, Q ≡ E).

Let us fix some x0 ∈ Q, which we treat as a center of this set. For our analysis we need
to define two support-type functions of the set Q:

ξD(s) = max
x∈Q

{
〈s, x− x0〉 : d(x) ≤ 1

3D3
}

, s ∈ E,

Wβ(x, s) = max
y∈Q

{〈s, y − x〉 − βd(x, y)}, s ∈ E,

(2.2)

where x is an arbitrary point from Q, and parameters D and β are positive. The first
function is a usual support function for the set

FD = {x ∈ Q : ‖x− x0‖ ≤ D}.
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The second one is a proximal-type approximation of the support function of set Q with
respect to x. Since d(x, ·) is uniformly convex (see (2.1)), for any positive D and β we
have dom ξD = domWβ = E∗. Note that both of the functions are nonnegative.

Let us mention some properties of function W (·, ·). If β2 ≥ β1 > 0, then for any x ∈ E
and s ∈ E∗ we have

Wβ2(x, s) ≤ Wβ1(x, s). (2.3)

The support functions (2.2) are related as follows.

Lemma 1 For any positive β and D, and any s ∈ E∗ we have

ξD(s) ≤ 1
3βD3 + Wβ(x0, s). (2.4)

Proof:
Indeed,

ξD(s) = max
y
{〈s, y − x0〉 : y ∈ Q, d(x0, y) ≤ 1

3D3}

= max
y∈Q

min
β≥0

{〈s, y − x0)〉+ 1
3β · (D3 − ‖y − x0‖3))}

= min
β≥0

max
y∈Q

{〈s, y − x0)〉+ 1
3β · (D3 − ‖y − x0‖3))}

≤ 1
3βD3 + Wβ(x0, s).

2

We need some bounds on the rate of variation of function Wβ(x, s) in both arguments.
Denote

πβ(x, s) = argmax
y
{〈s, y − x〉 − βd(x, y) : y ∈ Q}.

Note that function Wβ(x, s) is differentiable in s and

∇2Wβ(x, s) = πβ(x, s)− x.

Lemma 2 Let us choose arbitrary x ∈ Q and s, δ ∈ E∗. Then

Wβ(x, s + δ) ≤ Wβ(x, s) + 〈δ,∇2Wβ(x, s)〉+ Wβ/2(πβ(x, s), δ). (2.5)

Moreover, for any y ∈ Q and δ ∈ E∗ we have

Wβ(y, δ) ≤ 2
3 · 1√

β
· ‖δ‖3/2

∗ . (2.6)

Proof:
Denote π = πβ(x, s). From the first-order optimality condition for the second maximiza-
tion problem in (2.2) we have

〈s− β · ∇2d(x, π), y − π〉 ≤ 0 ∀y ∈ Q.

Hence,
〈s, y − x〉 ≤ 〈s, π − x〉+ β · 〈∇2d(x, π), y − π〉 ∀y ∈ Q.
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Therefore,

Wβ(x, s + δ) = max
y∈Q

{〈s + δ, y − x〉 − β · d(x, y)}

≤ max
y∈Q

{〈δ, y − x〉+ 〈s, π − x〉+ β〈∇2d(x, π), y − π〉 − β · d(x, y)}

(2.1)

≤ max
y∈Q

{〈δ, y − x〉+ 〈s, π − x〉 − β · d(x, π)− 1
6β‖y − π‖3}

= Wβ/2(π, δ) + 〈δ, π − x〉+ Wβ(x, s).

It remains to note that

Wβ(y, δ) = max
x∈Q

{〈δ, x− y〉 − 1
3β · ‖x− y‖3}

≤ max
x∈E

{〈δ, x− y〉 − 1
3β · ‖x− y‖3} = 2

3 · 1√
β
· ‖δ‖3/2

∗ .

2

Thus, the level of smoothness of function Wβ(x, ·) can be controlled by the parameter
β. This function can be used for measuring the size of the second argument. Of course,
the result depends on the choice of the center x. Let us estimate from above the change
of the measurement when the center moves.

Lemma 3 . Let x, π ∈ Q, and α ∈ (0, 1]. Define y = x+α(π−x). Then, for any δ ∈ E∗,
and β > 0 we have

Wβ(π, αδ) ≤ Wβ/α3(y, δ). (2.7)

Proof:
Indeed,

Wβ(π, αδ) = max
v∈Q

{α〈δ, v − π〉 − βd(π, v)}

(y = x + α(π − x)) = max
v∈Q

{
〈δ, w − y〉 − β

3α3 ‖w − y‖3 : w = x + α(v − x)
}

(x + α(Q− x) ⊆ Q) ≤ max
w∈Q

{
〈δ, w − y〉 − β

3α3 ‖w − y‖3
}

= Wβ/α3(y, δ).

2

3 Cubic regularization of the Newton step

Consider a nonlinear differentiable monotone operator g(x) : Q → E∗:

〈g(x)− g(y), x− y〉 ≥ 0, ∀x, y ∈ Q. (3.1)

5



This condition is equivalent to positive semidefiniteness of its Jacobian:

〈g′(x)h, h〉 ≥ 0, ∀x ∈ Q, h ∈ E. (3.2)

We assume also that the Jacobian of g is Lipschitz-continuous:

‖g′(x)− g′(y)‖∗ ≤ L‖x− y‖, ∀x, y ∈ Q. (3.3)

A well known consequence of this assumption is as follows:

‖g(y)− g(x)− g′(x)(y − x)‖ ≤ 1
2L‖y − x‖2, x, y ∈ Q, (3.4)

(see, for example, [9]).
An important example of such an operator is given by the gradient of the distance

function:
∇2d(x, y) = ‖y − x‖ ·B(y − x), x, y ∈ E,

with L = 2 (see Lemma 5 [7]).
For any x ∈ Q and M > 0 we can define a regularized operator

UM,x(y) = g(x) + g′(x)(y − x) + 1
2M∇2d(x, y), y ∈ E.

This is a uniformly monotone operator. Therefore, the following variational inequality:

Find T ∈ Q : 〈UM,x(T ), y − T 〉 ≥ 0 ∀y ∈ Q, (3.5)

has a unique solution T ≡ TM (x). Denote rM (x) = ‖TM (x)− x‖, and

∆M (x) = 〈g(x), x− TM (x)〉 − 1
2〈g′(x)(x− TM (x)), x− TM (x)〉 − M

6 r3
M (x).

Using inequality (3.5) with y = x, we obtain

〈g(x), x− TM (x)〉 − 〈g′(x)(x− TM (x)), x− TM (x)〉 − M
2 r3

M (x) ≥ 0.

Hence,
∆M (x) ≥ 1

2〈g′(x)(x− TM (x)), x− TM (x)〉+ M
3 r3

M (x)

(3.2)

≥ M
3 r3

M (x).

(3.6)

In what follows, we often use several simple consequences of (3.5).

Theorem 1 Let operator g satisfy (3.2), (3.3). Then, for any y ∈ Q, and any positive λ
and M , we have

〈g(TM (y)), y − TM (y)〉 ≥ M−L
2 · r3

M (y), (3.7)

Wβ(y,−λg(TM (y))) ≤ λ〈g(TM (y)), y − TM (y)〉

+
(√

λ3(L+M)3

18β − λM−L
2

)
· r3

M (y).
(3.8)
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Proof:
Denote T = TM (y), and r = rM (y). Then, by (3.5),

0 ≤ 〈g(y) + g′(y)(T − y)− g(T ) + g(T ) + 1
2Mr(T − y), y − T 〉

= 〈g(y) + g′(y)(T − y)− g(T ), y − T 〉+ 〈g(T ), y − T 〉 − 1
2Mr3

(3.4)

≤ 1
2Lr3 + 〈g(T ), y − T 〉 − 1

2Mr3,

and that is (3.7).
Denote now ḡ = g(y), and ḡ′ = g′(y). Then, for any x ∈ Q we have:

〈g(T ), y − x〉 = 〈g(T )− ḡ − ḡ′(T − y), y − x〉+ 〈ḡ + ḡ′(T − y), y − x〉

(3.4)

≤ L
2 r2‖y − x‖+ 〈ḡ + ḡ′(T − y), y − x〉

= L
2 r2‖y − x‖+ 〈ḡ + ḡ′(T − y), y − T 〉+ 〈ḡ + ḡ′(T − y), T − x〉

(3.5)

≤ L
2 r2‖y − x‖+ 〈ḡ + ḡ′(T − y), y − T 〉+ M

2 r〈B(T − y), x− T 〉

≤ L+M
2 r2‖y − x‖+ 〈ḡ + ḡ′(T − y), y − T 〉 − M

2 r3

= L+M
2 r2‖y − x‖+ 〈ḡ + ḡ′(T − y)− g(T ), y − T 〉

−M
2 r3 + 〈g(T ), y − T 〉

(3.4)

≤ L+M
2 r2‖y − x‖ − M−L

2 r3 + 〈g(T ), y − T 〉.

Therefore, using this estimate (in the third line below), we obtain

Wβ(y,−λg(T ))− λ〈g(T ), y − T 〉

= max
x∈Q

{λ〈g(T ), y − x〉 − βd(y, x)− λ〈g(T ), y − T 〉}

≤ max
x∈Q

{λL+M
2 r2‖y − x‖ − λM−L

2 r3 − β
3 ‖y − x‖3}

≤ max
τ≥0

{λL+M
2 r2τ − β

3 τ3} − λM−L
2 r3

= r3 ·
(√

λ3(L+M)]3

18β − λM−L
2

)
.

2

Denote κ(M) = 9(M−L)2

2(M+L)3
. Its maximal value is attained at M = 5L: κ(5L) = 1

3L .
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Corollary 1 If M > L and 0 < λ ≤ κ(M) · β, then

Wβ(y,−λg(TM (y))) ≤ λ〈g(TM (y)), y − TM (y)〉. (3.9)

4 Methods for constrained minimization

Consider the following minimization problem:

min
x
{f(x) : x ∈ Q}, (4.1)

where Q is a closed convex set and f is a convex function with Lipschitz continuous
Hessian:

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, x, y ∈ Q. (4.2)

Note that the operator g(x) def= ∇f(x) satisfies conditions (3.2), (3.3). Thus, we can apply
the results of Section 3 to the regularized Newton step T = TM (x) defined as a unique
solution to the following variational inequality:

〈∇f(x) +∇2f(x)(T − x) + 1
2M∇2d(x, T ), y − T 〉 ≥ 0, ∀y ∈ Q.

Note that now this point can be characterized in another way:

TM (x) = arg min
y∈Q

f̂M (x, y),

f̂M (x, y) def= f(x) + 〈∇f(x), y − x〉+ 1
2〈∇2f(x)(y − x), y − x〉+ M

6 ‖y − x‖3.

(4.3)

In view of (4.2), for M ≥ L we have

f(y) ≤ f̂M (x, y) ≤ f(y) + L+M
6 ‖y − x‖3, x, y ∈ Q. (4.4)

Therefore, f(TM (x)) ≤ f̂M (x, TM (X)), and we obtain:

f(x)− f(TM (x)) ≥ f(x)− f̂M (x, TM (X)) = ∆M (x)
(3.6)

≥ M
3 r3

M (x). (4.5)

Another important consequence of (4.4) is as follows:

f(TM (x)) ≤ min
y∈Q

{
f(y) + L+M

6 ‖y − x‖3
}
≤ f(x∗) + L+M

6 ‖x− x∗‖3, (4.6)

where x∗ is an optimal solution to (4.1).
Consider now the following regularized Newton’s method:

Choose x0 ∈ Q and iterate

xk+1 = TL(xk), k ≥ 0.
(4.7)

Using the same arguments as in Theorem 1 in [7], we can prove the following statement.
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Theorem 2 Assume that the level sets of the problem (4.1) are bounded:

‖x− x∗‖ ≤ D ∀x ∈ Q : f(x) ≤ f(x0). (4.8)

If the sequence {xk}∞k=1 is generated by (4.7), then

f(xk)− f(x∗) ≤ 9LD3

(k+4)2
, k ≥ 1. (4.9)

Proof:
In view of (4.5), f(xk+1) ≤ f(xk), k ≥ 0. Thus, ‖xk − x∗‖ ≤ D for all k ≥ 0. Further, in
view of (4.6), we have

f(x1) ≤ f(x∗) + L
3 D3. (4.10)

Consider now an arbitrary k ≥ 1. Denote xk(τ) = x∗ + (1 − τ)(xk − x∗). In view of the
first inequality in (4.6), for any τ ∈ [0, 1] we have

f(xk+1) ≤ f(xk(τ)) + τ3 L
3 ‖xk − x∗‖3 ≤ f(xk)− τ(f(xk)− f(x∗)) + τ3 LD3

3 .

The minimum of the right-hand side is attained for

τ =
√

f(xk)−f(x∗)
LD3 ≤

√
f(x1)−f(x∗)

LD3

(4.10)
< 1.

Thus, for any k ≥ 1 we have

f(xk+1) ≤ f(xk(τ))− 2
3 · (f(xk)−f(x∗))3/2√

LD3
. (4.11)

Denote δk = f(xk)− f(x∗). Then

1√
δk+1

− 1√
δk

= δk−δk+1√
δkδk+1(

√
δk+
√

δk+1)

(4.11)

≥ 2

3
√

LD3
· δk√

δk+1(
√

δk+
√

δk+1)
≥ 1

3
√

LD3
.

Thus, for any k ≥ 1, we have

1√
δk

≥ 1√
δ1

+ k−1

3
√

LD3

(4.10)

≥ 1√
LD3

·
(√

3 + k−1
3

)
≥ k+4

3
√

LD3
.

2

Consider now an accelerated scheme. For simplicity, we assume that the constant L
is known.

Choose some x0 ∈ Q, and s0 = 0 ∈ E∗. Define
γ = 27L, M = 5L, and compute x1 = TM (x0).

For k ≥ 1 iterate:

1. Update sk = sk−1 − k(k+1)
2 ∇f(xk).

2. Compute vk = πγ(x0, sk).

3. Select yk = k
k+3 xk + 3

k+3 vk.

4. Compute xk+1 = TM (yk).

(4.12)
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Define
λk = k(k+1)

2 , Sk = k(k+1)(k+2)
6 , k ≥ 1.

Note that Sk =
k∑

i=1
λi. Let us prove the following auxiliary result.

Lemma 4 Define γ = 27L. Then, for any k ≥ 1 we have

k∑
i=1

λi[f(xi) + 〈∇f(xi), x0 − xi〉] ≥ Skf(xk) + Wγ(x0, sk). (4.13)

Proof:
Note that for our choice of parameters, κ(M) = 9(M−L)2

2(M+L)3
= 1

3L . Therefore, κ(M)γ > 1,
and we have

S1f(x1) + Wγ(x0, s1) = f(x1) + Wγ(x0,−∇f(TM (x1)))

(3.9)

≤ λ1[f(x1) + 〈∇f(x1), x0 − x1〉].
Thus, for k = 1, inequality (4.13) is valid.

Assume that (4.13) is true for some k ≥ 1. Denote the left-hand side of this inequality
by Σk. Then

Σk+1 = Σk + ak+1[f(xk+1) + 〈∇f(xk+1), x0 − xk+1〉]

≥ Skf(xk) + λk+1[f(xk+1) + 〈∇f(xk+1), x0 − xk+1〉] + Wγ(x0, sk)

≥ Sk+1f(xk+1) + 〈∇f(xk+1), λk+1x0 + Skxk − Sk+1xk+1〉+ Wγ(x0, sk)

= Sk+1f(xk+1) + 〈∇f(xk+1), λk+1(x0 − vk) + Sk+1(yk − xk+1)〉+ Wγ(x0, sk).

(4.14)

Note that

Wγ(x0, sk+1) = Wγ(x0, sk − λk+1∇f(xk+1))

(2.5)

≤ Wγ(x0, sk)− λk+1〈∇f(xk+1), vk − x0〉+ W γ
2
(vk,−λk+1∇f(xk+1)).

Denote αk = λk+1

Sk+1
= 3

k+3 . Then, in view of Step 3 in (4.12), we have

yk = xk + αk(vk − xk).

Hence, we can continue:

Wγ(x0, sk)− λk+1〈∇f(xk+1), vk − x0〉 −Wγ(x0, sk+1)

≥ −W γ
2
(vk,−λk+1∇f(xk+1))

(2.7)

≥ −W γ

2α3
k

(yk,− 1
αk

λk+1∇f(xk+1))

= −W γ

2α3
k

(yk,−Sk+1∇f(xk+1)).

(4.15)
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Denote
βk = γ

2α3
k

= 27L · (k+3)3

2·33 = 1
2L(k + 3)3.

Then Sk+1 ≤ 1
6(k + 3)3 = κβk. Thus, conditions of Corollary 1 are satisfied and we can

apply inequality (3.9):

−W γ

2α3
k

(yk,−Sk+1∇f(xk+1)) ≥ −Sk+1〈∇f(xk+1), yk − xk+1〉.

Using this estimate in (4.15), we obtain

Wγ(x0, sk)− λk+1〈∇f(xk+1), vk − x0〉+ Sk+1〈∇f(xk+1), yk − xk+1〉 ≥ Wγ(x0, sk+1).

Hence, in view of (4.14), we prove our inductive assumption for the next value k + 1. 2

Now we can easily estimate the rate of convergence of the accelerated process (4.12).

Theorem 3 For any k ≥ 1 we have

f(xk)− f(x∗) ≤ 54L‖x0 − x∗‖3

k(k + 1)(k + 2)
. (4.16)

Proof:
Indeed,

k∑
i=1

λi[f(xi) + 〈∇f(xi), x0 − xi〉]

(4.13)

≥ Skf(xk) + max
x∈Q

{〈sk, x− x0〉 − γ
3‖x− x0‖3

}

≥ Skf(xk) +
k∑

i=1
λi〈∇f(xi), x0 − x∗〉 − γ

3‖x0 − x∗‖3.

Hence,

Skf(xk) ≤ γ
3‖x0 − x∗‖3 +

k∑
i=1

λi[f(xi) + 〈∇f(xi), x∗ − xi〉]

≤ γ
3‖x0 − x∗‖3 + Skf(x∗).

2

5 Second-order methods for variational

inequalities

Let the nonlinear operator g(x) satisfy conditions (3.2), (3.3). Consider the following
variational inequality problem:

Find x∗: 〈g(x∗), y − x∗〉 ≥ 0 ∀y ∈ Q. (5.1)
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In order to measure quality of an approximate solution y ∈ Q to this problem, we will
employ the standard restricted merit function

fD(x) = max
y∈Q

{〈g(y), x− y〉 : ‖y − x0‖ ≤ D}. (5.2)

It is easy to prove that for all x ∈ FD this function is nonnegative. If D ≥ ‖x0 − x∗‖,
then fD(x∗) = 0. Moreover, if fD(x̂) = 0 and ‖x̂− x0‖ < D, then x̂ is a solution to (5.1)
(see Lemma 1, [5]).

In order to form an approximate solution to (5.1), we often use the following averaging
procedure.

Lemma 5 . For a sequence of points {xi}k
i=1 ⊂ Q and a sequence of positive weights

{λi}k
i=1 define

sk = −
k∑

i=1
λig(xi), Sk =

k∑
i=1

λi, x̂k = 1
Sk

k∑
i=1

λixi.

Then for any β > 0 we have

fD(x̂k) ≤ 1
Sk

[
k∑

i=1
λi〈g(xi), xi − x0〉+ ξD(sk)

]

(2.4)

≤ 1
Sk

[
1
3βD3 +

k∑
i=1

λi〈g(xi), xi − x0〉+ Wβ(x0, sk)

]
.

(5.3)

In particular, if
k∑

i=1
λi〈g(xi), x0 − xi〉 ≥ Wβ(x0, sk), (5.4)

then fD(x̂k) ≤ βD3

3Sk
.

Proof:
Indeed,

k∑
i=1

λi〈g(xi), xi − x0〉+ ξD(sk)
(2.2)
= max

y∈Q

{
k∑

i=1
λi〈g(xi), xi − y〉 : ‖y − x0‖ ≤ D

}

(3.1)

≥ max
y∈Q

{
k∑

i=1
λi〈g(y), xi − y〉 : ‖y − x0‖ ≤ D

}

= Sk ·max
y∈Q

{〈g(y), x̂k − y〉 : ‖y − x0‖ ≤ D}

= Sk · fD(x̂k).

2
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Now we can estimate the rate of convergence of the following dual Newton’s method
(compare with (4.7)).

1. Choose β = 6L and M = 5L.

Set x1 = TM (x0) and s0 = −g(x1).

2. Iterate (k ≥ 1): sk = sk−1 − g(xk),

vk = πβ(x0, sk),

xk+1 = TM (vk).

(5.5)

Theorem 4 Let the operator g(x) satisfy conditions (3.2), (3.3), and sequence {xk}∞k=1

be generated by (5.5). Then for the average points x̂k = 1
k+1

[
x1 +

k∑
i=1

xi

]
we have

fD(x̂k) ≤ 2LD3

k + 1
, k ≥ 1. (5.6)

Proof:

Denote ∆k = 〈g(x1), x1−x0〉+
k∑

i=1
〈g(xi), xi−x0〉+Wβ(x0, sk). In view of inequality (5.3),

we need to prove that ∆k ≤ 0 for all k ≥ 1. Indeed, s1 = −2g(x1), and, in view of our
choice of parameters,

κ(M)β ≥ 2. (5.7)

Hence, applying inequality (3.9), we obtain

Wβ(x0,−2g(x1)) ≤ 2〈g(x1), x0 − x1〉.
Thus, ∆1 ≤ 0. Assume now that ∆k ≤ 0 for some k ≥ 1. Then

∆k+1 ≤ 〈g(xk+1), xk+1 − x0〉+ Wβ(x0, sk − g(xk+1))−Wβ(x0, sk)

(2.5)

≤ 〈g(xk+1), xk+1 − πβ(x0, sk)〉+ Wβ/2(πβ(x0, sk),−g(xk+1))

(5.5)
= 〈g(xk+1), xk+1 − vk〉+ Wβ/2(vk,−g(xk+1)).

In view of (5.7) and relation (3.9), we conclude that the right-hand side of the latter
inequality is non-positive. 2

Assume now that the operator g(x) is strongly monotone:

〈g(x)− g(y), x− y〉 ≥ µ‖x− y‖2, x, y ∈ Q. (5.8)

For differentiable operators, this condition is equivalent to uniform nondegeneracy of the
Jacobian g′(x):

〈g′(x)h, h〉 ≥ µ‖h‖2, x ∈ Q, h ∈ E. (5.9)
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Lemma 6 Assume that operator g(x) satisfies (5.8) and D ≥ ‖x0 − x∗‖. Then for any
x ∈ FD we have

fD(x) ≥ 1
4µ‖x− x∗‖2. (5.10)

Proof:
Indeed, consider y = 1

2x + 1
2x∗ ∈ FD. Then

fD(x)
(5.2)

≥ 〈g(y), x− y〉 = 〈g(y), y − x∗〉

(5.8)

≥ 〈g(x∗), y − x∗〉+ µ‖y − x∗‖2

(5.1)

≥ µ‖y − x∗‖2 = 1
4µ‖x− x∗‖2.

2

Thus, using (5.5) we can get close to a solution of the variational inequality with
strongly monotone operator. Let us show that in a small neighborhood of the solution,
the transformation TM (x) ensures a quadratic rate of convergence.

Theorem 5 Let operator g(x) satisfy conditions (3.3) and (5.8). Then for any M ≥ 0
the process

xk+1 = TM (xk), k ≥ 0, (5.11)

converges quadratically:

‖xk+1 − x∗‖ ≤ L+M
2µ ‖xk − x∗‖2. (5.12)

Proof:
Denote rk = ‖xk − xk+1‖, and ρk = ‖xk − x∗‖. Then

0
(5.1)

≤ 〈g(x∗), xk+1 − x∗〉

= 〈g(x∗)− g(xk)− g′(xk)(x∗ − xk), xk+1 − x∗〉

+〈g(xk) + g′(xk)(x∗ − xk), xk+1 − x∗〉

(3.4)

≤ L
2 ρ2

kρk+1 + 〈g(xk) + g′(xk)(xk+1 − xk) + g′(xk)(x∗ − xk+1), xk+1 − x∗〉

(3.5)

≤ L
2 ρ2

kρk+1 + M
2 rk〈B(xk+1 − xk), x∗ − xk+1〉 − 〈g′(xk)(xk+1 − x∗), xk+1 − x∗〉

(5.9)

≤ L
2 ρ2

kρk+1 + M
2 rk〈B(xk+1 − xk), x∗ − xk+1〉 − µρ2

k+1.

Thus,

µρ2
k+1 ≤ L

2 ρ2
kρk+1 + M

2 rk〈B(xk+1 − xk), x∗ − xk+1〉 ≤ L
2 ρ2

kρk+1 + M
2 r2

kρk+1,
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which gives
µρk+1 ≤ L

2 ρ2
k + M

2 r2
k. (5.13)

On the other hand, we can continue our main chain of inequalities as follows:

0 ≤ L
2 ρ2

kρk+1 + M
2 rk〈B(xk+1 − xk), x∗ − xk + xk − xk+1〉 − µρ2

k+1

≤ L
2 ρ2

kρk+1 + M
2 r2

kρk − M
2 r3

k − µρ2
k+1.

Therefore, if rk ≥ ρk, then ρk+1 ≤ L
2µρ2

k. Otherwise, we get (5.12) from (5.13). 2

Thus, the region of quadratic convergence of method (5.11) can be defined as

QD =
{

x ∈ FD : ‖x− x∗‖ ≤ 2µ
L+M

} (5.10)

⊇
{

x ∈ FD : fD(x) ≤ µ3

(L+M)2

}
.

Therefore, in view of (5.6), the analytical complexity of finding a point from QD by a
single run of the method (5.5) is bounded by

O

([
LD
µ

]3
)

iterations. However, the same goal can be achieved much more efficiently by a restarting
strategy. Indeed, from (5.6) and (5.10), we see that this scheme halves the distance to the
optimum in O

(
LD
µ

)
iterations. After that, we can restart the algorithm, taking the last

point of the first stage as a starting point for the second one, etc. Since the length of a
stage depends linearly on the initial distance to the optimum, the duration of any next
stage will be twice smaller than that of the previous stage. Hence, the total number of
iterations in all stages is of the order

O
(

LD
µ

)
. (5.14)

Note that for optimization problems, in view of a much higher rate of convergence (4.16),
the complexity bound drops to the level

O

([
LD
µ

]1/3
)

(5.15)

iterations.

6 Discussion

At each iteration of the regularized Newton’s method we need to solve the auxiliary
problem (3.5). Let us analyze its complexity for the constrained optimization. In this
case, the problem (3.5) can be written in the following form:

min
y∈Q

{
〈g, y − x〉+ 1

2〈G(y − x), y − x〉+ M
6 ‖y − x‖3

}
, (6.1)
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where g is the gradient of the objective function at x and G is the Hessian. A non-standard
feature of this problem consists in the presence of the cubic term in the objective function.
Let us show that the problem (6.1) can be solved by a sequence of quadratic minimization
problems.

Indeed, note that for any r > 0 we have
1
3r3 = max

τ≥0

[
r2τ − 2

3τ3/2
]
.

Therefore, the problem (6.1) can be written in the dual form:

min
y∈Q

max
τ≥0

{
〈g, y − x〉+ 1

2〈G(y − x), y − x〉+ M
2

(
τ‖y − x‖2 − 2

3τ3/2
)}

= max
τ≥0



−M

3 τ3/2 + min
y∈Q

{
〈g, y − x〉+ 1

2〈(G + τM)(y − x), y − x〉
}

︸ ︷︷ ︸
φ(τ)




.

Note that the function φ(τ) is defined by a quadratic minimization problem, which very
often can be solved efficiently. On the upper level, we have a problem of maximizing a
concave univariate function.
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