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1 Introduction

Aumann (1974) introduced the correlated equilibrium (C.E.) and showed that
it could be interpreted as an expression of Bayesian rationality in games with
complete information (see Aumann (1987)). In Forges (1993), henceforth
[5def], I surveyed three standard extensions of Aumann’s solution concept
in games with incomplete information (the strategic form C.E, the agent
normal form C.E. and the communication equilibrium) and proposed a fourth
extension, the Bayesian solution, in order to capture Bayesian rationality in
a similar way as in Aumann (1987)1. More precisely, I showed that a natural
formulation of Bayesian rationality à la Aumann in games with incomplete
information led to the belief invariant Bayesian solution, in which, at the time
of making decisions, the posterior probability distribution of every player over
the others’ types is the same as the prior2. It follows from the definitions that
every strategic form C.E. induces an agent normal form C.E., which in turn
induces a belief invariant Bayesian solution. I claimed that the latter was in
fact equivalent to the agent normal form C.E. As Lehrer et al. (2006) show on
a counter-example, this claim is wrong. Hence, as argued in [5def], the agent
normal form C.E. can be viewed as an expression of Bayesian rationality, but
this property characterizes a larger set of solutions. The non-equivalence of
the belief invariant Bayesian solution and the agent normal form C.E., as
well as recent research on related topics, calls for a careful re-interpretation
of both solution concepts. This is the purpose of this note. I first recall the
definitions of C.E. in games with incomplete information and Lehrer et al.
(2006)’s counter-example. Then I show that many differences between the
extensions of the C.E. disappear in a standard cheap talk extension of the
game, which does not affect the communication equilibrium outcomes nor
the Bayesian solutions. Roughly, only the latter two solution concepts need
to be considered if the number of players is at least three3. In particular, the
equivalence claimed in [5def] can be recovered in that framework.

1[5def] contains a fifth definition, in the framework of Mertens and Zamir (1985)’s
universal beliefs space, but I will not refer to it here.

2In [5def], I used the less precise terminology “conditional independence property”
instead of “belief invariance”. Nau (1992) considered general Bayesian solutions, which
do not satisfy this property.

3In the more general cheap talk extension constructed by Vida (2006), the same holds
with two players.
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2 Model and solution concepts

The notations are as in [5def], but in order to fully clarify the differences
between the various definitions, games involve an arbitrary number of players
instead of two.

Model
Following Harsanyi (1967), we focus on a Bayesian game G, described by

a finite set of players N , finite sets of types Ti (i ∈ N), a common probability
distribution P over T =

∏
i∈N Ti, finite sets of actions Ai and payoff functions

vi : T × A → R (i ∈ N), where A =
∏

i∈N Ai. G is implicitly the reduced
form of an interactive decision problem defined on a set of basic parameters
K, so that the types of the players summarize their hierarchies of beliefs over
K.

Without loss of generality, the definitions below are given in “canonical
form” (see, e.g., Forges (1986b)).

Strategic form correlated equilibrium
G can be viewed as a game in strategic form with sets of pure strategies

Σi = ATi
i (i ∈ N) and payoffs computed as expectations w.r.t. P . A C.E. of

this game, in the sense of Aumann (1974), defines a strategic form C.E. of
G. A strategic form C.E. is thus implemented by means of

(i) a correlation device, namely a probability distribution Q over
∏

i∈N Σi,
which selects an N -tuple of pure strategies (σi)i∈N

(ii) a mediator, who privately recommends σi to player i (i ∈ N)
such that the players cannot gain in deviating unilaterally from the recom-
mendations.

Let C(G) be the set of strategic form C.E. (interim expected) payoffs of
G.

The prior probability distribution P and a strategic form C.E. distribution
Q induce the following probability distribution ΠP,Q over T × A

ΠP,Q(t, a) = P (t)Q(σi(ti) = ai, i ∈ N)

where t = (ti)i∈N and a = (ai)i∈N . ΠP,Q satisfies a conditional indepen-
dence property (C.I.P.): Player i’s action ( ai) is conditionally independent
of the other players’ types ( t−i = (tj)j 6=i), given his type ( ti). In other
words, a strategic form C.E. is belief invariant : the players’ posterior beliefs
ΠP,Q(t−i|ti, ai) coincide with their priors P (t−i|ti).
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Agent normal form correlated equilibrium
In the agent normal form of G, every type ti of player i is viewed as a

different player (ti ∈ Ti, i ∈ N). An agent normal form C.E. is implemented
by means of

(i) a correlation device, namely a probability distribution Q over
∏

i∈N Σi,
as above. Q selects (σi)i∈N = ([σi(ti)]ti∈Ti

)i∈N

(ii) a mediator, who privately recommends σi(ti) to agent (i, ti) of player
i (ti ∈ Ti, i ∈ N)
such that the (agents of the) players cannot gain in deviating unilaterally
from the recommendations.

Let Ca(G) be the set of agent normal form C.E. (interim expected) payoffs
of G.

An agent normal form C.E. distribution Q is the same object as a strategic
form C.E. distribution, but satisfies weaker non-deviation conditions. In
particular, the probability distribution it induces, together with the prior P ,
over T ×A, satisfies the C.I.P., so that a normal form C.E. is belief invariant.

Communication equilibrium
A communication equilibrium is implemented by means of
(i) a communication device, namely a system q of probability distributions

q(.|t) over A, t ∈ T
(ii) a mediator, who invites every player i to report his type ti, selects

an N -tuple of actions a according to q(.|t) and privately recommends ai to
player i (i ∈ N)
such that the players cannot gain in unilaterally lying on their type nor
deviating from the recommended action.

The probability distribution ΠP,q induced by the prior P and q over
T × A, namely,

ΠP,q(t, a) = P (t)q(a|t) (1)

does not necessarily satisfy the C.I.P. Let M(G) be the set of (interim ex-
pected) communication equilibrium payoffs of G.

Bayesian solution
As in Aumann (1987), let Y be the (finite) set of all states of the world,

Si be player i’s information partition of Y and Π be the common prior prob-
ability of the players over Y . Y contains in particular the players’ types
and actions in G. Player i’s type can thus be viewed as a random variable
τi : Y → Ti; similarly, player i’s action is a random variable αi : Y → Ai.
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A first natural requirement is that these random variables be Si-measurable,
namely that every player knows his type and his action. Consistency con-
ditions express that the beliefs of the players in the enlarged model are the
same as in G:

Π(τ = t) = P (t)

Π(τ−i = t−i|Si) = Π(τ−i = t−i|τi) i ∈ N (2)

Finally, every player must be Bayesian rational, i.e., player i’s action maxi-
mizes his expected payoff given his information:

EΠ(vi(τ, α)|Si) = max
ai∈Ai

EΠ(vi(τ, ai, α−i)|Si) i ∈ N

Let BI(G) (resp., B(G)) be the set of all (interim expected) payoffs that
can be achieved in a world satisfying all the previous conditions (resp., all
conditions but (2)). The payoffs in B(G) are canonically achieved by means
of

(i) a system q of probability distributions q(.|t) over A, t ∈ T (formally,
as a communication device)

(ii) an omniscient mediator, who knows the N -tuple of realized types t̂,
selects an N -tuple of actions a according to q(.|t̂) and privately recommends
ai to player i (i ∈ N)
such that the players cannot gain in unilaterally deviating from the recom-
mended action.

For BI(G), one further requires belief invariance, namely that the prob-
ability distribution induced by P and q over T × A, as in (1), satisfies the
C.I.P. In other words, the omniscient mediator can use his knowledge of the
types to make his recommendations but the players should not be able to
infer anything on the others’ types from these recommendations. Follow-
ing Lehrer et al. (2006)’s terminology, the “garbling” q, which transforms
the initial information structure, in which every player i is informed of ti,
into the information structure in which every player learns his action ai, is
“non-communicating”.

B(G) (resp., BI(G)) will be referred to as the set of Bayesian solutions
(resp., belief invariant Bayesian solutions). Nau (1992) justifies B(G) in
terms of no arbitrage conditions. According to a completely different ap-
proach, B(G) is also the set of all “certification equilibrium” payoffs (see
Forges and Koessler (2005)). Several recent papers (e.g., Dekel et al. (2005),
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Ely and Peski (2006) and Liu (2005)) emphasize the importance of solu-
tions that preserve the players’ hierarchies of beliefs, which in our reduced
framework, amounts to belief invariance4.

3 Comparison of the solution concepts

3.1 Comparison in the original game

In a strategic form C.E., the lottery Q can be performed before the move of
nature P and the correlation device is autonomous, in the sense that it does
not require any input from the players. The mediator just needs to be able
to identify every player i, i ∈ N .

In an agent normal form C.E., the lottery Q is the same as in a strategic
form C.E. and the correlation device is again autonomous. However the me-
diator needs to be able to identify the agents of every player i. In practice, this
means that the players’ types must be verifiable by the mediator. However,
an agent normal form C.E. can be implemented by |N | different mediators,
one for every player, who must only be able to verify the type of the player
they are taking care off. Player i’s mediator observes σi = [σi(ti)]ti∈Ti

, verifies
player i’s realized type t̂i and recommends him σi(t̂i). The implementation
of an agent normal form C.E. does not rely on an omniscient mediator who
would know the N -tuple of realized types.

The communication equilibrium deeply differs from the previous two so-
lution concepts in that it allows for information transmission from the players
to the mediator. In particular, it is not necessarily belief invariant.

In a Bayesian solution, the probability distribution over actions given
types is the same as if there were an omniscient mediator making recommen-
dations to the players. If the solution is belief invariant, these recommenda-
tions do not modify the players beliefs over types.

There is no inclusion relationship between Ca(G) and M(G) (see [5def]
for examples). But, as a consequence of the definitions,

C(G) ⊆ Ca(G) ⊆ BI(G) ⊆ B(G)

C(G) ⊆ M(G) ⊆ B(G)

4Dekel et al. (2005), Ely and Peski (2006) and Liu (2005) start with a basic parameter
space and consider the full belief hierarchies of the players without imposing a common
prior.
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All these inclusions may be strict. In particular, proposition 3 of [5def],
according to which Ca(G) = BI(G) in every two-person game G, is wrong
as soon as both players have private information. This is illustrated on the
following counter-example from Lehrer et al. (2006).
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Example 1
N = {1, 2}, Ti = {ti, t′i}, types are independent and equiprobable, Ai =

{ai, a
′
i}, i = 1, 2. If the pair of types is (t1, t2), the payoffs are

a2 a′2
a1 (1, 1) (−1,−1)
a′1 (−1,−1) (1, 1)

For the other three pairs of types, the payoffs are

a2 a′2
a1 (−1,−1) (1, 1)
a′1 (1, 1) (−1,−1)

The best ex ante expected payoff that every player can achieve with a pair
of pure strategies (in Σ1 ×Σ2), and thus at an agent normal form C.E., is 1

2
.

However, if an omniscient mediator makes recommendations according to

a2 a′2
a1

1
2

0
a′1 0 1

2

if the pair of types is (t1, t2) and

a2 a′2
a1 0 1

2

a′1
1
2

0

otherwise, the ex ante expected payoff of both players is 1. None of the
players can gain in deviating unilaterally from the recommendation. Fur-
thermore, the corresponding Bayesian solution is belief invariant.

Proposition 3 in [5def], which is stated for two-person games, holds if
there is a single informed player. Even with this assumption, it does not
extend if |N | > 2 (see example 3 in the appendix).

Proposition 1 If |N | = 2 and only one player has private information, then
Ca(G) = BI(G).
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Proof: Let player 1 be informed (i.e., T2 is a singleton). Consider a solution
in BI(G), and let q(.|t1), t1 ∈ T1, be the corresponding system of probability
distributions over A. For every t1 ∈ T1, a1 ∈ A1, a2 ∈ A2,

q(a1, a2|t1) = q(a1|t1, a2)q(a2|t1)

By belief invariance,

q(a1, a2|t1) = q(a1|t1, a2)q(a2)

Hence one can define Q over Σ1 × A2 by

Q([σ1(t1)]t1∈T1
, a2) = q(a2)

∏
t1∈T1

q(σ1(t1)|t1, a2)

If Q is used to recommend a2 to player 2 and σ1(t1) to player 1 of type t1,
both players have the same information as in the initial Bayesian solution;
hence, Q defines an agent form correlated equilibrium.

3.2 Comparison in a cheap talk extension of the game

Let us pursue our comparison of the different definitions of C.E. by consid-
ering a cheap talk extension of G, denoted as extG. In extG, the players are
informed of their types as in G; there are two stages of cheap talk: at every
stage t = 1, 2, the players simultaneously send a message to each other. To
keep the approach as simple as possible, we assume that there is a continuum
of messages. By the arguments that are used to derive canonical representa-
tions, one can show that cheap talk has no effect on communication equilibria
nor on Bayesian solutions: M(extG) = M(G) (see, e.g., Forges (1990)) and
B(extG) = B(G) (see the appendix). Intuitively, in both solution concepts,
the mediator is powerful enough to mimic a plain conversation between the
players. Forges (1990) proves that, if |N | ≥ 3, C(extG) = M(G).5 In other
words, as soon as cheap talk is allowed, the strategic form C.E. and the com-
munication equilibrium are equivalent. We will establish a similar property
for the agent normal form C.E. and the Bayesian solution.

5The result also holds for |N | = 2 if further assumptions are imposed on G or if more
general cheap talk extensions are allowed (see Vida (2006)) . Versions are also available
for Nash, or sequential equilibria, of extG (see, e.g., Ben Porath (2003), Gerardi (2004),
Forges (1990)).
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Let us say that xi = [xi(ti)]ti∈Ti
is interim individually rational for player

i if there exists a system of probability distributions µ−i(.|t−i) over A−i such
that

xi(ti) ≥
∑
t−i

P (t−i|ti)
∑
a−i

µ−i(a−i|t−i)vi(ti, t−i, ai, a−i) ∀ti, ai (3)

This definition makes sense in extensions G′ of the game G such that, if
player i unilaterally decides not to participate in G′, the other players can
punish player i, whatever his type ti, without knowing ti.

Let INTIR(G) be the set of payoffs, in
∏

i∈N R|Ti|, that are interim
individually rational for every player. It is not difficult to show that Ca(G)∪
M(G) ⊆ INTIR(G) and that B(G) is not necessarily included in INTIR(G)
(see the appendix).

Proposition 2 If |N | ≥ 3, Ca(extG) = B(G) ∩ INTIR(G) = B(extG) ∩
INTIR(G)

The result can be proved following the lines of Forges (1990) (see the ap-
pendix). It also holds for |N | = 2 under appropriate assumptions (see Forges
(1986a)) or by relying on more complex cheap talk protocols, as in Vida
(2006). An immediate consequence of the previous proposition is that agent
normal form correlated equilibria and belief invariant Bayesian solutions are
essentially equivalent if |N | ≥ 3 and cheap talk is allowed: Ca(extG) =
BI(extG) ∩ INTIR(G). However, the scope of this corollary is limited by
the fact that, as stated in proposition 2, cheap talk destroys belief invari-
ance.

The lesson from the exercise is rather that, if players are at least three
and can talk to each other before making their decisions, only two extensions
of Aumann’s solution concept survive: the communication equilibrium and
the Bayesian solution. Nau (1992) ends up with exactly the same solution
concepts by a completely different approach. As suggested above, solutions
relying on an omniscient mediator do not make much sense in reduced games
as G, described by fixed sets of types, but can only result from the identi-
fication of an appropriate enlarged game. This in turn requires the explicit
description of the underlying parameter space and the players’ hierarchies of
beliefs.
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4 Appendix

Proof of B(extG) ⊆ B(G)
In extG, a pure strategy of player i consists of mappings (σ1

i , σ
2
i , τi) where

σ1
i : Ti → [0, 1] (resp., σ2

i : Ti × [0, 1]N → [0, 1]) chooses player i’s message at
the first (resp., second) stage of cheap talk and τi : Ti× [0, 1]N × [0, 1]N → Ai

chooses player i’s action. Consider an omniscient mediator, who knows the
N -tuple of realized types t̂, selects strategies (σ1

i , σ
2
i , τi)i∈N as a function

of t̂, and recommends (σ1
i , σ

2
i , τi) to player i, i ∈ N , so that none of the

players can gain in deviating unilaterally from the recommendation. Given
t̂ and (σ1

i , σ
2
i , τi)i∈N , this mediator can evaluate the actions that the players

would choose at the last stage of extG. If he recommends directly these
actions in G, none of the players can gain in deviating unilaterally from the
recommendation. This induces a solution in B(G).

Relationships between correlated equilibrium payoffs and interim
individually rational ones

Ca(G)∪M(G) ⊆ INTIR(G). If |N | = 2, B(G) is not necessarily included
in INTIR(G) (see example 2) but BI(G) ⊆ INTIR(G). However, example
3 will illustrate that BI(G) may not be included in INTIR(G) if |N | > 2,
even if only one player has private information. Hence, BI(G) may not be
included in Ca(G) in this case.

To show that Ca(G) ⊆ INTIR(G) for every |N | and that BI(G) ⊆
INTIR(G) if |N | = 2, we establish more generally that an appropriate subset
of B(G) is included in INTIR(G). Consider the following property (C.I.P.’):
player i’s type ti is conditionally independent of the other players’ actions
a−i given the other players’types t−i. If |N | = 2, this is just the C.I.P. above;
but if |N | > 2, it is a quite different property. The probability distributions
over T ×A associated with Ca(G) satisfy both. Fix a solution in B(G) such
that (C.I.P.’) holds. Let i ∈ N ; assume that player i, of type ti, takes no
account of the recommendation and plays some given action a∗i ∈ Ai, while
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the other players follow the recommendation. Player i’s expected payoff is∑
t−i

P (t−i|ti)
∑

ai,a−i

q(ai, a−i|ti, t−i)vi(ti, t−i, a
∗
i , a−i)

=
∑
t−i

P (t−i|ti)
∑
a−i

q(a−i|ti, t−i)vi(ti, t−i, a
∗
i , a−i)

=
∑
t−i

P (t−i|ti)
∑
a−i

q(a−i|t−i)vi(ti, t−i, a
∗
i , a−i)

where the last equality follows from C.I.P.’
M(G) ⊆ INTIR(G): Let i ∈ N ; assume that player i, of type ti, reports

that his type is t∗i but takes no account of the recommendation and plays
some given action a∗i ∈ Ai. Player i’s expected payoff is∑

t−i

P (t−i|ti)
∑

ai,a−i

q(ai, a−i|t∗i , t−i)vi(ti, t−i, a
∗
i , a−i)

=
∑
t−i

P (t−i|ti)
∑
a−i

q(a−i|t∗i , t−i)vi(ti, t−i, a
∗
i , a−i)

Since the previous equality holds for every ti and t∗i , players j 6= i can punish
all types ti of player i simultaneously by using q(a−i|t∗i , t−i) for some given
t∗i .

Example 2
N = {1, 2}, T1 = {t1, t′1}, types are equiprobable, A2 = {a2, a

′
2}; all other

sets are singletons. If player 1’s type is t1, the payoffs are

a2 a′2
(1, 0) (0, 1)

while for t′1, they are
a2 a′2

(0, 1) (1, 0)

((0, 0), 1) ∈ B(G), but /∈ INTIR(G) since interim individually rational pay-
offs for player 1 have the form (λ, 1− λ) for 0 ≤ λ ≤ 1.
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Example 3
N = {1, 2, 3}, T1 = {t1, t′1}, types are equiprobable, Ai = {ai, a

′
i}, i = 2, 3;

all other sets are singletons. If player 1’s types is t1, the payoffs are

a3 a′3
a2 (0, 1, 1) (1, 0, 0)
a′2 (1, 0, 0) (0, 1, 1)

Otherwise, they are
a3 a′3

a2 (1, 0, 0) (0, 1, 1)
a′2 (0, 1, 1) (1, 0, 0)

Assume that an omniscient mediator makes recommendations according to

a3 a′3
a2

1
2

0
a′2 0 1

2

if player 1’s type is t1 and
a3 a′3

a2 0 1
2

a′2
1
2

0

otherwise. This defines a solution in BI(G), with payoff (0, 0) to player 1,
while as in the previous example, interim individually rational payoffs for
this player have the form (λ, 1−λ) for 0 ≤ λ ≤ 1. In particular, the solution
is not in Ca(G).

Proof of proposition 2
By the definition of the solution concepts, Ca(extG) ⊆ B(extG). We have

shown above that B(extG) ⊆ B(G), so that Ca(extG) ⊆ B(G).
To see that Ca(extG) ⊆ INTIR(G), fix a payoff in Ca(extG). It is

achieved through a probability distribution over the pure strategies in extG,
which are described as above. Consider player i of type ti and let (σ1

i (ti), σ
2
i (ti, .),

τi(ti, ., .)) be his recommendation. Assume that player i ignores his type, this
recommendation as well as the others’messages and chooses (m1

i , m
2
i , ai) ∈

[0, 1]× [0, 1]×Ai, while the other players follow their recommendations. The
interim expected payoff of player i corresponding to this deviation does not
depend on ti (nor on his recommandation) and yields thus a level of the form
in (3).
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The proof that B(G) ∩ INTIR(G) ⊆ Ca(extG) is just a modification of
the proof that M(G) ⊆ C(extG) in Forges (1990) (sections 4.1 and 4.2)6. Let
us fix a payoff in B(G)∩INTIR(G); let q = q(.|t), t ∈ T , be the correspond-
ing system of conditional probability distributions over A. q has the same
form as a communication device, but satisfies weaker non-deviation condi-
tions than a communication equilibrium. Since the payoff is in INTIR(G),
there are also probability distributions µ−i(.|t−i) over A−i for every i, t−i

such that the inequalities (3) hold. The proof of Forges (1990) constructs a
correlation device (henceforth, c.d.) for extG whith q as system of condition-
als. If q were a communication equilibrium, this c.d. would define a strategic
form correlated equilibrium of extG. We will show that if q corresponds to a
Bayesian solution, a slight modification of this c.d. induces an agent normal
form of extG.

As in Forges (1990), let the c.d. select uniformly, independently of each
other, |N | random bijections γi : Ti → Li, where Li is a copy of Ti, i ∈ N .
In addition, let the c.d. choose code functions (as in Forges (1990), section
4.2) ki : Li → [0, 1] uniformly and independently of each other. Before the
beginning of extG, the c.d. transmits to player i of type t̂i: γi(t̂i), ki(γi(t̂i))
and kj, namely kj(lj), lj ∈ Lj, for every j 6= i. The c.d. also selects a−j(t−j)
for every t−j according to µ−j(.|t−j); all these choices are made independently
of each other and transmitted to all players i 6= j. Finally, the c.d. picks
mappings σi and τi, i ∈ N , that will be useful at the second and final stage of
extG. This part is exactly as in Forges (1990) and will not be detailed here.

The strategy of player i of type t̂i prescribes to send γi(t̂i) and ki(γi(t̂i))
to the other players at the first stage of extG. If player i attempts to send
li 6= γi(t̂i), he must send the code ki(li) which is expected by the other
players. But he has a zero probability to guess it correctly. If player i sends
a wrong code, the other players punish him by revealing t−i to each other at
the second stage of extG and by choosing a−i(t−i) at the last stage of extG
(as if they chose their actions in A−i according to µ−i(.|t−i)). The rest of the
proof is exactly the same as in Forges (1990).

6Two key aspects of the reasoning already appear in [5def]: the first basic idea is to use
a product distribution to induce the same conditionals as with a mediator (as in Forges
(1990)); another useful feature is that in an agent normal form C.E., there are no incentive
conditions w.r.t. the revelation of types. However, these ideas do not lead anywhere unless
applied to ext(G). The problem is that, in extG, cheap talk kills the C.I.P. of agent
normal form correlated equilibria: the reasoning shows that BI(extG) ⊆ Ca(extG), but
BI(extG) = B(extG) = B(G).
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