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Abstract

We study information revelation in markets with pairwise meetings.
We focus on the one sided case and perform a dynamic analysis of a
constant entry flow model. The same question has been studied in an
identical framework in Serrano and Yosha (1993) but they limit their
analysis to the stationary steady states. Blouin and Serrano (2001)
study information revelation in a one-time entry model and obtain
results different than Serrano and Yosha (1993). We show that there is
dramatically loss when restricting the analysis of a constant flow entry
model to stationary steady states. Nevertheless, we show that this loss
might not explain completely the difference in the results presented in
the two papers.
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Introduction

We can illustrate the general issue of information revelation in market with
pairwise meetings by a parallelism with what we can observe on all the
places of interest in Egypt. On all these places, one observes bargaining
between Egyptians and Tourists. The Egyptians try to sell a guided tour of
the place. The Tourists are the potential buyers. There is neither a central
institution nor a unique public price. The phase of bargaining happens after
a matching between one seller and one buyer. When an Egyptian reaches
an agreement with a Tourist, the two quit the market to effectuate the tour.
In case of disagreement, the two separate and are matched anew with an
agent of the opposite type.

The asymmetric information concerns the interest of the place. It is
not obvious, for a Tourist, if the place has a long history, if there is a
lot of anedoctes about the site. Some Tourists can be uninformed about
the interest while some other ones are informed, for instance, because they
know some friends who previously visited the same place. Of course, all the
Egyptians know the exact interest of the place.

The interest of the place has an influence on the value and the cost of
the guided tour. It is more intersting to have a guide when there is a lot
of things to say about the site. At the same time, it is more costly for an
Egyptian to guide when the place is interesting, at least because it takes
more time.

We can expect that the good price is higher when the place is of high
interest. It is also natural that the uninformed Tourists try to extract infor-
mation from their matches with different partners. This learning is expensive
because there is a waste of time. Naturally, sellers try to exploit their in-
formation’s advantage by misrepresenting. By misrepresenting, sellers incur
also a cost for the same reason, i.e. the waste of time.

The main issue will be to determine if the trading process will imply
an information revelation. Especially when the agents become infinitely pa-
tient, i.e. the market becomes approximately frictionless.

In market with pairwise meetings, the information revelation litterature
began with the seminal paper Wolinsky (1990) '. The model studied in this
paper is more general than ours because there are also some uninformed

!Concerning the market with pairwise meetings with perfect information, there is a sig-
nificant literature studying following the seminal works of Gale, Rubinstein and Wolinsky.
For a review, see Osborne and Rubinstein (2000).



sellers. In our egyptian story, it would mean that some Egyptians are not
aware of the place’s interest. The main result of Wolinsky (1990) is that
some trades occur at a wrong price according to the state even when market
becomes approximately frictionless.

Gale (1989) conjectures the great importance of the assumption that
uninformed agents are present in the two sides of the market because a
noise is created if the cost of learning decreases. Indeed, the decreasing of
the cost causes the probability - of an uninformed agent to meet another
uninformed agent - to increase. This requires, however, the information
power of meeting to decrease when the cost of learning declines.

Serrano and Yosha (1993) show that Gale’s conjecture is correct. They
use the same model than Wolinsky (1990), but they assume that all sellers
are informed. The noise force disappears, since uninformed buyers always
meet informed sellers. Finally, Serrano and Yosha (1993) establish that all
transactions occur at the right price whenever the market becomes approx-
imately frictionless.

Wolinsky (1990) and Serrano and Yosha (1993) use a constant flow entry
model. At each period, a certain number of new agents enter the market.
To simplify the analysis, these papers consider only the stationary steady
states. In other words, they consider the situations where the number of
agreements is exactely equal to the entry flow. Blouin and Serrano (2001)
study the same question of information revelation but in a one-time entry
model®. At the first period, all the agents are present and nobody enters the
market in the following periods. They obtain a dramatically different result
in the one sided case. They conclude, in this case, that some transactions
occur at wrong prices even when the market is frictionless. The two sided
analysis provides results similar to Wolinsky (1990).

The question is to know if it is due to the difference of hypothesis or due
to the restriction of the analysis to the steady states in the case of a constant
entry flow model. In the case of a constant flow entry, we can imagine that
there exist a kind of externality between the different generations of agents,
which imply the difference of the results. Concerning the restriction to the
steady states, it is not unreasonable to believe that a part of the story is
missing and explain the differences. The loss of a part of the story is also
important in an approach of market design. In the sense that a decentral-

2For a discussion of these two hypothesis (constant entry flow and one time entry)
in the perfect information case see Gale (1987). Generally, the implicit economy in the
constant entry flow model is not well defined. Nevertheless, the constant entry flow model
remains interesting at least because they may correspond better to some real markets.



ized market with pairwise meetings is a possible market design that can be
compared to others designs. To compare correctly, it might be important to
not loose a part of the story.

In this paper, we show that the steady states analysis looses effectively
a part of the story. But, we also show that when markets become approxi-
mately frictionless, there is an equilibrium with full information revelation in
the case of the constant flow entry model even if the analysis is not restricted
to steady states.

In the first section, we present the model. The second is devoted to
characterize equilibria and we show in the third section that some equilibria
are not well described by a steady state analysis. The fourth section concerns
steady states. The last section concludes.

1 The model

We consider the model of Serrano and Yosha (1993) without modifing it
but we study the outcomes without assuming an a priori stationarity of the
equilibrium.

Times runs discretely from 0 to oo®. Each period is identical. On one
side, there are sellers who have one unit of indivisible good to sell. On the
other side, there are buyers who want to buy one unit of this good. In each
period, a continuum of measure M of new sellers and the same quantity
of buyers enter on the market. The sellers’ number which arrive on the
market is equal to the buyers’ one. The agents quit the market when they
have traded. Hence, the number of sellers is always equal to the number of
buyers.

There exist two possible states of the world which influe on the payoff
of the agents. If the state is low (L), the cost of production (cz) for the
sellers but also the utility (uz) of the buyers are low. If the state is high
(H), the corresponding parameters (cy and uy) are high. The state remains
identical during all the periods.

All sellers know the state of the world, whereas not all buyers are per-
fectly informed about the state of the world. There is a part zp of buyers
which is perfectly informed. The remaining buyers are uninformed and pos-

3Serrano and Yosha 1993 consider that times runs from —oo to co. To make the steady
state analysis, it is sufficient to assume that the initial conditions are the values of the
steady state. This approach is totally equivalent to the approach of Serrano and Yosha
1993.



sess a common prior belief ay € [0,1] that the state is H and (1 — ay) that
the state is L.

At each period, all the agents are randomly matched with an agent of
the other type. At each meeting, the agents can announce one of two prices
: pfT and p”. If both agents announce same price, trade occurs at this price.
If a seller announces a lower price, trade occur at an intermediate price p™.
If a seller announces a higher price, trade does not occur. The different
parameters are assumed to be ordered such that :

cL<pL<uL<pM<cH<pH<uH (1)

Staying on the market implies a zero payoff. The instantaneous payoff when
a trade occurs is the price minus the cost for a seller and the utility minus
the price for a buyer. All agents discount the future by a constant factor J.

In state H, we call pf the good price because trade at other prices
implies a loss for the sellers. Similarly, the price p” is the good price in state
L because trade at other prices involves loss for the buyers.

After each meeting with a seller who announces p, a buyer will actualise
his belief ay according to Bayes’rule. If a uniformed buyer meets a seller
who announces p”, he knows that state is L but it does not really matter
since this buyer will trade and leave the market.

It is convenient to say that a seller (resp. a buyer) plays soft when he
announces p” (resp. p™) and tough when he announces the p (resp. p).
When an agent plays soft, he is ensured to trade and to quit the market. So,
to describe completely the strategy of an agent, it is sufficient to give the
number of periods in which he plays tough. The strategy of an agent might
depend on the time of entry on the market. We note ngy(t) the number
of periods during which a seller plays tough when he enters in time ¢ on a
market which is in state H. Similarly, we define ngr(t), npu(t), npr(t) and
np(t). Naturally, the strategy of an uninformed buyer ng(t) is independent
of the state of the world.

We define now the proportions of agents who play tough. The proportion
of the total number of buyers in the market who in state H at period ¢
announce p’ is called BY;(t). We define in the same way B! (t), S% () and
Sh (). These values are known to all agents. The total number of buyers in
the market is noted K (t) and K”(t) according to the state. It is also the
number of sellers in the market since sellers are as numerous as buyers.

An equilibrium is a profile of strategies where each agent is maximizing
his expected payoff, given the strategies of the other agent. All parameters
(p",p™,p" cu,cr,um,ur, B, 6, ap) are common knowledge.



2 Characterisation and existence of an equilibrium

Our approach is not to study all the dynamic cases, we retrict our analysis
to equilibria where uninformed buyers play always soft. It is clearly a sim-
plifying assumption?, unfortunately, as we will see later, this simplification
has a cost.

In a first step, we establish the strategy of sellers and informed buyers
in state H and strategy of informed buyers in state L. Then we give con-
ditions which constraint uninformed buyer’s strategy. The next step is the
characterization of the evolution of the market at equilibrium. Especially,
we characterize the sequences S%(t) and B! (t) at equilibrium. Actually,
our characterization of B! (t) gives us an iterative rule to build from an
initial condition the unique sequence B! () compatible with optimal seller’s
behaviour. Finally, we see that for any sequence Bi(t) satisfying the charac-
terization there exists at least one set of strategies ngr(t) : ¢ € [0, 00] which
implies this sequence.

2.1 Trivial or constrained strategies

In the following claim, we characterize the equilibrium strategies of informed
buyers and of sellers in state H.

Claim 1 In any equilibrium ngg(t) = 0o, npr(t) = oc and npy(t) = 0 Vi.

Proof An informed seller in state H knows that his payoff will be nega-
tive if he trades at an other price than p. Since the payoff of perpetual
disagreement is 0, he will always prefer to play tough even if it implies a
long delay before trading. The reasoning is identical for an informed buyer
in state L. An informed buyer in state H will understand that ngy(t) = oo
and thus he will never trade while he plays tough. Playing tough only de-
lays the payoff. So, it is better for this kind of buyer to play immediately soft.

For the sake of simplicity, we will consider only situations where ng(t)
is always equal to zero. Claim 2 will give sufficient conditions to ensure that
np(t) = 0 is an optimal strategy. To establish this claim, we define AVp

“In this model, we must determine the optimal behaviour of an infinite number of
agents. The stationary steady state assumption largely reduces the number of different
strategies. The strategies cannot depend on the time of entry on the market, so, there re-
main only five different strategies (i.e. (nsz,n(SH,nBH,nBL,nB) which do not depend
on time).



which is the difference of gain between playing soft tomorrow and playing
soft today for an uninformed buyer.

AVg = AVp(St, St(+1))
= ag(ug —pH)5
+ (L—am)[(1 = SP)(ur —p") + 657 [(ur, — p™) + SE(+1) (™ = p™)]]
— [au(ug —p") + 1 —an)((ur —p™) + SEEY —p™)]] (2)

The last line corresponds to the payoff involved by playing soft today.
The payoff in state H which is equal to (uy — p) is multiplied by the
probability that the state is H. The term in brackets, which is multiplied
by the probability that the state is L, is naturally the payoff in state L. This
payoff can be written (1 — S%)(uz, — p™) (i.e. the probability to meet a soft
seller times the payoff involved by this meeting) plus S7 (ur, — p™) (i.e. the
probability to meet a tough seller times the payoff involved). The two first
lines correspond to playing today tough and tomorrow soft. The meaning of
the first line is obvious. It is just important not to forget the discount factor
§. Indeed, if the state is H, a buyer who announces p” does not trade. In
the case where the state is L, there is a probability (1 — SZ) that a buyer
meets a soft seller and obtains today (ur, —p”). If a buyer does not have this
luck, which happens with probability S ]’-j, he will have tomorrow an expected
payoff equal to the expression in brackets. Once again, we must not forget
the discount factor.

Claim 2 The following conditions are sufficient to ensure ng(t) = 0 Vt.

5ZpH—ij—uL+pL nd ay > pM;pL S
pM —uy, (1—=06)(ug —pH) + (pM —pl)
or
p" —pM —ug +p" p? —up —d(u, —p™)
o< 7 and ofg > 7 M\i)
pM — ug —ur, + 6(p" —uyg +ug — pM)

Proof Clearly, AVp < AVp(S?,0). It is easy to see that AVz(S,0) is
a linear function in S?. Tt implies that either AVp(1,0) or AVp(0,0) is
the maximum value that AVp can take. AVp(0,0) < 0 is equivalent to
the second inequality of (3). The first inequality is the condition such that
AVp(0,0) is the maximal value of AVp. Second inequality of (4) is equiv-
alent to AVp(1,0) < 0. Obviously, the first inequality (4) is the condition
such that the maximal value of AVp is equal to AVp(1,0). It is sufficient



because if an uninformed buyer remains in the market his belief ay can

never decrease®.

2.2 Dynamic of the market

In what follows, we will assume that at least one of the conditions of claim 2
is satisfied. The market is then at a stationary steady-state when the state
of the world is H

K" = M (5)
By = 0 (6)
sho= 1 (7)

Since ngy(t) = oo Vi, all sellers play tough in each period. So, the propor-
tion of sellers who in state H announce p” is equal to one. The proportion
of buyer who announce p” is always equal to 0. Indeed, npy(t) = 0 and
by assumption ng(t) = 0. All agents announce the same price p which
implies that all matches involve a trade and that all the agents quit the
market. The number of agents on the market is thus equal to the number
which has just entered in the market.

If the state of the world is L, the variables evolve according the following
rules

KE(+1) = KEBLSM+ M (8)
KLUBLSh 4+ xpM

Bi(+1) = L-L 9

r(+1) KLBLSh + M (9)

BY(0) = zp. St(t) is chosen such that the payoffs of sellers are maximized.
By claim 1, npr(t) = oc V¢ which implies BY # 0. If S? # 0, there
will be in each period K LBZLSQ matches which will finish on disagreement.
The concerned agents will remain on the market. The total number of
agents in the market will thus be equal to the sum of agents who did not
reach an agreement in the previous period and of agents who are newly
entered the market. Buyers who did not reach an agreement in the previous
period are obligatorily informed since by assumption ng(t) = 0. Considering
npr(t) = oo, all these buyers will continue playing tough. The informed
buyers who arrive in the market will also announce p”. Hence, the total

SFor a recall, ay is updated according to the Bayes’ rule apm/(ax + (1 — an)SP).



number of tough buyers is effectively equal to the numerator of expression
(9).

We can show that for each BZL there is only one possible K. Tt is more
explicit if we write from (9) S? as a function of B (+1) and that then we
introduce this new expresion (10) in (8) to obtain (11)

n _ (zp—BL(+1)M
5L = (B1L(+1)i1)BlLKL (10)

KL = ﬂM (11)
1- Bl

We can rewrite (9) as

(1 —zp)BL St + (1 — BY)

Bl (+1) =
p(H1) (1—2p)BLS" + (1 — BL)

(12)

Obviously, the right term is increasing in S?. It implies that if S? € [0, 1]
then
rB + (1 — 2$B)BIL

= p(B! 13
T—2pBl p(BL) (13)

zp < Bj(+1) <

So, BL(+1) € [zp,p(BL)]-

2.3 Characterisation of S?(t) at equilibrium

We define AVsy (B! (t), B! (t + 1)) which is the difference of gain between
playing soft tomorrow and playing soft today for an informed seller in state
L. This difference depends on time because B! (t) may be non-stationary.
Remark that AVsy, (B (t), BL (t +1) < 0 does not imply that the best solu-
tion is to stop in ¢.

AVsp (Bl Bi(+1)) = (1—Bp)(p" —cp)..
+B16[(1 — BL(+1) (" — cr) + BL(+1)(p" — c1)]...
—[((1 = BL) (™ = cL) + BL(p" — c1)]

= BL(—pT +pM —pF +cp) + 0™ —cp) + ...
+6BY (+1)(p* — p™M) | + (" — p™)

BL[X - BL(+1)Y]+ 2 (14)



Clearly, Y and Z are positive. The sign of X is indetermined. In the
first equality, the two first lines correspond to playing tough today and soft
tomorrow while the third one corresponds to playing soft today.®

Assume that a seller stops today playing tough. AVgy, is a measure of
gain for a seller if he decides to play tough one period more. The measure
of gain for a seller if he decides to play tough T periods more is given by the
sum of succesive AVsy, balanced in order to take account of discount factor
0. If there exists a T such that this sum is positive, then playing tough T
periods more gives a higher expected payoff than playing soft today. If this
sum is negative for all T', then the maximum expected payoff is reached by
playing soft today. If the sum is null for a 7', then the seller is indifferent
between playing soft today or playing tough T periods more.

Proposition 1 Optimal strategies are such that the sequence S%(t) € [0,1]
satisfies

T
Sit)=1 = 3T st Y §'AVsy(t+i) >0(15)
=0
T .
SHt) <1 = Y §FAVgr(t+i) <0 YT (16)
=0
T .
AT s.t. Y AV (t+4i) >0 = Si(t) =1 (17)
i=0
T .
> S AV (t+i) <0 VT = SEt) =0 (18)
i=0

2.4 Characterisation of B! () at equilibrium

We define in a first step some functions and sets that we use to state a
proposition characterising the sequence Bi(t) at equilibrium. The functions
will give in certain circumstances the next element of the sequence B! (t) at
equilibrium. The sets will be used to define these circumstances.

SIf a seller plays soft today, he has a probability (1 — BY) to meet a soft buyer and
consequently to obtain a payoff (p™ —cr), otherwise (i.e. with probability Bt ) he will get
(p* — c1) due to a meeting with a tough buyer. If a seller announces p”, he will reach an
agreement only if he is matched with a soft buyer. It occurs with a probability (1 — BY)
and the payoff is then (p — ¢z). Otherwise, with a probability B}, he will remain in
the market. In the next period, if he plays soft, he has an expected payoff equal to the
expression between brackets which must be multiplied by the discount factor § because
trade occurs one period later.



2(BY) We define this function such that AV, (B, 2(B")) = 0.

p(BL) This function is define as follows

zp+ (1 —22p)BL
1— 2Bt

p(BL) = (19)
Clearly, p(B%) > B.. Remark that if B} (+1) = p(B}) then S? = 17.
The function p(B!) is increasing in its argument. If we define a sequence
B (t) by B! (+1) = p(B'), we observe lim;_, B} (t) = 1. In other words,
Vv € [z, 1] and VB! (0) € [z, 1] there exists a f such that B (t) > 4Vt > 1.

zp+ (1 —22p)Bt

AVsi(BL,p(BL)) = Bi[X —Y=— o+ (20)
—xpBj
0AVsy(BL,p(BY)) _ —Y[zp+2(1—2zp)B) — (1 —2zp)xp(B})’
0B B (1 — Bl zp)?
X(1—xpBt)?
(1 - Bjap)?

This derivative is negative if X < Yxzp®. Remark that there exists some

configurations of the model’s parameters such that this inequality is satis-
fied for all 6. The negativity of this derivative will be useful to ensure the
convexity of the set P that we will define later.

I[(BY) The definition of this function is given by

T
BL[X —YUB)| + Z =~ m;}X(Z 0" AVsr (B, (i), p(BL (1)) (21)

i=1

with Bt (1) = 1(B%) and B (i +1) = p(B. (4)) for i > 1. The left-hand term
is the instantaneous AVsy, if we go from B! to [(B}). The right-hand term,
is the balanced sum of AVg; when all sellers continue to play tough (i.e.
St =1) in the T following periods from I(B% ). T is chosen to maximize this
sum. Remark that the left-hand term is a decreasing continuous function of
I(B%) while the right-hand term is an increasing one. So, if there exists one

Tt can be clearer when we remember the comments below (13)
8X and Y are defined by (14).

10



I[(BY), it is unique.

We define the following numbers :
B is such that AV (8,8) =8[X — Y|+ Z =0
o1 is such that AVgy(o1,p(01)) = 01[X —p(01)Y]+Z =0
o9 = p(o1) = z(01).
We will meet § in the steady state analysis. Actually, in one steady state of
the model, B} takes this value. If the derivative below (20) is negative, o
is the greatest value that Bé can take and o9 is the highest value for p(BlL)
if we would like AVsy,(BL,p(BL)) > 0.

We will now define some sets. A set O that BZL can never reached because
there exist some informed buyers. A set P where AVgy, is positive or null
even when all the sellers play tough. When B} € P, p(B%) is in P or in
another set A. This last set includes 8. The set A is divided in two subsets
A; of elements lower or equal to § and Ay of elements higher or equal to 5.
These sets are formally defined as follows

O = [0,zp]
P = Jzp,o1]
Ay = o1, f]
Ay = [B,09]
A = AjUA,

If zg > 01, P = 0 and oy is replaced by zp in definition of A;. When
g > (3, A1 is also an empty set and zp replaces 8 in As’s definition. The
set Ay is also empty if xp > 09.

We give now some technical claims. The proofs are relegated to an
appendix section. The first claim establishes formally the order that we had
implicitly assumed for o1, 02 and 8 when we defined the sets. The other
ones are usefull to proof proposition 2.

Claim 3 01 < 8 < 0.

Claim 4 (a) If y > X then z(7y) < z(A).
(b) If v > X then I(y) < I(N).
(¢) If v > X then p(7y) > p(A).

Claim 5 If vy € A then z(v) <I(y) < p(y).

11



Figure 1: In P, the numbers of soft buyers is high. So, misrepresenting is
the best action for all the sellers. In A = Ay U A,, the proportion of buyers
who play soft is smaller, and misrepresenting is not always the best strategy
for sellers. The function z(.) is such that the payoff gain of misrepresenting
compared to truth telling is null if all the following BY (¢) are in A. So,
individually, sellers are indifferent between these two actions. Otherwise,
I(.) ensures that the payoff implied by telling the truth in a is equal to the
payoff of telling the truth in b. Hence, sellers in a are individually indifferent
between misrepresenting and truth telling.

12



Claim 6 If y < f then z(y) > . If v > 8 then z(y) < B.

Now we have the tools to charachterize BlL at equilibrium.

Proposition 2 If X < Yag?, optimal strategies are such that Bl (t) €
[zB,1] evolves according to the following rules :

IfBt e P— B.(+1) = p(B})

IfBt € Ay = Bl (+1) = =2(B))
l
L

BL(+1) = UBL) if (BL)eP
BL(+1) = zp if I(BLY)eO

+

(+1)
(+1)
IfB. € Ay = B (+1) = z(BL) if 2(Bl)e4
(+1)
(+1)

S~
+

IfP=0, Bl € Ay = Bl (+1) = zp if 2(B}) € O.
If PUA; =0, BL(+1) = 25 in any case.

~—

We must show that the sequence B! () described is compatible with an
equilibrium and that there is no other sequence compatible with an equilib-
rium. Actually, by construction, the sequence B! (t) is compatible with an
equilibrium. We will thus prove that no other sequence can be compatible
with an equilibrium.

But we prove first by claim 7 that for all BlL € PUA, BZL(—H) deter-
mined by proposition 2 is included in P U A. This means that we cannot
reach by iteration a point where the next element of the sequence cannot be
determined by the rule of this proposition.

Claim 7 Assume B! (t) evolves according to the rules given by proposition
2. If BL € AUP then B! (+1) € AU P.

Proof We will use the results of claims 4 and 5. BZL € P is equivalent to
rp < Bi S agq.

Bj, <01 = Bi(+1) =p(B}) <p(o1) = o9 (22)
Bl >z = BY(+1)=p(BL) > B, > zp (23)
BlL € A; is equivalent to o1 < Bé <B.
B <B = Bi(+1)=2(B})>z2(B) =8 (24)
Bl >0, = BL(+1)=2(B.) < z(01) = 02 (25)

9For a recall, this condition ensures the convexity of P. There exist some configurations
of parameters such that this condition is satisfied for all § € [0,1].

13



When B} € Ay, it is clear that all the possibilities for B! (+1) will be in
AUP. We must prove that B! (+1) is defined VB, € Ay. When we combine
claims 4 and 5 with claim 6, we obtain the following equivalence for all
BlL € Ay :

2(BL)e A = I(BL)Y¢g PUO (26)

This equivalence is sufficient to ensure that B (+1) is defined in all cases.

Now, with the following claim, we prove that there is no other sequence
compatible with an equilibrium where ng(t) = 0 Vt.

Claim 8 Assume that in a sequence B (t), there is a BY(+1) lower or
higher than the one given by the rule of proposition 2, then (17) or (18) are
not satisfied or St & [0,1].

Proof B! (+1) higher If B! € P, we know AVs.(B%,p(B})) > 0 and
AVgy, is increasing in its second agrument. Hence, if B! (+1) < p(B}) we
have S? < 1 and AVgsy(BL, BL(+1)) > 0. Assume B} € A; or B! € A
and Z(B}) € Ay, then AV (BL,2(BL)) = 0. Consider B! (+1) < z(B!),
clearly we have also S? < 1 and AVsy(BY,BL(+1)) > 0. In the case
Bl € Ay and I(BY) € P, St < 1 for all B} (+1) <I(B%). By definition :

T
AVsp (B, (Bp)) = —max() | 8" AVsr (B (i), p(BL (i) (27)
i=1
with B} (1) = (B%) and B (i +1) = p(B' (i)) for i > 1. Remark that AV,
is decreasing in its second term and the maximized term is increasing in
B (1). Tt means that if B! (+1) < I(B}), then

T
AVsp (B, BE(+1)) +max (Y 8'AVsr(BL (), p(BL()) >0 (28)
=1

Since S} < 1, (28) is a violation of (17). Finally, B% (+1) < zp = S? < 0.

Proof B! (+1) lower The higher B! (+1), the higher S?. When B! € P,
choosing B! (+1) implies S > 1. We know that from all elements of B (¢)
in P, the sequence will grow until it arrives in Ay (see comment after (19)
and the definition of B} (+1) when B! € A;. From Aj, the sequence goes
directly to a point in A; U P and comes back more or less quickly to a
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point in As. We call top an element of Bl (¢) in Ay. We know! that,
between two succesive tops, the sum ), 8" AVsy is lower or equal to zero!!.
At each top SP < 0. At a top, we can take B! (+1) greater than given by
proposition 2 but then S’L1 > (0 and the balanced sum of AVgy until the
next top is negative. According to first part of the proof, this loss can never
be recovered by continuing longer because the balanced sum between two
tops can never be positive. So, (18) is not satisfied. If Bé € A, taking
BY(+1) > 2(B%) implies AVs;, < 0 and S? > 0. By the line of same
reasoning, we conclude that (18) is once again not satisfied.

2.5 Existence of an equilibrium

To see that there exists a profile of strategies which constitute an equilib-
rium we see first that all sequences Bi(t) respecting proposition 2 implies
a sequence St(t) € [0,1]. If B! € P, we know B! (+1) = p(B!) which cor-
respond to S? = 1. When B! € A, by claim 5 we obtain B} (+1) < p(B}).
This inequality involves S? < 1. By definition, B! (4+1) can never be inferior
at . Hence, S? > 0. Tt is obvious that all sequences S7 (t) satisfaying con-
dition of proposition 1 can be obtained by at least one profile of strategies
and that all profiles which imply this kind of sequence of .S Z(t) are equilibria.
Hence, we have the following proposition.

Proposition 3 For all B! (0) € AUP and K*(0) such that (11) is satisfied,

there exists at least an equilibrium.

3 Evolution of Bl (t) at equilibrium

In this section, the comparison between a stationary steady state analysis
and a complete analysis sheds light on some new features. Especially, it
appears that the stationary steady state is not always reached in a finite
number of periods. Moreover, the market does not always converge towards
the stationary steady state at equilibrium.

To prove that the two analyses are identical, it must be demonstrated
that all variables evolve in the same way in both analyses. On the other
hand, to show a difference, it is enough that a variable does not move in an
identical way. So, we study in this section only the evolution of BlL(t) which

10T case of doubt, see the first part of the proof
" Remark, this balanced sum limited to a point between the two tops is always lower
than between the two tops.
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is sufficient to show some differences with a steady state where B! (¢) will
be constant.

We first present a case where the market converges towards a steady
state.

Proposition 4 If X €]0,Yzp[ and zp < B, the sequence B (t) converges
towards B at equilibrium.

According to the comment after p(B%)’s definition and the characteriza-
tion of B! (¢) at equilibrium, we know that at least one element of BY (t) € A.
The two following claims prove the proposition. The first claim proves that
the distance between the sequence and the value of stationary steady state
decreases strictly with time. The second claim shows that once the sequence
enters in A, it will never exit this set.

Claim 9 If X > 0 and zp < f3, we define Bl (+2) as z(2(BL)) '2 then
VB! € A
Bl > < p<Bi(+2) < B, (29)
Bl < < p>Bi(+2)> B, (30)

121f 2(\) < £ we impose implicitely z(\) = x5 which is in agreement with proposition
2. We proceed in the same way in what follows.
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Proof

leix + X
BL(+2) = 2 —
1.(+2) %

If X >0, B} (+2) > B! is equivalent to
0 > Y(BL)?-XB. —Zz
By definition of g, this inequality is true if and only if 5 > BlL. The in-

equalities between Bi(+2) and (8 are obtained from claim 6.

We now present the second claim which proves that once the sequence
BlL(t) enters in A, it will remain in this set during all future periods.

Claim 10 Assume X > 0. If v > 0 and xp < 8 then z(y) € AVy € A.

Proof v € A is equivalent to o1 < vy < 09.

By claim 4, v > 01 = 2(7v) < z(01) = 09.

By claim 9, we know z(z(02)) < 09 = z(01).

It implies z(o3) > 01. Hence v < g9 = 2(7y) > 2(02) > 071.

We now turn to a case where B! (¢) reaches a permanent cycle in a finite
number of periods.

Proposition 5 If X = 0 and xg < [, the sequence BlL(t) increases until
it reaches A. Once in A, it takes alternatively a value v € A1 and a value
z(y) € As. One of these two values is equal to the first element of B () € A.
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Claim 11 If X =0 and xp < 3 then ‘v’BlL €A

Bi(+2) = B (32)
Proof We put X =0 in (31) and we obtain the claim.

Until now, X was greater or equal to zero. A complete analysis of the
situation with X < 0 is more complex. We restrict ourselves to showing
that the behaviour cannot be identical to the previous ones. The following
claim states that the sequence BlL(t) moves away from the stationary steady
state when the sequence is in A. This claim is sufficient to prove that the
behaviour cannot be identical to a situation where X > 0.

Claim 12 If X <0 and zp < B then ‘v’BlL €A

Bl < < p<Bi(+2) < B, (33)
Bl >p < BL(+2)>B.>p (34)
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Proof Identical to the proof of claim 9.

B

0'2 ...........................................................................................

4 The steady states

In this section, we show that our analysis include some equilibria found
by Serrano and Yosha (1993) in their steady state analysis. However, our
analysis does not include all the results of Serrano and Yosha (1993) because
we have imposed some restrictions on the behaviour of uninformed buyers.
The last proposition relaxes this condition and establishes the existence in
a dynamic analysis of an equilibrium with full information revelation when
market are sufficiently frictionless.

Assume B}(0) = 8 > z and § lower than the value in equation (4) of
claim 2, then the rules given by proposition 2 implies a steady state. This
steady state is called E3 by Serrano and Yosha (1993).

The propositions 4 and 5 concern cases with zp < . The sequences
B! (t) evolve around an equilibrium E3 . If the first element of B (t) € A
is different of 3, the steady state will generally not be reached in a finite
number of periods. The next propositions show that some equilibria are
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perfectly describe by the stationary analysis because the steady state is
instantaneously reached.

Proposition 6 If zg > [, the sequence BlL(t) 18 a stationary steady state
for all t.

Proof The rule given by proposition 2 is reduced to Bl (+1) = zp. It
implies S7(t) = 0 V¢ which is supported by a unique profile for the sellers’
strategies, ngr(t) = 0 Vt.

It is actually an equilibrium established by Serrano and Yosha (1993)
and called E2. The following proposition establishes the existence of a
steady state equilibrium, called E1 in Serrano and Yosha (1993), without
convergence phase when § is high. The novelty compared to Serrano and
Yosha (1993) is the dynamic context of the proof.

Proposition 7 If

pM — pt
apg < H M _ L
(1 —=96)(ug —pH) + (pM —pl)

then ngr(t) =0 and np(t) =1 Vt imply an equilibrium.

(35)

Proof ngp(t) = 0 implies Sf = 0. Since no seller misrepresents, once a
buyer has met a seller who announces a state H, he knows that it is useless
to play tough. So, np can not be higher than one. To see that ng # 0, it
is sufficient to oberve that AVp(0,0) > 0. Hence, np(t) = 1 is an optimal
strategy given ngr(t) = 0.

The proposed strategies imply B, = 1. So, AVsy, < 0 and the condi-
tions given by proposition 1 are fulfilled. Hence, no seller has an incentive
to deviate.!?

This proposition implies the existence of an equilibrium with full infor-
mation revelation'* even in a dynamic analysis. A priori, equilibria E1 and
E3 may coexist. Hence, we did not prove that all equilibria imply complete
information revelation when market becomes approximately frictionless.

13 This result depends crucially on the fact that an individual deviation does not affect
the value of S? and BY because agents are negligeable.
14 All the trades occur at the good price.
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Conclusion

By assumption, the stationary steady state analysis is unable to deal with
the following intuition. At the start, sellers in state L can have an incentive
to misrepresent because there exists a possibility to meet an uninformed
buyer who plays soft. Consequently, the proportion of informed buyers on
the market increases. The increase reduces the incentive to misrepresent.
Then, there is a period in which some sellers tell the truth and the market
is partially cleared. We showed that this intuition was correct.

In other words, we proved that the sequence Bi(t) at equilibrium is
rarely constant. Moreover, we discovered that the dynamic evolution does
not converge with certainty to the equilibria established by the stationary
analysis. Furthermore, if the sequence B! () converges towards a stationary
steady state, time is needed for the transition, which requires generally an
infinite number of periods.

This result is not totally general since it holds only for agents relatively
impatients, i.e. § sufficiently low. Indeed both sets of conditions in claim 2
imply an upper bound on §. Nevertheless, it is sufficient to stress the risk
to restrict our analysis to steady states. Especially, in market design, to
compare this particular type of design with other ones. Always in market
design, if the designer can choose the ¢ in a limited set, the dynamics of the
equilibrium imply that the optimal § is maybe not the higher one.

A priori we might conjecture that when 0 tends to one, a convergence
phase continues to exist and would imply an incomplete information reve-
lation. Our only result for the case in which § tends to one is proposition
7, which shows that there exists always an equilibrium without convergence
phase which imply a complete information revelation. So, the differences of
result between Serrano and Yosha 1993 and Blouin and Serrano 2001 can
not be completely explained by the restricted analysis by Serrano and Yosha
1993.

A Additional Proofs

Proof of claim 3 Assume o1 > 3. We know AVgy (01, p(0201)) < 01[X —
01Y ]+ Z. By definition AVsy(o1,p(01)) = 0. This implies

A[X —oY]+Z > BIX—BY]+Z (36)
0 o< ppir<s (37)
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There is then a contradiction. Assume o1 = . It implies p(o1) = = o4
but this contradicts the property p(Bi) > Bé ‘v’Bi—J.
To prove the second part, we have by definition

a[X =Yplo)|+72 = BX-Yp(P)+2

o1[X =Yo] = BX-Yp]
X—Yo, < X—Y8
oy > f

We obtain the third line by the fact that oy < S and the two terms in
brackets are negative.

Proof of claim 4 (a) By definition,
VX =-Yz(y)]+Z = 0
ANX —Yz(y)]+2Z > 0=AX-Yz(\)]+Z
z(v) < z(A)

(b) As vy > X and [X —YI()\)] <0, we can write the first line. The second
line is obtained by /(.)’s definition.

VX = YIN] < AX = YI(N)]

T
X -YIN)] < —IIljZ}X(Z5iAVSL(BlL(i)7P(BlL(7;))))
i=1

with BY (1) = I(\) and B! (i +1) = p(B'.(1))Vi > 1
The left term is decreasing in [(.) while the right term is increasing. So, to

find an equality, /() must be lower than [(\).
(c¢) From (19), we compute

op(BY) _ (1—=p)’
8BZL 1-— xBBlL

>0 (38)

Proof of claim 5 Obviously,

AVsp(v,2(7)) > AVsr(7,1(v)) > AVsr(v,p(7)) (39)

For recall, AVgy, is decreasing in its second argument. So, we obtain the
claim.

22



Proof of claim 6 It is a corollary of claim 4.
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