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Abstract

We study a Ramsey problem in infinite and continuous time and space. The

problem is discounted both temporally and spatially. Capital flows to locations

with higher marginal return. We show that the problem amounts to optimal control

of parabolic partial differential equations (PDEs). We rely on the existing related

mathematical literature to derive the Pontryagin conditions. Using explicit repre-

sentations of the solutions to the PDEs, we first show that the resulting dynamic

system gives rise to an ill-posed problem in the sense of Hadamard (1923). We then

turn to the spatial Ramsey problem with linear utility. The obtained properties are

significantly different from those of the non-spatial linear Ramsey model due to the

spatial dynamics induced by capital mobility.
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1 Introduction

The inclusion of the space dimension in economic analysis has regained relevance in the

recent years. The emergence of a new economic geography is indeed one of the major

events in the economic literature of the last decade (see Krugman, 1991 and 1993, Fujita,

Krugman and Venables, 1999, and Fujita and Thisse, 2002). Departing from the early

regional science contributions, which are typically based on simple flow equations (see

Beckman, 1952, or more recently, Ten Raa, 1986, and Puu, 1982), the new economic

geography models use general equilibrium frameworks with a refined specification of local

and global market structures, and some precise assumptions on the mobility of production

factors. Their usefulness in explaining the mechanics of agglomeration, the formation of

cities, the determinants and implications of migrations, and more generally, the dynamics

of the distributions of people and goods over space and time is undeniable, so undeniable

that this discipline has become increasingly popular in the recent years.

Two main characteristics of the new economic geography contributions quoted just above

are: (i) the discrete space structure, and (ii) the absence of capital accumulation. Typ-

ically, economic geographers use two-regions frameworks, mostly analogous to the two-

country models usually invoked in trade theory. However, some continuous space exten-

sions of these models have been already studied. In a continuous space extension of his

1993 two-region model, Krugman (1996) shows that the economy always displays regional

convergence, in contrast to the two-region version in which convergence and divergence

are both possible. Mossay (2003) proves that continuous space is not incompatible with

regional divergence using a different migration scheme. In Krugman’s model, migration

follows utility level differentials, which in turn implies that location real wages provide

the only incentive for moving (predominant regional convergence force). In Mossay, mi-

grations additionally depend on idiosyncrasies in location taste, inducing a divergence

force, which can balance the utility gradient force mentioned before. As a consequence,

regional divergence is a possible outcome in this model.

Both models, however, ignore the role of capital accumulation in migrations: They both

assume zero (individual) saving at any moment. Indeed, the zero saving assumption is a

common characteristic to the new economic geography literature, especially in continuous

space settings, with the notable exception of Brito (2004). This strong assumption is done
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to ease the resolution of the models, which are yet very complex with the addition of the

space dimension.

Nonetheless, as capital accumulation is not allowed, the new economic geography mod-

els are losing a relevant determinant of migrations, and more importantly, an engine of

growth. While a large part of growth theory is essentially based on capital accumulation,

the new economic geography has mainly omitted this fundamental dimension so far. It

seems however clear that many economic geography problems (eg. uneven regional devel-

opment) have a preeminent growth component, and vice versa. Thus, there is an urgent

need to unify in some way the two disciplines, or at least to develop some junction models.

This paper follows exactly this line of research. We study the Ramsey model with space.

Space is continuous and infinite, and optimal consumption and capital accumulation are

space dependent. A peculiar characteristic of Brito’s framework is the non-Benthamain

nature of the Ramsey problem: he considers an average utility function in space in the

objective function. This is done in order to prevent the divergence of the objective integral

function over an infinite space. In this paper we will work in the classical Benthamian

case. We can do so by accounting for population density, which introduces a kind of

spatial discounting therefore forcing the convergence of the objective integral function

even under an infinite space configuration.

Our modelling of space is done so as “to avoid simple but unrealistic boundary conditions”

(Ten Raa, 1986, page 528–530). Capital is perfectly mobile across space (and of course,

across time through intertemporal substitution, as usual in a Ramsey-like model). Capital

flows from the regions with low return to capital to the regions with high return. In such

a case, it has been already shown by Brito (2004) that capital, the state variable of the

optimal control problem, is governed by a parabolic partial differential equation. This

is indeed the main difficulty of the problem compared to the traditional regional science

approach, as in Ten Raa (1986) and Puu (1982), where the considered fluid dynamics

modelling gives rise to wave equations of income.

Establishing the Pontryagin conditions in our parabolic case with infinite time and infinite

space is not a very difficult task, using the most recent advances in the related mathe-

matical discipline, notably Raymond and Zidani (1998), and Lenhart and Yong (1992).

See also Brito (2004) for his specific non-Benthamian Ramsey problem. Unfortunately,

the asymptotic properties of the resulting dynamic systems are by now still unsolved in
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the mathematical literature. Actually, the asymptotic literature of partial differential

equations (see for example, Bandle, Pozio and Tesei, 1987) has only addressed the case

of scalar (or system of) equation(s) with initial values. In a Ramsey-like model, the in-

tertemporal optimization entails a forward variable, consumption, and a transversality

condition. As a result, the obtained dynamic system is no longer assimilable to a Cauchy

problem, and it turns out that there is no natural transformation allowing to recover the

characteristics of a Cauchy problem, specially for the asymptotic assessment.

In this paper, we take a step further. Using explicit integral representations of the so-

lutions to parabolic partial differential equations (see Pao, 1992, for a nice textbook in

the field, and Wen and Zou, 2000 and 2002), we will clearly identify a serious problem

with the optimal control of these equations: In contrast to the Ramsey model without

space where there exists a one-to-one relationship between the initial value of the co-state

variable, say q(0), and the whole co-state trajectory, for a given capital stock path, this

property does not hold at all in the spatial counterpart, that is q(x, t), the co-state vari-

able for location x at time t, is not uniquely defined by the data q(0, x) because of the

integral relationship linking q(x, t) to q(0, x). As a consequence, while the transversality

conditions in the Ramsey model without space allows to identify a single optimal trajec-

tory for the co-state variable, thus for the remaining variables of the model, there is no

hope to get the same outcome with space. We are facing a typical ill-posed problem in the

sense of Hadamard (1923): We cannot assure neither the existence nor the uniqueness of

the solutions.

How to deal with this huge difficulty? One can try to extract special solutions to the

dynamic system arising from optimization; this is the strategy adopted by Brito (2004)

who looks for the existence of travelling waves, a nice solution concept intensively used

in applied mathematics. In order to keep the possibility to compare with the traditional

Ramsey model’s solution paths, we study the case of the Ramsey model with linear utility.

In such a case, we are -as usual- able to disentangle the forward looking dynamics from the

backward-looking, which ultimately allows us to use the available asymptotic literature

on scalar initial-value parabolic equations. Depending on the initial capital distribution,

optimal consumption per location can be initially corner or interior, and the dynamics

of capital accumulation across space and time will be governed by a scalar parabolic

equation. We shall study whether an initially ”corner” location (ie. with an initially
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corner consumption solution) can converge to its interior regime or to any other regime

to be characterized. The obtained properties are substantially different from those of the

linear Ramsey model without space in many respects, due to the spatial dynamics induced

by capital mobility. Indeed, capital accumulation in a given location will not only depend

on the net savings of the individuals living at that location, as in the standard Ramsey

model, but also on the trade balance of this location since capital is free to flow across

locations. In this sense, the linear spatial Ramsey model is rich enough to serve as a

perfect illustration of how the spatial dynamics can interact with the typical mechanisms

inherent to growth models.

The paper is organized as follows. Section 2 states our general spatial Ramsey model with

some economic motivations. It also derives the associated Pontryagin conditions using the

recent related mathematical literature. Section 3 is one of the most crucial contributions

of the paper: we study the existence and uniqueness of solutions to the dynamic system

induced by the Pontryagin conditions and show via explicit integral representations of

the solutions, that the latter problem is ill-posed. Section 4 is the detailed analysis of

the linear utility case. We recall some of the properties of the linear Ramsey model

without space. We then move to the spatial framework. The interior and corner solutions

are first characterized. Then we study the convergence from below and from above the

interior solution, assuming that all the locations start either below or above their interior

regime. We study in depth the consequences of capital mobility on the asymptotic capital

distribution across space. Section 5 concludes.

2 The general spatial Ramsey model

We describe here the ingredients of our Ramsey model, formulate the corresponding op-

timal control problem and give the associated Pontryagin conditions.

2.1 General specifications

We consider in this paper the following central planner problem

max
c

∫ ∞

0

∫

R
U ((c(x, t), x)) e−ρtdx dt, (1)
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where c(x, t) is the consumption level of a representative household located at x at time

t, x ∈ R and t ≥ 0, U(c(x, t), x) is the instantaneous utility function and ρ > 0 stands

for the time discounting rate. For a given location x, the utility function is standard, ie.
∂U
∂c

> 0, ∂2U
∂2c

< 0, and checking the Inada conditions. Our specification of the objective

function can be interpreted in two ways. First, preferences depend on the location of the

household, which is by no way inconsistent with the geography literature which typically

report different attitudes towards consumption as we move from a region to another.

Another plausible interpretation of the specification is the following. Suppose that U(c, x)

is separable, U(c, x) = V (c) ψ(x), with V (·) a strictly increasing and concave function,

and ψ(x) an integrable and strictly positive function such that
∫
R ψ(x) = 1. In such

case, the presence of x via ψ(x) in the integrand of the objective function stands for the

location’s x population density. Further assumptions on the shape of preferences with

respect to x will be done along the way.

We now turn to describe the law of motion of capital: How capital flows from a location

to another. Hereafter we denote by k(x, t) the capital stock held by the representative

household located at x at date t. In contrast to the standard Ramsey model, the law

of motion of capital does not rely entirely on the saving capacity of the economy under

consideration: The net flows of capital to a given location or space interval should also

be accounted for. Suppose that the technology at work in location x is simply y(x, t) =

A(x, t)f(k(x, t)), where A(x, t) stands for total factor productivity at location x and date t

and could be another heterogeneity factor, and f(·) is the standard neoclassical production

function, which satisfies the following assumptions:

(A1) f(·) is non-negative, increasing and concave;

(A2) f(·) verifies the Inada conditions, that is,

f(0) = 0, lim
k→0

f ′(k) = +∞, lim
k→+∞

f ′(k) = 0.

Moreover we assume that the production function is the same whatever is the location.

Hence the budget constraint of household x ∈ R is

∂k(x, t)

∂t
= A(x, t)f (k(x, t))− δk(x, t)− c(x, t)− τ(x, t), (2)
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where δ is the depreciation rate of capital1, and τ(x, t) is the household’s net trade balance

of household x at time t, and also the capital account balance, by the assumption of

homogenous depreciation rate of capital, no arbitrage opportunities. Since the economy

is closed, we have
∫

R

(
∂k(x, t)

∂t
− A(x, t)f (k(x, t)) + δk(x, t) + c(x, t) + τ(x, t)

)
dx = 0.

From (2), it is easy to see for any [a, b] ⊂ R, it follows

∫ b

a

(
∂k(x, t)

∂t
− A(x, t)f (k(x, t)) + δk(x, t) + c(x, t) + τ(x, t)

)
dx = 0. (3)

The net trade balanced in region X = [a, b] can be written as

∫ b

a

τ(x, t)dx. Capital

movements tend to eliminate geographical differences and we suppose that there are no

institution barriers to capital flows (or do not consider the adjustment speed) 2 3. With-

out inter-regional arbitrage opportunities, capital flows from regions with lower marginal

productivity of capital to the higher ones. Consequently capital flows from regions with

abundant capital toward the ones with relatively less capital. Therefore for any region

X = [a, b], the capital flowing through the boundary points a and b is ∂k(b,t)
∂x

− ∂k(a,t)
∂x

,

which can be written as

∂k(b, t)

∂x
− ∂k(a, t)

∂x
=

∫

X

∂2k

∂x2
dx.

Since the trade balance is equal to the capital flow through [a, b], we obtain
∫ b

a

τ(x, t)dx = −
(

∂k(b, t)

∂x
− ∂k(a, t)

∂x

)
.

1Depreciation rate of capital is homogenous in time t, space x and capital level k.
2We could assume that there exist institutional barriers to capital flows (see Ten Raa, 1986, and Puu,

1982). If we assume that these barriers are independent of capital k and consumption c, we obtain a

linear equation with coefficients in front of the Laplacean operator. After some affine transformations,

results in section 2.2 would apply to this problem. Otherwise, if the barriers are functions of k and/or c,

we face nonlinear problems, which are not considered in this work.
3If we consider transportation costs in the form of delays, then we would obtain a differential-difference

problem. These problems are difficult to handle. Therefore, we could consider a transportation cost

proportional to output (the iceberg transportation cost). In this case results in section 2.2 apply. In a

more general case with space velocity, we would have to deal with a non-local problem which is out of

the scope of this paper.
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Substituting the above equation into equation (3), we have ∀X ⊂ R, ∀t
∫

X

(
∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
− A(x, t)f(k(x, t)− c(x, t)− δk(x, t))

)
dx = 0.

By the Hahn-Banach theorem, the budget constraint can be written as:

∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− c(x, t)− δk(x, t), ∀(x, t). (4)

The initial distribution of capital, k0(x), is assumed to be known, bounded and continuous.

Moreover, we assume that, if the location is far away from the origin, there is no capital

flow4, that is

lim
x→±∞

∂k(x, t)

∂x
= 0.

The new term ∂2k(x,t)
∂x2 in the budget constraint (4) is the spacial ingredient of the dynamics

of capital accumulation, it simply captures capital mobility across space. It is a parabolic

partial differential equation, and as argued in the introduction of the paper, it complicates

tremendously the treatment of the associated optimal control problem. We shall precisely

identify the source of this complication. Before let us present briefly our optimal control

problem.

2.2 The optimal control problem

We can write our optimal control problem as follows

max
c

∫ ∞

0

∫

R
U (c(x, t), x) e−ρtdxdt. (5)

subject to:

4By ”without capital flow” we mean that lim
x→±∞

∂k(x, t)
∂x

= a, where a is a constant. With a simple

transformation and without loss of generality, we can assume a = 0. In this case, there is no surplus

after consumption, so there is no trade. This is called the Neumann’s problem. This is equivalent to

imposing the Dirichlet condition, that is, lim
x→±∞

k(x, t) = b(t). It states that when a household is far from

the economic center, its stock of capital does not depend on trade. Except for the Pontryagin conditions,

results with either assumption are not essentially different.
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∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− δk(x, t)− c(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

limx→±∞
∂k(x,t)

∂x
= 0, t ≥ 0.

(6)

Here comes the definition of an optimal solution:

Definition 1 A trajectory (c(x, t), k(x, t)), with k(x, t) in C2,1(R × [0,∞)) and c(x, t)

piecewise-C2,1(R× [0,∞)), is admissible if k(x, t) is a solution to problem (6) with control

c(x, t) on t ≥ 0, x ∈ R, and if the integral objective function (5) converges. A trajectory

(c?(x, t), k?(x, t)), t ≥ 0, x ∈ R, is an optimal solution of problem (5) and (6) if it is

admissible and it it is optimal in the set of admissible trajectories, ie. for any admissi-

ble trajectory (c(x, t), k(x, t)), the value of the integral (5) is not greater than its value

corresponding to (c?(x, t), k?(x, t)).

It is not very hard to see that the shape of preferences is crucial for the convergence of the

integral (5) when space is unbounded. As we have mentioned in the introduction, Brito

(2004) noticed this fact, and to get rid of it, he considered a different objective function,

namely average utility function in space instead of our Benthamian type functional. We

prefer to take another approach, and notably to maintain the Benthamian functional

as the natural extension of the original Ramsey model. We could have simplified our

treatment by having space bounded but in such a case one would have to set boundary

conditions, ∀t ≥ 0, which is a highly arbitrary task. We finally prefer to address the pure

case of infinite space and infinite time.

By considering that space is infinite just like time imposes a kind of symmetric handling

of both to get admissible solutions. In particular, just like time discounting is needed to

ensure the convergence of the integral objective function in the standard Ramsey model,

we need a kind of space discounting. In our setting this space discounting is ensured by

population density. Mathematically speaking an appropriate choice of U(c, x) is to take

it rapidly decreasing with respect to the second variable. That is, U(c, x), for any fixed

c, defined as,

{U(c, ·) ∈ C(R)| ∀m ∈ Z+, |xmU(c, x)| ≤ Mm,∀x ∈ R,M > 0}.
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A possible choice of U(c, x) checking the above mentioned characteristic is U(c, x) =

V (c) ρ′
2

e−ρ′|x|, where V (c) is strictly increasing and concave in c, and ρ′ > 0.

2.3 The Pontryagin conditions

The Pontryagin conditions corresponding to the control of a parabolic partial differential

equation are rigorously studied in Raymond and Zidani (1998, 2000), and reproduced

in Brito (2004) for his particular problem. Using exactly the same kind of variational

methods, we can establish the first-order conditions fitting our specific problem. These

conditions are:





∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
+ q(x, t) (A(x, t) f ′(k(x, t))− δ) = 0, (x, t) ∈ R× [0,∞),

q(x, t) = e−ρt ∂U(x, t)

∂c
, (x, t) ∈ R× [0,∞),

lim
t→∞

q(x, t) = 0, ∀x ∈ R,

lim
x→±∞

∂q(x, t)

∂x
= 0, ∀t ≥ 0.

(7)

The first equation is the expected adjoint equation, with q(x, t) playing the role of the

co-state variable. As in the standard Ramsey model, the latter is equal to discounted

marginal utility of consumption at the optimum, this should be true for every x and

t in our spatial extension. The three last limit conditions are respectively the usual

(time) transversality condition for infinite horizon discounted problems, and the two

(space) transversality conditions implied by the asymptotic constraints on capital flow,

limx→±∞
∂k(x,t)

∂x
= 0. Notice the adjoint equation is also (non-surprisingly) a parabolic

PDE. However in contrast to the state equation (6), which is of the Cauchy type, the

adjoint equation has no initial value q0(x) = q(x, 0), but this is also a property of the

adjoint equation in the standard non-spatial Ramsey model. Finally, one should mention

that generally the above conditions are not only necessary, they are also sufficient under

the typical concavity conditions like our conditions on the utility and production function

across space. See for example Gozzi and Tessitore (1998). So that solving for optimal

trajectories amounts in principle to solving the following system:
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∂k(x, t)

∂t
− ∂2k

∂x2
(x, t) = A(x, t)f (k(x, t))− c(x, t), (x, t) ∈ R× [0,∞),

∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
= q(x, t) (δ − A(x, t) f ′(k(x, t))) , (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x), ∀x ∈ R,

q(x, t) = e−ρt ∂U(x, t)

∂c
, (x, t) ∈ R× [0,∞),

lim
t→∞

q(x, t) = 0, ∀x ∈ R,

lim
x→±∞

∂q(x, t)

∂x
= 0, ∀t ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ∈ R.

(8)

for given continuous k0(x). While establishing the existence of solutions to the corre-

sponding problem in the standard Ramsey (also referred to as the Hamiltonian system

or the Cass-Shell system) is far from obvious (see first proof in Gaines, 1976), the task

is uncomparably harder with the space dimension. As we will see in the next section,

there is a key difference with respect to the standard Ramsey model which makes our

elementary spatial extension amazingly more complicated.

3 The existence and uniqueness problem

We shall start with a preliminary result, then clarify the point outlined just above. To

this end we will introduce some new results on analytical solution of PDEs.

3.1 A preliminary result

Consider the general parabolic PDE in variable u(x, t):

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= G (u(x, t), z(x, t)) , (9)

where G(·) is any given continuous function, and z(x, t) a forcing variable, with initial

continuous function u(x, 0) = u0(x) given.
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Theorem 1 requires the following assumption on growth for x → ±∞ in order to ensure

uniqueness:

(A3) For any given finite T , if (x, t) ∈ R × (0, T ], there exist constants z0 > 0, u0 > 0

and b < 1
4T

, such that, as x → ±∞

0 < z(x, t) ≤ z0e
b|x2|, 0 < u0(x) ≤ u0e

b|x2|.

Theorem 1 Let assumption (A3) hold and z(x, t) ∈ C2,1(R× (0, T )). Then problem (9)

has a unique solution u ∈ C2,1(R× (0, T ]), given by

u(x, t) =

∫

R
Γ(x− y, t)u0(y)dy

+

∫ t

0

∫

R
Γ(x− y, t− τ) [G (u(y, τ), z(y, τ))] dydτ.

(10)

Moreover,

|u| ≤ Keβ|x|2 , as x → ±∞,

where K is a positive constant, which depends only on z0, u0, T , and β ≤ min{b, 1
4T
},

Γ(x, t) =





1

(4πt)
1
2

e−
x2

4t , t > 0,

0, t < 0.

Furthermore if z, u0 are bounded functions, then the above unique solution is also bounded.

Proof: See the appendix.

Notice that (10) is a kind of explicit representation of the solution paths of the typical

parabolic PDE (9); it involves some “canonical” functions Γ(x, t) just like the general char-

acterization of the solutions to ordinary differential equation involve exponential terms.

Let us keep this solution representation in mind from now on. It considerably helps

clarifying the peculiarity of our problem.

For a backward parabolic equation with terminal condition,



L∗w = wt + wxx = H(w(x, t), h(x, t)), x ∈ R, t ∈ [0, T ),

w(x, T ) = w1(x), given, x ∈ R.

let v(x, t) = w(x, T − t), then we have similar results.
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Corollary 1 Suppose H(·) is a continuous function, and for any given finite T , if (x, t) ∈
R× (0, T ], there exist some constants h1 > 0, w1 > 0 and b1 < 1

4T
, such that, as x → ±∞

0 < h(x, t) ≤ h1e
b1|x2|, 0 < w1(x) ≤ w1e

b1|x2|.

Then the solution to problem (3.1) at (x, t) is

w(x, t) =

∫

R
Γ(x− y, T − t)φ(y)dy

−
∫ T

t

∫

R
Γ(x− y, T − τ)H(w(y, T + t− τ), h(y, T + t− τ))dydτ,

More refinements on the explicit representations of the solutions to parabolic PDEs can

be found in Wen and Zou (2000, 2002).

3.2 Why the control of parabolic PDEs hurts?

To make better the point, let us come back to the standard Ramsey model. The adjoint

equation is:

q′(t) + q(t) (A(t) f ′(k(t))− δ) = 0,

with obvious notations. Integrating the induced ordinary differential equation from 0 to

t, one gets:

q(t) = q(0) e−
R t
0 (A(s)f ′(k(s))−δ) ds.

Obviously, q(0) is not known; however, there exists a one-to-one relationship between q(0)

and q(t) for a fixed capital trajectory. To any q(0) is associated a single q(t), and to any

q(t), one can only identify a unique compatible q(0) value. Typically, q(0) is uniquely

determined by the transversality condition limt→∞ q(t) = 0, which establishes uniqueness

of optimal trajectories in the Ramsey model. Unfortunately, the same trick does not work

in the spatial extension.

Consider our adjoint equation:

∂q(x, t)

∂t
+

∂2q(x, t)

∂x2
+ q(x, t) (A(x, t) f ′(k(x, t))− δ) = 0,
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for a given capital and technology paths across time and space. By Theorem 1, if q(x, t) =

q0(x) and A(x, t)f ′(k(x, t)) are bounded functions in the sense of Assumption 3, then the

solution to this PDE can be represented as:

q(x, t) =

∫

R
Γ(x− y, t)q0(y)dy

−
∫ t

0

∫

R
Γ(x− y, t− τ)q(y, τ) [ A(y, τ) f ′(k(y, τ))− δ] dydτ.

Because q0(x) enters an integral, we lose the one-to-one relationship between the initial

value- here q0(x)- and the whole trajectory q(x, t). If q0(x) were known, then we can fix a

unique path q(x, t), but the reverse is evidently WRONG. Unfortunately, the transversal-

ity conditions will not be helpful to identify a unique q0(x) precisely because of the integral

representation displayed in Theorem 1. In particular, the usual “economic” transversality

condition limt→∞ q(x, t) = 0 will not help identifying the “good” q0(x), nor the remain-

ing space transversality conditions can solve the problem, simply because the unknown

q0(x) are inside the integrals and not outside. In the language of the PDE literature,

our problem is called “ill-posed”(see definition in Hadamard J., 1923): we cannot assure

neither the existence nor the uniqueness of solution. Some “extra” information is needed

to get rid of this. The other way to surmount it is to take linear utility, which induce

a degenerescent adjoint equation. We try this strategy in the remaining sections of the

paper.

4 The linear spatial Ramsey model

From now on, we will concentrate on the linear Ramsey model, the special case with linear

utility. The objective function becomes:

max
c

∫ ∞

0

∫

R
c(x, t)ψ(x) e−ρtdx dt

From now on, and in order to compare with standard results in non-spatial settings, we

shall add the usual irreversibility constraint, gross investment should be non-negative at

any date and for any location, that it i(x, t) = A(x, t)f (k(x, t)) − c(x, t) ≥ 0. Further

assumptions on the shape of preferences with respect to x are required:
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(A4) ψ(x) > 0, ρψ(x)− ψ′′(x) > 0 for all x ∈ R and
∫
R ψ(x) = 1.

As it will be clear in a few paragraphs, this condition is needed in our linear case to assure

the positivity of the capital trajectory. The corresponding optimal control problem is:

max
c

∫ ∞

0

∫

R
c(x, t)ψ(x) e−ρtdxdt (11)

subject to:



∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− c(x, t)− δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

0 ≤ c(x, t) ≤ A(x, t)f (k(x, t)) , x ∈ R, t ≥ 0,

lim
x→±∞

∂k(x, t)

∂x
= 0 t ≥ 0.

(12)

In the sequel of this section, we consider the optimal control problem (11)-(12), the

solution of which is given by Theorem 1 (when applied to systems of PDEs). In this

linear case, U(c, x) = c(x, t)ψ(x). Then from a direct calculation, we have

f ′ (k(x, t)) =
(ρ + δ)ψ(x)− ψ′′(x)

A(x, t)ψ(x)
, (13)

and the corresponding capital (which is an interior solution) is

ki(x, t) = (f ′)−1

(
(ρ + δ)ψ(x)− ψ′′(x)

A(x, t)ψ(x)

)
.

From (12), we have that

c(x, t) = A(x, t)f(k)− δk(x, t) + kxx(x, t)− kt(x, t) (14)

which gives the dynamics of the economy starting from the initial condition k0(x) to the

solution as (13). In the rest of this work, we consider a time independent technology, i.e.

A(x, t) = A(x). Then from (13), the interior solution for capital is also time independent.

The optimal consumption decision can lay in one of the following regimes:

c(x, t) =





0,

A(x)f(k(x, t)),

∈ (0, A(x)f(k(x, t))).
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In the first case, consumption is zero and all the output is used for investment. In the

second one there is no investment, all output is consumed. These are the two corner

solutions for consumption. The third case covers the interior solution. The next sub-

sections are devoted to study the optimal dynamics, starting from any corner regime.

Particular attention will be paid to the conditions under which the economy moves from

the corner to the interior regimes (per location), as it is traditional in the optimal control

problems which are linear in the control variables. In order to compare with the standard

case, we recall very briefly its main dynamic properties.

4.1 Recalling the linear Ramsey model without space

Consider a standard Ramsey model with linear utility function:

max
c

∫ ∞

0

c(t)e−ρtdt,

subject to

k̇ = Af(k(t))− δk(t)− c(t), k(0) given,

and the irreversibility constraint, 0 ≤ c(t) ≤ Af(k(t)). First order conditions give the

interior solution for k as

ki = (f ′)−1

(
ρ + δ

A

)
.

Not surprisingly, the interior solution in the non-spatial cases coincides with the inte-

rior solution of the spatial counterpart whence ψ(x) = 1, ∀x. Let us consider the two

traditionally induced corner solution cases. Let us sketch the usual reasonings.

Case 1. c = Af(k). The regime arises if initially Af ′(k) < δ + ρ. In such a case,

the solution for capital accumulation along the regime is explicit and is given by k(t) =

k(0)e−δt, which converges to zero, as t goes to infinity. Hence starting from above, the

capital path will reach the interior solution in a finite time, provided the rate of capital

depreciation is nonzero.

Case 2. c = 0. The regime arises if initially Af ′(k) > δ + ρ. Solving the law of motion

of capital with c = 0, one gets:

k(t) = k(0)e

∫ t

0

[
Af(k(s))− δk(s)

k(s)

]
ds

.
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Obviously, whenever Af(k)−δk > 0 (positive net savings), the solution path is increasing.

But if Af ′(k(0)) > δ + ρ or equivalently Af ′(k(0)) − δ > ρ > 0, then savings per capita

net of depreciation (net savings hereafter), Af(k(t)) − δk(t), will be not only positive

but increasing at the beginning of the corner regime if Af(k(0))− δk(0) > 0. Therefore,

the capital trajectory will start increasing provided Af(k(0))− δk(0) > 0. However, the

concavity of the production function will induce a decreasing pattern of the marginal

productivity of capital, so that at a finite date T > 0, the interior solution is reached,

that it is Af ′(k(T ))−δ = ρ. Note that the capital path cannot be ”stuck” at a stationary

solution of the corresponding corner regime before reaching the interior solution. Such

a stationary solution, ks, checks: Af(ks)
ks = δ > Af ′(ks) by concavity. Since the interior

solution checks Af ′(ki) = δ + ρ, we have f ′(ki) > f ′(ks), thus ki < ks again by concavity.

In the other case, Af(k(0)) − δk(0) < 0, and capital goes down at the beginning of the

corner regime, which reinforces the corner condition Af ′(k(t))− δ > ρ by the same con-

cavity argument. As a consequence, net savings will keep on going down, and convergence

to the interior solution can never be achieved.

We are now ready to get to the spatial case. We shall see how the space dimension enriches

the properties mentioned just above.

4.2 The dynamics of the spatial linear Ramsey model

We first introduce some preliminary important definitions, which will be interpreted in

economic terms hereafter. Precisely, we define the steady state (or stationary) solutions

and the upper and lower solutions of the steady state problems. The latter concept is

extremely useful in the literature of PDEs.

The steady state of problem (11)-(12) is defined as:

(Ps)





−∂2k(x)

∂x2
= A(x)f (k(x))− c(x)− δk(x), x ∈ R,

lim
x→±∞

∂k(x)

∂x
= 0.

Now we recall the mathematical definition of upper and lower solutions to Ps.
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Definition 2 A function ku(x) is an upper solution of Ps if it satisfies that

−∂2k(x)

∂x2
≥ A(x)f (k(x))− c(x)− δk(x), x ∈ R.

Similarly, we say that a function kl(x, t) is a lower solution of problem Ps if the inequality

above is verified with sign ≤.

Notice that the upper and lower solutions can be properly interpreted in economic terms.

In order to compare with the non-spatial Ramsey model, let us use the same terminology.

Notice that the right hand side of the inequality could be interpreted as the net savings at

location x, while the left hand side measures capital flows at x. Integrating the inequality

between two locations a and b, say a < b, one can infer that along an upper solution,

net savings in the region [a, b] are lower than or equal to the amount of capital flowing

out of this region. Consequently, the upper solution concept should recover the case of

non-increasing patterns of capital accumulations. Lower solutions fit just the opposite

case.

With this proviso in mind, we next study the convergence from below and from above

the interior solution, assuming that all locations start either below or above their interior

regime. This case is the simplest one and it already allows to capture the main idea

of the paper, that is, the spatial dynamics induced by perfect capital mobility enrich

considerably the asymptotic behavior of the Ramsey model5. We shall study the case

where the initial capital stock in the whole space is typically lower (resp. higher) than

the interior value, which corresponds to the case of a “too” high (resp. low) return to

capital.

4.2.1 High marginal productivity case

Suppose that at t = 0,

f ′(k0(x)) >
(ρ + δ)ψ(x)− ψ′′(x)

A(x)ψ(x)
, (15)

5The working paper version of this paper, available upon request, considers the more complicated case

where space is partitioned into two half-spaces, one above the corresponding interior regime and the other

below. Such an exercise does not bring any further economic value-added with respect to the simple and

transparent cases treated in this version of the paper.
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and that

−(k0(x))xx ≤ A(x)f(k0(x))− δk0(x), ∀x ∈ R. (16)

That is, initially the marginal productivity of capital is higher than the marginal cost. As

a result, it is optimal to keep on investing until the capital stock satisfies the optimal rule

(13) if possible, and c(x) = 0, ∀x ∈ R. By assumption (A1), f ′′(k) < 0, so in this case

k0(x) < ki(x), ∀x ∈ R.

Hence the dynamics of the state equation are




∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= A(x, t)f (k(x, t))− δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ≥ 0.

Condition (16) actually ensures that k0(x) is a lower solution of the stationary equation,

−k(x)xx = A(x)f(k(x))− δk(x), ∀x ∈ R. (17)

The dynamic properties of the model heavily rely on condition (16), as the following

theorem shows.

Theorem 2 Suppose (A1), (A2) hold and A(·) is a bounded function. Moreover we

assume that Af ′(k) ≥ δ for any feasible function k.

(a) If k0 is a lower solution of Ps, then the solution path for capital is nondecreasing in

t for any location along the corner regime, that is

k0(x) ≤ k(x, t), ∀x ∈ R, ∀t ≥ 0.

Further, if k0 is not a solution to (17), then k(x, t) is strictly increasing in t.

(b) If k0 is an upper solution of Ps, then the solution the solution path for capital is

nonincreasing in t for any location along the corner regime, that is

k0(x) ≥ k(x, t), ∀x ∈ R, ∀t ≥ 0.

Further, if k0 is not a solution to (17), then k(x, t) is strictly decreasing in t.
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Proof. See the appendix.

Theorem 2 features the different dynamic outcomes, and should be compared with the

typical outcomes in the non-spatial counterpart (our Section 4.1). Starting below the

interior solution, the economy may or may not reach the interior solution. If k0(x) is a

lower solution, then by Theorem 2-(a), the capital patterns are non-decreasing. In the

special case k(x, t) = k0(x) = k̄(x), ∀t . Hence, k(x, t) < ki(x) forever. However, if k0(x)

checks (16) and is not a solution to (17), then the capital paths will be strictly increasing

at any location, and may converge to the interior regime at a finite time T1. Of course,

convergence is not guaranteed: increasing patterns of capital may be “stuck” at a solution

of (17) before convergence. Yet starting at a lower solution is a possible way to get to

the interior solution. This is not surprising at all given our economic interpretation of the

lower solution concept, which features the cases where net savings are larger than or equal

to capital flowing out of any location x. If k0(x) checks (16) with strict inequality, then

net savings are strictly larger than capital outflows everywhere, and capital should grow,

possibly (not surely) reaching the interior solution after a while. The reverse happens

when the initial condition k0(x) is an upper solution of Ps. In such a case, convergence

to the interior solution is impossible.

So far, we have exhibited a kind of generalization of the standard non-spatial linear

Ramsey model properties. In the benchmark case (see Section 4.1), when the economy

starts with regime c = 0, it converges to the interior solution if and only if net savings

(with c = 0) are strictly positive initially. With space, this property may arise under the

condition that initially net savings (with c = 0) at any location exceed capital outflows.

Nonetheless, a huge difference with the non-spatial case emerges here: even if the initial

net savings are strictly positive, that it is even if the initial capital profile is a lower

solution, there is no guarantee that the resulting increasing patterns reach the interior

solution. As mentioned just above, this is due to the fact that these capital trajectories

may be “stuck” at some stationary solution of the corresponding corner regime. Such a

possibility does not exist in the non-spatial case.

Any way, this is good news: of course, the spatial model has much trickier properties, much

richer dynamics thanks to the capital mobility engine. We shall address the remaining

issues numerically in the last section. In particular, we shall exhibit cases in which capital

trajectories are increasing (because the initial capital profile is a lower solution) but do
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not get to the interior solution. Before getting to this numerical section, we examine the

case of an initially “too” low marginal productivity of capital, giving rise to the other

corner regime.

4.2.2 Low marginal productivity case

Suppose initially that k0(x) satisfies

f ′(k0(x)) <
(ρ + δ)ψ(x)− ψ′′(x)

A(x)ψ(x)
.

Productivity in this economy is too low, the marginal cost is initially higher than marginal

productivity. As a result, the economy stops investing at any location and consume all

the output of the location until (13) holds (if possible): c(x, t) = A(x)f(k(x, t)). By the

concavity of the production function, we have that actually k0(x) > ki(x), ∀x ∈ R.

Then, the capital dynamics are described by:





∂k(x, t)

∂t
− ∂2k(x, t)

∂x2
= −δk(x, t), (x, t) ∈ R× [0,∞),

k(x, 0) = k0(x) > 0, x ∈ R,

lim
x→±∞

∂k(x, t)

∂x
= 0, ∀t ≥ 0.

(18)

Before stating the main convergence theorem, we first study a special case, with no capital

depreciation rate, δ = 0. We have the following result.

Theorem 3 Suppose (A1), (A2) and A(·) is a bounded function. Furthermore, let δ = 0.

(a) Then the solution path for capital along the corner regime c(x, t) = A(x)f(k(x, t)),

is non-increasing and

k0(x) ≥ k(x, t), ∀x ∈ R, ∀t ≥ 0.

(b) If k0(x) is an upper solution but not a steady state solution, then k(x, t) is strictly

decreasing in t.

(c) If k0(x) is a lower but not a steady state solution, then k(x, t) is strictly increasing

in t, and convergence to the interior solution is impossible.
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Proof: This theorem can be proved following the same reasoning as in the proof of

Theorem 2.

Strictly speaking, Theorem 3 is not surprising: once removed capital depreciation, the

unique engine of capital stock variation is capital mobility. In the non-spatial case and

in such a corner situation, the state equation degenerates into k̇ = 0, therefore inducing

that the capital trajectory will stick to the initial condition k(0) forever. In the spatial

case with capital mobility, the capital stock can still change over time, and the outcome

depends, as in the initial high marginal productivity case, on whether initial net savings

are lower or larger than capital outflows.

What happens if capital depreciation is allowed? With nonzero capital depreciation,

things are quite different. Let u(x, t) = k(x, t)eδt, after simple calculations, we obtain





ut − uxx = (kt − kxx)e
δt + δkeδt = 0,

u(x, 0) = k0(x).

So the theoretical part of the solution will not change. However notice that k(x, t) =

u(x, t)e−δt is the product of two terms: a bounded term u(x, t) (by Theorem 1 with

function G(·) identically zero) and a second term converging to zero as t goes to infinity.

Furthermore, the unique solution to the steady state of (18) is k(x) ≡ 0. This implies that

the solution trajectory will not be “stuck” at a steady state solution in its decreasing path

towards the interior solution. Then, there exists a point in time, t1, such that, k(x, t1)

equals the interior solution. At this point, consumption changes to its interior value.

This means that from t1 onwards, the solution equals the interior solution, i.e. capital

converges to the interior solution.

To conclude the above analysis, we write it as the main convergence result.

Theorem 4 Suppose (A1), (A2) and A(·) is a bounded function. In the case of low

marginal productivity, for any initial capital distribution, the existence of non-zero depre-

ciation ensures convergence to the interior solution in finite time.

Therefore, in such a corner case, capital depreciation is stronger than capital mobility for

all initial capital profiles, which is similar to the non-spatial Ramsey set-up. Of course, this
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property does not hold in the other corner regime: when the initial marginal productivity

of capital is high, investment is no longer zero, and thus the capital stock moves pushed

by two engines: capital mobility across location and nonzero investment per location.

The conjunction of these two engines may dominate the capital depreciation engine as

featured in Theorem 2 (a).

5 Numerical experiments

We would like to illustrate the richness of this model with respect to the non-spatial Ram-

sey model. We provide two examples of initial distributions of capital in high marginal

productivity economies that do not attain the interior solution.

Table 1 presents the parameter values that describe our scenario. The density function φ(·)
has been adapted so that population size is equal to 1 in the simulation space [−100, 100].

f(k(x, t)) = k(x, t)α α = 1/3

ψ(x) = ae−φ|x| φ = 0.5, a = 0.25

δ = 0.3

ρ = 0.03

A = 10

Table 1: Functional specifications and parameter values for the numerical exercise

With these parameter values, the interior solution is spatially homogenous:

ki(x) = (f ′)−1

(
ρψ(x)− ψ′′(x)

Aψ(x)

)
=

(
Aα

ρ + δ − φ2

) 1
1−α

' 268.96.

Though the steady state problem Ps with c(x) = 0 does not have a unique solution, it

has a unique non-trivial spatially homogenous solution:

ks(x) =

(
A

δ

) 1
1−α

' 192.45.

It is very important for the numerical experiments to notice that ks(x) < ki(x), ∀x ∈ R.
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Example 1:

We would like to illustrate the case of an economy initially endowed with a physical capital

distribution k0 which lies below the interior solution and it is a lower solution to Ps. The

solution trajectory to this problem does not converge to the interior solution but gets

“stuck” at a steady state solution. Let k0 be:

k0(x) =





1, x ≤ 1,

x, 1 < x ≤ 5,

5, x > 5.

One can readily see in the simulation graph that the solution is effectively increasing

(Theorem 2 (a)) and that it converges to the spatially homogenous steady state solution

(ks(x) = 192.45), never reaching the interior solution (see figure 1).
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Figure 1: k0 < ks < ki, k0 lower solution

Example 2:

On the other hand, we study in this example a high marginal productivity economy which

is endowed with an initial distribution above the steady state and very close to the interior

solution:

k0(x) = 260.

Moreover, the initial distribution is an upper solution to Ps, with ks < k0 < ki. According

to Theorem 2 (b), the solution trajectory is decreasing. What can be checked with the
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numerical exercise is that the spatially homogenous steady state solution is attained (see

figure 2).
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Figure 2: ks < k0 < ki, k0 upper solution

Notice that our results heavily rely on the parameter set. Had we chosen a population

density function as φ(x) = 0.125e−0.25|x|, we would have ki < ks. In this case, any economy

endowed with an initial distribution of capital that is a lower solution to Ps and k0 < ki,

converges to the interior solution.

6 Conclusion

In this paper, we have tried to formulate a prototype of spatial Ramsey model with

continuous space. In particular, we have departed from the non-Benthamian Ramsey

model of Brito (2004) by introducing spatial discounting. We have studied the induced

dynamic problem and shown why the optimal control of the resulting parabolic partial

differential equations finally gives rise to an ill-posed problem. Our detailed analysis of

the linear Ramsey model, which is clearly a way to escape from the ill-posed problem, has

the advantage to highlight the tremendous complexity of spatial dynamics even in this

linear case.

Two main conclusions can be drawn from our work: first of all, the spatial dimension

in a Ramsey framework clearly “adds something” to the story of the neoclassical growth

models, with much less trivial asymptotic results and convergence properties, and more
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case studies, depending on the relative strength of several engines, among them the spatial

“guest star”: capital mobility. Second, there is still a tremendous effort to do in order to

understand completely what is going on in these models. In particular, we should try to

reach a much better understanding of the structure of the stationary solutions. In this

respect, developing new analytical and/or computational tools sounds as a minimal prior

condition. These technical tasks should be undertaken before tackling more interesting

economic extensions of the model, notably migrations.

26



7 Appendix

7.1 Proof of Theorem 1

(1) Let (x, t) ∈ R × (0, T ]. Define a sequence {u(n)}, (n ≥ 1) successively from the iteration

process 


Lu(n) = u

(n)
t − u

(n)
xx = G(u(n−1)(x, t), z(x, t)), in R× (0, T ],

u(n)(x, 0) = u0(x), in R,

with u(0)(x, t) = u0(x) and Gu(n−1)(x, t), z(x, t)) is some known function of x and t. If assump-

tions (A1)- (A3) hold, then this sequence is well defined. Due to Theorem 7.1.1 in Pao (1992),

a unique solution sequence {u(n)} ∈ C2,1(R× (0, T ]) exists and it is given by

u(n)(x, t) =
∫
R Γ(x− y, t)u0(y)dy

+
∫ t

0

∫

R
Γ(x− y, t− τ)

[
G(u(n−1)(y, τ), z(y, τ))

]
dydτ,

(19)

where Γ(x, t) is the fundamental solution to the parabolic operator L:

Γ(x, t) =





1

(4πt)
1
2

e−
x2

4t , t > 0,

0, t < 0.

see for example, pages 261–265, in Ladyzenskaja, Solonnikov and Ural’ceva (1968) or page 14

in Frideman (1983). Furthermore, there exists some positive constants M and β such that the

solution satisfies the growth condition for each n

|u(n)| ≤ Meρ|x|2 , as x → ±∞,

Notice that the sequence starting from u0, and then M does not depend on n. Hence, we obtain

that for t ∈ (0, T ], for any x, there exist an estimate for the solution

|u(n)| ≤ M ′eρ′|x|2 ,

for some positive constants M ′ and ρ′.

Then there is a subsequence, u(nj), which converges to a function ũ ∈ C2,1(R × (0, T ]), and

satisfies

|ũ| ≤ M ′′eρ′′|x|2 , ∀x ∈ R,
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for some positive constants M ′′ and ρ′′.

Due to the uniqueness of the solution to the linear equation, one can prove that the whole

sequence converges to ũ. In (19), taking the limit when n →∞ on both sides, we obtain that

ũ(x, t) =
∫
R Γ(x− y, t)u0(y)dy

+
∫ t

0

∫

R
Γ(x− y, t− τ) [G(ũ(y, τ), z(y, τ))] dydτ.

By the fundamental solution result, ũ is the solution to problem (9) for (x, t) ∈ R × (0, T ] and

it satisfies the growth condition

0 < u ≤ Keβ|x|2 , as x ∈ R,

for some constant K and β = ρ′′.

7.2 Proof of Theorem 2.

(a) Let w(x, t) = k(x, t) − k0(x), then wt(x, t) = kt(x, t) and wxx(x, t) = kxx(x, t) − (k0(x))xx.

The state equation

wt(x, t)− wxx(x, t) = kt(x, t)− kxx(x, t) + (k0(x))xx ≥

≥ A(x)f(k(x, t))− δk(x, t)−A(x)f(k0(x)) + δk0(x) =

= A(x)f ′(η(x, t)) (k(x, t)− k0(x))− δk(x, t) + δk0(x) =

=
(
A(x)f ′(η(x, t))− δ

)
(k(x, t)− k0(x)) ,

where η(x, t) is a function between k(x, t) and k0(x), and the inequality comes from assuming

that k0(x) checks (16). Besides, w(x, 0) = v(x, 0)− k0(x) = 0.

Notice that we can write it as:

wt(x, t)− wxx(x, t) ≥ (
A(x)f ′(η(x, t))− δ

)
w(x, t), (20)

where the right hand side is linear in w(., .) and A(x)f ′(η(x, t))−δ is bounded. We can therefore

apply Lemma 7.2.1 in Pao since w0(x) = 0. This implies that

w(x, t) ≥ 0, ∀t ≥ 0, ∀x ∈ R.
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As a result, k(x, t) ≥ k0(x). More precisely, k(x, t) > k0(x) unless k(x, t) ≡ k0(x).

Now, we prove that k(x, t) is nondecreasing in t. For any fixed constant ρ > 0, denote kρ(x, t) =

k(x, t+ρ) consider function v(x, t) = k(x, t+ρ)−k(x, t). It is easy to check that v(x, t) satisfies

vt(x, t)− vxx(x, t) = A(x)f(kρ(x, t))− δkρ(x, t)−A(x)f(k(x, t)) + δk(x, t) =

=
(
A(x)f ′(ζ(x, t))− δ

)
v(x, t), ∀t ≥ 0, ∀x ∈ R,

and

v(x, 0) = k(x, ρ)− k0(x) ≥ 0, ∀x ∈ R,

where ζ lays between kρ and k, and v(x, 0) ≥ 0 following the previous result.

Again by a comparison theorem for linear parabolic equations and the fact that v is bounded

as |x| → ∞:

v(x, t) ≥ 0, ∀t ≥ 0, ∀x ∈ R.

That is, for any constant ρ:

k(x, t + ρ) ≥ k(x, t), ∀t ≥ 0, ∀x ∈ R,

so that k(x, t) is an increasing function.

(b)We obtain the results using the same argument as in (a), putting w(x, t) = k0(x)− k(x, t).
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