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Abstract

This paper is an attempt to develop a unified approach to endoge-

nous heterogeneity by constructing general class of two-player symmetric

games that always possess only asymmetric pure-strategy Nash equilibria.

These classes of games are characterized in some abstract sense by two

general properties: payoff non-concavities and some form of strategic sub-

stitutability. We provide a detailed discussion of the relationship of this

work with Matsuyama’s symmetry breaking framework and with business

strategy literature. Our framework generalizes a number of models deal-

ing with two-stage games, with long term investment decisions in the first

stage and product market competition in the second stage. We present

the main examples that motivate this study to illustrate the generality of

our approach.
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1 Introduction

One of the most pervasive presumptions in modern economic analysis is the

symmetric nature of interacting agents. While often intended solely as a sim-

plifying assumption on a priori grounds, this presumption has also permeated

economic thinking for a variety of other reasons. When considering noncooper-

ative games, analysts often restrict attention to symmetric equilibrium points

even when other asymmetric outcomes exist and may reflect more rational-

izable or more pertinent behavior. In mechanism design or policy games, the

social planner typically assumes identical treatment of identical agents, although

global optimality might dictate otherwise. The design of various forms of joint

ventures is also subject to a similar observation.

In most cases, the only justification beyond simplicity is what Schelling

(1960) convincingly termed the focal nature of symmetric equilibrium outcomes.

Indeed, it is widely recognized that inter-agent heterogeneity is often a critical

dimension of several economic and social phenomena. From a positive perspec-

tive, heterogeneity is simply a necessary postulate to account for the simple fact

that in the real world, one seldom observes identical agents, be it individuals,

firms, industries or countries. In a similar vein, even from a normative stand-

point, differences across interacting agents often constitute a necessary condition

for many important economic activities such as trade or risk-sharing.

Understanding the origins and/or evolution of diversity across economic

agents or disparities in economic performance across regions is increasingly per-

ceived as a central goal of economic and social research in a number of different

areas (see e.g. Geroski et al. (2003) and Ghemawat (1986) ). Macroeconomists

attempt to explain the causes of booms and recessions. Development economists

wish to understand the forces behind poor and strong economic performances.

Labor economists attempt to get a handle on discriminatory treatment of some

groups of workers. Business strategists and industrial economists devote a lot
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of attention to the sources and sustainability of inter-firm heterogeneity within

and across industries. Overall, much effort has been expanded with a view to

explain ”the diversity across space, time and groups” (Matsuyama, 2002).

In view of the diversity of economic research areas involved in this effort, it

is not surprising that various conceptual and methodological approaches have

been developed in connection with this complex task. While often tailored to

a specific area, each of these approaches is broad in explanatory scope and

has wide potential applicability. We now briefly review three of these general

paradigms that share some relationship to the present paper.

The dominant approach, based on coordination failures, postulates a game

with strategic complementarities and multiple Pareto-ranked pure-strategy Nash

equilibrium points. Diversity is then synonymous with making different equilib-

rium selections, with the high-performing entity picking the Pareto-dominant

equilibrium and the low-performing entity failing to do so. This argument is

thus generally predicated on the presence of two identical and non-interacting

economies, each operating under a different equilibrium out of the same equi-

librium set. It may also be invoked to explain diversity across time within the

same economy, with booms and recessions corresponding to operation under the

Pareto dominant and inferior equilibria respectively. This literature includes as

key studies Cooper and John (1988), Murphy, Schleifer and Vishny (1989), and

is surveyed by Cooper (1999).

The coordination failures approach has been criticized for failing to offer

any compelling argument for the diversity in equilibrium selections in the two-

economy model or for the regime switch in the one-economy model. Matsuyama

(2002) proposes a modification of the former model by creating an interac-

tive link between the two sub-economies and allowing the two players to take

two decisions, one in each sub-economy. Under some conditions on the larger

game with a priori identical players, namely that the players’ actions are pair-

wise strategic complements and each player’s actions are substitutes due to a

fixed total resource constraint, multiple equilibria arise with the property that

the symmetric equilibrium is unstable while the two asymmetric equilibria are
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stable, both in the sense of Cournot dynamics. Endogenous heterogeneity in

this approach is then predicated on the central postulate that only Cournot-

stable equilibria are observable outcomes of this complex game, any of which

would involve each agent taking different actions in the two ex ante identical

sub-economies. Matsuyama (2000, 2002, 2004) coined the term ”symmetry-

breaking” to refer to this heterogeneity-generating process.

The third approach originates in the business strategy literature, and is often

presented as part of a general critique of economic theory. With their traditional

emphasis on investigating the workings of firms as complex organizations, strat-

egy scholars have been particularly concerned with understanding the sources

and dynamics of inter-firm heterogeneity along various functions and charac-

teristics. In the dominant view, as articulated by Nelson and Winter (1982),

firms operate in such highly complex and ever-changing environments that they

entertain no hope of ever accumulating enough knowledge about their world

to view it as a strategic game or formulate a precise game-theoretic strategy

to guide their overall behavior. Rather, firms grope for economic performance

via a heuristic learning process of trial and error and the continual updating

of routines and rules of thumb eschewing optimization. In this evolutionary

vision, heterogeneity is simply an inevitable outcome of this groping behavior,

with firms ending up with different heuristic strategies and core capabilities to

implement them. These ”discretionary” differences can then be sustained over

extended periods of time due to the presence of barriers to successful imitation

generated by the differences in core competencies, and also by forces of path

dependence in the evolution of firms’ choices. This literature often criticizes

economic theory for not adequately accounting for inter-firm differences, other

than postulating them either as reflecting variations in initial conditions, or as

exogenous consequences of the luck of a draw in stochastic models. This failure

is attributed to the fact that economic theorists persist, as part of their excessive

reliance on complete rationality, in ”taking a firm’s choice sets as obvious to it

and the best choice similarly clear and obvious” (Nelson, 1991).1

1An interesting development over the last two decades is a strand of literature straddling the
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The present paper constitutes an attempt to contribute to this rich debate

along standard lines of argument in applied game theory and industrial orga-

nization. Consider a two-player symmetric normal-form game characterized by

two key properties: (a) actions form strategic substitutes, and (b) each player’s

payoff, though continuous, admits a key nonconcavity along the diagonal in ac-

tion space, which results in a jump of the reaction correspondence across the 45o

line. Such a game always admits pure-strategy Nash equilibrium points due sim-

ply to the property of strategic substitutes. Furthermore, due to property (b),

no such equilibrium could ever be symmetric. At any of the possibly multiple

equilibria, which obviously occur in pairs due to the symmetry of the game, oth-

erwise identical agents will necessarily take different equilibrium actions. While

this description exactly fits the main result of the paper, we consider two other

related classes of games that always possess asymmetric, but never symmetric,

pure-strategy equilibria although they are, strictly speaking, not of strategic

substitutes. This suggests that the latter property is not as critical as the diag-

onal nonconcavity property in generating exclusively asymmetric outcomes.

Since payoffs are continuous in actions in all three classes of games under con-

sideration, these games will typically admit a symmetric mixed-strategy Nash

equilibrium (Dasgupta and Maskin, 1986). As this would be the only focal

equilibrium in the sense of Schelling (1960), it may reasonably be advanced as a

plausible outcome of such a game. Nevertheless, in the actual realization of the

equilibrium randomizations, the players will still end up playing different actions

with high, if not full, probability. Hence, given a focus on explaining observed

heterogeneity, this approach need not rule out mixed strategies a priori.

Towards the goal of generating endogenous heterogeneity, this approach is

obviously closest in spirit to Matsuyama’s symmetry-breaking explanation. By

allowing for suitable discontinuities in the players’ reaction curves, it dispenses

with the need to interconnect two separate games in the somewhat complex

traditional boundaries between industrial organization and business strategy and addressing

issues of interest to both fields, making them increasingly related: See Shapiro (1989), Rumelt,

Schendel and Teece (1991), Roller and Sinclair-Desgagne (1996).
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(and subtle) manner proposed by Matsuyama. More importantly, it also pro-

vides a framework that is independent of the controversial argument of outright

rejecting Cournot-unstable equilibria. Indeed, even when one ignores the focal

nature derived from their symmetry, it is worthwhile to observe that these equi-

libria cannot be ruled out on account of any of the standard Nash equilibrium

refinements, such as normal-form perfection or strategic stability (Kohlberg and

Mertens, 1986).2 Furthermore, in an experimental setting involving a symmet-

ric two-player game with one unstable symmetric equilibrium and a pair of

asymmetric equilibria, Cox and Walker (1998) found little support in the data

for any of the three equilibria. This provocative finding suggests that while a

Cournot-unstable equilibrium of a given game may be justifiably regarded as

unobservable, it does not thereby follow that some Cournot-stable equilibrium

of the same game will necessarily prevail and thus be observable. Rather, the

presence of both Cournot-stable and unstable equilibria may engender a high

level of indeterminacy, which may critically reduce the predictive power of the

game.

Our findings may also be advanced as a rebuttal to the aforementioned

criticism from the business strategy literature. Indeed, while sharing their mo-

tivation for understanding intra-industry heterogeneity, this approach underlies

a general methodology for generating inter-firm differences out of a strategic

game with fully rational and completely informed players. The contrast with

the evolutionary explanation is rather striking. Instead of discretionary differ-

ences that inevitably arise out of the idiosyncratic heuristic response that each

firm develops in isolation from other firms as a result of its multi-faceted op-

eration in an extremely complex environment, we uncover strategic differences

that arise out of a fully-fledged game-theoretic interaction amongst firms in a

simple and completely known environment. We will return to this contrast in

the specific context of an R&D game in a subsequent section.

2 Indeed, they are typically strict Nash equilibria (in the sense that a unilateral deviation

will lead to a strict loss for the deviator), and thus would survive any of the well-known

refinements.
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The present paper may also be motivated in relation to various broad strands

of literature in industrial economics dealing in some way with strategic endoge-

nous heterogeneity along lines similar to ours here. The first literature that

comes to mind is concerned with product differentiation. In a myriad of two-

stage games where each firm chooses a quality level or a horizontal characteristic

in the first stage, and then a price for its product in the second stage, endoge-

nous heterogeneity naturally emerges out of the firms’ perception that identical

choices in the first stage will lead to zero profits in the second stage Bertrand

competition due to the resulting homogeneity of the products. See in particular

Gabszewics and Thisse (1979), Shaked and Sutton (1982) for vertical product

differentiation and Tabuchi and Thisse (1995) for horizontal product differen-

tiation with a non uniform density. The present paper will direcly generalize

Motta (1993) and Aoki and Prusa (1996).

The second, extensive literature deals with infinite-horizon industry dynam-

ics allowing for entry and exit. One class of models, exemplified by Jovanovic

(1982), postulates perfectly competitive firms for which differences emerge due

to exogenous idiosyncratic technology shocks. Another class is formed by studies

that do generate endogenous heterogeneity in long run dynamics by considering

firms that invest in capacity expansion (e.g. Besanko and Doraszelski, 2002)

or R&D (e.g. Doraszelski and Satterthwaite, 2004). Simpler two-stage models

with similar flavor but without entry and exit also generate endogenous differ-

ences amongst competing firms: Reynolds and Wilson (2000) and Maggi (1996)

for capacity expansion and Amir and Wooders (1999, 2000) for R&D.

There are several other studies in various areas of industrial organization

where endogenous heterogeneity emerges in a strategic setting. Hermalin (1994)

deals with a two-stage game where firms’ choices of managerial structures take

place before market competition. Mills (1996) and Amir (2000) deal with R&D

games giving rise to equilibrium outcomes with maximal heterogeneity only, i.e.

full R&D by one firm and no R&D by the rival.3 In public economics Mintz

3Another strand of literature, not directly related to our setting, deals with endogenous

heterogeneity arising out of hybrid models of joint ventures where firms make a cooperative
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and Tulkens (1986) exhibit asymmetric tax rates for identical member states.

As a second motivation, the present paper is an attempt to develop a unifying

approach to understanding symmetry-breaking mechanisms in general classes

of two-player games, encompassing many of the cited studies. These two-stage

models share two key features that are critical for the symmetry-breaking ar-

guments they present. The first is a fundamental nonconcavity in the payoffs,

which may be confined to the diagonal in action space or hold globally, and the

second is some form of strategic substitutes in first-period actions, possibly of

an abstract sort (more on this in Section 4). While there is quite some variation

in the precise manner versions of these two features are present and interact

across all the models, we will be able to capture most of them in three separate

general results, which though quite distinct at first sight, nonetheless bear some

definite relationship at an abstract level.

The paper is organized as follows. Section 2 contains the overall set-up. Sec-

tion 3 provides the results on the exclusive existence of asymmetric equilibria

for submodular payoff functions. Section 4 deals with nonsubmodular payoff

functions and Section 5 presents the results for games with convex payoffs. Sec-

tion 6 discusses an extension to ordinal complementarity and substitutability

conditions. Each section provides a summary of the relevant applications the re-

sults pertain to. The appendix provides a brief overview of the supermodularity

notions and results.

2 Setup

This section lays out the general notation for use throughout the paper. The

nooncooperative game described below may be a simple one-shot game or it may

represent the payoffs of a two-stage game as a function of the first period actions,

where the unique second stage pure-strategy equilibrium has been substituted

in. In the latter case, which actually covers most of the applications of this

decision in the first stage followed by product market competition in the second stage: See

e.g. Salant and Shaffer (1998,1999) and Long and Soubeyran (2001).
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paper, we obviously restrict consideration to subgame-perfect equilibria and

analyze the resulting one-shot game.

Consider a two-player normal form game Γ given by the tuple (X,Y, F,G).

Let X and Y be the action sets of player 1 and 2 respectively, such that X =

Y = [0, c] ⊂ R. The maps F and G : X × Y → R are the payoff functions of

players 1 and 2 respectively and F can be expressed as:

F (x, y) =

⎧⎨⎩ U(x, y), x ≥ y

L(x, y), x < y
(1)

By symmetry of the game Γ, G can be expressed as:

G(x, y) =

⎧⎨⎩ L(y, x), x ≥ y

U(y, x), x < y
(2)

Observe that, somewhat contrary to standard practice, the first argument of

F is the action of player 1 while the first argument of G is the action of player

2. It is useful to define the following sets:

∆U = {(x, y) ∈ R2 : x ≥ y} and ∆L = {(x, y) ∈ R2 : x ≤ y}.

It will be assumed throughout the paper that U , L, F and G are jointly con-

tinuous functions of the two actions. Define the best response correspondences

(reaction curves) for players 1 and 2 respectively as r1(y) = argmax{F (x, y) :
x ∈ [0, c]} and r2 (x) = argmax{G(y, x) : y ∈ [0, c]}.
As usual, a pure strategy Nash equilibrium (or PSNE for short), (x∗, y∗) ∈

[0, c]2 is said to be symmetric if x∗ = y∗, and asymmetric otherwise. It follows

from the symmetry of the game that if (x∗, y∗) is a PSNE, (y∗, x∗) is also a

PSNE.

Each of the next three sections investigates a separate class of normal-form

symmetric games that always possess asymmetric Nash equilibria and no sym-

metric Nash equilibria. For each of the three classes, we provide a general result

establishing both the existence and the inexistence conclusions and an illustra-

tion based on previous studies where a special case of the result was derived in

a specific setting.
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The definitions and main results from the theory of supermodular games

used in this paper are reviewed in the appendix in a very simple way, which is

sufficient for the purposes of this paper.

3 Endogenous heterogeneity with strategic sub-

stitutes

In this section, we consider a two-player symmetric normal-form game charac-

terized by two key properties. The first is that actions form strategic substitutes.

This means that an increase in one player’s strategy lowers the other player’s

marginal returns to increasing his own strategy. As a result, players respond

optimally to an increase of the opponent’s choice with a decrease of their own

variable. In other words, the best reply correspondences are downward-sloping

and a pure-strategy Nash equilibrium exists (see, Vives, 1990 and Milgrom and

Roberts, 1990).

The second key property is that each player’s payoff, though jointly contin-

uous in the two actions, admits a fundamental nonconcavity along the 45o line,

giving rise to a canyon shape along the diagonal. A key consequence of this

feature is that a player would never optimally respond to an action of the rival

by playing that same action.

Taken together, these two properties imply that each best reply is a de-

creasing correspondence with a (downward) jump over the 45o line.4 Hence,

no PSNE could ever be symmetric. At any of the possibly multiple equilib-

ria, which obviously occur in pairs due to the symmetry of the game, ex ante

identical agents will necessarily take different equilibrium actions.

While all three results presented in this paper share this same flavor, the

main result in terms of the generality of the assumptions and thus of the scope

of applicability is this section’s.

4 In this paper, we will say that a function f : R → R is increasing (strictly increasing) if

x0 > x implies f(x0) ≥ (>)f(x). A correspondence is increasing if its maximal and minimal

selections are increasing functions (as in the conclusion of Topkis’s Monotonicity Theorem).
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3.1 The results

Different subsets of the following assumptions will be needed for our conclusions

below. The notation is as laid out in Section 2.5 A full discussion of the

assumptions and results is presented at the end of the section. Most of the

proofs can be found in the appendix.

A1 U , L are submodular

A2 U1(x, x) > L1(x, x),∀x ∈ (0, c)

A3 U1(0, 0) > 0, L1(c, c) < 0

A1 says that on either side of the diagonal, but not necessarily globally,

each player’s marginal returns to increasing his action decrease with the rival’s

action. A2 holds that each player’s payoff, though globally continuous in the

two actions, has a kink along the diagonal in the shape of a ”valley”. The role

of A3 is simply to rule out PSNEs at (0, 0) or (c, c).

These assumptions form a sufficiently general framework to encompass many

of the studies mentioned in Section 1 as illustrated below. Furthermore, all three

assumptions are easy to check in a particular model.

Theorem 3.1 Assume that A1−A3 hold. Then the game Γ is of strategic sub-
stitutes, has at least one pair of asymmetric PSNEs and no symmetric PSNEs.

The idea of the proof is that overall submodularity of the payoff function is

inherited from the submodularity of its components U and L in the presence

of assumption A2. We know from Topkis’s Monotonicity Theorem that global

submodularity of the payoff function implies globally decreasing best replies.

Assumptions A2 − A3 imply that the best replies have a downward jump that

crosses over the diagonal. This situation is depicted in figure 1.6 (We caution the

5 In addition, throughout the paper, partial derivatives are denoted by a subindex corre-

sponding to the relevant variable, i.e. U1(x, y) =
∂U(x,y)

∂x
and U2(x, y) =

∂U(x,y)
∂y

.
6Notice that unusually x is the variable in the vertical axis. This corresponds to analyzing

the game from the point of view of player 1 that chooses x as a response to y. We maintain

this convention throughout.
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Figure 1: Decreasing reaction curves have a jump along the diagonal, and there

is no symmetric equilibrium

reader that the continuity of the reaction curves in each triangle over and below

the diagonal is only there for the sake of a clearer figure. It needs not hold under

assumptions A1- A3). The first result gives us existence of equilibrium via the

strategic substitutes property, and the second precludes symmetric equilibria.

The complete proof can be found in the appendix.

Theorem 3.1 does not rule out the existence of multiple pairs of PSNEs. In-

deed, the two reaction curves may intersect several times above and below the

diagonal. In case of multiple pairs of PSNEs, there will typically be co-existence

of pairs of Cournot-stable and pairs of Cournot-unstable PSNEs. Neverthe-

less, Theorem 3.1 does imply that all of these PSNEs are asymmetric. Hence

symmetry-breaking in this context does not rely on the rejection of Cournot-

unstable symmetric PSNEs. In the same vein, this type of symmetry-breaking

is not at odds with Schelling’s (1960) notion of focalness of PSNEs.

The next result adds further restrictions of a general nature on the payoff

components of our game that lead to a unique pair of PSNEs, which are then

necessarily Cournot-stable.7 In this case, symmetry-breaking is coupled with

7 It is worthwhile to point out here that our results indicate an even total number of PSNEs,

in apparent conflict with the well-known odd number results. The explanation is that the latter

results are based on degree theory and require continuity of the best-response form. Given

12



more predictive power of the game, although the selection of one PSNE from

the pair still remains indeterminate, as is standard in symmetric settings.8

Theorem 3.2 Assume that U and L are twice continuously differentiable and that

the following holds:

U11(r (z) , z)− U12(r (z) , z) ≥ 0 (3)

L11(r (z) , z)− L12(r (z) , z) ≥ 0 (4)

then there is exactly one pair of PSNEs.

The next result is devoted to comparing the two asymmetric PSNEs from

any given pair from the point of view of the players’ welfare. Given any pair

of asymmetric PSNEs, it is often of interest to determine circumstances where

a given equilibrium secures better payoffs for a player. In other words, under

what conditions would each player prefer the PSNE where he is the high or the

low-activity player? To this end, we need to impose a condition of monotonicity

on the payoff function of the player in question along his opponent’s best reply

as stated in the following result, which lays out conditions for player 1 (say) to

prefer the PSNE where he is the low-activity player.9

Theorem 3.3 Let x∗ > y∗, so that (x∗, y∗) and (y∗, x∗) are equilibria in ∆U

and ∆L, respectively. If A1−A3 hold and moreover U(r1(y), y) and L(r1(y), y)

are increasing in y ∈ [0, c] then F (x∗, y∗) ≤ F (y∗, x∗).

There is a dual statement giving conditions under which each player would

prefer the high-activity equilibrium, given any pair of PSNEs. Being obvious

from Theorem 3.3, it is omitted for the sake of brevity.

our systematic and robust jump across the diagonal, our findings are actually consistent with

the odd number result in a generic sense.
8As mentioned in the Section 1, assumptions A1 − A3 imply that our game admits a

symmetric mixed-strategy Nash equilibrium. However, in the actual realization of such an

equilibrium, the two players will be heterogeneous with high, if not full, probability.
9This monotonicity assumption is clearly more general than assuming that each player’s

payoff is increasing in the rival’s action. For an example illustrating this point, see von Stengel

(2003).
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3.2 Applications

In this section we present examples of economic models that constitute spe-

cial cases of the general framework developed above. While the assumptions

validating Theorem 3.1 might at first appear somewhat special, they are sat-

isfied in several a priori unrelated studies that have established endogenous

heterogeneity in strategic settings. There are also some studies where asym-

metric equilibria are produced via a mechanism similar to our Theorem 3.1,

without being a special case in a formal sense. Going over some of these ex-

amples illustrates the unifying character of our results and allows us to provide

some contextual interpretations of endogenous heterogeneity, or our version of

symmetry-breaking.

3.2.1 R&D investment

The first example is based on the model by Amir and Wooders (2000). Two a

priori identical firms with initial unit cost c are engaged in a two stage game

of R&D investment and production. In the first stage, autonomous cost reduc-

tions x and y for firms 1 and 2, respectively, are chosen. The novel feature of

this study is that spillovers are postulated to flow only from the more R&D

active firm to the rival, but not vice versa. The effective (post-spillover) cost

reductions X and Y when x ≥ y are given by:

X = x and Y =

⎧⎨⎩ x with probability β

y with probability 1− β
(5)

Second stage product market competition, be it Cournot or Bertrand, is assumed

to have a unique PSNE with equilibrium payoffs given by Π : [0, c]2 → R.10

Π(x, y) is the payoff of the firm whose unit cost is the first argument. f :

[0, c] → R is a known R&D cost schedule. Amir and Wooders (2000) assume

the following:

C1 Π and f are twice continuously differentiable

10This is a standard assumption in the literature.
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C2 Π is strictly submodular and Π1 (x, y) < 0 and Π2 (x, y) > 0

C3 Π(x, x) < Π(y, y) if x > y

C4 |Π1(x, x)| > |Π2(x, x)| ,∀x ∈ [0, c]

C5 f 0 (x) ≥ 0 and f(0) ≥ 0

C6 f 0 (0) < −βΠ2 (c, c)−Π1 (c, c) and f 0 (c) > − (1− β)Π1 (0, 0)

The overall payoff of firm 1, F (x, y), defined as in (1), is given by the dif-

ference between its second stage profit and first stage R&D cost. The payoff of

firm 2 is G(y, x) by symmetry.

U(x, y) = βΠ (c− x, c− x) + (1− β)Π (c− x, c− y)− f (x) (6)

L(x, y) = βΠ (c− y, c− y) + (1− β)Π (c− x, c− y)− f (x) (7)

We can easily check that assumptions A1, A2 and A3 indeed hold in or-

der to apply Theorem 3.1. U and L are continuous and differentiable because

they result from the sum of continuous and differentiable functions. U(x, x) =

L(x, x),∀x ∈ [0, c], so F and G are continuous. A1 can be checked by using

the cross-partial test and the fact that Π(x, y) is submodular (Assumption C1).

Also, Using C2, and

U1 (x, x) = − [Π1 (c− x, c− x) + βΠ2 (c− x, c− x)]− f 0 (x) (8)

L1 (x, x) = − (1− β)Π1 (c− x, c− x)− f 0(x) (9)

we obtain that U1(x, x) > L1 (x, x) , therefore A2 is verified.

From Theorem 3.1, we can conclude that payoff functions for both players

are submodular and thus reaction curves are downward sloping and there exists

at least one PSNE. Moreover the reaction curves do not intersect the diagonal

and by C6, U1 (0, 0) > 0 and L1 (c, c) < 0, so there is no symmetric equilibrium

in x ∈ [0, c]. The uniqueness of a pair of asymmetric PSNEs is shown by

imposing conditions that secure that the reaction curves are contractions, so

that Theorem 3.2 can be applied. Similarly, extra conditions are needed to
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apply Theorem 3.3 and Amir and Wooders conclude that player 1 prefers the

equilibrium in ∆U (for details, see Amir and Wooders, 2000).

This model provides a good opportunity for a typical economic interpre-

tation of strategic endogenous heterogeneity in a context that is of particular

interest to business strategy scholars. Indeed that field typically attaches a great

deal of importance to the innovation process and to its central role in dynamic

competition. The key driving force behind asymmetric equilibrium outcomes

here is the one-way nature of the spillover process. A firm will always react

by performing either less R&D than its rival knowing that it may free ride on

the difference in R&D levels, or, in case the rival’s R&D is simply too low, by

overtaking it. In this vision, firms will endogenously settle into R&D innova-

tor and imitator roles simply as a reflection of the nature of the R&D spillover

process. This critical difference arises as a consequence of strategic thinking

in a fully interactive setting: though facing equal and known opportunities in

all respects, firms emerge as fundamentally different in all possible equilibria

of a robust and general model. In strategic settings, there may simply be no

single ”best choice” (to paraphrase Nelson, 1991) for all ex ante identical firms

facing the same available choices, simply because one firm’s choice has a direct

influence on what becomes best for its rivals.

This difference in one key component of firms’ overall strategies will then

be a causal factor, through natural complementarity-reinforcing developments,

for heterogeneity in other aspects of firms’ strategies, including in particular

firm size and organization (see Amir and Wooders, 1999 for details). This

perspective stands in sharp contrast to the explanation for inter-firm differences

characterized by idiosyncratic groping behavior on the part of firms and weak

interaction amongst them in a world of high uncertainty and complexity, as

often envisioned in the strategy literature.
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3.2.2 Provision of Information

The second example deals with the provision of information in Bertrand oligopoly,

see Ireland (1993). Two a priori symmetric firms produce a homogeneous prod-

uct and play a two stage game. In the first stage, each firm sets the level of its

product information and in the second stage they compete in prices. Informa-

tion regards only the existence of the product. Consumers may obtain costless

information about prices of products that they know to exist. The number of

consumers is normalized to 1. The variables x and y are the proportions of

consumers who know about product 1 and 2 respectively. Each consumer is not

willing to pay a unit price higher than 1. Firm 1’s sales are given by:

Q1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if p1 < p2

x− xy
2 if p1 = p2

x− xy if p1 > p2

(10)

For x = y = 1 the Bertrand oligopoly has a pure strategy Nash equilibrium

at p1 = p2 = 0. If information is not full (x or y or both are less than 1),

no pure strategy Nash equilibrium exists. There exists a mixed strategy Nash

equilibrium given by the distribution function Gi (pi) that has the following

form respectively for firm 1 and 2 .

G1(p) =

⎧⎨⎩
1−(1−x)/p

x if 1− x ≤ p ≤ 1
0 if 0 ≤ p ≤ 1− x

G2(p) =

⎧⎨⎩
1−(1−x)/p

y if 1− x ≤ p ≤ 1
0 if 0 ≤ p ≤ 1− x

(11)

The overall payoff for (say) firm 1 in the game, upon substituting the second

stage equilibrium payoffs, is given by F (x, y) = Ep (p1Q1) or

F (x, y) =

⎧⎨⎩ U(x, y) = x (1− y) if x ≥ y

L (x, y) = x (1− x) , if x ≤ y
(12)

It is trivial to show that assumptions A1, A2 and A3 are verified in this

example. There exists an equilibrium and this equilibrium cannot be symmetric

for p ∈ (0, 1). Moreover U1 (0, 0) > 0 and L1 (1, 1) < 0. So we can conclude

from Theorem 3.1 that no symmetric equilibria exist for p ∈ [0, 1] .
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Figure 2: Reaction curves are constant except for a jump down, which precludes

symmetric equilibrium.

The number of equilibria may be obtained by finding the explicit form of

the reaction curves.

r1 (y) =

⎧⎨⎩ 1 if y ≤ 1/2
1/2 if y > 1/2

r2 (x) =

⎧⎨⎩ 1 if x ≤ 1/2
1/2 if x > 1/2

(13)

Figure 2 illustrates that there exists exactly one pair of pure strategy Nash

equilibria, namely (1, 12) and (
1
2 , 1) .

We can compare equilibria from the point of view of player 1, using the dual

to the Theorem 3.3. The payoff function of player 1 when x ≤ y, is constant

along his best reply, i.e. L2(r1 (y) , y) = 0. Therefore we conclude that player 1

prefers the equilibrium where he is more active.

4 Endogenous heterogeneity without monotonic

best replies

In the previous section we discussed symmetry breaking via strategic substitutes

and nonconcavity of the payoff function. In this section we extend the analy-

sis from the previous section to encompass other forms of strategic interaction.
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The main difference is that agents’ strategies form (partially) strategic comple-

ments. This occurs when a more aggressive strategy from one agent rises the

other player’s marginal returns to increasing his own strategy. Consequently, an

increase of the opponent’s choice is responded to by an increase of own choice

variable. This property implies that best-replies are increasing in own action.

As stated above, strategic complementarities are partial in the sense that they

are not observed overall. Reaction curves are piecewise increasing, however due

to a symmetry breaking nonconcavity in the payoff function, they possess a

jump down across the diagonal. The common aspect to the whole analysis is

the canyon shape of the agents’ payoff functions along the 45o line. Once again,

a player would never optimally respond to an action of the rival by playing that

same action. Whereas in the previous section the submodularity of the payoff

function (or alternatively the strategic substitutability) was a global feature, in

this section we cannot state global supermodularity (or strategic complemen-

tarity). The main consequence is that we cannot guarantee without further

assumptions the existence of a PSNE. Nevertheless, when it exists, it will never

be symmetric.

When strategies are strategic complements, there is no need to assume the

quasiconcavity of the payoff function in order to guarantee the existence of a

PSNE. The reason is that existence might be based on the fact that reaction

curves are increasing and continuity plays no role. Likewise, when payoff func-

tions are quasiconcave supermodularity is not crucial for arguing the existence of

a PSNE. When player’s payoff function is partially quasiconcave and possesses a

nonconcavity along the diagonal, we obtain the same type of symmetry-breaking

already discussed. In this case, reaction curves are continuous (not necessarily

increasing), except for the jump across the diagonal. Existence of PSNE can be

assured (as before) via added conditions, however it is clear that no PSNE can

be symmetric.

We provide now the main results of this section, first for the case in which

strategic complementarities are present and then for the case of partially qua-

siconcave payoff functions.

19



4.1 The results

In this section we analyze the case in which the components of the payoff func-

tion, U and L, are not submodular. We first consider the case in which U and L

are supermodular and then the case where U and L do not have this property,

which is replaced by quasiconcavity.

Consider the following assumptions:

B1 U and L are supermodular.

B2 U and L are differentiable and U1(x, x) > L1(x, x),∀x ∈ (0, c)

Define r1 (y) = argmax{U (x, y) : (x, y) ∈ ∆U} and r1 (y) = argmax{L (x, y) :
(x, y) ∈ ∆L}

B3 U2(r1 (y) , y) < L2(r1 (y) , y),∀y ∈ Y

B4 U1(0, 0) > 0, L1(c, c) < 0

B5 U1 (x, 0) > 0, ∀x < d and L1 (x, c) < 0, ∀x > d, for d : r1(d − ε) > d >

r1(d+ ε)

B1 says that on either side of the diagonal, but not necessarily globally,

each player’s marginal returns to increasing his action increase with the rival’s

action. B2 holds that each player’s payoff, though globally continuous in the

two actions, has a valley-like shape along the diagonal. B3 is responsible for

the uniqueness of the jump in the reaction curves. B4 excludes the existence

of equilibria in (0, 0) and (c, c). Finally, B5 restricts the reaction curves to a

compact subset of the action space which enables us to prove the existence of

an asymmetric PSNE.

These assumptions form a sufficiently general framework to encompass many

of the studies mentioned in Section 1 as illustrated below. Furthermore, all

assumptions are possible to check in a particular model.

Lemma 4.1 If B1−B4 hold, then there exists exactly one d ∈ [0, c] such that
r1(d− ε) > d > r1(d+ ε), ∀ε > 0.
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This Lemma guarantees that the reaction curves possess a jump and that this

jump is unique. The flavor of the proof is the following: given supermodularity

of U and L, we know that reaction curves are increasing in ∆U and in ∆L.

Assumption B2 implies that there is no interior symmetric equilibrium due to

the presence of a canyon along the diagonal. Furthermore, assumption B4 rules

out symmetric equilibrium on the boundary. This is equivalent to saying that

the reaction curves do not intersect the diagonal on the whole strategy space.

Hence, there must be a jump across the diagonal. Finally assumption B3, that

entails an idea of monotonicity of maxima along y, guarantees that in case a

jump occurs, it is unique. From this Lemma we can conclude that the reaction

curves possess a jump across the diagonal in a point d and that once it occurs,

the reaction curves never jump back again. The point d is useful to define

subsets of the strategy space, which are necessary in the next theorem.

The following theorem implies that no symmetric PSNE exists for a game

where assumptions B1−B5 hold and that a PSNE exists. From these premises

we can conclude that there are only asymmetric PSNEs.

Theorem 4.1 Assume that B1−B5 hold, then there exist at least one pair of

asymmetric PSNEs and no symmetric one.

The intuition behind this result is the following: from Lemma 4.1 we have

that the reaction curves are partially increasing (as they increase in each side of

the diagonal) and possess a unique downward jump at point d. Since reaction

curves are not overall increasing we cannot guarantee without further assump-

tions the existence of a PSNE. Introducing assumption B5 guarantees that the

reaction functions are well defined in R = {(x, y) : d ≤ x ≤ c, 0 ≤ y ≤ d}, R ⊂
∆U and R0 = {(x, y) : 0 ≤ x ≤ d, d ≤ y ≤ c}, R0 ⊂ ∆L, in the sense that

they are completely contained in these compact subsets of the strategy space.

We obtain, hence, increasing maps in compact sets and Tarski’s Fixed Point

Theorem can be applied to show that within these sets a PSNE exists.

Note that we can reorder one player ’s action set in a nonstandard way to

obtain a submodular game. Consider action space of (say) player 1 as (d, 0] ∪
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Figure 3: Reaction curves are partially increasing, but posses an unique jump

down, which precludes any symmetric equilibrium.

[c, d), ordered from left to right. The other player’s action space order remains

without change. It can be verified, that the game satisfying B1 − B5 then

becomes a game of strategic substitutes.

Now consider another property of U and L.

B1’ U and L are quasi-concave.

The assumption B1 can be replaced by the assumption B10 which guarantees

that player’s best replies are continuous (not overall) and still the result holds.

In other words, the supermodularity of U and L is not necessary (even though

often observed in applications) for the existence of only asymmetric PSNE in

this framework. In particular, assuming that U and L are quasiconcave implies

that the reaction curves are partially continuous (even though not monotone)

and thus, as long as the unique jump across the diagonal exists and the reaction

curves are completely contained in compact subsets of the domain, we can show

the existence of asymmetric PSNE. Since monotonicity cannot be guaranteed

anymore Tarski’s Fixed Point Theorem must be replaced by Brouwer’s Fixed

Point Theorem in showing the existence of PSNE.

Lemma 4.2 If B10 and B2− B4 hold, then there exists exactly one d ∈ [0, c]
such that ∀ε > 0: r1(d− ε) > d > r1(d+ ε),
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Theorem 4.2 Assume that B10 and B2−B5 hold then there exist at least one

pair of asymmetric PSNEs and no symmetric one.

The proofs of these results follow the same reasoning as the proofs of the

precedent ones, however, existence of PSNE is now guaranteed through the

application of Brouwer’s Fixed Point Theorem (which is suitable given that

payoff functions are quasiconcave).

Uniqueness of a pair of equilibria can be shown if reaction functions are

contractions by using Banach’s Fixed Point Theorem as in the previous section.

A comparison of equilibria when payoff functions are partially supermodular

(or quasiconcave) can be done in the same spirit of Theorem 3.3. Instead of

assuming A1 − A4 we assume B1 − B5 (B10 − B5). In the proof, the second

inequality follows now from the fact that x∗ ≥ d and Assumption B3.11

Adopting the results of Echenique (2004), wherein the order on the action

spaces is not exogenously given would enlarge the scope of supermodular games.

In particular, since our game here has at least two PSNEs, one can always find

a partial order such that it becomes a supermodular game (Echenique, 2004,

Theorem 5).

4.2 Applications: Quality Investment

We illustrate the results of this section with two papers dealing with quality

investment problems. The first paper we analyze is Aoki and Prusa (1996). In

this paper, two identical firms produce products differentiated by quality, in a

two-stage setting. In the first stage firms 1 and 2 decide the level of quality

investment x ∈ [0, c] and y ∈ [0, c] respectively, and in the second stage they
simultaneously announce prices.12

Consumers are diversified in their willingness to pay for quality. Production

cost is assumed to be 0 and firm 1 (firm 2) incurs a cost of quality investment

11 It is easy to see that Assumption B3 means that for z > d, U (r1 (z) , z) < L (r1 (z) , z) .
12Aoki and Prusa (1996) consider unlimited quality investments. We impose the upper limit

c, arbitrarily big, such that the strategy spaces are compact.
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f(x) = kx2
£
f(y) = ky2

¤
, k > 0. A detailed study of the second stage equilib-

rium of this game can be found in Gabszewicz and Thisse (1979) and Shaked

and Sutton (1982). The subgame perfect equilibrium of the whole game can

be obtained by backward induction and first stage overall payoffs for firm 1 are

given as follows:

F (x, y) =

⎧⎨⎩ U(x, y) = 4x2(x−y)
(4x−y)2 − kx2 if x ≥ y

L(x, y) = yx(y−x)
(4y−x)2 − kx2 if x < y

(14)

Now we can check whether assumptions of Theorem 4.1 are fulfilled. Given

that U and L are differentiable we can check supermodularity (Assumption B1)

by recurring to Topkis’s Characterization Theorem. Consider that U1(x, x) =
4
9 − 2x and L1 (x, x) = −19 − 2x, so U1 (x, x) > L1 (x, x) which verifies B2. To

check B3 we compute:

U2 (r1 (y) , y) = −4r21 (y)
2r1(y)+y

(4r1(y)−y)3
L2 (r1 (y) , y) = −r21 (y)

2y+r1(y)

(−4y+r1(y))
3

(15)

Since r1 (y) > y > r1 (y) the condition B3 holds. We know, hence, that the

reaction curves are upward sloping except for a downward jump at a point d.

Since U(0, 0) is not defined we cannot check the first part of B4 directly, we

must compute limx→0 U1 (x, x). We obtain limx→0 U1 (x, x) =
4
9 > 0 which

means that increasing quality investment at point (0, 0) is profitable for both

firms. Point (0, 0) is thus ruled out as a pure strategy Nash equilibrium of

the game. As for the second part of B4, it is easily verified by the fact that

L1 (c, c) = −
¡
1
9 + 2kc

¢
< 0. From Lemma 4.1 we have that if there is an

equilibrium, it cannot be symmetric in [0, c]2.

To apply Theorem 4.1 we must also check, whether B5 is verified. To this

end, we must find the point d where the reaction curve has a jump. If the

reaction curve is given implicitly, there is no algorithm to find this point d,

however it is possible to find it through numerical methods. In the case of the

model by Aoki and Prusa (1996), the point d is equal to 1
12k . It is possible to

compute that U1 (x, 0) = 1
4 − 2kx ≥ 0 for x > d and that for sufficiently big c,

L1 (x, c) = limy→∞ L1(x, y) = −2kx + 1
16 < 0 for x > d. So the assumptions
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of Theorem 4.1 are satisfied and we can conclude that there exist only asym-

metric equilibria in the game. Furthermore, reaction curves in this model are

contractions and so a unique pair of equilibria exists.

The second paper that can be analyzed under our framework is Motta (1993).

He develops two versions of a vertical product differentiation model, one with

fixed and the other with variable cost of investment in quality. In each of them,

he compares price versus quality competition. The model with fixed cost and

price competition can illustrate the results of this section. Considering the same

notation as in Aoki and Prusa (1996), the payoff function is defined as follows:

F (x, y) =

⎧⎨⎩
4v2x2(x−y)
(4x−y)2 − x2

2 if x ≥ y

xyv2(y−x)
(4y−x)2 −

x2

2 if x ≤ y
(16)

Where v is the upper limit of the set of consumer’s taste parameters. This

model is analogous to Aoki and Prusa (1996) if we let v = 1 and k = 1
2 . All the

results follow directly from the above discussion.

5 Convex Payoffs

Certain features of the production technologies or consumer preferences may

lead to a situation where payoff functions are convex. In particular, the pres-

ence of highly convex demand functions or strongly concave costs translating

intensely decreasing elasticity of demand or decreasing marginal costs might

have this effect. This property of the payoff functions implies that agents prefer

corner solutions. Moreover certain additional conditions on the payoffs might

generate asymmetric equilibria and even rule out the symmetric ones. In this

section we analyze a class of games in which players have convex payoff functions

and only asymmetric PSNEs arise.

Let S = [0, c] be the strategy space of a player in a two-player game, Γ.

Consider F : S × S → R as the payoff function of player 1. G(y, x) = F (x, y)

is the payoff of player 2 because the game is a priori symmetric. Then we can

apply the following theorem to conclude about the properties of the equilibria
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of Γ.

Theorem 5.1 Assume that the following assumptions hold:

1. F is strictly quasi-convex in own strategy

2. F (c, 0) > F (0, 0) and F (0, c) > F (c, c)

Then, the game has no symmetric equilibrium and it has exactly one pair of

asymmetric equilibria given by (0, c) and (c, 0).

Proof. From the definition of strict quasi-convexity, we know that:

F (λz1 + (1− λ) z2) < max{F (z1), F (z2)},∀z1, z2 ∈ S × S

Let z1 = (0, y) and z2 = (c, y), then we know that any x ∈ (0, c) yields a
lower payoff than x = 0 or x = c, ∀y ∈ [0, c]. This means that ∀y ∈ [0, c],
r1 (y) = 0 or r1 (y) = c. Analogously, for player 2 we have the same result, due

to symmetry.

Finally, from Assumption 2 we have that (c, 0) and (0, c) are the only PSNEs

of the game.

Figure 4 illustrates the results of this section. Notice that we depicted reac-

tion curves which are not continuous, specifically, they possess an odd number

of jumps. This is a direct consequence of the Assumptions 1 and 2 that imply

either that the reaction curves are continuous, or that, if they jump, they must

jump an odd number of times.

5.1 Applications

This theorem generalizes the results of Amir (2000) and Mills and Smith (1996),

whose models are usually presented within the literature about endogenous het-

erogeneity of firms.13 In these papers it is considered a two-stage duopoly game.

In the first stage, firms make long term investment decisions that affect the pro-

duction costs. In the second stage, firms compete à la Cournot. Both firms face

13Another example where the game can be reduced to a two person normal form game

is presented in Boyer and Moreaux (1997). Conditions for the non-existence of symmetric

equilibria are the same, even if the payoff function is not convex.
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Figure 4: Quasi-convexity of the payoffs implies that players prefer corner solu-

tions.

a linear demand function and for some parameterization of the cost functions,

profits are convex in own quantity. In both papers it is then concluded that if

some conditions on the parameters hold, asymmetric equilibria might arise. It

is easily shown that the conditions presented in the papers can be deduced from

the assumptions of Theorem 5.1.

6 Extensions

Most of the results of the previous sections depend on some form of monotonic-

ity of the reaction curves. We used the cardinal notions of complementarity

and substitutability to obtain this property mainly due to its convenient char-

acterization through the cross partial derivatives of the payoff functions. Super-

modularity and submodularity are cardinal notions that are not preserved by

monotone transformations of the objective function. The usefulness of ordinal

properties under which comparative statics results are invariant is clear. Mil-

grom and Shannon (1994) proved that the result of Topkis holds when single

crossing property substitutes supermodularity of the objective function. In this

section we show that our results can be generalized to the ordinal definitions of

complementarity.
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Let F be defined as in (1) and consider the following assumptions:

A10 U and L have dual single crossing property

A4 U2(r1(y), y) < L2(r1(y), y),∀y ∈ [0, c]

The Assumption A10 is alternative to Assumption A1 defined in Section 3

and provides the ordinal condition for the reaction curves to be decreasing. As-

sumption A4 expresses monotonicity of U and L with respect to the opponent’s

action along the best replies.

We now show the main result of this section in the following steps: first we

conclude about decreasing best-replies; then we observe that there is a downward

jump in the reaction function at point d and that this jump is unique. Finally

we use Topkis fixed point theorem to conclude of the existence of equilibria in

the subsets of the strategy space defined using point d.

Finally we treat the setting of Section 4, extending its results to the ordinal

definitions of complementarity.

Theorem 6.1 If A10, A2, A3 and A4 hold, then the game Γ has at least one

pair of asymmetric PSNEs and no symmetric one.

The idea of the proof is that within ∆U and ∆L the dual single crossing

property of the payoff function F holds from assumption A10. As Milgrom

and Shannon (1994) showed, the dual single crossing property allows us to

draw the same conclusions as the submodularity of the payoff function in terms

of monotonicity of the reaction curves. Furthermore the dual single crossing

property has the advantage of being more general and preserved by monotonic

transformations. Then assumption A2 implies that there exists a jump down in

the reaction curves at a certain point d and A4 implies that this jump is unique.

With point d we define compact subsets of the strategy space where reaction

curves are decreasing and thus we can guarantee the existence of a PSNE by

Tarski’s Fixed Point Theorem.

Some results from Section 4 can also be extended into an ordinal version.

Let F be defined as in (1) and consider the following assumption:
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B100 U and L have the single crossing property

Theorem 6.2 If the assumptions B100 and B2 − B5 hold, then there exist at

least one pair of asymmetric PSNEs and no symmetric one.

From Milgrom and Shannon’s Theorem Assumption B100 implies that re-

action curves are partially increasing in ∆U and ∆L. From this fact and as

long as they are well defined in a compact subset of the strategy space, we can

obtain existence of PSNEs. The valley-shape of the profit precludes symmetric

equilibria in the same spirit as Theorem 4.1.

7 Conclusion

Our theorems assert that, under specific conditions, heterogeneity in agent’s

behavior might arise even when they are a priori identical. This paper con-

stitutes, hence, a contribution to the discussion about the sources of diversity

across economic agents and disparities in economic performances. While pre-

vious literature stands on arguments related to multiplicity of equilibria and

strategic complementarities (Cooper, 1999) or on strategic substitutability and

stability of equilibria (Matsuyama, 2002), our approach stands on the existence

of a fundamental nonconcavity of the payoff function and on some form of strate-

gic substitutability. It is, thus, similar in spirit to Matsuyama’s work. However,

we show that endogenous heterogeneity does not rely on the idea that only

stable equilibria are observable as in Matsuyama. With respect to Cooper’s ap-

proach, where agents can still choose symmetrically, our results guarantee that

symmetric equilibria can never arise in a two player setting. Even though we

have, in our model some form of strategic substitutability (notice that when

talking about two-player games strategic substitutability can be converted into

complementarity through a simple inversion of one agent’s strategy space), the

critical assumption for the inexistence of symmetric equilibria is the noncon-

cavity of the payoffs. In fact, we show that strategic substitutability can be

replaced by partial quasiconcavity and still the results follow.
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An alternative explanation for endogenous heterogeneity can be found in

business strategy literature. Our results can also be considered as a response to

its critique as asymmetries arise here in a completely deterministic and rational

setup. We should thus expect that heterogeneity generated in such a framework

can be the origin of long-term diversity.

30



8 Appendix

8.1 Summary of supermodular/submodular games

We give an overview of the main definitions and results in the theory of su-

permodular games that are used in the paper, in a simplified setting that is

sufficient for our purposes. Details may be found in Topkis (1978).14

Let I1 and I2 be compact real intervals and F : I1 × I2 → R. F is

(strictly) supermodular if ∀x1, x2 ∈ I1, x2 > x1 and ∀y1, y2 ∈ I2, y2 > y1 we

have F (x2, y2)− F (x2, y1)(>) ≥ F (x1, y2)− F (x1, y1) . F is (strictly) submod-

ular if −F is (strictly) supermodular.

Theorem 8.1 (Topkis’s Characterization Theorem) Let F be twice con-

tinuously differentiable. Then

(i) F12 = ∂2F
∂x∂y ≥ 0 [ ≤ 0] for all x, y ⇔ F is supermodular [submodular].

(ii) F12 = ∂2F
∂x∂y > 0 [< 0 ] for all x, y ⇒ F is strictly supermodular [sub-

modular].

The supermodularity property is not preserved by monotonic transforma-

tions of the function F . An alternative notion (ordinal) is the single crossing

property defined as follows: F has single crossing property [dual single crossing

property] in (x, y) if ∀x1, x2 ∈ I1, x2 > x1 and ∀y1, y2 ∈ I2, y2 > y1 we have

F (x1, y2)− F (x1, y1) ≥ 0 [≤ 0]⇒ F (x2, y2)− F (x2, y1) ≥ 0 [≤ 0] .

The single crossing property does not have a correspondent differential char-

acterization and thus it is often more difficult to check. Now we present the

main monotonicity theorems.

Theorem 8.2 (Topkis’s Monotonicity Theorem) If F is continuous in y

and (strictly) supermodular [submodular] in (x, y), then argmaxy∈I2 F (x, y) has

(all of its) maximal and minimal selections increasing [decreasing] in x ∈ I1.

14Other aspects of the theory may be found in Topkis (1979), Milgrom and Roberts (1990)

and Vives (1990).
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Theorem 8.3 (Milgrom and Shannon) The conclusion of Topkis’s Theo-

rem continues to hold when supermodularity [submodularity] is replaced by the

[dual] single crossing property.

We can introduce now the notion of supermodular game and of its properties.

A two player game is supermodular (submodular) if both payoff functions are

continuous, supermodular (submodular) and both action spaces are compact

real intervals. 15 The fixed point theorems associated with this framework are

due to Tarski (1955).

Theorem 8.4 (Tarski’s Fixed Point Theorem) Let f : I1 × I2 → I1 × I2

be an increasing function, then f has a fixed point.

Theorem 8.5 A two player supermodular (submodular) game has a pure strat-

egy Nash equilibrium.

In general, this theory dispenses with assumptions of concavity or differen-

tiability of payoff functions, making it an extremely general framework to study

the properties of equilibria.

8.2 Proofs of Section 3

The proof of Theorem 3.1 is organized as follows: we begin with proving four

preliminary lemmas, and then present the main proof in two steps: first we show

existence of PSNE and afterwards that all PSNEs must be asymmetric.

The first lemma states that for a small enough square of points on the

diagonal we have submodularity.

Lemma 8.1 Consider the following points as depicted in figure 5. If A1−A2

hold, then for small enough α > 0 : U(x, x− α)− U(x− α, x− α) ≥ L(x, x)−
L(x− α, x),∀x ∈ [0, c].
15Compactness is not necessary, it is required in order to use a simplified version of Tarski’s

Fixed Point Theorem, without referring to lattices.
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Proof. (Lemma 8.1) Take any point (x, x) on the diagonal, belonging to the

domain of F . For α > 0 small enough

U1(x, x) ' U(x+ α, x)− U(x, x) and L1(x, x) ' (x, x)− L(x− α, x). (17)

Hence, from A2:

U(x+ α, x)− U(x, x) > L(x, x)− L(x− α, x). (18)

From A1 we know that

U(x+ α, x− α)− U(x, x− α) ≥ U(x+ α, x)− U(x, x). (19)

Take bε > 0 such that
U(x+ α, x)− U(x, x) ≥ L(x, x)− L(x− α, x) + bε. (20)

From continuity of U(x, y) in x (for fixed y = x− α), it follows that

∀0 < ε ≤ bε
2
, ∃δ > 0 such that

|x− (x− α)| = α ≤ δ and |U(x, x− α)− U(x− α, x− α)| ≤ ε ≤ bε
2
.

Moreover,

∀0 < ε ≤ bε
2
, ∃δ > 0 such that

|x+ α− x| = α ≤ δ and |U(x+ α, x− α)− U(x, x− α)| ≤ ε ≤ bε
2
.

This allows us to establish that:

(U(x+ α, x− α)− U(x, x− α))− (U(x, x− α)− U(x− α, x− α)) ≤ 2ε ≤ bε
(21)

since, for |A| < ε and |B| < ε, then A−B < 2ε.

Rewriting (21),

U(x+ α, x− α)− U(x, x− α) ≤ U(x, x− α)− U(x− α, x− α) + bε. (22)
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Figure 5: Square of the length α.

Finally, summarizing, we have:

L(x, x)− L(x− α, x) + bε ≤
≤ U(x+ α, x)− U(x, x) ≤

≤ U(x+ α, x− α)− U(x, x− α) ≤

≤ U(x, x− α)− U(x− α, x− α) + bε
where, the first inequality comes from (20), the second one from (19) and the

last one from (22). So we obtain,

U(x, x− α)− U(x− α, x− α) + bε ≥ (x, x)− L(x− α, x) + bε. (23)

Subtracting bε from both sides ends the proof.

The next lemma extends the property of submodularity of F form the small

square of length α to any square with two vertices on the diagonal.

Lemma 8.2 If Lemma 8.1 holds, then for any square with points in the diago-

nal, such as depicted in figure 7, we have,

F (z, x)− F (z, z) ≥ F (x, x)− F (x, z) .

Proof. (Lemma 8.2) Consider the square formed by the four points defined in

the lemma. Divide this square into rectangles such that their height is equal to
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the original height of the square and its length is not bigger than α, as defined in

Lemma 8.1. We will now show that for points in the vertices of such rectangles

the thesis holds and a fortiori it is possible to obtain the conclusion for the

whole square. Figure 6 illustrates the proof.

Let x− z = kα, where k ∈ R, and α > 0 is small enough. Now consider the

rectangle defined by the following points (x, x), (x, x−α), (z, x) and (z, x− α) .

From Lemma 8.1 we know that

F (x, x− α)− F (x− α, x− α) ≥ F (x, x)− F (x− α, x)

Also, from A1 we know that

F (x− α, x− α)− F (z, x− α) ≥ F (x− α, x)− F (z, x)

Adding these two inequalities we obtain that

F (x, x− α)− F (z, x− α) ≥ F (x, x)− F (z, x) (24)

Repeating the procedure, consider the rectangle defined by: (x, x− α), (x, x− 2α),
(z, x− α), (z, x− 2α). From A1 we know that:

F (x, x− 2α)− F (x− α, x− 2α) ≥ F (x, x− α)− F (x− α, x− α)

and also

F (x− 2α, x− 2α)− F (z, x− 2α) ≥ F (x− 2α, x− α)− F (z, x− α).

Using Lemma 8.1 we know that

F (x− α, x− 2α)− F (x− 2α, x− 2α) ≥ F (x− α, x− α)− F (x− 2α, x− α)

Adding the three inequalities we obtain:

F (x, x− 2α)− F (z, x− 2α) ≥ F (x, x− α)− F (z, x− α)

From (24) we obtain

F (x, x− 2α)− F (z, x− 2α) ≥ F (x, x)− F (z, x)
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Figure 6: Partition of the square whose vertices coincide with the diagonal.

We can repeat this argument k times until getting a rectangle whose length is

not bigger than α. Once again we apply assumption A1 and Lemma 8.1 to show

that submodularity holds for this rectangle as well and we can conclude that,

F (x, z)− F (z, z) ≥ F (x, x)− F (x, z) .

Hence submodularity is satisfied for any square with vertices coinciding with

the diagonal.

The following Lemma establishes that the analysis of submodularity of any

rectangle formed by four points of the domain [0, c]2 can be reduced to the

analysis of submodularity for points placed in such a way that they form a

square with vertices coinciding with the diagonal.

Lemma 8.3 If A1 and A2 hold, then F and G are submodular on [0, c]2.

Proof. (Lemma 8.3) Due to the kink along the diagonal, one cannot invoke

Topkis’s simple cross-partial test (Topkis’s Characterization Theorem in the

Appendix) to verify submodularity of F and G. Instead, we use definition of

submodularity for any configuration of four points in the domain, constituting

a rectangle. If the rectangle is completely contained in either ∆U or ∆L, the

submodularity condition follows from A1. Every other situation can be reduced

by adding subrectangles, each of which lying fully in either ∆U or ∆L, to the
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Figure 7: If F satisfies submodularity on the square on the diagonal, this implies

it satisfies submodularity on the rectangle.

situation depicted in figure 5 as we now show, say for F . Consider the case of

figure 7 with the four points (x, z), (z, z), (x, y) , (z, y) as shown.With z < x < y,

we know from A1 that, since F = U on ∆U ,

F (x, y)− F (x, x) ≥ F (z, y)− F (z, x).

From Lemma 8.2, submodularity holds for the configuration of the square (x, x),

(z, x), (z, z), (z, x), hence we have

F (x, x)− F (x, z) ≥ F (z, x)− F (z, z).

Adding the two inequalities yields

F (x, y)− F (x, z) ≥ F (z, y)− F (z, z),

which is just the definition of submodularity for the original points (x, z), (z, z),

(x, y) and (z, y).

It can be shown via analogous steps that the submodularity of F for any

other configuration of points can be reduced to showing submodularity for

squares with two vertices on the diagonal. The details are left out.

The next result allows us to conclude that the two reaction curves always

admit a discontinuity that skips over the diagonal, a key step for our endogenous

heterogeneity result.
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Lemma 8.4 Given A1−A3, there exists exactly one point d ∈ (0, c), such that
ri(d− ε) > d > ri(d+ ε), i = 1, 2.

Proof. (Lemma 8.4) From Topkis’s Monotonicity Theorem and Lemma 8.3 , all

the selections from the best reply correspondences are downward sloping. Hence,

both ri(d− ε) and ri(d+ ε) exist for any selection of ri and are independent of

the selection.

From assumption A3, we know that (0, 0) /∈ Graph ri and (c, c) /∈ Graph ri

(i.e. ri does not go through (0, 0) or (c, c)). These two properties imply that ri

cannot be identically 0 or c.

We next show that the reaction correspondence r1 (say) cannot ever cross the

45o line at an interior point, i.e. in (0, c). The generalized first order condition

for a maximum of F (say) to occur at a point (x, x) with x ∈ (0, c), which applies
even in the absence of differentiability, is that U1 (x, x) ≤ L1 (x, x) . Assumption

A2 rules out this case . Hence no x ∈ (0, c) can ever be a best reply to itself,
meaning that the reaction curves do not cross the 45o line at any interior point.

Since r1 starts strictly above 0 (for y = 0) and ends strictly below c (for

y = c), the above properties of r1 imply that there exists exactly one d ∈ (0, c)
such that r1(d − ε) > d > r1(d + ε)̇. In words, there must exist a jump in the

best reply function past the diagonal as in figure 1.

Using the Lemmas 8.3 and 8.4 we can now prove Theorem 3.1.

Proof. (Theorem 3.1) From Lemma 8.3 we have overall submodularity of the

payoff function. This guarantees that a PSNE exists.

Consider now the behavior of the reaction curves in the area ∆U . The

same conclusion follows for ∆L by symmetry. Define the following restricted

reaction curves: r1|∆U (y) : [0, d] → [d, c] and r2|∆U (x) : [d, c] → [0, d] both

decreasing as implied by Lemma 8.3. Define the mapping B : [d, c] → [d, c],

B(x) = r1|∆U ◦r2|∆U (x), which is increasing given that each of r1|∆U and r2|∆U
is decreasing. From Tarski’s Fixed Point Theorem, we know that there exists

x̄ such that B(x̄) = r1|∆U ◦ r2|∆U (x̄), therefore (x̄, r2 (x̄) |∆U ) is a PSNE. From
Lemma 8.4, there is no symmetric PSNE in [0, c]. Hence, there must exist at
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least one pair of asymmetric PSNEs.

Theorem 3.2 rules out the existence of multiple pairs of asymmetric equilib-

ria.

Proof. (Theorem 3.2) Once again we concentrate on the area ∆U . Conclusions

follow for the area ∆L by symmetry. Whenever r1 [r2] is interior, first order con-

dition U1 (r1 (y) , y) = 0 [L1 (r2 (x) , x) = 0] , together with the implicit function

theorem and the assumptions (3) and (4), implies that r1 [r2] is differentiable

in ∆U and that r01 (y) = −
U12(r1(y),y)
U11(r1(y),y)

≥ −1, also r02 (x) = −
L12(r2(x),x)
L11(r2(x),x)

≥ −1.
Hence, r1(y)|∆U and r2 (x) |∆U are contractions. Using Banach’s fixed point

theorem we can conclude that there exists exactly one pure strategy Nash equi-

librium in ∆U .16 In the same way there exists exactly one pure strategy Nash

equilibrium in ∆L. Concluding, we have exactly one pair of pure strategy Nash

equilibrium.

Finally we provide a proof of Theorem 3.3.

Proof. (Theorem 3.3) Since x∗ > d > y∗, we have F (x∗, y∗) = U(x∗, y∗) and

F (y∗, x∗) = L(y∗, x∗). Also U(r1(d), d) = L(r1(d), d) if d denotes the unique

point of jump of reaction curve between ∆U and ∆L, as defined in Lemma 8.4.

Then

F (x∗, y∗) = U(x∗, y∗) =

= U(r1(y
∗), y∗) ≤ U(r1(d), d) =

= L(r1(d), d) ≤ L(r1(x
∗), x∗) = L(y∗, x∗) = F (y∗, x∗)

where both inequalities follow from the monotonicity of U(r1(y), y) and L(r1(y), y).

8.3 Proofs of Section 4

First we prove Lemma 4.1 and Lemma 4.2 since these proofs are similar. We

then move to proving Theorems 4.1 and 4.2.
16 (Banach’s Fixed Point Theorem): Let S ⊂ Rn be closed and f : S → S be a contraction

mapping, then there exists x ∈ S : f(x) = x.
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Proof. (Lemma 4.1)We consider the area∆U . FromB1 and Topkis’s Monotonic-

ity Theorem, we know that the reaction curves are increasing. The generalized

first order condition for a maximum to occur in the point (x, x) in the absence

of differentiability of F (and G, by symmetry) is that U1 (x, x) ≤ L1 (x, x) . As-

sumption B2 rules out this possibility so we have that no y (nor x), belonging

to (0, c), can be best reply to itself, meaning that the reaction curves do not

cross the 45o line. Assumption B4 excludes that 0 can be a best reply to 0 and

that c can be a best reply to c. Hence, there must exist a d ∈ [0, c], such that
r1(d− ε) > d > r1(d+ ε).

To exclude the possibility of another jump we use assumption B3. Consider

r1(y) and r1(y) defined as in Section 4. Denote W (y) = L(r1(y), y) and V (y) =

U(r1(y), y). From the Envelope Theorem, ∂W (y)
y = L2(r1(y), y), and

∂V (y)
y =

U2(r1(y), y). Hence, when B3 holds, we know that W increases in y quicker

then V does. It means that when the overall reaction curve jumps down along

the diagonal, it never jumps up again.

Proof. (Lemma 4.2 ) If B10 holds reaction curves are continuous in ∆U and

in ∆L. B2 and B4 rules out the possibility that F (and G, by symmetry) has

a maximum in a point [x, x] , that secures that the reaction curve must have a

jump down in a point d ∈ [0, c]. As in the proof of Lemma 4.1, B3 rules out
other possible upward jumps between ∆L and ∆U .

We may now show that only asymmetric pure strategy Nash equilibria exist.

Proof. (Theorem 4.1) Consider R ⊂ ∆U as defined in Section 4. Define as

before the restricted reaction curves as r1(y)|∆U and r2(x)|∆U . From assumption
B5, the best reply of player 1 to y = 0 cannot be less than d as U is decreasing in

x for y = 0 when x < d. For y > 0, and given assumption B1 (supermodularity),

Topkis’s Monotonicity Theorem allows us to conclude that the best reply of 1

is increasing. Hence r1(y)|∆U ∈ R. Seemingly the best reply of player 2 for

x = c cannot exceed d as L is decreasing in y when x = c. Also by Topkis’s,

the reaction curve is an increasing map. Therefore r2(x)|∆U ∈ R. Consider the

mapping, B : R→ R such that B(x, y) = (r1(y), r2(x)). B(x, y) is an increasing

correspondence, given that both its components are increasing. R is a compact
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set and hence we may use Tarski’s Fixed Point Theorem to conclude that there

exists a pair (x̄, ȳ) such that B(x̄, ȳ) = (r1(ȳ), r2(x̄)). (x̄, ȳ) is a pure strategy

Nash equilibrium.

Finally, by Lemma 4.1 we know that no equilibrium can be symmetric.

Proof. (Theorem 4.2) Define R, r1(y)|∆U and r2(x)|∆U as before. From

assumption B5, r1(y)|∆U ∈ R and r2(x)|∆U ∈ R and from assumption B10

they are continuous. Consider the mapping B : R → R such that B(x, y) =

(r1(y), r2(x)). B is a continuous correspondence, given that both its compo-

nents are continuous, R is a compact set and hence we may use Brouwer’s

Fixed Point Theorem to conclude that there exists a pair (x̄, ȳ) such that

B(x̄, ȳ) = (r1(ȳ), r2(x̄)). (x̄, ȳ) is a pure strategy Nash equilibrium.

By Lemma 4.2 we know that no equilibrium can be symmetric.

8.4 Proofs of Section 6

To prove the theorem we first formulate a useful lemma.

Lemma 8.5 If A10, A2 and A4 hold, then there exist exactly one point d ∈ [0, c]
such that r1(d− ε) > d > r1(d+ ε), ε > 0.

Proof. (Lemma 8.5) Consider ∆U . From A10 and Topkis’s Monotonicity The-

orem we know that reaction curve is decreasing in this area. The generalized

first order condition for a maximum to occur in (x, x) is (in the absence of dif-

ferentiability in this point) U1(x, x) ≤ L1(x, x). Assumption A2 rules out this

possibility, thus no x ∈ (0, c) can be a best response to itself. Moreover, neither
(0, 0) nor (c, c) can be an equilibrium, since from A3 follows, that for player 1

it is always profitable to deviate from any of these points. Hence, the reaction

curve does not cross the 45o line, and there must exist a point, call it d ∈ [0, c]
such that r1(d− ε) > d > r1(d+ ε).

Now, we prove uniqueness of this point. Consider r1(y) and r1(y) defined

as in Section 4. Denote W (y) = L(r1(y), y) and V (y) = U(r1(y), y). From the

Envelope Theorem, ∂W (y)
y = L2(r1(y), y), and

∂V (y)
y = U2(r1(y), y). Hence, if
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A3 holds, we know that W increases in y quicker then V does. It means that

when the overall reaction curve jumps down along the diagonal, it never jumps

up again.

Proof. (Theorem 6.1) Consider restricted reaction curves r1|∆U (y) and r2|∆U (x),
both decreasing as implied by A10 and Topkis’s Monotonicity Theorem. From

Lemma 8.5 and the monotonicity it follows that c ≥ r1|∆U (0) ≥ r1|∆U (d) > d

and 0 < r2|∆U (0) ≤ r2|∆U (d) ≤ d, therefore r1|∆U (y) : [0, d] → [d, c] and

r2|∆U (x) : [d, c]→ [0, d] are well defined. Define the mapping B : [d, c]→ [d, c],

B(x) = r1|∆U ◦r2|∆U (x), which is increasing given that each of r1|∆U and r2|∆U
is decreasing. From Tarski’s Fixed Point Theorem, we know that there exists x̄

such that B(x̄) = r1|∆U ◦ r2|∆U (x̄), therefore (x̄, r2 (x̄) |∆U ) is a PSNE.
From Lemma 8.5, there is no symmetric PSNE in [0, c]. Hence, there must

exist at least one pair of PSNEs.
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