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Abstract

A social choice correspondence (SCC) is virtually implementable
if it is e-close (in the probability simplex) to some (exactly) imple-
mentable correspondence. Abreu and Sen (1991) proved that, without
restriction on the set of alternatives receiving strictly positive prob-
ability at equilibrium, every SCC is virtually implementable in Nash
Equilibrium. We study virtual implementation when the supports of
equilibrium lotteries are restricted. We provide a necessary and suf-
ficient condition, imposing joint restrictions on SCCs and admissible
supports. Then, we discuss how to construct supports. Finally, we
study virtual implementation when the support is restricted to the
efficient or individually rational alternatives.
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1 Introduction

The two key concepts of Nash implementation are those of a social choice cor-
respondence and a mechanism. A social choice correspondence (henceforth
an SCC) associates each state of the world (that is, typically, each profile
of individual preferences) with a set of selected alternatives, which may be
considered as what a benevolent planner views as optimal for society. A
mechanism (or, game form) specifies the list of strategies available to each
individual agent, and an outcome function associating each list of individual
strategies with an outcome, that is, a social alternative. An SCC is said to be
Nash implementable if there exists a mechanism such that, in each state of
the world, the set of selected alternatives coincides with the set of outcomes
which are supported by a Nash equilibrium of the mechanism.

In a seminal paper, Maskin (1997, published in 1999) identified a neces-
sary and almost sufficient condition for Nash implementation, which he called
monotonicity. In spite of this breakthrough, the news was bad: monotonicity
imposes severe restrictions on the class of Nash implementable SCCs. Many
SCCs of interest fail to satisfy it. To list just a few, the Walrasian and the
egalitarian-equivalent correspondences, the plurality and any other voting
rules based on scoring functions do not satisfy monotonicity.

How restrictive monotonicity can be is illustrated by the following exam-
ple. There are two agents 1 and 2, social alternatives a, b, c and d, and two
states of the world € and ¢. Preferences of agents over the alternatives in
the different states are described in the table below, which reads: in state 6,
agent 1 strictly prefers a to b to ¢ to d, etc.

0 ¢
1 2 1 2
a d a d
b b b b
c c c a
d a d c

Let us consider the SCC f defined as follows: f(0) = {b} and f(¢) = {a}.
It cannot be Nash implemented. Suppose, indeed, that there is a mechanism
where alternative b is supported by a Nash equilibrium at 6 : by deviating,
agent 1 cannot obtain any better alternative than b. But the alternatives
which are worse than b at € remain worse at ¢. Consequently, the same



profile of strategies keeps the Nash stability property at ¢, whereas b is no
longer viewed as a desirable alternative.

This example can also be described as follows: the only difference in pref-
erences between ) and ¢ is agent 2's preference reversal between alternatives
a and c. It is, consequently, the only information the planner needs, to know
whether b or a must be selected. But this information cannot be revealed if
the requirement is that b be supported by a Nash equilibrium at 6.

A way out of the limitations imposed by monotonicity was proposed by
Matsushima (1988) and Abreu and Sen (1991) under the name of virtual
implementation. It consists of allowing the outcome of the mechanism to be a
lottery on the social alternatives, and requiring that the alternatives selected
by the SCC come out with a probability arbitrarily large but possibly smaller
than 1.

What makes virtual implementation so powerful is that, in equilibrium,
every alternative receives positive probability. Let us come back to the above
example. At the Nash equilibrium supporting b with an arbitrarily large
probability, alternatives a, c and d receive some strictly positive probability.
If the mechanism is constructed in such a way that, by deviating, agent
2 can slightly increase the probability of a at the expense of ¢, then this
agent will not deviate in state #, whereas he would in state ¢, and b—with
arbitrarily large probability—is no longer supported as an equilibrium, the
desired outcome.

The virtual Nash implementation approach may seem to be the solution
to the implementation problem, but we would like to point out the following
issue. Any alternative can now be the outcome of the game, as it receives
a strictly positive probability in the equilibrium lottery. However, these
alternatives may be arbitrarily inefficient, unfair, or, in any meaningful sense,
far from the selected alternative. We ask the following question. What
happens if one restricts the class of mechanisms that can be used and imposes
that the support of equilibrium lotteries belong to some admissible subset of
the set of alternatives? Let us look back at the example. There is one and
only one inefficient alternative, c. What would happen if we wish to remove it
from the set of alternatives likely to become the outcome of the game? Also,
what if we want to minimize the set of alternatives which receive a strictly
positive probability at equilibrium?

The example illustrates the two main lessons we will reach in this paper.
First, it may turn out to be impossible to remove some undesirable alterna-
tives from the set of alternatives which may end up being selected. In the



example, indeed, it is impossible to remove ¢ from the equilibrium lottery.
Because the only preference reversal when going from 6 to ¢ occurs between
c and a with ¢ preferred to a at 0, the mechanism must provide the opportu-
nity to agent 2 to decrease the probability of a at the expense of ¢, and this
requires that c receives some strictly positive probability at equilibrium.

The second lesson is that admissible supports may indeed be very nar-
row. Let us look at the following mechanism implementing f, where b., for
instance, means that the outcome is b with probability 1 —¢ and ¢ with prob-
ability e (for some arbitrarily small positive ). Agent 1, whose preferences
don’t change, announces € if 2 announces 6, and ¢ in the other case. Agent
2 has now a dominant strategy to announce the true state. This shows that
very few additional alternative need to be added. In particular, only ¢ needs
to be given strictly positive probability at equilibrium, and only when the
state of the world is 6.

2
4 ¢
0 | b b,
1
Q| c a

These two lessons will follow from our main formal result. It consists of
the definition of a property, called extended monotonicity, which we prove
to be necessary and sufficient for virtual implementation of an SCC with an
admissible support. It therefore imposes joint restriction on the SCC and
the support.

The paper is organized as follows. In Section 2, we present the model and
the basic definitions. We introduce the property of extended monotonicity
and give the main result in Section 3, where we also provide some examples of
SCCs and their supports. In Section 4, we discuss how to construct supports
and minimal supports, and we highlight a difficulty. In Section 5, we give
other examples showing that restricting the support to the set of efficient or
individually rational alternatives may not be sufficient, thereby proving that
undesirable alternatives may need to be inserted in the admissible support.
We give concluding remarks in Section 6.



2 The set-up

We will develop our basic result under the assumptions that there are at
least three agents, the number of social alternatives is finite and preferences
over alternatives are strict. None of these assumptions are necessary, and we
explain at the end of Section 3 how the result generalizes.

There is a finite set of agents N = {1,...,n}, n > 3 and a finite set of al-
ternatives A = {1,...,m}. The set of admissible preference profiles over A is
denoted by ©. For any 6 € ©,1 € N, i’s weak preferences are represented by
the ordering R;(6). We denote by P;(#) and I;(0) the associated strict pref-
erence and indifference relations, respectively. We assume that preferences
are strict, that is, for each § € ©, each a,b € A and each i € N,

[aR;(0) bl = [aP;(0) bora="0.

Define by LC; (0,a) = {b € A : a R;(0) b}, the lower contour set of agent
1 € N at profile § € © and alternative a € A.

A social choice correspondence (SCC) f : © — A associates to each
preference profile a non-empty subset of social alternatives.

Our problem is to implement SCCs. As it is well known after Maskin’s
(1977, 1999) seminal paper, the following monotonicity property is necessary
for implementation in Nash equilibrium. It requires that an enlargement of
any agent’s lower contour set at a selected alternative do not remove this
alternative from the selection.

Definition 1 An SCC' f satisfies monotonicity if and only if for all 6, ¢ € ©
and all a € f (),

[LC;(0,a) C LC; (¢,a) for each i € N] = [a € f(9)].

Monotonicity is also sufficient for Nash implementation, when it is com-
plemented with the requirement, called no-veto power, that an alternative
which is top ranked by all but one agents must be selected by the SCC.

A lot of SCCs of interest fail to satisfy monotonicity and, therefore, to be
Nash implementable. It is therefore necessary to modify the implementation
requirement. The idea of virtual implementation is to allow outcomes to be
lotteries over alternatives, and to simply require that the desired alternative
receive an arbitrarily large but strictly lower than 1 probability of being
selected. Furthermore, the idea of virtual implementation with an admissible



support is to restrict the set of alternatives which receive a strictly positive
probability at the equilibrium lottery. We therefore need to introduce the
following notations and terminology.

Let us begin with our central concept. An admissible support h for an
SCC f is a correspondence defined for each § € © and each a € f(f) and
satisfying the property that a C h(0,a) C A. It represents the set of alter-
natives to which the mechanism designer agrees to give positive probability
at equilibrium. Let us emphasize that the admissible support is allowed to
depend on the targeted alternative. This possibility is not used, however,
if, for instance, all efficient alternatives are admissible. But the formulation
we adopt is more general and allows us to define the admissible support,
for instance, like the set of alternatives in a neighborhood of the targeted
alternative.

Let £ = A™ ! denote the set of lotteries over elements of A. In lottery ¢ =
(£4)aca € L alternative a occurs with probability ¢,. With a slight abuse of
notation, we write a both for the alternative a € A and the lottery ¢ € £ such
that ¢, = 1. The support of ¢ € L, denoted supp/, is the set of alternatives
receiving a strictly positive probability in £ : suppl = {a € A | £, > 0}.

We now need to consider that agents have preferences over lotteries. The
set of admissible preference profiles over £ is I'. For any v € I';7 € N,
R;i(7), Pi(7y) and I;(7y) denote weak preference, strict preference and indiffer-
ence relations over lotteries. Given 6 € ©, two elements v and 6 of I' are said
to be elements of the set () if they are consistent with the same preferences
over elements of A. We assume that preferences over lotteries are monotonic
in probabilities, that is, shifts in probabilities to strictly preferred alternatives
yield strictly preferred lotteries. Formally, for any i € N,k € {1,... ;m}, let
pik - © — A be defined by

pi () =a = |{be A|bR;(0) a}| = k,

that is, p;i (0) is the preferred alternative of agent i in state 6, p;2 (6) her
second preferred, etc. Then, for all v € 3 (0), if two lotteries ¢ = ({;)qec4 and
0" = (£)qeca are such that for each k* € {1,... ,m}, k;;*épik(g) > k;;*é;ik(e),
then ¢ R;(y) ¢ and £ P;(v) ¢ if one inequality is strict. Let us note that this
assumption is much weaker than that of expected utility.

A mechanism (or game form) is a pair G = (5, g) with S =[], S;, where
S; the strategy space of agent i € N, and g : S — L is the outcome function
that associates a lottery to every profile of strategies. A typical strategy



profile is s = (s;),cy € S. A game for G is a pair (G,7) for some v € T,
Denote the set of Nash equilibria of game (G,7) by NE (G, 7).

A mechanism G = (S,g) is ordinal if the set of Nash equilibria only
depends on agents’ preferences over pure alternatives, that is, for each 6 € ©,
each s € S and all 7,6 € X(0), NE(G,y) = NE(G,$). For the sake
of simplicity, we confine our attention to ordinal mechanisms.! Abusing
notation, we sometimes let NFE (G,60) denote the Nash equilibria of game
(G,7), for any v € X (0).

Rather than implementing an SCC itself, we will implement a lottery
correspondence that is close to it. A lottery correspondence f*: © — L
associates to each preference profile a non-empty subset of lotteries. A lottery
correspondence f*is (ordinally) Nash implementable if there exists an ordinal
mechanism G = (5, g) such that the Nash equilibrium outcomes of each
game coincides with the selection of f¢, that is, for all # € O, f*(9) =
g(NE(G,0)).

Let d(.,.) denote the Euclidean distance (in £). An SCC f is e—close
to a lottery correspondence f* if for all § € O, there exists a bijection 74 :
f(0) — f(0) such that for all a € f(0) : d(a,T¢(a)) < ¢.

An SCC f is virtually Nash implementable with admissible support h if
for all ¢ > 0, there exists a Nash implementable lottery correspondence f*
that is e—close to f, with associated 74 for each # € ©, and such that for
each 0 € ©, each a € f(0) : suppry(a) C h(0,a).

3 A necessary and sufficient condition

Characterizing the class of SCCs and supports which are compatible with
virtual implementation turns out to be surprisingly simple. The required
property is just an extension of monotonicity: It requires that an enlarge-
ment of any agent’s lower contour set at a selected alternative or at any
alternative receiwing a strictly positive probability when the former alterna-
tive 1s implemented does not remove this alternative from the selection and
does not remove any of the latter alternatives from the admissible support.

Definition 2 An SCC f satisfies extended monotonicity with respect to an
admissible support h if and only if there exists H, such that for all 6 € ©,

"However, accepting to look at mechanisms where NE (G,v) # NE (G, §) would not
allow us to enlarge the set of implementable SCCs.



alla € f(0), a C H(0,a) C h(0,a) and for all ,¢ € ©, all a € f(0), and all
ieN,

[LC;(0,b) C LCi(¢,b) Vb€ H(0,a)] = [a € f(¢) and H(0,a) C h(¢,a)]

Correspondence H gathers all the alternatives which do receive a strictly
positive probability: it may therefore not always coincide with h. We are now
ready to state the main theorem of the paper.

Theorem 1 An SCC f is virtually implementable with admissible support h
if and only iof f satisfies extended monotonicity with respect to h.

The proof is relegated to the appendix. Let us note that if there is no
restriction on the admissible support (that is, for all # € © and all a € f(),
h(0,a) = A) then extended monotonicity is trivially satisfied by any SCC, as
an enlargement of the lower contour set at each and every alternative means
that preferences do not change. We are then back to the Abreu-Sen result. If,
at the other extreme, the support is restricted to be composed of the selected
alternative only (that is, for all # € © and all a € f(0), h(0,a) = a), then
extended monotonicity boils down to monotonicity. In such a case, notice
that allowing us to use lotteries out of equilibrium does not increase the
class of implementable SCCs, except that we can get rid of no-veto power.?

Let us now review how the above result generalizes when some of the
assumptions we made are dropped.

If the number of agents is restricted to 2, then, the difficulty is exactly
the same as for virtual Nash implementation. Extended monotonicity comple-
mented with the non-empty lower contour intersection property as in Abreu
and Sen (1991) is sufficient.

If preferences are not strict, then restrictions on the domain of preferences
are needed. Our proofs in the appendix work, for instance, if we assume
that each agent has a uniquely best alternative. Alternatively, we could
use that there are pairs of alternatives such that for all preferences in the
domain, the first alternative is always strictly preferred to the second one.
Those conditions are trivially satisfied in all economic environments under
the assumption of strictly monotonic preferences.

2See Bochet (2005a) for a more detailed discussion on the equivalence between mono-
tonicity and (exact) Nash implementability.



If the number of alternatives is countable but not necessarily finite, then
our result generalizes, provided the same adjustment as the one proposed by
Abreu and Sen is made. It consists in ordering the alternatives and assigning
them a decreasing sequence of probabilities which sum up to €. If the number
of alternatives is uncountable but preferences are continuous on a Euclidean
space, then, again, the same adjustment as the one proposed by Abreu and
Sen can be used: it consists of using a dense and countable subset of the
alternatives and applying the same method as in the countable case.

Let us now exemplify these facts.

Example 1 The plurality correspondence.

The plurality correspondence selects all alternatives which appear most
frequently at the top of the agents’ rankings. Let us introduce the following
rank function. For all a € A,7 € N, 6 € O, the rank of a in the preference of
1 at 0 is the number of alternatives which ¢ deems at least as good as a :

r(a,i,0)=#{bec A|bR;(0) a}.
The plurality score of a at 0, s (a, ) is the number of agents who rank a first:
s(a,0) =#{ie N |r(a,i,0)=1}.
The plurality correspondence is defined by
PO)={ac A|s(a,0)>s(bf),Vbe A}.

The plurality correspondence is not monotonic. It is even not subgame per-
fect implementable (see Abreu and Sen (1990)).3 Let us assume that prefer-
ences are strict, and let us consider a € P(8)\P(¢). Then, in the admissible
support at h (a,#) there needs to be an alternative b which is involved in a
preference reversal from 6 to ¢ : bR;(6)c and c¢P;(¢)b. This alternative may
be different from a (otherwise P would satisfy monotonicity) but must neces-
sarily be top ranked at 6 (otherwise, s (b,0) = s (b, ¢) so that P (0) = P (¢)).
Let T (#) denote the set of alternatives which are top ranked by at least one
agent:

TO)={ac A:s(a,0)>1}.

3From Jackson, Palfrey and Srivastava (1994), we know it can be implemented in
Undominated Nash Equilibrium using bounded mechanisms.



We have thus shown the following: If preferences are strict, the plurality
correspondence P satisfies extended monotonicity with respect to the top cor-
respondence T

One remarkable consequence of this fact is that when all agents prefer the
same alternative, then it is the only alternative in the admissible support, so
that the mechanism assigns it a probability of 1.

Example 2 The Walrasian correspondence

We need first to give a precise definition of A and ©. There are L goods
and © is composed of all preferences, defined over ]RI;, which are continuous,
strongly monotone and convex. The endowment of agent ¢+ € N is w; > 0,
and W =), yw; > 0.* The set of alternatives, or feasible allocations is,

A:{aGRi":Zai:w}.

ieEN

The Walrasian correspondence W is defined as follows. For § € ©, W (6)
is composed of all allocations a such that a; maximizes R; (6) over the budget
hyperplane B;(p) = {b; € R : p-b; = p- w;} for some p € RY. Let B (p) =
{beR™: b, € B;(p)}.

The Walrasian correspondence is known to violate monotonicity when
O is not restricted in such a way that Walrasian allocations are all interior
to A. It is even not implementable in any game-theoretical solution concept
when preferences are not differentiable (see, e.g., Bochet (2005b)). Let us
assume that © only contains differentiable preferences and let us solve the
boundary problem by constructing an admissible support. Let H" be defined
as follows. For § € ©,a € W () with supporting price vector p, if a € intA,
then HY (a,0) = a; if a € A\intA, then H" (a,0) is a countable and dense
subset of a closed neighborhood of a in B (p) N A.

The only case where W fails to satisfy monotonicity is when W (0) >
a € A\intA, LC;(0,a) C LC;(¢,a) for each ¢ € N, whereas a ¢ W (¢)
as illustrated in a two-agent-two-good economy in Figure 1, where only the
preferences of agent 1 change. By continuity of preferences, there exists
be HY (0,a) and ¢ € A such that,

blRl (9) C1 and Clpl ((b) bl,

4Our conventions for vector inequalities are >, > and >.

10



Figure 1

which is sufficient to guarantee virtual implementation of W.

We have thus shown the following: If preferences are continuous, strongly
monotonic, convex and differentiable, the Walrasian correspondence satisfies
extended monotonicity with respect to H" .

The above example shows how to save on the size of the support: as long
as we know that the selected allocation remains selected after monotonic
transformations of preferences, it is not necessary to provide opportunities to
reveal preference reversal and the support can be minimal. On the contrary,
when the Walrasian allocation is on the boundary of the feasible set, one
needs a larger support.

Example 3 The egalitarian equivalent correspondence

In the same model as above (except that we now disregard individual
endowments to view @ as a social endowment), an allocation a € A is
egalitarian-equivalent if there exists a reference bundle ag (6,a) < @ such
that each agent is indifferent between what she gets and this reference bun-
dle, that is, for all i € N, a;1;(0)ag (0, a) (see Pazner and Schmeidler (1974)).
The egalitarian equivalent correspondence EQ : © — A associates to each
economy 6 € O, its set of egalitarian-equivalent allocations FQ(#). This cor-
respondence is not monotonic (cfr Thomson (1999)). On the other hand,
it is subgame perfect implementable (cfr Demange (1994) and Maniquet

11



(2002)). Let us show that it can be virtually implemented with a small
support: each support must contain no more than n + 1 allocations. Let

HE? (0,a) = {a, Usen (ao 0,a), (%_(19‘1))]7&1)} , that is, each support is
composed of the desired allocation together with allocations where each agent
precisely gets the reference bundle (and the other agents get an equal share
of the remaining resources).

We have: If preferences are continuous, strongly monotonic, and conver,
the egalitarian equivalent correspondence satisfies extended monotonicity with
respect to H®.

Indeed, let us consider § € © and a € EQ (f) with corresponding ag. Let
¢ #0.1f a ¢ EQ (o), then for at least one agent it is no longer true that
a;I;(p)ag and we have a preference reversal between a; and ag (note that the
reversal can go either way). If a € EQ (¢), then either the reference bundle
is the same, in which case HE? (0, a) = HE? (¢, a), or it is different, in which
case we have again at least one preference reversal between some a; and ay.

Interestingly, the game form proposed by Demange (1994) to implement
egalitarian equivalent allocations in subgame perfect equilibrium has n + 1
stages, and out of equilibrium allocations are similar to the ones we need to
have in the admissible support.

Example 4 The efficient and egalitarian equivalent correspondence

Under our assumptions on preferences, efficient egalitarian equivalent al-
locations always exist and the efficient correspondence (selecting all efficient
allocations) satisfies monotonicity. One may therefore wonder whether the
result above can be used to construct the support which would allow us to
virtually implement the efficient and egalitarian equivalent correspondence.

Actually, if a SCC f; satisfies extended monotonicity with respect to hy,
and another SCC f; satisfies extended monotonicity with respect to hs, then
if the SCC f1Nf5 is non-empty, it satisfies extended monotonicity with respect
to hiUhs. Indeed, as hy contains all the alternatives necessary to reveal a pref-
erence reversal indicating that an alternative is no longer in f;, and hy does
the same for f5, combining hy; and hy also gives a sufficient support. Given
that the efficient correspondence satisfies extended monotonicity with respect
to the trivial support h (a,8) = a (by monotonicity), we have: If preferences
are continuous, strongly monotonic, and convez, the efficient and egalitar-

ian equivalent correspondence satisfies extended monotonicity with respect to
HFPQ,
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4 Constructing the supports

The result presented in the previous section can be used to answer two ques-
tions: first, given a SCC, which admissible supports would allow us to im-
plement it; second, given some admissible support, which SCCs can be im-
plemented with this support. We answer the former question in this section,
and leave the latter for the next section.

Let us rewrite extended monotonicity in the following way.

Definition 3 A SCC f satisfies extended monotonicity with respect to an
admissible support h if and only if there exists H such that for all 8 € O, all
a€ f(0),aC H(#,a) C h(f,a) and :

1) For all 0,¢ € © such that a € f(0)\f(¢), there exist i € N, b € H(0,a)
and ¢ € A such that,

bR;(0)c and cP;(¢)b.

2) For all §,¢ € © such that a € f(8) N f(p), either
a) there exists i € N, b € H(0,a) and c € A such that bR;(8)c and cP,(¢)b;
or

b) H(#,a) C h(p,a).

Part 1 of the above definition illustrates the specificity of virtual Nash
implementation compared to other notions of implementation. The key prob-
lem of implementation is to give agents the opportunity to reveal preference
reversals in such a way that alternatives which are no longer selected by
the SCC after the reversal (like alternative a in the definition) are no longer
supported by an equilibrium. For any such reversal, like the one involving
b and ¢ in the condition, it is sufficient to add b to the admissible support.
The possibility to decrease the probability assigned to b and to increase the
probability assigned to c¢ is just what is needed for the mechanism designer
to know whether a should be selected or not. That is what makes virtual
implementation so easy and successful. The lesson to draw from this part of
the definition is that only one alternative needs to be added to the support
(that is, needs to receive strictly positive probability at equilibrium) for each
pair of preference profiles.

Let us apply this idea to identify the minimal support necessary to vir-
tually implement an arbitrary f in the case of a finite ©. Let > be an order
on A. Let § € © and a € f (). For each ¢ € O such that a ¢ f (¢), identify

13



the pair (bge, cg) such that for some i € N, bgyR; (0) cop and coy P (6) bgy and
no other preference reversal involving a by, higher in the order on A exists.

Then

h(0,a) 2 Uscoragfs)bos-

A minimal support must contain at least those elements.’

Part 2 of the definition illustrates the trade-off one faces when construct-
ing support. Indeed, if there were no two profiles selecting the same alterna-
tive (that is, no 0, ¢ € © such that a € f(6) N f(¢)), then the support could
be constructed as described above. But as soon as an alternative is in the
selection at several profiles, a choice has to be made. The first option is to
add an alternative to the support, so that the relevant preference reversal is
revealed and the designer is able to distinguish between profiles # and ¢. But
it is also possible to save on the number of alternatives in the support. It is
indeed what part 2) b) of the definition tells us: there is no need to reveal
a preference reversal from 6 to ¢ as there is nothing wrong if alternative
a is still supported by the same equilibrium at ¢ as at 6, provided all the
alternatives which receive positive probability at the equilibrium supporting
a are still admissible at ¢. We highlight next the difficulties and the choices
that have to be made in constructing the supports.

In the construction of minimal support we begun above, defining h (6, a) 2
Useoiagf(¢)bop may, indeed, not be sufficient. Let 0, ¢, p € © be defined as
follows:

Ri(0) = Ri(¢) = Ri(p) Ra(0) Ra(d) Ra(yp)
b
d

Let f be defined by f(0) = f(¢) = {a}, f(p) = {c}. Let us assume that
the order is a > b > ¢ > d > e. We must have a,b € h(0,a), as bRy (0) c
and ¢ P, (@) b is the only reversal between 6§ and ¢. Also, a € h(¢,a) and
¢ € h(p,c). If h is not larger than that, we face the following difficulty:

5This set depends on the order on A we started with. If minimality is computed with
respect to set cardinality and not set inclusion, then the lowest cardinality should be
evaluated across all possible orders.
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the equilibrium strategy profile supporting a at € cannot but be also an
equilibrium strategy profile at ¢ (there are no preferences reversal involving
a or b between 6 and ¢), whereas b is not admissible at ¢. Therefore, either
we impose b € h (¢, a), and the same strategy profile may be an equilibrium
at 0 as at ¢, or we impose ¢ € h(6,a), so that the reversal ¢ Ry (6) d and
d Py (¢) c is used to break the undesired equilibrium at ¢.

This illustrates the different possible strategy to construct admissible
supports. It also shows that minimal supports are not unique, and, more
importantly, that there is no single algorithm to construct them.

5 Fixing the support

The second question about virtual implementation with admissible support
is the following one: assuming that an admissible support has been chosen,
which SCCs can be virtually implemented with that support. We find the
question particularly relevant if the admissible support is either the set of
efficient or individually rational (that is, Pareto dominating a status quo)
alternatives. Our main result in this section is the observation that both
the efficient and the individually rational correspondences are invariant with
respect to extended monotonic transformations, that is, if ¢ is obtained from
6 by a monotonic transformation of the preferences at each and every effi-
cient (resp., individually rational) alternative, then the set of efficient (resp.,
individually rational) alternatives is the same at ¢ as at 6. As we show below,
this considerably simplifies the condition an SCC must satisfy to be virtually
implementable with efficient or individually rational support. We then give
examples.

Let us begin by formally defining the efficient and individually rational
(with respect to some status quo ¢ € A) correspondences respectively. For
each 0 € O,

PE(#)={ac A|Vbe A:[bR;(0) a,Vi e N| = [b1;(0) a,Vi € N|}.
For each 6 € O, and for some c € A,
IR°()={a€c A|aR;(0) c,Vie N}.

Theorem 2 The PE and I R° correspondences are invariant with respect to
extended monotonic transformations, that is, for all 0, ¢ € O,

[LC; (0,b) C LC; (6,b),¥b € PE (8)] = [PE (0) = PE(¢)], and
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[LC; (0,b) € LC; (¢,b),Vb € IR ()] = [IR°(0) = IR°(9)].

The proof is relegated to the appendix. The consequence of Theorem 2 is
the following. In order to check whether an SCC is virtually implementable
with admissible support PE or IR, we need only check Part 1) of definition
3, that is, that all selected alternatives are still selected after a change in
preferences which extends the lower contour sets at each Pareto efficient
(resp. individually rational) alternatives. Formally, we have the following
definition.

Definition 4 An SCC f satisfies PE (resp. IR)-extended monotonicity if
and only if, for all 0,¢ € O,

Vb € PE(6) (resp. IR°(6)).Yi € N, LCi(b,0) € LCi(b, $)] = [f (6) C f (¢)].

Example 5 The Plurality correspondence and other scoring correspondences

Given that the top correspondence is a subcorrespondence of the efficient
correspondence, example 1 above shows that the Plurality correspondence
can be virtually implemented with efficient support (it does not make sense
to check whether or not it can be virtually implemented with individually
rational support as the plurality correspondence is not a subcorrespondence
of the individually rational correspondence). We raise the question whether
other scoring correspondences, that is, correspondences based on the max-
imization of the overall score of an alternative are virtually implementable
with efficient support. Let us recall that Vartiainen (2003) shows that no
scoring rule can be implemented in subgame perfect equilibrium. Sjostrom
(1993) shows that the Borda rule is not implementable in trembling-hand
perfect equilibrium. Here also, the answer is negative.

Let A € R‘f‘ be a weight vector, such that 1 =X > Ay > ... > A4 = 0.
Given A, the score of a at 6 is equal to

A

sx(a,0) =Y M#{i € N|r(a,i,0) =k}

k=1

The scoring correspondence Sy associated to A is defined by

Sy(0) ={a€ A|sy(a,0)>s(b6),Vbe A}.
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Let us note that if Ay = 0, S) is the plurality correspondence, if A|4-1 = 1, Sy

is the anti-plurality correspondence, and if A\ = 1—%, then S) is the Borda

correspondence. Let us assume that Sy # P, that is, Ay > 0. Then there exist
two integers nq, ny, such that ny > ny and 22=" < \,. Let 6 € O be described

n

as below, that is, n; agents have preferences a P; (#) b P, () ... P; (0) c, etc.

0 ¢
ny n2 ni ng
a.....a C.....C a.....a C.....C
b.....b a.....a C.....C a.....a
C.....C b....b b.....b b.....b

We have
sy (a,0) =ny + Aana > sy (¢, 0) = ng,

and, clearly, sy (a,0) > sy (b,0) for all b # a,c. Therefore, Sy (0) = {a}.
Now, PE (8) = {a,c}. Let ¢ € O be described as in the table, that is, ¢ is
obtained from 6 by an extended monotonic transformation at each alterna-
tive in PE (0) . By PE-extended monotonicity, we should have: {a} € Sy (¢),
whereas sy (a, @) = n1 + Aang < sy (¢, @) = ngy + Aany, the desired contradic-
tion.

Consequently, we have proven: the plurality correspondence is the only
scoring correspondence satisfying PE-extended monotonicity.

This result confirms the special status, among scoring correspondences,
of the plurality correspondence, when one takes incentives into account. In-
deed, Jackson, Palfrey and Srivastava (1994) show that the plurality corre-
spondence is boundedly implementable in undominated Nash equilibrium,
though no other scoring rule is.

Example 6 The Walrasian correspondence

If the support is the set of efficient allocations, can we solve the boundary
problem? The answer is negative. Indeed, if the set of efficient allocations
is itself on the boundary, then an extended monotonic change in preferences
from 6 to ¢ may break the Walrasian property of an allocation without
affecting the set of efficient allocations.
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6 Concluding remarks

In this paper, we have characterized the set of pairs of SCCs and admissible
supports such that the former can be virtually implemented with respect to
the latter. Using this result, we have shown that admissible support sufficient
to implement well-known correspondences may be surprisingly small, but
we have also shown that undesirable allocations may have to belong to the
support necessary to implement some SCCs.

Our conclusion is that, in spite of the Abreu and Sen general possibility
result, virtual Nash implementation should not be viewed as the end of the
story, and it would be interesting to explore which (especially small) supports
can be used to implement well-known desirable SCCs.
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7 Appendix

Proof of Theorem 1:

First part: if f is virtually implementable with admissible support h, then
f satisfies extended monotonicity with respect to h.

Since f is virtually implemented with admissible support h, for all ¢ > 0,
there exist a Nash implementable lottery correspondence f£, a bijection 74 for
each § € ©, and a mechanism G = (5, g) such that for all § € ©, all a € f(6),
there exists s € S such that d(a,79(a)) <¢e,g(s) = 19(a) and s € NE (G, 0).
Let H be defined by: for all € ©, all a € f(0), H (0,a) =suppTg(a). As f
is virtually implemented with admissible support h by G, H (0,a) C h(0,a) .
Let us fix some 6 € © and a € f(f). Let ¢ € © be derived from 6, a and
H (0, a) like in the definition of extended monotonicity. We need to prove
that s € NE(G,¢). Since s € NE(G,0), for all vy € ¥(0), all i € N, all
s € S;, we have g (s) R; () g (s}, s_;). Let us choose some s, arbitrarily. Let
2 =g (s}, s_;). By the way ¢ is derived from 6, we have that,

LC;i(0,a) C LC; (¢,a) for each i € N and each a € suppg(s)
These expansions imply that, in the probability simplex,

LCi(vy,9(s)) € LC;(A, g(s)) for each i € N, each v € ¥(0) and each X\ € X(¢).
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Therefore,

9(s)Ri(7)g(s") = g(s)Ri(N\)g(s') for each i € N, each v € X(f) and each X € X(9).

As 2/ = g(s},s_;) and s; has been chosen arbitrarily, this proves that
s € NE (G, ¢). Therefore, there is b € f (¢) such that d (b, 7¢(a)) < e. It is
clear that for small enough ¢, this implies b = a, so that a € f (¢). Finally,

since g (s) € f£(6) € h(9,a), H(6,a) C h(d,a).

Second part: if f satisfies extended monotonicity with respect to h, then
it 1s virtually Nash implementable with admissible support h.

First, given # € © and a € f(6), let /(H(#,a)) € L be defined by: for all
be H(6,a), b = Wé,a)\' We construct G = (S, g) as follows.

For each i € N, S; = © x A x {(¢c,;b) € A2:c#b} x Ny,. A typ-
ical strategy is s; = (Hi,ai,ci,bi,ni). Denote by i* the agent with the
lowest index among those who announces the highest integer, i.e. * =

min{i € N :n' >n’ Vj € N}. For s = (s;),c, g (s) is defined as follows.

Rule 1: If for each 2 € N, s; = (Qi,ai,.,.,.) =(0,a,.,.,.) and a € f(6),
then

g(s)= (1 —e)a+el(H(6,a)).

Rule 2: If there exists ¢ € N such that for all j # i, s; = (¢/,d7,.,.,.) =
0,a,.,.,.), a € f(0), then,
2a) g(s) = (1 = e)a + el(H(6,a)) + s (¢ — 1) if ¢ € LCi(, 1) and
b' € H(6,a), and
2b) g(s) = (1 — &)a + el(H (0, a)) otherwise.

Rule 3: In all other cases, g (s) = (1 — ni*lﬂ)ci* + ﬁbz

We show that this game form implements the lottery correspondence f*
defined by:

teff@)eJacfO):L=(1—-c)a+el(H®H,a)).

Given that ff is e-close to f, this will prove the claim. The proof is divided
in two steps.

Step 1: For all ¢ € ©,¢ € f£(¢), there exists s* € NE (G, ¢) such that
g (s*) = ¢ and suppg (s*) C h (gb, 7';1 (E)) . Suppose the true profile is ¢ and
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a € f(¢). Each agent ¢ € N announcing s; = (¢, a,c,b, 1)—for a arbitrary
¢ # b-is a Nash Equilibrium of G. By deviating to s, # s}, an agent ¢ € N can
only trigger rule 2, decrease the probability of an alternative b € H (¢, z) and
increase the probability of a worse alternative c¢. Therefore, s* € NE(G, ¢)
and suppg (s*) = H (¢,a) C h(¢,a).

Step 2: For all ¢ € ©,5* € NE (G, ¢),9(s*) € ff(¢) and suppg (s*) C
h (¢, 751 (9(s%))) . Suppose the true profile is ¢ € ©.

1) There is no equilibria under rule 2a or 3.

At any strategy profile under either rule 2 or 3, two different alternatives
receive strictly positive probability (even if b* or ¢! = a). Under the assump-
tion that there is a uniquely best alternative for each agent, the outcome
lottery cannot be the preferred lottery of any agent. Some agents, therefore,
can profitably deviate.

2) Assume s* € NE(G,¢) under rule 2b and for all j # i : s} =
(0,a,.,.,.). By the same reasoning as above, that cannot happen if two
alternatives or more get strictly positive probability. Therefore, g (s*) = a,
so that H (0,a) = {a}. Any j # i could have deviated under rule 3. There-
fore, p;j1(¢) = a. Also, i does not deviate, so that LC;(¢,a) € LC;(6,a).
Given that a € f(0), by extended monotonicity, a € f (¢).

3) Assume s* € NE(G,¢) under rule 1 and for all i € N : s& =
0,a,.,.,.). By announcing s" = (Q'i,x’i,c’i,b’i,n’i) such that 0 # 0", ¢ €
LC; (9,6}) Wie H (@,:E) , any ¢ could have obtained (under rule 2a) (1 —
e)a+el(H(0,a))+ m(c’i —b'"). This implies that LC;(0,b) C LC;(¢,b)
Vb € H(0,a). Since f satisfies extended monotonicity, we obtain that a €
f(¢) and H(0,a) C h(e,a).

Q.E.D.

Proof of Theorem 2:

Consider the PFE correspondence. The argument runs in the same way
for ITR. Let 8 € O. Let ¢ € O be such that for all b € PE(), all
i € N,LC;(b,0) C LC;(b,$). Therefore, for all b,c € PE (), all i € N,
bR;(0) c< bR;(¢) c,whereasforallb € PE (0),c € A\PE(0),bR;(0) c =
bR; (¢) c. Consequently, PE (#) C PE (¢). Finally, if b € A\ PE (0), then
there exists ¢ € PE (f) such that for all ¢ € N,cR;(#) b and cP; () b for
some j € N. Consequently, for all ¢ € N,cR; (¢) b and ¢ P; (¢) b so that
be A\ PE(9).

0.E.D.
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