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Abstract. Current Office of Management and Budget (OMB)
guidelines use the interest rate as a basis for the discount rate,
and have nothing to say about an intergenerationally fair discount
rate. We derive this discount rate by differentiating a social welfare
function with respect to perturbations in individual endowments
(which induce perturbations of equilibria) in an overlapping gener-
ations model with exogenous growth. A traditional utilitarian ap-
proach leads to too high values, and in a wide range, while Relative
Utilitarianism implies it equals the growth rate of real per-capita
consumption, independent of the interest rate.

The differentiation is based on a novel method, applicable to ar-
bitrary policy-variations, and that reveals a deep and very general
property of exogenous growth models.
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1. Introduction

Many public policy decisions — whether about a housing project,
about managing extraction of natural resources, about pension reform,
etc. — involve trade-offs of economic costs and benefits, that are spread
over time. Crucial, then, is the choice of an appropriate discount rate,
i.e., how to translate benefits and costs into present (consumption)
terms (either explicitly stated as part of the regulatory principles, or
implicitly embedded in a specific policy analysis). This choice should,
clearly, be based on well-defined normative principles, i.e., has to be
objective and justified, for policy-makers as well as their consultants.
In this paper we use Relative Utilitarianism to derive such an intergen-
erationally fair discount rate in an overlapping generations model.

Our purpose here is analytical: taking existing practices (say, sum-
marised in the OMB Circulars) as given, we suggest a way to think
about the underlying principles behind these practices, and to trans-
late abstract “equity” requirements into concrete terms. To derive the
discount rate we compute the impact on social welfare of a small change
in consumption endowments.

Circular A-4 of the U.S. Office of Management and Budget (2003)
mandates that all executive agencies and establishments conduct a
“regulatory analysis” for any new proposal, and more specifically (pp.
33–36), a cost-benefit analysis, at the rates of both 3% and 7%. Both
rates are rationalised there as “the interest rate”: the first one relative
to private savings, the second one relative to capital formation and/or
displacement, i.e., as the gross return on capital.

The OMB circular does refer explicitly to the requirement of eq-
uity vis-à-vis of future generations, and acknowledges it by requiring,
for projects with substantial long-term impact, a further analysis at a
“lower but positive” discount rate (p. 36), but more specific suggestions
are hard to find.1 This is the question we want to address.

The issue of discounting and, more broadly, intergenerational jus-
tice, has been controversial in the literature since, probably, Sidgwick
(1874).2 Ramsey (1928) (p. 543) presents discounting future utility
(‘enjoyments’) as a “practice which is ethically indefensible and arises

1Other practitioners share this view, e.g.: “Morally speaking, there is no differ-
ence between current and future risk. Theories which, for example, attempt to dis-
count effects on human health in twenty years to the extent that they are equivalent
to only one-tenth of present-day effects in cost-benefit considerations are not accept-
able.”Wildi, Appel, Buser, Dermange, Eckhardt, Hufschmied, and Keusen (2000)

2“How far we are to consider the interests of posterity when they seem to conflict
with those of existing human beings? It seems, however, clear that the time at
which a man exists cannot affect the value of his happiness from a universal point
of view; and that the interests of posterity must concern a Utilitarian as much as
those of his contemporaries, except in so far as the effect of his actions on posterity
— and even the existence of human beings to be affected — must necessarily be
more uncertain.” (p. 414)
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merely from the weakness of the imagination”. He then suggests a
way to overcome ‘technical’ difficulties of constructing a discount-free
utilitarian social welfare criterion (based on the difference between ac-
tual and ‘bliss’ level of utility), later referred to as the “Ramsey cri-
terion.” Discounting utilities, or ‘social impatience,’ was axiomatised
by Koopmans (1960). A growing literature in social choice and wel-
fare economics is concerned with incorporating intergenerational justice
principles in a social welfare criterion (see, e.g., d’Aspremont (2006);
also Asheim, Mitra, and Tungodden (2006) show existence of welfare
functions satisfying some of Koopmans’ (1960) postulates and prin-
ciples of intergenerational equity, in particular, Chichilnisky’s (1996)
axioms of ‘sustainable development’); in addition several contributions
aim at characterising ethically acceptable (just) allocations over time
(e.g., Asheim (1991), Fleurbaey and Michel (2003)).

To adequately tackle questions of intergenerational equity we suggest
to use Relative Utilitarianism, a welfare criterion introduced in Dhillon
and Mertens (1999), that allows for a meaningful comparison of well-
being across individuals born at different times and faced with different
consumption choices and different economic environments.3 It explic-
itly requires equal treatment of individuals of different generations in
its anonymity axiom. The importance of using explicit criteria for cost-
benefit analysis was stressed by Drèze and Stern (1987), distinguishing
this approach from that examining “potential improvements”4 stem-
ming from a project. Formulating a social welfare function, they argue,
provides greater transparency to the cost-benefit analysis, assures con-
sistency of related choices and avoids a special preference for inaction.5

We focus on “small projects”, viewed as “a disturbance to the econ-
omy, displacing it from some initial equilibrium to a new one”(Bell
and Devarajan (1983), pp. 457–8). This linearisation is essential to
cost-benefit analysis itself, both in order to be able to speak of costs
and benefits, rather than welfare differences, and in order to be able to
conduct a separate cost-benefit analysis for each project, rather than
having to do an overall welfare optimisation over all conceivable com-
binations of projects by all branches of the government. This means,
projects are evaluated via ‘shadow prices’, and the discount rate is

3Relative Utilitarianism is discussed in more detail in section 1.2.
4See Mishan (1976) for an in-depth discussion of “potential Pareto improve-

ments” (traced back to Pigou (1932)) and their application to cost-benefit analysis.
For a more recent overview of cost-benefit criteria see Coate (2000).

5“. . . a fundamental shortcoming of evaluation criteria based on Pareto improve-
ments, whether actual or potential, is that, unless they are taken to imply that
Pareto-improving changes are the only acceptable ones (a view which we regard
as extremely unappealing and which attaches undue weight to the status quo),
they provide no decision criterion for projects which cannot lead to Pareto im-
provements. It is difficult to overcome this problem without accepting the need to
specify a social welfare function which embodies more definite judgements.”(p.49)
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the shadow price for tomorrow’s goods in terms of today’s. Bell and
Devarajan raised a concern that the shadow prices might not be well-
defined if the corresponding policy is not fully specified. One way to
avoid this is to translate the effect of a public project into its con-
sumption equivalent for individuals. Viewing public projects this way,
we have no reason to introduce public goods into the model, which
makes the analysis more transparent. Moreover, this representation
is closer to the practical guidance for conducting cost-benefit analysis
suggesting that the impact of a public project be monetised (cf. OMB’s
Circular A-4). Thus, the relevant shadow price becomes the marginal
social value created by an additional unit of consumption.

It is not uncommon to use prevailing prices to represent the shadow
prices, and then it is the interest rate that has to be used as discount
rate. The corresponding welfare criterion is very specific:

The status-quo is a given competitive equilibrium. Construct a social
welfare function (SWF), W , as a weighted sum of individual utilities,
∑

nλnun, the weights being chosen such as to equalise the individual
marginal utilities of consumption at the given equilibrium, so λn∇un =
µp,6 for the equilibrium price system p and some µ > 0.7

Viewing projects as small perturbations of individual endowments,
δωn, we are interested in the induced variation of social welfare:

δW =
∑

λnδun =
∑

λn〈∇un, δcn〉 = µ〈p,
∑

δcn〉 = µ〈p,
∑

δωn〉

since 〈p, δy〉 = 0, where y is the equilibrium production.8,9

Thus, with those specific weights, the prevailing prices are, indeed,
the relevant shadow prices, reflecting the relative impact of the endow-
ments on social welfare. In a dynamic interpretation, where goods be-
come dated goods, the equilibrium price system includes, in particular,
the interest rate, as the price of tomorrow’s money in terms of today’s.

One rationale for that approach is that cost-benefit analysis is to be
carried out in a quite decentralised way by different government agen-
cies, project by project. So the only way to ensure some coherence,
and to ensure that each one stays within its area of competence, is to
assume that the others do their job correctly — and in particular, that
redistribution policy (typical competency of the legislature) is optimal,
so that transfers are welfare-neutral at the margin, and hence the above

6This condition is implied, for example, by one of Samuelson’s (1954) optimality
conditions, see his condition (3).

7Equivalently, assuming, e.g., concave utility functions, one can deduce from
the First Welfare Theorem the existence of utility weights such that the given
equilibrium maximises the corresponding weighted sum of utilities over all feasible
allocations; this yields the same weights.

8〈x, y〉 denotes the inner product of two vectors x and y.
9Since we omit for simplicity public goods and externalities from our formal

model, the δωn are assumed to include, in addition to the direct effect of the
project, also the compensating variation (in goods) for the different external effects.
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weights. In this paper we are, however, interested in the implications
of intergenerational equity; hence we cannot assume that the prevailing
interest rate is the correct discount rate. Thus we must depart from the
above weights,10 and use a SWF that explicitly embodies this concept
of intergenerational equity.

In the next section we try to do this, in a toy-model, using the most
traditional form of utilitarianism in applied policy analysis.

1.1. A simple computation using the traditional methodology.

Let us start with a very simple model of an economy, in which individ-
uals live for just one period, enjoying consumption ct > 0 during their
lifetime at t. Individual preferences over (lifetime) consumption are
represented by a constant relative risk aversion utility function with
coefficient, ρ > 0, so that u (c) = c1−ρ/ (1 − ρ); and suppose the econ-
omy is on a balanced growth path with per-capita consumption growing
exponentially at rate γ > 0. Consider a policy that involves a variation
in aggregate consumption of δCt at each future date t and that is to be
evaluated at time 0. The status-quo per-capita consumption at time t
is c0e

γ t, where c0 is the initial (time 0) per-capita consumption. Taking
a traditional utilitarian criterion (W =

∑

t e
−βtNtu(ct), where Nt is the

number of agents at time t) as a guide for evaluating this policy, the
net (social) benefit equals

∑

t e
−βtNt

[

u
(

c0e
γ t + δ Ct

Nt

)

− u(c0e
γ t)

]

=
∑

t e
−βtNtu

′ (c0e
γ t) · δ Ct

Nt
=

∑

t c
−ρ
0 e−(ργ+β)tδCt

This means that future consumption is discounted at the rate ργ+β
under this criterion. Even if we follow Sidgwick (1874) and Ramsey
(1928) and set β = 0, to write explicitly that we want to treat future
generations equally, the magnitude of the suggested discount rate, ργ,
is far above any rates applicable in practice, and the estimated values
have an extremely wide range, as the next subsection demonstrates.

1.2. Orders of Magnitude for the Discount Rate. To estimate γ
one may use a measure of growth of real per-capita GDP. Based on the
data from the Bureau of Economic Analysis, over the past 70 years the
average in the U.S. is estimated to be around 2–2.5% per annum (with
averages over various decades since 1950 ranging from 3% to 1.8%).

In the above model, individuals live for one period, so ρ does not re-
flect individual intertemporal preferences. Consistency with Harsanyi’s
axiomatisation(s) of such additive SWFs forces one to interpret u as the
individual’s von Neumann-Morgenstern utility function, and hence ρ as
his coefficient of relative risk aversion. One of the most recent overviews
compiling various (micro) estimates of the risk aversion coefficients is

10As mentioned before, any such departure will make transfers non welfare-
neutral, and hence will imply that aggregation (i.e., that everything depends only
on

∑

δωn) is no longer possible. We will deal with that difficulty in sect. 4.2.
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contained in Einav and Cohen (2005). Remarkable is both the range as
well as the magnitude of the suggested values, ranging from single- to
three-digit values. They measure relative risk aversion coefficients from
individual-level data on car insurance and annual income, obtaining
two-digit estimates. Clearly, with a discount factor of this magnitude
a cost-benefit analysis will select only very short-sighted policies. This
remains true even with more conservative estimates, like, say, derived
by Drèze (1981) (ρ ∼ 12–15), or like those which seem accepted as
corresponding to “representative” (instead of individual) behaviour in
financial markets — say 3, leading to ργ ∼ 6–7%, way too high.

In sum, it is impossible to view the traditional methodology de-
scribed above as a correct interpretation of “treating future generations
equally” — which is exactly what the SWF tried to do, by using β = 0.

1.3. Discount Rate under Relative Utilitarianism. Since the tra-
ditional methodology failed so badly, producing unreasonably high dis-
count factors within a wide range, let us now look at Relative Utilitar-
ianism, introduced in Dhillon and Mertens (1999).

The axiomatisation consists basically of applying Arrow’s axioms
to preferences over lotteries, after “surgically removing” from them
everything which is clearly objectionable — i.e., which anyone would
expect a good social welfare functional to violate: the implications that
variations in the intensity of preference of x over y don’t matter.

After this removal, one can add anonymity (implying here also that
individuals of different generations are treated equally) to obtain an
axiomatisation of a unique social welfare functional,11 relative utilitar-
ianism, that takes for each individual’s preferences the von Neumann-
Morgenstern representation having minimum 0 and maximum 1 over
the feasible set, and sums those to obtain a representative of the cor-
responding social preferences.

It is stressed in that paper that this dependence on the feasible set
implies that in actual use it should be applied with some universal
feasible set, to quote “all alternatives that are feasible and just”. In
particular, in the present situation, the feasible set should consist not
only of the “baseline” and the different proposals under consideration,
but of all policies and policy-changes that might be considered by any
agency of the government.

In (exogenous) growth models, the rate of growth is unaffected by
any policy variable: policies affect only the height of the growth path,
which, in the simple setup described in subsection 1.1, translates into
multiplying per-capita consumption by some constant along the growth
path. Therefore, the set of feasible policies at time t can be viewed as a
range of induced per-capita consumption levels between (1−η)c0e

γ t and
(1+ζ)c0e

γ t for some constants η and ζ . Applying relative utilitarianism

11The axiomatisation assumes a finite number of agents.
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to the simple model, we have to normalise individual utility u(ct) on
the set of feasible policies:

v(c0e
γ t + δct) =

u(c0e
γ t + δct)

u
(

(1 + ζ)c0eγ t
)

− u
(

(1 − η)c0eγ t
)

i.e., we divide by

ρ− 1

cρ−1
0

[

−1

(1 + ζ)(ρ−1)
+

1

(1 − η)(ρ−1)

]

e(1−ρ)γt ∼ e(1−ρ)γt

So the variation of our SWF becomes
∑

t

e(ρ−1)γtδCtu
′
(

c0e
γt

)

∼
∑

t

e(ρ−1)γte−ργtδCt =
∑

t

e−γtδCt

This implies that the previous discount rate of ργ becomes now sim-
ply γ, 2–21

2
%, right in the ball-park of “positive and < 3%”.

One could argue that the example is not representative; in particular,
since individuals live only one period they have no incentive to save,
so there can be no capital accumulation and growth. In a real model
where there is growth and savings, there is also an interest rate, which
individuals would use to smooth the shock over their lifetime, so one
would expect the result to be driven back to the interest rate.

We will nevertheless show that the result, as well as that of sect. 1.1,
does remain valid in the much more general framework of next section.
Section 3 describes the solution concepts to which the main statement
is applicable, and section 4 deals with the construction and interpre-
tation of relative utilitarian welfare functions in an OLG context. The
main result appears then in section 5 (and 6.1), and is discussed and
given further interpretations in section 6. Section 7 concludes.

2. The model

We use a general-equilibrium overlapping generations model, cast in
an exogenous growth framework. The main assumptions that we im-
pose on the economy — homogeneity of utility functions with respect to
(streams of) consumption, and constant returns to scale in production
— are there to allow for a balanced growth path.12

2.1. The Consumption Sector.

2.1.1. Population Dynamics. Time is continuous, ranging from −∞ to
+∞. There are several types of individuals. An individual of type
τ lives up to age Tτ . The population dynamics are fully specified by
non-decreasing right-continuous functions Pτ,τ ′, defined on [0, Tτ ] with
Pτ,τ ′(s) being the number of children of type τ ′ an individual of type
τ has at age s, and by saying that we are looking at a corresponding

12See King, Plosser, and Rebelo (2002) and Arrow and Kurz (1970) for a similar
discussion.
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invariant distribution.13 But as long as we do not introduce bequest
motives, it is only this distribution that matters. It is such that, at
time t, the number of individuals of type τ in age-group (s, s + ds)
(0 ≤ s < Tτ ) is given by N τeν(t−s)ds, where N τ is population of type
τ born at time 0. So, population grows at rate ν > 0, keeping the
proportion of each age group of each type constant.

2.1.2. Preferences and Endowments. At each instant of his life, s, an
individual of type τ born at time x consumes non-negative quantities
of n goods, cτ,x(s) ∈ R

n
+ and allocates fractions of his time to h types

of labour, zτ,x(s) ∈ R
h
+.14

His preferences over integrable life-time consumption-streams in R
n+h

are derived from a utility function U τ (e.g., increasing in the goods, de-
creasing in labour, concave, differentiable). He has no bequest motive.15

For balanced growth to be at all possible, we assume U τ to be homo-
geneous, say of degree 1−ρτ , in the n streams of consumption-goods.16

Endowments are 0 — except for the “endowment of time”, which
is unity at every instant (24h/day). This imposes an instantaneous
constraint on the individual feasible set requiring the sum of fractions
of time devoted to all possible occupations to be always less than unity.

In what follows, a policy will be associated with a perturbation of
endowments of consumption goods, (δω)i for i = 1 . . . n— cf footnote 9.

2.2. Production.

2.2.1. Instantaneous production. Instantaneous production is described
by a closed convex cone Y ⊂ R

h+m+n+m, t ∈ R, describing feasible pro-
duction plans transforming h+m inputs (h types of (effective) labour,

13We keep everything deterministic here, just to avoid having to discuss irrelevant
insurance markets for idiosyncratic risks.

14Sometimes we will use the notation cτ (s, t) and zτ (s, t) to stand for consump-
tion and labour of an individual of type τ who is of age s at time t, so that x = t−s.

15We index consumption streams by age, in [0, Tτ ], so all individuals of the same
type have the same consumption set, C[0, Tτ ], and utility function, independently
of their birth-date.

16This model “contains” the one used by Arrow and Kurz (1970) (mentioned
in footnote 31), which has been widely used to evaluate public investments in the
literature since then. To see this assume all individuals live for a fixed period of
time (unity), and an individual born at time t has a life-time utility of the form

Ut(c·)=
R t+1

t
e−α(s−t)u(cs)ds

where ct is consumption per head at date t (assumed independent of age for sim-
plicity), and α is the individual time preference. Assume also that population grows
exponentially at a rate ν. Then, aggregating over all individuals (integrate over t

from −∞ to +∞) when discounting their expected utilities at birth at a rate β,
one gets the Arrow-Kurz criterion:

W≡
R

∞

−∞
Nte

−βtUt(c·)dt=
R

∞

−∞
Nte

−βt
R

t+1
t

e−α(s−t)u(cs)dsdt

=N0

R

∞

−∞
e−αsu(cs)

R s
s−1

e(α+ν−β)tdt=M
R

∞

−∞
e−βtNtu(ct)dt, where M≡

R 1
0

e(α+ν−β)xdx
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L(t) ∈ R
h
+, and m types of capital) into n consumption goods and m

investment goods. Assume no free lunch, Y ∩ R
n
+ = {0}.

Individuals supply labour (time) to the firms, and their productivity
changes with time and age. The amount of effective labour of type i
received at time t by a production firm from an individual of type τ
and of age s is eγtετi (s)z

τ
i (s, t), where ετi (s) is this individual’s life-cycle

‘productivity’ (in occupation i),17 and where γ is (labour-enhancing)
technological progress. Recall zτi (s, t) is the amount of labour (time)
supplied by an individual (of type τ) born at time t− s.

Thus, (exogenous) growth in this model is driven by a steady increase
in labour productivity.

2.2.2. Capital accumulation. There arem capital goodsKi (i = 1 . . .m),
each with its corresponding investment good I i, depreciation rate δi,

and capital-accumulation equation dKi(t)
dt

= I i(t) − δiKi(t),18 together

with the “initial condition” that lim supt→−∞ e−(γ+ν)tKi(t) <∞.
The rest of this subsection is devoted to verifying that the production

set is well-defined (proofs in appendix).
The capital accumulation condition and the initial condition have

the following implication:

Lemma 1. Ki(t) = e−δ
it

∫ t

−∞
eδ

isI i(s)ds for all t, where the integral is
a Lebesgue integral.

To ensure bounded production possibilities, capital cannot reproduce
itself (“rabbit economy”).19 Lemma 1 ensures that Ki(·) is uniquely
determined by I i(·). However it might not be sufficient to guarantee
that any investment policy (e.g., I is a function of current K instead
of time) has a well-determined outcome, without either using the full
strength of the “initial condition” (lemma 2 below), or slightly rein-
forcing the assumption that capital cannot reproduce itself (lemma 3).

Lemma 2. Assume Y is such that no investment good can be produced
without some form of labour input. Assume R ≡ γ + ν + δ > 0. Then
the set of all feasible functions Ki(t) and I i(t) is bounded above by
K̄e(γ+ν)t for some K̄.

17For example, in the textbook OLG models going back to Samuelson (1958) ε

would be 1 during the first half of life and 0 after.
18Assumed to hold a.e., and implying that Ki

t is assumed locally a Perron prim-
itive and Ii

t locally Perron-integrable.
19For instance, assume a single good, a single type of labour, a CES production

function (AKα+BLα)1/α, and a policy where all agents work full-time and consume
nothing (e.g., in order to get an upper bound on capital and investment). Assume
also A1/α ≥ R with R = γ + ν + δ. Note that Lt = L0 exp (γ + ν)t, so for
D = BLα

0 , K ′(t) = (AKα(t) + De(γ+ν)t)1/α − δK(t); or with x(t) = K(t)e−(γ+ν)t,
x′(t) = (Axα(t) + D)1/α − Rx(t) ≥ D1/α > 0. Since x(t) ≥ 0, there is no solution,
i.e., the upper bound of K(t) is infinity. And even if B = 0, the solutions are x(t) =

Ce(A1/α−R)t, with C ≥ 0 arbitrarily large, so K(t) is unbounded in this case too.
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In fact, at least with a slightly stronger condition on Y , the formula
of lemma 1 suffices, without the initial condition:

Lemma 3. Assume ∃ε > 0, A,B : (−L,−K,C, I) ∈ Y =⇒ ‖I‖ ≤
A ‖L‖ + B ‖K‖1−ε ‖L‖ε. Then the conclusions of lemma 2 hold, as-
suming just lemma 1, without the need for the “initial condition”.

3. Equilibria (Solution Concepts)

In addition to the classical Arrow-Debreu equilibrium concept, there
are other possible solution concepts for this economy, to which our
theorem is applicable too.

3.1. Time Invariance. The economy we have described possesses a
convenient time-invariance property that will prove to be useful later.
We consider the effect on the economy (i.e., the description of the pop-
ulation, the feasible consumption and production plans, and individual
preferences thereon) of shifting the origin of time by h.

Definition 4. The transformation Thof the economy (‘time-shift by h’)

(1) shifts all consumption, production and endowment vectors (both
goods and labour) forward in time by h,

(2) multiplies all non-labour individual quantities (endowments of
goods, allocations of goods) in the economy by exp(γh),

(3) multiplies the aggregate quantities of population and labour in
the economy by exp (νh).20

Now we claim that the economies we consider are time-invariant in
the sense of this transformation:

Lemma 5. Each Th is an automorphism of the model:21

• it maps feasible production plans in a 1-to-1 way onto feasible
production plans.

• it maps the preferences of each consumer between different con-
sumption bundles (goods and labour) to the preferences of his
image, born time h later. And his initial endowment is mapped
as well to the initial endowment of his image.

Remark 6. Th induces a map from allocations in the initial economy
to the allocations in the image economy.

Definition 7. A (set-valued) solution concept is time-invariant if time-
shifts Th map solutions to solutions of the image economy.

20And hence aggregate quantities of all non-labour goods (consumption, capital,
investment) are multiplied by exp ((γ + ν)h).

21Hence, if endowments are invariant under Th, i.e., if the endowment of goods
of an agent of type τ born at time t is of the form ωτ exp (γt) (in particular, 0),
then Th is even an automorphism of the economy.
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3.2. Examples of Time-Invariant Solution Concepts. Next, let
us consider several examples of time-invariant solution concepts. First
we discuss Arrow-Debreu equilibrium, and then briefly mention a cou-
ple of other examples: an adaptation of Diamond’s (1965) equilibrium
to this framework, and a ‘social planner’ solution, allocating goods to
maximise a ‘time invariant’ objective, e.g., the specific Relative Utili-
tarian criterion that we use to evaluate welfare perturbations.

3.2.1. Arrow-Debreu Equilibrium. To describe Arrow-Debreu equilib-
ria for the our economy we have to define profits of a firm. It is con-
venient to think of two types of firms: a single firm that handles the
instantaneous production and has Y as technology,22 and one firm per
capital good that handles the corresponding investment and has the
capital accumulation equation as technology.

Given pc(t) ∈ R
n, pI(t) ∈ R

m, the equilibrium prices for consumption
and investment goods, and pk ∈ R

m, pl ∈ R
h, the equilibrium rental

rates for capital and labour, the production firm23 chooses the amount
of inputs to rent from the investment firms (aggregate capital, K(t) ∈
R
m
+) and consumers (aggregate efficient labour, L(t) ∈ R

m
+ ) as well

as outputs of final (aggregate consumption, C(t) ∈ R
n
+ and aggregate

investment, I(t) ∈ R
m
+ ) goods to maximise its profits, ΠC ,

〈pc(t), C(t)〉 + 〈pI(t), I(t)〉 − 〈pk(t), K(t)〉 − 〈pl(t), L(t)〉,

(−L(t),−K(t), C(t), I(t)) ∈ Y

which are zero.
The investment firms choose a time-path of investment and rent out

their capital (uniquely determined by lemma 1) to the production firm.

An investment firm i owns capital Ki(t) = e−δ
it

∫ t

−∞
eδ

isI i(s)ds of

type i and chooses an investment policy I i(·) to maximise its profits

Πi
I(I(·)) ≡

∫ +∞

−∞

I i(t)[−piI(t) +

∫ +∞

0

e−δ
ispik(t+ s)ds]dt

which should be zero.24 This condition implies

(1) piI(t) =

∫ ∞

0

e−δ
ispik(t+ s)ds

22A choice of production plan at time t involves no implications for profits of
the firm at other dates, so the profit maximisation problem of this firm is static.

23One could introduce many production firms that have access to the technol-
ogy described by Y without changing the results. Indeed, the composition of the
industry is irrelevant as long as the total production set is preserved.

24We don’t investigate here the important question as to under what conditions
(on I, pI , pk) the order of integration can be changed. The definition is written
this way to lead as easily as possible to a definition of equilibrium.
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Finally, we have to define the life-time budget constraint of an indi-
vidual of type τ born at time x:

∫ Tτ

0

〈pz(s+ x), zτ,x(s)〉 − 〈pc(s+ x), cτ,x(s)〉 ds = 0(2)

zτ,x(s), cτ,x(s) ≥ 0, 〈1, zτ,x(s)〉 ≤ 1(3)

Clearly, the price for efficient unit of labour, pl(t), is proportional to the
price of labour time, pz(t), at each instant t: pz(t) = eγt〈ετ (s), pl(t)〉.

After the above definitions, the definition of an Arrow-Debreu equi-
librium is standard.

3.2.2. Diamond Equilibrium. One could also reproduce an equilibrium
concept introduced by Diamond (1965) for this model. There are no in-
vestment firms, consumers hold the capital stock of different types and
rent it out to the production firm. As in Arrow-Debreu equilibrium,
consumers can also lend to each other (IOU’s) — e.g., if they must bor-
row when young. So, the value of the total net savings of the consumers
at each point in time equals the total value of the accumulated capital.

3.2.3. Selection. Observe that the above equilibrium concepts are typ-
ically multi-valued, so to get from them a single-valued time-invariant
solution concept, as our main result below (theorem 9) requires, one has
to make a selection in a neighbourhood of the given balanced growth
equilibrium — cf. footnote 30 below for this.

3.2.4. Maximising Welfare. Maximising welfare — where the utilities
can be discounted, but must be normalised as in Relative Utilitarian-
ism, cf. section 4.1 below25 — is also a time-invariant solution concept.26

One could then maximise, for perturbed endowments too, this same
discounted sum of normalised utilities (where the normalisation in-
cludes the subtraction of the utility level on the status-quo path), giving
thus another example of time-invariant solution concept (and typically
single-valued this time).

3.2.5. Unanticipated shocks. All the above deal with fully anticipated
shocks. One can, for the same concepts, consider the polar case, where
all contracts have already been signed for the unperturbed economy, so
the effective initial endowment that gets perturbed is the final alloca-
tion for the unperturbed economy with that solution concept (and it is
from that perturbed endowment that individuals re-trade). This being

25Except of course if all individuals’ relative risk aversion coefficients (i.e., degrees
of homogeneity) are the same, then this is irrelevant. But else the relative weight
on the types with higher risk aversion would, without the normalisation, effectively
go down to 0 as the economy grows.

26Since however time varies from −∞ to +∞, it is not immediately obvious that
a maximum exists, but arguably reasonable social welfare functions (discount rates
— e.g., ν) should ensure this existence. Cf. sect. 6.2 for further discussion.
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a balanced path, by the assumption of the theorem, it suffices then to
observe that the theorem remains applicable as is to economies with
such initial endowments, the time-invariance property being preserved.

4. The Relative Utilitarian Welfare Function

4.1. The Set of Alternatives. To formulate the social welfare func-
tion we need the feasible set, and the simplistic formulation used in sec-
tion 1.3 is no longer adequate in view of the multiple goods, and several
types of consumers. Ideally it should be defined in the space of poli-
cies, but since one of our aims is to prove that our result is completely
independent of it, we will define it as the corresponding set in the space
of (final — i.e., after all equilibrium readjustments) allocations.

The set of available allocations should be time-invariant, i.e., it
should be mapped to itself by any time-shift Th.

So, the time invariance is here to capture the previous idea that
policies affect only the height of the growth path — while leaving the
geometry of the feasible set completely arbitrary in all other respects.

Further, an obvious implication of the justice requirement on the
feasible set is that each individual’s utility is bounded below.

4.2. The distribution of costs and benefits. As observed in the
introduction (cf. footnote 10), in our set up, the effect of an arbitrary
perturbation of endowments on welfare cannot depend only on the ag-
gregate perturbation, it must depend on its distribution too. To cast
nevertheless our result in the familiar framework of cost-benefit analy-
sis, we will assume that the individual perturbations are themselves a
(linear) function of the aggregate perturbation, and more specifically,
to avoid re-distributive effects as much as possible, that the aggre-
gate perturbation is distributed in a fixed way across age-groups and
types.27 The generalisation of our main result in section 6.1 below is
anyway independent of any such restriction; it applies in particular to
completely arbitrary perturbations of endowments.

Let thus ϑτ (s) be some integrable function, with ϑτ (s) = 0 for s < 0

and s > Tτ , and with
∑

τ

∫ +∞

−∞
ϑτ (s)ds = 1. Then, the perturbed

endowment of an individual of type τ who was born at time y is related
to the aggregate perturbation Ω(t) in the following way:28

ωτy (t) = ϑτ (t− y)
Ω (t)

N τeνy

27“fixed” means independent both of the date and of the aggregate perturbation
(as a function as well as as a value).

28Recall, the population (within each type) grows at a constant rate ν, so the
number of people of type τ who are born per unit of time at time y is N τeνy with
N τ being that number at time 0.
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5. The Main Statement

To demonstrate the result, we need to evaluate, at a balanced growth
equilibrium, the effect on social welfare of a small perturbation Ω of
aggregate endowment. The perturbation will affect equilibrium allo-
cations, which, in turn, alter individual well-being and social welfare.
Thus, we must compute the differential of the map from perturbed en-
dowments to welfare and prove that whenever it exists it is of the form
∫

〈q,Ω(t)〉e−γtdt for some q ∈ R
n — i.e., that the discount rate equals γ.

Technically, to make the main statement as strong as possible, we
should use the weakest notion of differential, i.e., that of Gateaux.29

We must also specify the space of perturbations and its topology; we
will use the space K, defined below, because then the statement implies
the same statement for about any other space of perturbations, since
K embeds continuously as a dense subspace in about any other space.

We follow Schwartz (1957-59) and Gelfand and Shilov (1959) in defin-
ing K and its dual, the space K∗ of “generalised functions”:

Definition 8. K is the space of infinitely differentiable functions with
compact support, and a sequence of functions ϕi ∈ K converges to
zero if ∃h ∈ R : |x| ≥ h =⇒ ϕi (x) = 0 for all n, and ϕn and all its
successive derivatives converge uniformly to zero.
K∗ is the space of linear functionals ψ on K s.t. ψ (ϕi) → 0 whenever

ϕi → 0 in K.

The chief economic meaning of Ω ∈ Kn is that we perturb endow-
ments only over a bounded interval of time. Note that the status-quo
(zero endowment) point also belongs to this space, so we can view the
social welfare function W as being defined on Kn.

Next step is to define precisely the map from endowments to social
welfare, given a time-invariant solution concept. Consider a single-
valued time-invariant solution concept ψ, that maps consumption en-
dowments, Ω ∈ Kn to final allocations.30 Assume that its domain, D,

29A function f from a subset D of a topological vector space X to R is Gateaux-
differentiable at zero, if ∀x ∈ X the set {t ∈ R | tx ∈ D} is a neighbourhood of zero
in R, say Vx, and if t 7→ f (tx) is differentiable at t = 0, say with derivative dx, and
if x 7→ dx is a continuous linear functional on X .

30Given a perturbation Ω (t) of consumption endowments, it is true that several
equilibria might emerge. If dealing with a solution concept that does not guarantee
local uniqueness, we choose e.g. out of those the one closest to the initial stable
growth path in terms of the Lp norm

∑

i ‖ln pi(t) − ln pΩ
i (t)‖p, where p(t) is the

price vector at time t prevailing at the initial equilibrium and pΩ(t) is the price
vector of a perturbed economy: though the price system does not necessarily fully
specify an equilibrium, it does specify the individual utility levels, which is all we
need. The effect of the logarithms is to make the distance independent of price nor-
malisation, hence to induce a distance between equilibria (or: between price-rays):
for any multiple of pi the minimum, over all multiples of pΩ

i (clearly there is at most
one such multiple where the value is finite, when p < ∞), will be achieved at the
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contains zero, which corresponds to the economy we described, in which
individuals are born with no consumption endowments. As the solu-
tion concept is time-invariant, ψ(0) describes a balanced growth path.
Define the social welfare function W of relative utilitarianism by sub-
tracting from each individual’s normalised utility function its value at
ψ(0). (Thus, a constant is subtracted from each of the individual utili-
ties to assure that welfare is well-defined on the growth path). Denote
by ℵ′ the subset of the space ℵ of allocations where W is well defined
(i.e., the integral converges). This set, for example, might include allo-
cations that are not ‘too different’ from those on the balanced growth
path ψ(0), e.g., those that deviate from it over a bounded interval of
time. Let us focus on the subset of consumption endowments, D′, for
which W is well defined: D′ = ψ−1 (ℵ′), and note that 0 ∈ D′, i.e., the
status-quo belongs to this set, as by construction the welfare function
is zero at the initial balanced growth path ψ(0). Finally, we define the
map from endowments to social welfare corresponding to the chosen
solution concept ψ: Wψ is the composite map W ◦ ψ from D′ to R.

Now the main result can be stated in the following succinct form:31

Theorem 9. Let ψ be a point-valued time-invariant solution concept.
For the relative utilitarian welfare function W , the Gateaux-differential
of Wψ at 0, if it exists, equals

∫

〈q,Ω (t)〉e−γtdt for some q ∈ R
n.

This implies that the discount rate is the growth rate γ of per capita
output. One interpretation is tempting: the cost of consumption in
terms of inputs becomes cheaper with time, due to the enhancement of
labour productivity. Individual productivity grows at rate γ, so it is ex-
actly at this rate that we have to discount consumption in order to value
labour time equally. See section 6.3 below for another interpretation.

6. Discussion of the Main Result

6.1. A policy re-interpretation. Real-life policies rarely involve di-
rect consumption transfers (changes in endowments). The model can
be re-interpreted to incorporate more realistic policies as follows. As-
sume a set32 of basic policies. Let a policy be a specification of such
a basic policy as a function of time. Assume that shifting a policy
forward in time by h transforms its effect on the economy (through the

corresponding multiple, and the value of the minimum is independent of this multi-
ple, and remains the same when permuting the roles of pi and pΩ

i . Finally, because
of the Lp norms (i.e., Lebesgue measure being shift-invariant), the selection will be
time-invariant. Obviously there will remain to show that there is some equilibrium
at a finite distance, and that locally the minimum is achieved at a unique point.

31A similar result could be shown in the traditional set-up, provided (the multi-
dimensional analog of) risk-aversion, ρτ , is independent of the type τ — giving then
a discount factor of ργ, and hence showing the robustness of our conclusions from
the mini-model in the introduction.

32More precisely, a manifold, to make differentiability meaningful.
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solution concept) by Th
33. Then the result still holds, in the sense that,

at a given status-quo stationary policy π∗, the welfare effect of a small
policy variation δπt ∈ K is given by

∫

eνt〈q, δπt〉dt.
34

6.2. On non-vacuity. The theorem relies on differentiability of the
map from endowments to welfare. Indeterminacy is known to plague
some classes of OLG models;35 hence one would need to show that this
problem is avoided in our case — in particular, that a policy change
generates predictable changes in the economy — or use fn. 30. To
demonstrate the non-vacuity of the statement, one has to show that (1)
the solution concept is non-empty valued;36 (2) for some time-invariant
single-valued selection, the map from endowments to allocations is dif-
ferentiable; (3) the map from allocations to welfare is differentiable.
Verifying each of the requirements (even in a model with fully specified
preferences and technology) is non-trivial, and lies beyond the scope of
this paper, but will be dealt with in subsequent research.

6.3. The Value of a Human Life. We show now that not only ργ is
not of the right order of magnitude as compared to γ, but even that the
former formula is conceptually wrong, and the latter exactly correct.

The value of life, according to any criteria [e.g., each of the four
in Mishan’s (1971) introduction, or even judicial criteria in assessing
damages], is proportional to the individual’s life-time income, or to
average life-time income at his time: anyway, proportional to eγt in

33In particular, any constant policy leads to some balanced growth path. So
basic policies might be for example linear taxes — or non-linear (sales or income)
tax-schedules indexed by average income.

34q is typically a vector of ‘small’ dimension (that of the set of basic policies), so
its computation is much easier than following the equilibrium dynamics of the model
for an arbitrary policy. E.g., one might try changing one policy variable at a time
to some close-by stationary value, and compute the resulting balanced growth path.

35See Geanakoplos and Brown (1985), Geanakoplos and Polemarchakis (1991).
36For example, for a time-invariant social welfare function (a discounted sum of

normalised utilities), one might expect that, if a maximum exists, it is achieved at
some balanced growth path. It should thus suffice to maximise the welfare of any
fixed generation over all feasible balanced paths (leading thus to a natural generali-
sation of the ‘golden rule’ paths) — and then to show that, for reasonable discount
rates, when the utility levels on that path are subtracted from each individual’s
utility function, the social welfare is indeed maximised. But this criterion to which
we were led — to maximise for any fixed generation over all balanced paths — is
completely independent of the discount rate we started with! This clearly suggests
there might very well be no ‘reasonable’ discount rates (for utilities) beyond the
obvious candidate, ν, the rate of growth of the population (this being the only one
to weigh equally the past and the future). Observe that this leads to a discount rate
of ν +γ on real consumption, i.e., the interest rate, in the framework of golden rule
equilibria. Clearly the above heuristics need confirmation by a full proof, but in that
case, they might conceivably form the basis for a critique of our criterion of inter-
generational fairness in the framework of economic models with growing population.



DISCOUNT RATE FOR COST-BENEFIT ANALYSIS 17

an exogenous growth model. Further, one should note that if our full-
fledged model above were extended such as to allow for variable life-
spans — so, individual consumption-sets are of the type ∪TC[0, T ] —,
then this conclusion would also formally follow from the model, given
the homogeneity assumption on individual utilities (which is forced
upon us to get balanced growth solutions).

Hence, if we want 1 human life one generation down the road to count
as much as 1 now, we must discount future consumption exactly by e−γt.

6.4. What makes the traditional Utilitarian approach fare so

badly? Observe first that the essence of the difficulties we encoun-
tered has nothing to do with time; e.g., the index t in our first (“toy”)
model can be reinterpreted as referring to different islands, populated
with Nt individuals living from the coconut harvest — neither people
nor coconuts being transportable. How to evaluate the welfare effects
of new techniques to slightly influence global weather conditions, with
differential effects across the islands?

Now, in its utilitarian interpretation (fn. 31), we have a very pure
model: all agents of the same type are assumed to be biological and
psychological clones of each other, which would show completely iden-
tical reactions to identical stimuli; if an agent born at time t were
moved at his birth to a world identical to the world at t′, he would in
all circumstances express exactly the same reactions as agents of his
type born at time t′ do. Further all agents are assumed to satisfy full
von Neumann-Morgenstern rationality, so that uτ is really the correct
utilitarian utility function of those agents over all risky prospects,37

and is assumed to be expressed in common utility units across types.38

37So, the practicability or not of the utilitarian prescript plays no role here.
38To be fully precise, we also assume in the model that our individuals are

perfect egoists, i.e., that those utilities correctly describe our individuals both in
the sense of tastes and of values, in Harsanyi’s terminology, or, in Sen’s (2000,
p. 64) terminology, as well in the sense of pleasure as in that of a representation
of choice. The latter in each case is needed because we deduce individual demand
functions from them, and the former presumably as to give meaning to the sum of
utilities as a measure of social welfare. Interpretations as “fulfilled desires” (loc.
cit.) would on the other hand probably not square well with the need in economics
to interpret utility as expected utility at birth, because of the need to explain choices
such as between different careers (more formally, “life-time consumption plans”),
and probably also because of obvious incentive problems if e.g. society were to have
as policy to bail out anybody who went to the casino and lost his fortune. There
are probably two other different interpretations of “fulfilled desires”: the first one
being that of “utility” as the integral of a flow of instantaneous “felicities”, in the
terminology of Arrow and Kurz (1970) – i.e., an assumption of additive separability,
which we cannot admit as a sufficiently general representation of preferences, but
all our arguments here would remain valid even with that additional restriction —,
and the other that of utility as an expectation of utilities at terminal nodes — we
did assume our utilities were also von Neumann-Morgenstern utilities.
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And, as stressed in the previous paragraph, our argument concerning
the value of a human life is a valid argument in that ideal world too.

Even in this ideal world, we encountered two different difficulties.
First, even with a single type, using a zero discount rate for utilities —
which is the true utilitarian social welfare function — led to conclusions
that did not correspond to the common intuition of what it meant to
treat future generations equally, both in the sense of the magnitude of
the implied discount factor and in that of treating human lives equally.

The second was that, when types differ, all the weight of the welfare
function gets concentrated on the types with lowest risk-aversion as the
economy grows (this is the root of the aggregation difficulty mentioned
in fn. 31), with all the unpleasant consequences one can imagine.

The surprise was that the same fix was needed to cure all those
problems: relative utilitarianism can be viewed here as rescaling future
utilities with a negative, type-dependent “discount” rate (1 − ρ)γ.39

Thus, what went so spectacularly wrong with the traditional ap-
proach was to assume — as everywhere in applied policy analysis —
that all agents of the same type (i.e., perfect clones of each other) share
the same utility function, independent of their environment; “. . . the
arbitrary assumption that if two persons have the same demand func-
tion, then they must get the same utility level from a given commodity
basket. . . is, of course, totally illegitimate” (Sen 2000).40

39How can this be re-interpreted in the standard utilitarian framework? To quote
e.g., Sen (2000), p. 63, “the utility of a member of a group can depend on variables
other than his or her own income and incomes of others within this group (for
example, it may be influenced by the incomes of others outside this group).” Thus,
utility is no longer an individual characteristic, but depends also on the environment
— i.e., in our case, on the production set Yt, or on the feasible set at the given
date. The value that an individual attaches to consuming a fixed bundle depends
on the generation he belongs to; indeed, an average earner nowadays might have felt
blissfully happy with his current consumption back in the days of Great Depression.

So, utility functions, like those in RU, that depend both on individual charac-
teristics and on the society where the individual lives are completely kosher for an
utilitarian. Remains only to understand the utilitarian interpretation of our specific
utility weights e(ρ−1)γt. This goes beyond the scope of this paper; to give just a
couple of hints: one interpretation would be that individuals look at their feasible
(and just) set, and discriminate therein a more or less fixed number of utility lev-
els. Or: that their aspirations are based on this set, and that utility stems basically
from a comparison with aspirations.

40Or, closer to our vNM framework: assume we have 2 poor individuals, say one
in the US and one in India, which have CRRA vNM preferences for money, with
the same risk-aversion coefficient. It is nonsense to infer from this that they have
the same utility function for money at the current exchange rate, on the grounds
that the latter makes the 2 currencies essentially perfect substitutes.

This objection is specific to “demand functions”, i.e., to utility functions as de-
fined on a space of personal consequences. Even Harsanyi himself argues at times
that when two individuals have the same preferences, it is reasonable to assign them
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To avoid this “arbitrary assumption” and to do correctly a full utili-
tarian analysis (cf. fn. 39), that would lead to the right scalings, seems
hopelessly complex in practice, until one observes that one can equiv-
alently use directly RU, which is simply the straight application of
Bentham’s “everybody to count for one, nobody for more than one”
(whether this “one” refers to human lives, or, in a voting interpretation
of RU, to “one man, one vote”).

7. Conclusions

We show that, under the relative utilitarian criterion, which incor-
porates equal treatment of different generations, the appropriate dis-
count rate is the growth rate of real per-capita income. The conclusion
is true under any ‘time-invariant’ solution concept, and, more impor-
tantly, the discount rate is independent of a particular equilibrium (and
the associated prices) that the economy is in. The per-capita growth
rate represents the ‘true’ shadow cost of (consumption-generating) re-
sources today in terms of those in the future, so the prescribed discount
rate is based solely on the fundamentals of the economy.

Let us stress that the result is independent of individual impatience;
the model does not even require time-separable preferences. Crucial
assumptions are those needed for stable growth to be feasible, i.e., (1)
homogeneity of individual utility functions (over life-time consump-
tion streams, for fixed life-time streams of labour activities), and (2)
constant returns to scale in production — plus, in addition, the differ-
entiability of the social welfare function.

The next step will be to prove that the main statement is non-
vacuous, as it might be, e.g., in case of indeterminacy. Based on our
work in progress we can conjecture that the required differentiability
is not a very restrictive assumption.

Appendix A

Proof of lemma 1. Continuity yields that Ki
t is bounded on any inter-

val (−∞, t0). The production technology implies a similar upper bound
for I it . In particular I it is locally-integrable and thus Ki

t locally abso-

lutely continuous. Letting Mt = eδ
itKi

t , the differential equation be-

comes M ′
t = eδ

itI it , hence, by the local absolute continuity, Mt = M0 +

the same utilities (principle of insufficient reason): “If all individuals’ personal pref-
erences were identical, then we could ascribe the same utility function to all individ-
uals” (1977 p. 58). But that argument is for preferences and utilities over the (com-
mon) set of alternatives, while here — and in most applications — it is about prefer-
ences and utilities over an individual set of personal consequences. Even the sets are
not directly comparable, since goods are indexed by date and location — and there
is no economic reason to use the same physical units at different times or places.

This is also why relative utilitarianism fares much better, by deriving those
different weights from a normalisation over the common set of alternatives.
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∫ t

0
eδ

isI isds. Therefore Ki
t ≥ 0 yields

∫ 0

−T
eδ

isI isds ≤ M0 ∀T , and Ki
t ≤

K̄e(γ+ν)t for t ≤ 0 yields
∫ 0

−T
eδ

isI isds ≥ M0 − K̄e−(γ+ν+δi)T for T ≥ 0.

In particular, the (locally integrable, as just seen) function h(t) = eδ
itI it

is such that
∫ 0

−T
h(s)ds converges to M0 when T → ∞. Since our up-

per bound for I it implies h(t) ≤ h̄e(γ+ν+δ
i)t for t ≤ 0, we conclude

that h(t) is (absolutely) integrable on (−∞, t) for all t, and thus Ki
t =

e−δ
it

∫ t

−∞
eδ

isI isds for all t, where the integral is a Lebesgue integral. �

Proof of lemma 2. Clearly, we can set consumption to zero and as-
sume that all agents work full-time. Fix a vector L0 ∈ R

h such
that any feasible vector of labour inputs L(t) ≤ L0e

(γ+ν)t. Enlarge
the instantaneous production cone Y by allowing all investment goods
to be perfect substitutes for each other and the same for the capital
goods. Let F : R

2
+ → R+ : (K, l) 7→ sup{

∑

i I
i | ∃Ki ≥ 0,

∑

iK
i ≤

K,
(

−lL0,−(Ki)i, 0, (I
i)i

)

∈ Y }. The supremum is achieved, else with
bounded inputs unbounded outputs would be feasible and, as Y is
convex and closed, the same would be true for zero inputs, thus con-
tradicting the assumption Y ∩ R

n
+ = {0}. In particular, F (K, l) is

finite. Clearly, F is positively homogeneous of degree one, concave and
continuous. Further, by the assumptions of the lemma, F (K, 0) = 0.

Let us, finally, improve the possibilities of capital accumulation by
lowering each δi to δ = mini δ

i. The capital accumulation equations
become then K ′(t) = F (K(t), e(γ+ν)t)−δK(t). Let x(t) ≡ K(t)e−(γ+ν)t,
and f(x) ≡ F (x, 1) — so f : R+ → R+ is continuous and concave.
Then the differential equation becomes x′(t) = f(x(t)) − Rx(t). As

limx→∞
f(x)
x

= 0 (because F (1, 0) = 0 and continuity), there is x̄ ≥ 0
such that f(x) − Rx ≤ −1 for x ≥ x̄.

Let now y(t) = e−(γ+ν)t
∑

iK
i
t along some feasible path in the original

economy: a fortiori y(t) ≥ x̄ implies y′(t) ≤ −1. Since, by the initial
condition, ∃ȳ : y(t) ≤ ȳ for t < 0, it follows that for all t, y(t) ≤ x̄.
Hence our bound on each Ki

t , which themselves imply (via Y ) a similar
upper bound for the I it . �

Proof of lemma 3. All norms on R
n being equivalent, we can assume

the ℓ1 norm in the statement. The right hand member of the inequality
is then concave, and we can proceed as in the proof of lemma 2: now
f(x) = A + Bx1−ε, and, since, as seen above, if x(t) > x̄ then x(s)
must have been decreasing (and hence x(s) > x̄) for all s ≤ t, we can
assume A = 0, by majorising f on [x̄,+∞] by another such function
(and if necessary increasing x̄ to an appropriate value for that new
function). Thus we have to show that over all feasible paths (kt, it) ( =
e−(γ+ν)t)(Kt, It)) the kt are uniformly bounded. And feasibility means

it ≤ Bk1−ε
t and eRtkt =

∫ t

−∞
eRsisds (and kt ≥ 0, eRsis integrable on

[−∞, t]). I.e., letting yt =
∫ t

−∞
eRsisds, we have y−∞ = 0, kt = e−Rtyt,
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it = e−Rty′t, so our inequality becomes y′t ≤ BeεRty1−ε
t , i.e.,

dyε
t

deεRt ≤ B
R

.

Since y−∞ = 0, this yields yεt ≤
B
R
eεRt, i.e., kt ≤

(

B
R

)1/ε
. �

Proof of lemma 5. The second part is obvious: for the endowments, it
holds by definition of the transformation, and for the preferences, it fol-
lows because all agents of the same type have the same utility function
over their consumption set, which is homogeneous in the goods: so mul-
tiplying the “goods-component” by a constant just multiplies to whole
utility function by a constant, and hence doesn’t change preferences.

For the first part, note that the capital-accumulation equations are
not affected, since they are linear and homogeneous in the aggregate
goods. Remains to check for the “instantaneous production cone” Y
that it too is preserved by the transformation. Assume thus for some t
a vector (−L, y) in Yt — i.e., (− exp(γt)L, y) in Y — before the trans-
formation — where the coordinates of y = (−K,C, I) are all aggregate
consumption and investment outputs and capital inputs, and those of
L are the aggregate labour input. Then, after the transformation, this
vector becomes [− exp(νh)L, exp ((γ + ν)h) y], and we must show it
belongs to Yt+h — i.e., that [− exp(γ(t+ h)) exp(νh)L, exp((γ + ν)h)y]
belongs to Y . Since this vector equals exp((γ + ν)h) [− exp(γt)L, y],
this follows straight from the fact that Y is a cone. �

Proof of theorem 9. By definition of a Gateaux differential,

DW
(

Ω0
)

= lim
ε→0

δεW (Ω0)

ε
,

δεW
(

Ω0
)

= W
(

Ω0 + εΩ
)

−W
(

Ω0
)

By assumption,

DW (0) = 〈Ω, µ〉

where µ ∈ (K∗)n, i.e., the differential at Ω0 = 0 is linear in Ω. It
is sufficient for what follows to describe δεW (Ω0), i.e., the change in
the social welfare function caused by the perturbation of endowments,
which amounts to subtracting a constant from each agent’s utility, the
utility on the baseline, so the criterion of interest is the difference δW .

To construct δW let us first normalise life-time utilities. Recall the
set of available allocations is time-invariant. We have to compute wτt ,
the difference between the sup and the inf over this set of the utility
of an agent of type τ born at time t. By time-invariance, the set
of consumption and labour allocations of this agent equals that for
an agent of the same type born at time 0, except for rescaling the
consumption component by eγt. Therefore, by the homogeneity of U τ

of degree 1 − ρτ with respect to consumption, wτt = e(1−ρ
τ )γtwτ0 . Let

wτ ≡ (wτ0)
−1. Then we get for the normalised utility U∗τ

t (that enters
the social welfare function)

U∗τ
t = e(ρ

τ−1)γtwτU τ
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So the social welfare function takes the following form

(4) δW (·) ≡

∫ ∞

−∞

∑

τ

N τ
t (δU∗τ

t ) dt

Let us define V τ
t : Ωt 7→ R to be the utility level of individual of type

τ born at time t, under an equilibrium with the perturbed endowments.

W
(

Ω0
)

=
∑

τ

wτW τ
(

Ω0
)

W τ
(

Ω0
)

≡

∫ ∞

−∞

N τ
t e

(ρτ−1)γtV τ
t

(

Ω0
t

)

dt

Consider now the perturbation Ω̃t, where

(5) Ω̃t+h = e(γ+ν)hΩt

By lemma 5, the corresponding “response” of the system is obtained
from the response to Ωt by delaying everything by h, multiplying all
aggregate quantities of goods by e(γ+ν)h, and all per-capita quantities
by eγh, and correspondingly for prices.

Hence, for utilities, by their homogeneity property in goods 1, . . . , n,

V τ
t+h

(

Ω̃
)

= e(1−ρ
τ )γhV τ

t (Ω)

and, in particular, when Ω̃ = Ω = 0,

V τ
t+h

(

Ω̃
)

− V τ
t+h (0) = e(1−ρ

τ )γh (V τ
t (Ω) − V τ

t (0))

Therefore,

W τ
(

Ω̃
)

−W τ (0) =

=

∫ +∞

−∞

N τ
0 e

ν(t+h)e(ρ
τ−1)γ(t+h)

[

V τ
t+h

(

Ω̃
)

− V τ
t+h (0)

]

d (t+ h)

=

∫ +∞

−∞

N τ
0 e

ν(t+h)+(1−ρτ )γhe(ρ
τ−1)γ(t+h) [V τ

t (Ω) − V τ
t (0)] dt

= eνh
∫ +∞

−∞

N τ
t e

(ρτ−1)γt [V τ
t (Ω) − V τ

t (0)] dt = eνh [W τ (Ω) −W τ (0)]

(i.e., the factor (1 − ρτ ) γ drops out). As a consequence, the total
change in welfare is

W
(

Ω̃
)

−W (0) =
∑

τ

wτ
(

W τ
(

Ω̃
)

−W τ (0)
)

= eνh [W (Ω) −W (0)]

Therefore, by the definition of the derivative,

〈Ω̃, µ〉 = lim
ε→0

W
(

εΩ̃
)

−W (0)

ε
=(6)

= eνhlim
ε→0

W (εΩ) −W (0)

ε
= eνh〈Ω, µ〉
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Define Sh(ξ) : t 7→ ξ (t+ h). By (5)

Ω̃ = e(γ+ν)hShΩ

Combining with (6), we get

e(γ+ν)h〈Sh (Ω) , µ〉 = 〈Ω̃, µ〉 = eνh〈Ω, µ〉

hence the following holds for all h ∈ R and all perturbations Ω ∈ Kn:

〈Ω − eγhSh (Ω) , µ〉 = 0

for µ ∈ (K∗)n. Dividing by h and taking the limit as h→ 0, we get

〈γΩ − (Ω)′ , µ〉 = 0

The definition of the derivative of a generalised function,

〈µ′, f〉 = −〈µ, f ′〉 , f ∈ K, µ ∈ K∗

yields then

〈γµ+ µ′,Ω〉 = 0, ∀Ω ∈ Kn

so we have to solve the differential equation γµ + µ′ = 0, which, by
lemma (10), has µ = qe−γt for some q ∈ R

n as only solutions, so,

DW = e−γt 〈q,Ω〉 =

∫ +∞

−∞

e−γt〈q,Ωt〉dt, ∀Ω ∈ Kn.

�

Lemma 10. Consider a homogeneous differential equation of the form

(7) y′ = λy,

for a given constant λ. Then every solution of that system in the class
K∗ of generalised functions is of the form

y = Ceλt, C ∈ R

i.e., is a “classical solution”.41

Proof. From (7) we have that for any ϕ ∈ K, 〈y′, ϕ〉 = λ〈y, ϕ〉; by defi-
nition of the derivative of a distribution this implies 〈y,−ϕ′〉 = λ〈y, ϕ〉,
and so 〈y, λϕ+ ϕ′〉 = 0. Let Kλ = {ψ ∈ K|

∫ ∞

−∞
eλtψ (t) dt = 0}. Ob-

serve that ∀ψ ∈ Kλ∃ϕ ∈ K : ψ = λϕ + ϕ′: take ϕ(t) =
∫ t

−∞
eλsψ(s)ds

(the converse is true as well, but we won’t use it). So y = 0 on Kλ.
Note that any ϕ ∈ K can be represented in the form ϕ = ψ + cϕ0,

where ψ ∈ Kλ, c is a constant and ϕ0 ∈ K \ Kλ is fixed: choose

c =
R

∞

−∞
eλtϕ(t)dt

R

∞

−∞
eλtϕ0(t)dt

, then ψ = ϕ− cϕ0 ∈ Kλ.

Thus 〈y, ϕ〉 = c〈y, ϕ0〉, so, letting the constant C = 〈y,ϕ0〉
R

∞

−∞
eλtϕ0(t)dt

, we

get 〈y, ϕ〉 = C
∫ ∞

−∞
eλtϕ (t) dt, ∀ϕ ∈ K, i.e., y = Ceλt. �

41Gelfand and Shilov (1959, p. 53); included to make the argument self-contained.
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