Nation Formation and Genetic Diversity*

Klaus Desmet ${ }^{\dagger} \quad$ Michel Le Breton ${ }^{\ddagger} \quad$ Ignacio Ortuño-Ortín ${ }^{\S}$
Shlomo Weber ${ }^{\pi}$

October 2006
CORE discussion paper 2006/95

Abstract

This paper presents a model of nation formation in which culturally heterogeneous agents vote on the optimal level of public spending. Larger nations benefit from increasing returns in the provision of public goods, but bear the costs of greater cultural heterogeneity. This tradeoff induces agents' preferences over different geographical configurations, thus determining the likelihood of secession and unification. We provide empirical support for choosing genetic distances as a proxy of cultural heterogeneity. By using data on genetic distances, we examine the stability of the current map of Europe and identify the regions prone to secession and the countries that are more likely to merge. Our framework is further applied to estimate the welfare gains from European Union membership.

JEL Classification Codes: H77, D70, F02, H40.
Keywords: nation formation, genetic diversity, cultural heterogeneity, secession, unification, European Union

[^0]
1 Introduction

Recent decades have witnessed large-scale map redrawing. Some countries, such as the Soviet Union and Yugoslavia, have broken up, while others have been moving to ever closer cooperation, the European Union being the prime example. An extensive theoretical literature has analyzed the costs and benefits of nation formation (see, e.g., Alesina and Spolaore, (1997), (2003), Bolton and Roland (1997)). Larger nations benefit from scale economies, but pay the costs of an increasingly heterogeneous population. The optimal size of a nation is then determined by this trade-off.

The main goal of this paper is to explore nation formation empirically. Focusing on European countries and regions, we use data on cultural heterogeneity to address the following questions. Is the current map of Europe stable? Which regions are more likely to secede? Which countries stand a better chance to cooperate and possibly unite? Who gains and who loses from the formation of the European Union?

The theoretical setup has agents vote on the optimal level of public spending in presence of increasing returns in the provision of public goods. However, the utility derived from public goods is decreasing in the country's degree of cultural heterogeneity. This framework allows us to compare welfare across different geographical arrangements. In particular, we can study whether agents would like to unite or secede by assuming that the majority of agents affected by such a move should support the rearrangement. To model cultural heterogeneity, we rely on a matrix of cultural distances between nations. We refer to this measure as metric heterogeneity. Preferences are such that, all else equal, an agent prefers to be part of a nation which minimizes cultural distances. In other words, each agent ranks nations on the basis of how culturally different they are. The notion of metric heterogeneity we employ is similar to the one described in the literature on cooperative games where players are characterized by their location in a network or in a geographical space. In such a framework the gains from cooperation increase when the distances among the players in the coalition decrease. Le Breton and Weber (1995) focus on the case where two-person coalitions may form and characterize the patterns for which
there is a stable group structure. In contrast to their work, we do not allow for unlimited monetary lump sum transfers among players in the group.

The most crucial issue in linking our model to the data is how to measure cultural heterogeneity empirically. We use genetic distances amongst populations as a proxy for cultural distances. ${ }^{1}$ The underlying assumption is that the more two populations have mixed, the more similar their cultural views will be. Since populations that have experienced more mixing - or populations that have become separated more recently - are genetically more alike, there should be a positive correlation between genetic and cultural distances. We emphasize that we view genetic distances as a record of mixing, and not as saying anything about the relation between genes and human behavior.

We start by estimating the set of parameter values that makes the current map of European nations stable. In other words, we search for those parameter values that are consistent with an equilibrium of the coalition formation game played by countries and regions. This then allows us to determine which regions are more likely to separate, and which countries are more likely to form a union. By slightly increasing the perceived cost of cultural heterogeneity in the utility function, we can check which region would be the first to break away. According to our findings, the Basque Country is the most likely to secede. Likewise, by slightly decreasing the cost of cultural heterogeneity, we can see which countries would be the first to unite. Belgium and Austria, two small countries that for part of their history were united under Habsburg rule, top the list. If we limit unions to countries that are geographically close, Denmark and Norway, which were united from the Middle Ages until 1814, become the most likely to merge.

We also examine the gains from European Union membership. The goal is to understand who gains most and who loses most from European Union membership. The focus is on the EU before enlargement. Depending on the methodology used, Ireland or Portugal come out as the winners, whereas Germany always comes in last, being the only country that loses from being part of the EU. Of course, these findings are not only the

[^1]result of cultural heterogeneity. A country's size and level of development also matter. Larger countries already reap much of the benefits from increasing returns, whereas richer countries may be loath to have to redistribute more when joining in a union with poorer bedfellows. To isolate the role of culture, we compare our ranking to the one we would obtain if we were not to take into account cultural heterogeneity. Two countries stand out when ignoring culture: Belgium gains less and Greece gains more. This makes sense. In our data set Greece is the country which is culturally most distant from the rest of the EU-15, whereas Belgium is the 'genetic capital' of the Union.

Before proceeding with our analysis, we would like to point out that the genetic distances we use are imbedded in an abstract n-dimensional space. Since the values of genetic distances are based on information of many different genes, they cannot be represented in a one-dimensional space. In other words, we cannot locate the countries and regions in our data set on a line. ${ }^{2}$ Although there may be certain policy issues for which a one-dimensional space suffices, in general this is too restrictive. To give a simple example, if agents who reside in the same county have to decide on the geographic location of a public facility, this problem is, by nature, two-dimensional. Alternatively, agents with the same income may have different views regarding the desired level of redistribution within the society. Thus, the search for an optimal public policy is naturally a multidimensional problem. To be consistent with this possibility, and in contrast to much of the standard theoretical work (see, e.g., Alesina and Spolaore, (1997, 2003) and Bolton and Roland (1997)), our model does not require a population heterogeneity to be onedimensional. In fact, the dimensionality of the space in which cultural distances are measured is irrelevant.

Another important issue is to justify our choice of using genetic distances as a proxy for cultural distances. If we are interested in measuring cultural heterogeneity, one may argue we should use data from social surveys which enquire about people's values. However, the answers to many questions in opinion polls are arguably biased by short term

[^2]events, such as the political business cycle. Since we are interested in long-term decisions - secessions or unifications - information gathered from surveys or opinion polls may not be the most appropriate. Nevertheless, we do explore this type of information, and find a strong correlation between distances based on social surveys and genetic distances. We view this result not as an argument for an extensive use of opinion polls, but rather as lending support to the view that genetic distances are a reasonable proxy for cultural distances.

Of course there exist alternatives for measuring cultural distances. For instance, geographical distances or linguistic distances may capture the same type of information. Indeed, the relation between genes, languages and geography has been extensively studied in population genetics (see, e.g., Sokal (1987) and Cavalli-Sforza et al., (1994)). However, even after controlling for languages and geography, we find that populations that are similar in genes tend to give more similar answers to opinion polls. ${ }^{3}$

Needless to say, our main assumption - more population mixing implies smaller cultural differences - could be open to debate. Some authors claim that mixing is not necessary for cultural diffusion to happen (see, e.g., Jobling et al., 2004). It might be the case that, say, Danes have not mixed much with Germans in the last 20 generations, so that there genetic distance is relatively large. However, cultural diffusion might have taken place through books, newspapers, the education system, religion, etc., making their preferences quite similar. Thus, the question is whether the transmission of culture takes place through migration flows and the mixing of populations (demic diffusion) or through other channels. This is yet another debate in population genetics, and authors, such as Cavalli-Sforza et al. (1994) and Chikhi et al. (2002), have argued that demic diffusion has played a dominant role. ${ }^{4}$ Spolaore and Wacziarg (2006) make a similar claim in the case of the diffusion of innovation.

The issue of nation and alliance formation discussed in our paper has been empir-

[^3]ically studied by several authors. Axelrod and Bennett (1993) show how landscape theory is able to predict the European alignment of the Second World War. They consider a setting where each nation is characterized by its propensity to work with other nations. Given the partition of all nations into two blocs, the frustration of a nation is determined as the sum of its propensities towards nations outside the group, and energy is then the weighted sum of the frustrations of all countries. Using the 1936 data, Axelrod and Bennett examine two-bloc structures that minimize energy and show the existence of a local minimum, which almost exactly corresponds to the wartime alignment in Europe. Spolaore and Wacziarg (2005) estimate the effect of political borders on economic growth and run a number of counterfactual experiments to examine how the union of different country pairs would affects growth. However, they do not take into account cultural heterogeneity. A recent paper of Alesina, Easterly and Matuszeski (2006) explores the poor economic performance of 'artificial' states, where borders do not match a division of nationalities.

From a theoretical point of view our paper is related to recent developments in the area of hedonic games, ${ }^{5}$ where the payoff of a player depends exclusively upon the group to which he belongs. In our framework the benefit of a region from being part of a certain coalition depends solely on regions in the coalition, and is independent of the number and composition of other coalitions that are formed. Thus, our nation formation game is a hedonic game. ${ }^{6}$ Also, the contribution by Milchtaich and Winter (2002), where players compare groups on the basis of the distance between their own characteristics and the average characteristics of the group, share some common features with our work.

The rest of the paper is organized as follows. Section 2 presents the theoretical framework. Section 3 studies the stability of Europe by exploring the likelihood of secessions and unions between country pairs. Section 4 analyzes the gains of European Union membership. Section 5 does an exhaustive study of the full stability of Europe.

[^4]Section 6 provides empirical support for using genetic distances as a proxy of cultural heterogeneity. Section 7 concludes.

2 The Model

2.1 General Framework

The world W is partitioned into countries, each consisting of one or several regions. Each individual in W resides in one of the regions. The set of regions is denoted by N. In the rest of the discussion, the set of regions is taken as given, whereas the partition of the world into countries can change. The population of country C is given by
where the summation extends over all regions I belonging to C.
There are two types of heterogeneity in this model, cultural and income. Within regions there is only income heterogeneity. In other words, there is intra-regional income heterogeneity, but no intra-regional cultural heterogeneity, so that individuals in a regions may have different incomes but are culturally homogeneous. Within countries both types of heterogeneity may be present. In other words, there is intra-country income heterogeneity, and if a country consists of more than one regions, there will also be intra-country cultural heterogeneity.

For any two regions $I, J \in N$, we call $d(I, J)$ the cultural distance between a resident of I and a resident of J, and in the empirical part of our investigation we identify $d(I, J)$ with the genetic distance between region I and region J. Obviously, $d(I, J)=d(J, I)$ for all I and J. Given that cultural heterogeneity is only present across regions, $d(I, I)=0$ and $d(I, J)>0$ for all $I \neq J$. We denote by D the matrix $D=(d(I, J))_{I, J \in N}$. The weighted cultural distance between a resident of region I, that belongs to country C, and all other residents of C is

$$
\begin{equation*}
H(I, C)=\mathrm{X}_{J \in C} \frac{p(J) d(I, J)}{p(C)} . \tag{1}
\end{equation*}
$$

The value of $H(I, C)$ will represent the degree of cultural heterogeneity experienced by a resident of region $I \in C$.

The income distribution in region I is given by the density function $f_{I}(y)$ with support $[\underline{y}, \bar{y}]$ which is common for all regions. The total income in I is denoted by $Y(I)$:

$$
\begin{equation*}
Y(I)={\underset{\underline{y}}{\underline{y}}}_{\mathrm{Z}_{\bar{I}}(y) d y .} \tag{2}
\end{equation*}
$$

Similarly, $Y(C)$ will denote the total income in country C.
Agents' utility depends on private consumption, c, public consumption, g, and the degree of cultural heterogeneity they face. We adopt the following quasi-linear expression for the utility of an individual i in region $I \in C$:

$$
\begin{equation*}
u(c, g, I, C)=c+V(g, H(I, C)), \tag{3}
\end{equation*}
$$

where V is twice continuously differentiable, strictly concave and increasing in the amount of public good g. We assume that cultural heterogeneity reduces the utility an agent derives from the consumption of the public good g. Thus, V is decreasing in the second argument, the level of cultural heterogeneity faced by a resident of region I in country C. If agents reside in one-region countries, intra-regional cultural homogeneity implies that for every one-region country I the value of $H(I, I)$ is equal to zero. Thus, the utility of agents in one-region countries becomes:

$$
u(c, g, I, I)=c+V(g, 0)
$$

Public goods are financed through a proportional tax rate $\tau, 0 \leq \tau \leq 1$, so that taxation is redistributive. For simplicity, we assume that the price of the public and the private good are both equal to 1 . Furthermore, taxation does not involve deadweight losses, so that if country C selects the tax rate τ, the level of public good will be $\tau Y(C)$. The indirect utility of an individual i with income y_{i}, residing in region I in country C, that adopts the tax rate τ, can be presented as

$$
\begin{equation*}
v\left(y_{i}, \tau, I, C\right)=y_{i}(1-\tau)+V(\tau Y(C), H(I, C)) \tag{4}
\end{equation*}
$$

The tax rate τ in every country C is chosen by majority voting. Note that for every country C the preferences of every agent $i \in C$ over tax rates are single-peaked.

Denote by $\tau\left(y_{i}, I, C\right)$ the preferred tax rate for an individual i with income y_{i} who resides in region $I \in C$:

$$
\begin{equation*}
\tau\left(y_{i}, I, C\right)=\arg \max _{\tau \in[0,1]} v\left(y_{i}, \tau, I, C\right) \tag{5}
\end{equation*}
$$

Note that, given single-peaked preferences, majority voting yields a tax rate preferred by the median agent.

The goal is to identify stable partitions of countries. There are several stability concepts that have been applied in the literature (see, e.g., Alesina and Spolaore, 1997, Jéhiel and Scotchmer, 2001, Bogomolnaia et al., 2005). In this paper, we focus on a simple but relevant stability concept, which we believe to be the appropriate one in our context (see also Alesina and Spolaore, 1997). We call this stability concept the Limited Right of Map Redrawing and it requires, subject to majority voting, the unanimous approval of any border redrawing by all affected regions. For every partition $\pi=\left\{C_{1}, \ldots, C_{K}\right\}$ and every region $I \in N$ denote by $C^{I}(\pi)$ the country in π that contains I. Let $\tau(C)$ be the optimal tax level chosen by the median agent in country C. We then have the following definition:

Domination relation: Partition π^{\prime} dominates partition π if for every region affected by the shift from π to π^{\prime}, the majority of its residents prefer the new arrangement π^{\prime} over the old one π. That is, for every region I with $C^{I}(\pi) \neq C^{I}\left(\pi^{\prime}\right)$ we have

$$
p\left(\left\{i \in I \mid v\left(y_{i}, \tau\left(C^{I}\left(\pi^{\prime}\right)\right), I, C^{I}\left(\pi^{\prime}\right)\right)>v\left(y_{i}, \tau\left(C^{I}(\pi)\right), I, C^{I}(\pi)\right)\right\}\right)>\frac{1}{2} p(I) .
$$

This concept of domination allows us to precisely define the Limited Right of Map Redrawing:

Limited Right of Map Redrawing (LRMR): Let partition π be given. A partition $\pi^{\prime} \neq \pi$ generates credible map redrawing if π^{\prime} dominates π. A partition π is $L R M R$ stable or stable if it cannot generate credible map redrawing.

It is crucial to point out the decisiveness of the median agent (Gans and Smart, 1996). That is, the preferences of the median income agent in a region over different
arrangements 'represent' those of the majority of its residents. For every region I denote by $y_{m}(I)$ the median income in this region, and for every country C that contains I, let $v_{m}(I, C)$ be the value of the indirect utility function v in (4) when the tax rate in country C is given by $\tau(C)$:

$$
v_{m}(I, C)=v\left(y_{m}(I), \tau(C), I, C\right) .
$$

Then we have the following representation result:

Lemma - Median Decisiviness: For every region I and two different countries C and C^{\prime} with $I \in C^{\top} C^{\prime}$ we have

$$
p\left(\left\{i \in I \mid v\left(y_{i}, \tau(C), I, C\right)>v\left(y_{i}, \tau\left(C^{\prime}\right), I, C^{\prime}\right)\right\}\right)>\frac{1}{2} p(I)
$$

if and only if

$$
v_{m}(I, C)>v_{m}\left(I, C^{\prime}\right) .
$$

Proof: Consider a region I and two different countries C and C^{\prime} such that $I \in C^{\boldsymbol{\top}} C^{\prime}$. First, suppose that the inequality $v\left(y_{i}, \tau(C), I, C\right)>v\left(y_{i}, \tau\left(C^{\prime}\right), I, C^{\prime}\right)$ holds for more than half of region I 's population. By (4), this inequality can be rewritten as

$$
\begin{equation*}
y_{i}\left(\tau\left(C^{\prime}\right)-\tau(C)\right)>V\left(\tau Y\left(C^{\prime}\right), H\left(I, C^{\prime}\right)\right)-V(\tau Y(C), H(I, C)) \tag{6}
\end{equation*}
$$

The range of y_{i} that satisfies (6) is an interval, and since it contains more than half of region I 's population, the interval must include the median agent $y_{m}(I)$, for whom (6) should hold as well.

Assume now that $v_{m}(I, C)>v_{m}\left(I, C^{\prime}\right)$. By (6), we have

$$
\begin{equation*}
y_{m}(I)\left(\tau\left(C^{\prime}\right)-\tau(C)\right)>V\left(\tau Y\left(C^{\prime}\right), H\left(I, C^{\prime}\right)\right)-V(\tau Y(C), H(I, C)) . \tag{7}
\end{equation*}
$$

If $\tau\left(C^{\prime}\right)-\tau(C) \geq 0$ then (7) holds for all $y_{i}>y_{m}(I)$ and some $y_{i}<y_{m}(I)$. If $\tau\left(C^{\prime}\right)-$ $\tau(C)<0$ then (7) holds for all $y_{i}<y_{m}(I)$ and some $y_{i}>y_{m}(I)$. In both cases, more than half of I 's residents have the same preferences over C and C^{\prime} as the median agent $y_{m}(I)$. Q.E.D.

This lemma plays a crucial role in the proof of our existence result. Moreover, it allows us to analyze a relation between stability and efficiency. Given the lemma, we focus on a concept of efficiency that accounts for the utility achieved by agents with median income in every region.

Efficiency: Let Π be a set of world partitions. We call $\pi \in \Pi$ median-efficient if it maximizes

$$
\mathrm{X}_{I \in N} v_{m}\left(I, C^{I}(\pi)\right)
$$

over all world partitions $\pi \in \Pi$.

It turns out that it is always possible to find a LRMR-stable partition. We show that, in fact, every median-efficient partition is stable. One must note that the opposite is not necessarily true.

Proposition: The set of LRMR-stable partitions and the set of median-efficient partitions are both nonempty. Moreover, every median-efficient partition is LRMRstable.

Proof: For every $\pi \in \Pi$ denote

$$
R(\pi)=\mathrm{X}_{I \in N} v_{m}\left(I, C^{I}(\pi)\right) .
$$

Then π is a median-efficient partition if and only if

$$
R(\pi)=\max _{\pi^{\prime} \in \Pi} R\left(\pi^{\prime}\right) .
$$

Since Π is a finite set, there exists a median-efficient partition π. Let us show that it is LRMR-stable. Indeed, if not, then there is a partition π^{\prime} that dominates π. Then a median agent in every region affected by a shift from π to π^{\prime}, would be better off at π^{\prime}. Since in regions that are not affected by a shift, there is no change in utility, we have $R\left(\pi^{\prime}\right)>R(\pi)$, a contradiction to the median-efficiency of π. Q.E.D.

2.2 Our Specification

Before bringing our theoretical model to the data, we make some additional assumptions on agents' utilities. We adopt the following quasi-linear functional form for the utility of an individual i in region $I \in C$:

$$
\begin{equation*}
u(c, g, I \in C)=c+\alpha(Z(I, C) g)^{\beta}, \tag{8}
\end{equation*}
$$

where $\alpha>0$ and $\beta>0$ are exogenously given parameters, and $Z(I, C)$ is a 'discount factor', whose range is between 0 and 1 .

Since cultural heterogeneity reduces the utility an agent derives from the consumption of the public good g, the value of $\left.Z_{(} I, C\right)$ is negatively correlated with the cultural heterogeneity faced by a resident of region I in country C. More specifically, we assume that for a such an agent the discount factor is given by

$$
\begin{equation*}
Z(I, C)=1-H(I, C)^{\delta} \tag{9}
\end{equation*}
$$

where $\delta \in[0,1]$.
The parameter δ is important in two respects. First, the smaller is δ, the greater is the cost of heterogeneity. If δ is very small, the value of $Z(I, C)$ in a multi-regional country is close to zero. In other words, a small δ implies that in such a country any amount of public consumption becomes almost useless. Second, the smaller is δ, the more convex is the discount factor Z. For small values of δ, the discount factor exhibits a high degree of convexity, so that the relative effect of increasing heterogeneity on Z is larger at lower levels of heterogeneity. If agents reside in one-region countries, the discount factor $Z(I, I)$ is equal to one, regardless of the value of δ. Thus, the utility of agents in one-region countries becomes:

$$
u(c, g)=c+\alpha g^{\beta} .
$$

The indirect utility of an individual i with income y_{i}, residing in region $I \in C$, where the tax rate is τ, is

$$
\begin{equation*}
v\left(y_{i}, \tau, I, C\right)=y_{i}(1-\tau)+\alpha\left(Z_{(I, C)} \tau Y(C)\right)^{\beta} . \tag{10}
\end{equation*}
$$

We can now explicitly derive $\tau\left(y_{i}, I, C\right)$, the preferred tax rate for an individual i with income y_{i} who resides in region $I \in C$. It is easy to see that the (interior) solution to (5) is

$$
\begin{equation*}
\tau\left(y_{i}, I, C\right)={\frac{\mu}{\alpha \beta\left(Z_{(I, C)} Y(C)\right)^{\beta}}}^{\mathbf{q}_{\frac{1}{\beta-1}}} \tag{11}
\end{equation*}
$$

Notice that, in general, for $I, J \in C$ we have $Z_{(I, C)} \neq Z_{(J, C)}$. In other words, the cost of cultural heterogeneity tends to be different for agents living in different regions of the same country. As a result, two individuals with the same income level, but residing in different regions of country C, typically have different preferred tax rates. This implies that the median agent in country C does not necessarily coincide with the agent with the median income in C. This feature has important consequences for the empirical part of the paper. Finding the preferred tax rate of a coalition of regions forming a country becomes more laborious than just finding the preferred tax rate of the median income agent. Of course, when a country is formed by only one region, this problem disappears, and the agent with the median income becomes the decisive one in determining the tax rate.

3 Stability of Europe

In this section we investigate whether we can find values of parameters that render the current map of Europe stable according to our Limited Right of Map Redrawing stability concept. Using information on cultural distances between European regions and countries, our goal is to find values of α, β and δ that yield a LRMR-stable partition of Europe.

This exercise is of interest for a number of reasons. First, as a way of validating our theoretical framework, it seems important that the set of parameter values consistent with stability is not empty. Second, our analysis allows us to determine which regions are more likely to separate, and which countries are more likely to form a union. For instance, by increasing the cost associated with cultural heterogeneity, we can check which region would be the first one to secede. We can thus pinpoint the 'weak' links in the current map of Europe.

3.1 Data

The most important data issue is to specify the matrix of cultural distances D. As already mentioned, we use genetic distances between populations. ${ }^{7}$ The best-known reference is Cavalli-Sforza et al. (1994), who collected data from different sources to construct a matrix of genetic distances for a large number of populations across the world. ${ }^{8}$ To carry out our exercise, it is important to have information, not just on countries, but also on regions.

Indeed, to limit the range of δ from above and from below, it is not enough to make sure that no existing countries want to unite, we also must guarantee that no existing regions want to separate. The matrix of Cavalli-Sforza et al. (1994) is therefore appropriate, as it contains information on 22 European countries and 4 European regions (Basque Country, Sardinia, Scotland and Lapland). ${ }^{9}$ Table A. 1 in the Appendix reproduces the matrix. Although it leaves out a number of relevant regions (Flanders, Catalonia, Brittany, Northern Italy,...), the fact of having at least some regions is conceptually enough to allow us to estimate $\delta .{ }^{10}$

The other data we need are standard. Data on population and GDP per capita (measured in PPP) are for the year 2000, and come from Eurostat, the Penn World Tables and the International Monetary Fund. Data on income distribution come from the World Income Inequality Database v.2.0a, collected by the United Nations University. Since those data are not available for all years, we take the year which is closest to 2000 . The income distributions of regions are taken to be the same as those of the countries they

[^5]belong to.
For those countries for which we have information on regions, we need to distinguish in the data between the country, the region, and the country net of the region. Take the case of Spain. If the question is whether the Basque Country wants to separate, the two relevant decision makers are the Basque Country and the rest of the Spain. However, if the question is whether Spain wants to unite with Portugal, the two relevant decision makers are Spain (including the Basque Country) and Portugal.

3.2 Estimation Strategy

Our strategy is to first calibrate α and β using data on a set of European and OECD countries, so that we are left with only one degree of freedom, the parameter δ. To calibrate α and β, we assume away cultural heterogeneity within countries. ${ }^{11}$ This amounts to assuming that each country is made up by one region. In that case, the tax rate adopted by country C is

$$
\begin{equation*}
\tau(C)=\frac{\mu}{\alpha \beta(C)}^{\boldsymbol{q} \frac{1}{\beta-1}} \tag{12}
\end{equation*}
$$

where $y_{m(C)}$ is the median income in C. As can be seen from (12), we need data on the tax rate, $\tau(C)$, median income, $y_{m(C)}$, and total income, $Y(C)$. For the tax rate, we take the ratio of government spending on public goods to total GDP. It is not entirely obvious how to measure spending on public goods. To get as close as possible to what is a public good, we want to focus on activities where congestion is limited. We use a number of alternative measures. All data come from the Government Finance Statistics (GFS) database, collected by the IMF. A first measure takes the sum of general public services, defense, public order and safety, environmental protection, and economic affairs. A second measure takes only general public services. And a third measure focuses exclusively on defense. As will be shown later, these alternative measures do not lead to qualitatively different results. We use data for all European and OECD countries in the GFS database. Depending on the measure used, we have information on 27 to 30 countries.

[^6]To calibrate α and β, we estimate (12) by applying nonlinear least squares. The results for each of the three measures of government spending are reported in Table 1. Standard errors are given in brackets.

	α	β
General public services, defense	-287	-0.0322
public order, environment	(529)	(0.0709)
economic affairs		
General public services	25.80	0.0833
	(26.79)	(0.0627)
Defense	-6.42	-0.1917
	(3.27)	(0.1625)

Table 1: Estimation of α and β

Using these measures of α and β, we now compute the range of δ for which the current map of Europe is LRMR stable. In principle, checking for stability would require us to analyze all possible partitions of the 21 countries and 3 regions we focus on. However, the number of such partitions is too large ($445,958,869,294,805,289$). We therefore limit our analysis to all possible separations (Basque Country-Spain, ScotlandBritain, Sardinia-Italy) and all possible mergers between country pairs. In as far as large unions start off small, focusing on unions between country pairs is not unrealistic. ${ }^{12}$

Using this setup, for Europe to be LRMR stable, two conditions need to be satisfied:

1. There is no unanimity between a region and the country it is part of to separate, i.e., there is no majority in both the region and the country it belongs to in favor of secession.
2. There is no unanimity between any pair of countries to unite, i.e., there is no majority in each of the two countries to unite.
[^7]We start by analyzing the condition for no region to secede. Consider the three regions in our database (Basque Country, Sardinia, and Scotland) and the three countries they belong to (Spain, Italy, and Britain). For secession to occur, there needs to be a majority in both affected parts. For instance, if the Basque Country is to separate, a majority of Basques and a majority of the population in the rest of Spain should approve. Therefore, in this context 'Spain' is defined as 'Spain without the Basque Country', and likewise for Italy and Britain. In the case secession does not occur, the agent with the median income in region $I \in C$ enjoys utility level

$$
v_{m}(I, C)=v\left(y_{m}(I), \tau(C), I, C\right),
$$

If, instead, region I secedes, the utility of the agent with the median income becomes

$$
v_{m}(I, I)=v\left(y_{m}(I), \tau(I), I, I\right),
$$

Under median representation region I prefers to remain part of country C if $v_{m}(I, C) \geq$ $v_{m}(I, I)$. Since the utility of forming part of country C depends on the parameter δ, we write the net gain of the union for the median income agent of region I as

$$
\begin{equation*}
g_{I, C}(\delta) \equiv v_{m}(I, C)-v_{m}(I, I) \tag{13}
\end{equation*}
$$

We now need to consider the same condition for the other affected part, i.e., the median income agent of 'Spain without the Basque Country' or of 'Britain without Scotland'. The net gain of the union for the median income agent of the rest of the country C / I can be written as

$$
\begin{equation*}
g_{C / I, C}(\delta) \equiv v_{m}(C / I, C)-v_{m}(C / I, C / I) \tag{14}
\end{equation*}
$$

According to our definition, for secession not to occur, it suffices that one of the parts prefers to remain united. Thus, a first necessary condition for the current European partition to be stable is the existence of a nonempty set of the parameter δ for which at least one of the functions (13) and (14) is positive for each of the pairs Basque CountrySpain, Sardinia-Italy, and Scotland-Britain. The set of δ for which secession does not occur can be defined as
$S^{R} \equiv\left\{\delta \mid \max \left\{g_{I, C}(\delta), g_{C / I, C}(\delta)\right\} \geq 0\right.$, for all $I \in\{$ Sardinia, Basque Country, Scotland $\left.\}\right\}$

The range of δ for which this condition holds for the relevant secessions in our data set is obtained numerically.

We now analyze the condition for no country pairs to unite. To determine the preferred tax rate in a possible union between, say, C and C^{\prime}, we need to identify the median voter. Because the 'discount factor' Z is not the same for all agents, this implies that the median voter need not coincide with the median income agent of the union. To solve this problem, we proceed in the following way. We compute the average income of an agent in each decile of the income distribution for both countries C and C^{\prime}. This, together with data on population and income, allows us to determine for the union of C and C^{\prime} the preferred tax rate of each one of these agents. In the case of the union between two countries, this gives us 20 tax rates. Given that preferences over tax rates are single peaked, we can find the optimal tax rate for the decisive agent. This is done by ordering the 20 tax rates mentioned above, and taking the one which corresponds to half of the population of the union.

The net gain obtained by the median income agent in country C from joining country C^{\prime} can be written as

$$
g_{C, C^{\prime}}(\delta) \equiv v_{m}\left(C, C \cup C^{\prime}\right)-v_{m}(C, C)
$$

A second necessary condition for LRMR stability is that there is no pair of countries C, C^{\prime} such that it is in the interest of both to join. In other words, there is no pair C, C^{\prime} such that $g_{C, C^{\prime}}(\delta)>0$ and $g_{C^{\prime}, C}(\delta)>0$. The set of δ for which no two nations want to unite can be defined as

$$
S^{N} \equiv\left\{\delta \mid \min \left\{g_{C, C^{\prime}}(\delta), g_{C^{\prime}, C}(\delta)\right\} \leq 0, \text { for all } C, C^{\prime}\right]
$$

Combining the necessary conditions for 'no secession' and 'no union', a necessary condition for LRMR stability is that the set

$$
S \equiv S^{N} \cap S^{R}
$$

is non empty. It is clear that S is an interval on the real line, and we write $S \equiv[\underline{\delta}, \bar{\delta}]$.

3.3 Secessions and Unions between Country Pairs

To numerically compute whether there exists a range of δ that renders the current map of Europe stable, we take the values of α and β estimated before. Taking government spending to be the sum of general public services, defense, public order and safety, environmental protection, and economic affairs, Table 1 gives us $\alpha=-282$ and $\beta=-0.0322$. Numerical computation then shows that $S=[0.0285,0.1575]$. A first conclusion is therefore that the set S is nonempty. This result is robust to the alternative definitions of government spending of Table 1.

We can now look at which regions are more likely to secede, and which country pairs are more likely to unite. To understand how this can be done, note that if $\delta<0.0285$, cultural distances are given so much weight, that we cannot prevent certain regions to break away. By progressively lowering δ, we can then rank regions, depending on the risk they pose to the union. Likewise, if $\delta>0.1575$, the weight put on cultural distances is not enough to prevent some currently independent nations from uniting. By progressively increasing δ, we can rank country pairs, depending on how likely they are to unite.

Table 2 focuses on the likelihood of secessions. As can be seen, the Basque Country is the more likely one to break away, followed by Scotland and Sardinia. This ranking is unchanged under a number of robustness checks. ${ }^{13}$

1	Basque Country
2	Scotland
3	Sardinia

Table 2: Likelihood of secession

Table 3 focuses on the likelihood of unions between country pairs. The first column consists of the benchmark case. Austria and Belgium are the two countries most likely to unite: both are small, have similar populations, and similar levels of GDP per capita. According to the Cavalli-Sforza matrix, they are also genetically close. Remember

[^8]that present-day Belgium became part of Austria with the Treaty of Utrecht (1713), following the Spanish War of Succession, and remained under Habsburg rule until the French invasion of 1794. The next pairs which stand to gain most from unification -Switzerland-Belgium, Denmark-Norway, Austria-Switzerland, and Belgium-Netherlands - fit the same pattern: small countries, similar levels of GDP per capita, and genetically close. Again, the presence of Belgium in many of these pairs is not surprising: on the border between Latin and Germanic Europe since Roman times, and serving as the 'battlefield' of Europe, it is the 'genetic capital' of Europe. The ranking shows that unions between large and small countries are unlikely. This makes sense: the larger country would find little fiscal benefit to such unions. There is one exception though: Poland-Belgium. Since the larger country of the two, Poland, is also the poorer one, this union still has the potential of being mutually beneficial. Likewise, unions between two large nations are not common, as on their own they already benefit from substantial increasing returns in the provision of public goods. The only two such unions in the top-10 occupy the last two positions: Germany-Britain and France-Germany.

	Benchmark	Geographically contiguous	Same population
1	Austria-Belgium	Denmark-Norway	Denmark-Netherlands
2	Switzerland-Belgium	Austria-Switzerland	Austria-Switzerland
3	Denmark-Norway	Belgium-Netherlands	Belgium-Netherlands
4	Austria-Switzerland	Norway-Sweden	Germany-Switzerland
5	Belgium-Netherlands	Germany-France	Germany-Belgium
6	Belgium-Poland	France-Britain	Belgium-Britain
7	Switzerland-Denmark	Czech Republic - Hungary	Switzerland-Belgium
8	Norway-Sweden	France-Italy	Switzerland-Netherlands
9	Germany-Britain	Denmark-Sweden	Germany-Netherlands
10	France-Germany	Netherlands-Britain	Austria-Belgium

Table 3: Likelihood of unions

The second column in Table 3 restricts possible unions to country pairs that are geographical neighbors. ${ }^{14}$ In that case, Denmark and Norway are the two countries most

[^9]likely to unite. They are followed by Austria-Switzerland, Belgium-Netherlands, and Norway-Sweden. Three out of these first four pairs were united for parts of their history. Norway formed part of the Danish crown from the Middle Ages until 1814. Belgium and the Netherlands were united under Burgundy, Habsburg and Spain from 1384 to 1581, and briefly again after the Treaty of Waterloo, from 1815 to 1830. Sweden and Norway were united under the same crown from 1814 to 1905, and for a brief spell in the 14th century.

The third column in Table 3 runs a counterfactual by assuming that all countries have the same population of 26 million, corresponding to the average of the countries in our data set. When abstracting from different population sizes, the most likely union is between Denmark and the Netherlands. In fact, the genetic distance between the two is the smallest one in the Cavalli-Sforza matrix. Relations between both countries became strong during the Eighty Years War between the Netherlands and Spain in the 16th-17th century, when a large number of Dutch migrated to Denmark, turning the Netherlands into one of the most important export markets for Denmark. When ignoring differences in population sizes, unions between, for instance, Germany and Switzerland, or Germany and Belgium, become increasingly likely. This suggests that the most important obstacle to a union between, say, Germany and Switzerland, is their different sizes. Other unions, such as between Belgium and Poland, now become less likely. Indeed, what made Poland attractive to Belgium in the benchmark case was its large size.

As a robustness check, Table 4 uses alternative definitions of government spending. The first column takes general public services to be the measure of public spending. Using the corresponding α and β from Table 1, we re-estimate which countries are most likely to unite. The second column follows the same procedure, using defense as the measure of public spending. As can be seen, in both cases, the results are similar to the benchmark case. In fact, the five most likely unions do not change. Further robustness checks on α and β do not change the results. In particular, when we take β plus or minus its standard error, and re-optimize the value of α, the five most likely unions do not vary. The same result obtains when taking α plus or minus its standard error.

	General public services	Defense
1	Austria-Belgium	Austria-Belgium
2	Switzerland-Belgium	Switzerland-Belgium
3	Denmark-Norway	Denmark-Norway
4	Austria-Switzerland	Austria-Switzerland
5	Belgium-Netherlands	Belgium-Netherlands
6	Switzerland-Denmark	Switzerland-Denmark
7	Norway-Sweden	Poland-Belgium
8	Germany-Britain	Norway-Sweden
9	Poland-Belgium	Germany-Britain
10	France-Germany	France-Germany

Table 4: Likelihood of unions, using alternative definitions of public spending

4 The Gains of European Union Membership

In this section we use our model to estimate the gains of being a member of the EU-15. Our goal is two-fold. First, we want to see which countries gain most and which lose most from being part of the European Union. Second, we would like to understand how taking into account cultural distances affects the ranking of those gains.

The idea is to view the European Union as a new country formed by the merger of previously independent nations. We can then compare the utility of being inside or outside the EU. In terms of data, we focus on the 14 member states of the EU- 15 for which we have information. ${ }^{15}$ If country C is part of the European Union, the utility of its median income agent is $v_{m}(C, E U)$, where $E U$ is the set of members of the European Union. Country C 's relative gain from becoming part of the EU is:

$$
g_{C, E U}(\delta) \equiv \frac{v_{m}(C, E U)-v_{m}(C, C)}{v_{m}(C, C)}
$$

The relative gains of being part of the European Union depends on the value of δ. Assuming the current map of Europe is stable, our previous estimations indicate that δ belongs to the set $S=[0.0285,0.1575]$. Since it is not obvious which value of δ to choose within that range, we assume that all the elements of S are equally likely. To compute

[^10]the relative welfare gain of being a member of the EU, we therefore take the average of $g_{C, E U}(\delta)$ over all the parameters in S, namely
\[

$$
\begin{equation*}
g_{C, E U} \equiv{ }_{S} g_{C, E U}(\delta) d F \tag{15}
\end{equation*}
$$

\]

where F is the uniform distribution over the interval S. We take an approximation $b_{C, E U}$ by computing

$$
\begin{equation*}
b_{C, E U} \equiv{ }_{i=0}^{x^{00}} g_{C, E U}\left(\underline{\delta}+\frac{\bar{\delta}-\underline{\delta}}{1000} i\right) \tag{16}
\end{equation*}
$$

Table 5 reports the ranking of relative utility gains of the different member states of the EU-15. ${ }^{16}$ According to our computations, Ireland is the country that gains most, followed by Denmark. Germany is the only country that loses from EU membership, although the gains in the larger countries - Italy, Britain, France and Spain - are relatively small.

	Country	Population	Cultural distance	GDP per capita
1	Ireland	3.8	0.095	126
2	Denmark	5.3	0.045	126
3	Finland	5.1	0.105	113
4	Portugal	10	0.051	80
5	Austria	8.1	0.043	126
6	Belgium	10.2	0.027	117
7	Sweden	8.87	0.067	119
8	Greece	10.6	0.142	73
9	Netherlands	15.9	0.041	120
10	Spain	40.3	0.056	92
11	France	59	0.032	114
12	Britain	58.6	0.034	112
13	Italy	56.9	0.042	113
14	Germany (-)	82	0.031	112

Table 5: Ranking of relative utility gains from being member of EU
Different variables - population size, GDP per capita, income distribution, and cultural heterogeneity - affect this ranking. Table 5 seems to suggest a strong correlation between population size and relative gains. However, population cannot be the

[^11]entire explanation. Greece, Belgium and Portugal, for instance, all have a population size of around 10 million, but Greece gains less than Belgium, and Belgium gains less than Portugal. The difference between Belgium and Portugal can be attributed to GDP per capita. Richer countries are forced to redistribute more, and may therefore be less interested in uniting. However, this does not explain the difference between Belgium and Greece. This is where cultural distances come in: Belgium is the least distant from the average European country, whereas Greece is the most distant. This explains why Greece, in spite of being nearly 40% poorer than Belgium, gains less from membership in the EU.

Country	Change ranking
Ireland	0
Finland	1
Denmark	-1
Greece	4
Portugal	-1
Austria	-1
Sweden	0
Belgium	-2
Netherlands	0
Spain	0
Italy	2
Britain	0
France	-2
Germany $(-)$	0

Table 6: Relative utility gains of being member of EU (no cultural distances)

To understand the role of cultural distances, we recompute the gains from being part of the EU, setting all distances between all countries to zero. The results are reported in Table 6. As expected, Greece now gains more than Belgium. When abstracting from cultural distances, Greece goes up 4 ranks and Belgium goes down 2 ranks. France also swaps places with Italy. Given that France is culturally closer to the European average, it gains less than Italy if we do not take into account culture.

Rather than focusing on relative utility gains, one can compute a ranking based on monetary gains. We do so by calculating the relative increase in per capita income,
r, all agents in country C should receive to render its median agent indifferent between joining the EU (and not receiving the additional income $r y_{m}(C)$) and remaining outside the EU (and receiving $r y_{m}(C)$). The relative increase (decrease) in income is a measure of the relative monetary gains (losses) from being part of the EU. To determine r for each nation C we solve the following equation:

$$
\begin{align*}
& y_{m}(C)(1+r)\left(1-\tau^{\prime}(C)\right)+\alpha\left(\tau^{\prime}(C) Y(C)(1+r)\right)^{\beta} \tag{17}\\
= & y_{m}(C)(1-\tau(E U))+\alpha\left(Z_{(C, E U)} \tau(E U) Y(E U)\right)^{\beta}
\end{align*}
$$

where $\tau^{\prime}(C)$ is the optimal tax rate for the median income agent of country C, given that everyone's income in C is multiplied by $(1+r)$.

Country	Monetary gain (\%)	Population	Cultural distance	GDP per capita	Ranking (no distance)
Portugal	25.93	10	0.051	80	-1
Greece	22.39	10.6	0.142	73	1
Ireland	18.96	3.8	0.095	126	0
Finland	16.79	5.1	0.105	113	0
Denmark	16.12	5.3	0.045	126	0
Belgium	14.43	10.2	0.027	117	-2
Austria	14.21	8.1	0.043	126	0
Sweden	12.89	8.87	0.067	119	2
Netherlands	10.82	15.9	0.041	120	-1
Spain	4.84	40.3	0.056	92	1
France	0.79	59	0.032	114	-2
Britain	0.61	58.6	0.034	112	0
Italy	0.52	56.9	0.042	113	2
Germany	-1.76	82	0.031	112	0

Table 7: Relative monetary gain from being member of EU

Table 7 reports the relative increase in income that leaves the decisive agent in each country indifferent between joining or not joining the EU-15. The ranking we obtain is similar to the one based on utility. Germany is the only country that loses (nearly 2% of income), whereas Portugal is the one that gains most (about 26% of income). There are some differences though. Greece now gains more than Belgium, although it still gains less than Portugal, in spite of being poorer. This is no longer the case when abstracting from
cultural differences. This can be seen in the last column of Table 7. Greece moves up one position, and Portugal moves down one, so that Greece becomes the country that gains most from EU membership, ahead of Portugal. When not taking into account cultural differences, Spain now benefits more than the Netherlands, in spite of its larger size.

5 Full Stability

In Section 3 we argued that an exhaustive study of LRMR stability for Europe exceeds our computing capacity. Indeed, for the 21 countries and 3 regions in our data set, this would amount to checking 445,958,869,294,805,289 possible partitions. Moreover, determining who is the agent with the median optimal tax rate in each partition is laborious, because cultural heterogeneity implies that the decisive agent need not coincide with the median income agent. This is one reason for why in Section 3 we limited ourselves to unions of two countries. The other reason is that in a dynamic framework, where larger unions between many countries start off as smaller unions between a few, focusing on country pairs is of interest per se.

In this section we revisit the problem of full stability. By introducing two restrictions, we are able to check for all possible partitions. First, instead of looking at all of Europe, we focus on the EU-15, and leave out the peripheral countries Ireland, Finland and Sweden. Given that we do not have data on Luxembourg, this leaves us with 11 countries, and 'only' 678,570 possible partitions. Second, we assume that in each country the level of the public good is chosen to maximize the total utility of its residents. It is easy to see that maximizing total utility in a nation is equivalent to maximizing the population-weighted average of the utility of the mean income residents of the different regions. In that case, the tax rate adopted in country C is the solution to

$$
\begin{equation*}
\bar{\tau}(C)=\arg \max _{\tau \in[0,1]}^{\mathrm{X}} p(I) v(\bar{y}(I), \tau, I, C) \tag{18}
\end{equation*}
$$

where $\bar{y}(I)$ is the mean income in region I. One can easily show that the solution to (18) is given by

$$
\begin{equation*}
\bar{\tau}(C)={ }^{\mu}{\frac{\mathbf{p}}{\alpha \beta}{ }_{I \in C} p(I)\left(Z_{(I, C)}\right)^{\beta}}_{\boldsymbol{q}_{\frac{1}{\beta-1}} \frac{1}{Y(C)}, ~}^{1} \tag{19}
\end{equation*}
$$

To compute the tax rate (19), we only need information on population, total GDP and cultural distances. We no longer need to determine who is the median agent for each possible partition. As a result, computing welfare for each of the 678,570 partitions becomes a computationally feasible task.

One can easily define LRMR stability when the decisive agent is the mean income agent, by changing 'the majority of its residents' in the definition of Domination Relation by the 'mean income agent'. In this case, the corresponding definition of efficiency should be mean-efficiency, rather than median-efficiency, and a similar result as the one in Proposition 1 holds.

Be that as it may, we want to emphasize that we adopted this approach with the sole goal of simplifying the problem computationally. From a theoretical point of view, this simplification may come at a cost. However, from an empirical point of view it turns out that this 'mean agent' framework is a good 'proxy' of the previous approach. To reach this conclusion, we repeated our exercises in Section 3 and 4, using a 'mean agent' rather than a 'median agent' framework, and found that none of the results changed. We therefore feel confident that adopting this simplification does not come at the cost of losing realism. Our empirical results would likely be very similar if were able to do the exercise using a median voter framework.

We compute total welfare for each of the 678,570 partitions and select the partition that yields the maximum. The result depends, obviously, on the chosen value of the parameter δ. We find that, at an accuracy level of 0.00001 , there exists a 'critical' value of $\delta^{*}=0.04066$, such that for $\delta<\delta^{*}$ the current partition of Europe maximizes total welfare, and therefore is efficient and LRMR-stable, whereas for $\delta>\delta^{*}$ the union of all countries maximizes total welfare, so that the EU would be efficient and LRMR-stable. In other words, the only two efficient partitions of Europe is either full integration or full independence.

This result is subject to two caveats. First, the absence of intermediate configurations is not a general feature of the model. One can easily generate examples for subsets of the countries analyzed in this paper for which the efficient partition implies the union
of some, but not all, countries. For example, in the case of Sweden, Denmark and Greece for values of $\delta \in[0.18,0.21]$ the efficient partition consists of the union of only Denmark and Sweden. Second, in our model we do not impose any restrictions on how unions are formed. Even if a union between all countries is the efficient outcome, whether a full union is reached or not would depend on the dynamics of how unions are formed. The literature on whether preferential trade agreements are building blocks or stumbling blocks to global free trade may be of interest here.

6 Genetic and Cultural Distances

In this section we provide some formal defense of our choice to use genetic distances as a proxy for cultural distances among populations. The question we ask is Are genetic distances correlated to cultural distances? We propose the following strategy to answer this question: we compare the matrix of genetic distances from Cavalli-Sforza et al. (1994) to the answers given in the World Values Survey (WVS) to questions on "cultural values". In particular, we take the 430 questions included in the sections on Perceptions of Life, Family and Religion and Moral from the four waves currently available online at http://www.worldvaluessurvey.org/.

We use these questions from the WVS to calculate cultural distances among our 14 European nations. Each question has q different possible answers and we denote by $x_{i, j}=\left(x_{i, j}^{1}, x_{i, j}^{2}, \ldots x_{i, j}^{q}\right)$ the vector of relative answers to question i in nation j. For example, suppose that question i has three possible answers, a, b and c. The vector $x_{i, j}=(1 / 2,0,1 / 2)$ indicates that in nation j, half of the people answer a, and the other half c. We construct a matrix of opinion poll distances between the nations such that the (j, k) element of the matrix represents the average Manhattan distance between nation j and nation k and is given by

$$
w_{j k}=\begin{array}{lll}
X^{30} & \mathbf{X}^{q} & \bar{x}_{i=1} \tag{20}\\
s=1
\end{array} x_{i, j}^{s}-x_{i, k}^{s} \overline{-}
$$

We denote the resulting matrix by W, and it is reported in Table A. 2 in the Appendix.

Figure 1: Genetic Distance and World Values Survey Distance

All our results are robust to the use of the Euclidean distance instead of the Manhattan distance in (20).

6.1 Descriptive Statistics

We want to see whether matrix W is correlated with the matrix of genetic distances D. The goal is to study whether countries that are genetically close give similar answers to the questions in the World Values Survey. Figure 1 shows a scatter plot to better visualize such possible correlation. The y-axis represents WVS distances and the x-axis genetic distances. Say that the genetic distance from nation i to nation j is " x " and the WVS distance is " y ", then in the plot there is a corresponding point with coordinates (x, y). Thus, the x -coordinate of a point in the plot comes from the coefficient in matrix D and the y -coordinate comes from the corresponding coefficient in matrix W. As can be seen, Figure 1 suggests a strong correlation between WVS and genetic distances.

6.2 A More Formal Test

Since the elements of a distance matrix are not independent ${ }^{17}$ we cannot use standard methods of least square estimation to test for (linear) correlation between the matrices D and W. A method often used in Population Genetics is the Mantel Test which is a nonparametric randomization procedure. ${ }^{18}$

Mantel's test statistic is the correlation coefficient, r, of the distance matrices D and W. The significance of the correlation is evaluated via random permutation of the rows and corresponding columns of D and W. For each random permutation, the correlation r is computed. After a sufficient number of iterations, the distribution of values of r is generated and the critical value of the test at the chosen level of significance is found from this distribution. In our case, the correlation coefficient between matrices D and W is 0.64 and the hypothesis of non-positive correlation is strongly rejected based on a Mantel test with 100,000 replications (p -value of 0.00014). This highly significant correlation provides a foundation for the use of the matrix of genetic distances as a proxy for the cultural heterogeneity among European countries.

If the defense for using matrix D is based on its correlation with the matrix of distances W, one might claim that it would be better to directly use W for our analysis. However, the matrix W is based on opinion polls, and although we focus on questions related to people's long term preferences, their answers may still be distorted by short term events. In that sense, we are interested in analyzing the correlation between W and D, not because W is an unbiased measure of the true cultural distances, but because a lack of positive correlation would raise doubts about using D as a proxy for those unknown cultural distances.

An additional criticism might be that there are better proxies for the cultural distances than the genetic distances among populations. A natural alternative to our matrix D could be the matrix of geographical distances between countries. Thus, we

[^12]compute a matrix G of geographical distances among our European countries. ${ }^{19}$ Since we do not observe the true matrix of cultural distances there is no fully satisfactory way to assess which matrix, either D or G, is a better proxy. However, it is possible to test whether genetic distances are more than just a proxy for geographic distances. In other words, it might be the case that once we control for geography, the matrix of genetic distances G is no longer correlated with the matrix W.

In order to investigate this possibility we perform a multiple variable Mantel test to determine the significance of the correlation coefficient of the D and W matrices, controlling for $G .{ }^{20}$ The correlation is now 0.32 , significantly greater than zero (p-value of 0.02). Thus, after controlling for how geographically close populations are, we still find that populations that are similar in genes tend to be similar in their answers to the opinion polls.

The amount of mixing between populations might also be influenced by the languages spoken by them. One would expect that two populations with the same language have experienced more mixing than populations speaking quite unrelated languages. We therefore study whether the correlation between genetic distances and cultural distances still holds after controlling for both linguistic and geographic distances. To do so, we construct a matrix L of linguistic distances between all our populations. ${ }^{21}$ We then perform a second multiple variable Mantel test to determine the significance of the correlation coefficient of the D and W matrices, controlling for G and L. The correlation is now 0.28 , still significantly greater than zero (p-value of 0.04). To understand what this means,

[^13]consider the following example. Say country i is geographically equidistant from j and k, and the same language is spoken in j and k. In that case country i will be closer to country j than to country k in the answers given to the WVS if the genetic distance between i and j is smaller than between i and $k .{ }^{22}$

The significant positive correlation between genetic distances and World Values Survey distances therefore holds up, even when controlling for geographic and linguistic distances. To the best of our knowledge, this is the first time a clear correlation between genetic distances and modern cultural distances has been reported in the literature. This result provides an argument in favor of using genetic distances as a proxy for cultural distances between populations.

7 Further Research

By using data on cultural distances between regions and nations, this paper has empirically explored the stability of Europe. There are at least three main areas for future research. First, integration and cooperation between regions and countries may take many different forms. Regions may have high degrees of autonomy, without fully seceding. Countries may closely cooperate, without fully uniting. By incorporating those possibilities into the theoretical framework, one could empirically study the degree of decentralization and cooperation. Second, certain recent events, such as the breakup of the Soviet Union or the enlargement of the EU, can be analyzed within the framework we propose. Third, the dynamics of nation formation warrants further attention. Large coalitions, such as the present day EU, started off being much smaller. Since there is likely to be path-dependence in coalition formation, understanding these dynamics is important.

[^14]
8 Appendix

	Bas	Sa	Au	Fr	Ge	Be	Dk	Ne	En	Ire	Nor	Sc	Sw	Gr	It	P	Sp	Fi
Basque	0																	
Sardinia	261	0																
Austria	195	294	0															
France	93	283	38	0														
Germany	169	331	19	27	0													
Belgium	107	256	16	32	15	0												
Denmark	184	348	27	43	16	21	0											
Netherlands	118	307	38	32	16	12	9	0										
England	119	340	55	24	22	15	21	17	0									
Ireland	145	393	115	93	84	75	68	76	30	0								
Norway	195	424	61	56	21	24	19	21	25	79	0							
Scotland	146	357	74	62	53	59	40	48	27	29	58	0						
Sweden	168	371	80	78	39	34	36	41	37	94	18	74	0					
Greece	231	190	86	131	144	103	191	199	204	289	235	253	230	0				
Italy	141	221	43	34	38	30	72	64	51	132	88	112	95	77	0			
Portugal	145	340	48	48	51	31	77	60	46	115	73	97	78	103	44	0		
Spain	104	295	69	39	69	42	80	76	47	113	97	100	99	162	61	48	0	
Finland	236	334	77	107	77	63	96	123	115	223	94	166	82	150	94	119	159	0

Table A.1: Matrix of Genetic Distances (from Cavalli-Sforza et. al.)

	Au	Fr	Ge	Be	Dk	Ne	En	Ire	Sw	Gr	It	P	Sp	Fi
Austria	0													
France	28	0												
Germany	19	27	0											
Belgium	20	16	23	0										
Denmark	34	26	31	27	0									
Netherlands	30	25	27	21	26	0								
England	25	22	25	20	27	22	0							
Ireland	31	32	38	26	36	31	22	0						
Sweden	30	26	27	26	22	23	24	34	0					
Greece	27	32	32	29	41	38	28	32	37	0				
Italy	23	24	28	22	34	29	22	23	32	24	0			
Portugal	23	29	28	25	41	37	27	28	38	28	18	0		
Spain	24	22	26	19	32	26	22	24	32	30	19	21	0	
Finland	27	34	27	30	34	31	26	37	28	30	32	32	32	0

Table A.2: Cultural distances (World Values Survey)

References

[1] Alesina, A., Easterly, W. and J. Matuszeski (2006), "Artificial States," NBER Working Paper \#12338.
[2] Alesina, A. and E. Spolaore (1997), "On the Number and Size of Nations," Quarterly Journal of Economics 112, 1027-56.
[3] Alesina, A. and E. Spolaore (2003), The Size of Nations, MIT Press, Cambridge, MA.
[4] Axelrod, R. (1997), "Choosing Sides," Chapter 4 in The Complexity of Cooperation, Princeton University Press, Princeton, NJ.
[5] Axelrod, R. and D.S. Benett (1993), "A Landscape Theory of Aggregation," British Journal of Political Science, 23, 211-233.
[6] Banerjee, S., Konishi, H. and T. Sömnez (2001), "Core in a Simple Coalition Formation Game," Social Choice and Welfare 18, 135-153.
[7] Cavalli-Sforza, L.L. and W.F. Bodmer (1999), The Genetics of Human Populations, Dover Publications, Mineloa, NY.
[8] Campbell, J.Y. (1999) "Asset Prices, Consumption, and the Business Cycle" in Handbook of Macroeconomics, vol. 1c, J. B. Taylor and M. Woodford, eds., Elsevier, Amsterdam.
[9] Bogomolnaia and M.O. Jackson (2002), "The Stability of Hedonic Coalition Structures," Games and Economic Behavior 38, 201-230.
[10] Bolton, P. and G. Roland (1997), "The Breakup of Nations: A Political Economy Analysis," Quarterly Journal of Economics 112, 1057-1090.
[11] Cavalli-Sforza, L.L. and M. W. Feldman (2003), "The Application of Molecular Genetic Approaches to the Study of Human Evolution," Nature Genetic Supplement 33, 266-275.
[12] Cavalli-Sforza, L.L., Menozzi P., and A. Piazza (1994), The History and Geography of Human Genes, Princeton U.P., Princeton, NJ.
[13] Chikhi, L., Nichols, R.A., Barbujani, G. and M.A. Beaumont (2002), "Y Genetic Data Support the Neolithic Demic Diffusion Model," Proceedings of National Academy of Sciences 99 (17), 11008-11013.
[14] Collado, L. , Ortuño-Ortín, I. and A. Romeu (2005), "Vertical Transmission of Consumption Behavior and the Distribution of Surnames", mimeo, University de Alicante.
[15] Desmet, K., Ortuño-Ortín, I. and S. Weber (2005), "Peripheral Diversity and Redistribution," CEPR Discussion Paper \# 5112.
[16] Drèze, J. and J. Greenberg (1980), "Hedonic Coalitions: Optimality and Stability," Econometrica 48, 987-1003.
[17] Dyen I., Kruskal J.B., P. Black (1992), "An Indo-European Classification: a Lexicostatistical Experiment," Transactions of the American Philosophic Society 82, 1-132.
[18] Friend, I. and M. Blume, (1975), "The Demand for Risky Assets," American Economic Review 65, 900-922.
[19] Gans, J. and M. Smart (1996), "Majority Voting with Single-Crossing Preferences," Journal of Public Economics 59, 219-237.
[20] Ginsburgh, V., Ortuño-Ortín, I., and S. Weber, (2005), "Disenfranchisement in Linguistically Diverse Societies: The Case of the European Union," Journal of the European Economic Association 3, 946-965.
[21] Giuliano, P., Spilimbergo, A., and G. Tonon (2006) "Genetic, Cultural and Geographical Distances," CEPR Discussion Paper \# 5807.
[22] Guiso, L., Sapienza, P. and L. Zingales (2005), "Cultural Biases in Economic Exchange", mimeo.
[23] Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., Renfrew, C., Gronenborn, D., Werner Alt, K. and J. Burger (2003), "Ancient DNA from the first European farmers in 7500-year-old Neolithic sites", Science, 310, 1016-1018.
[24] Hartl, D. L. and A. G. Clark (1997), Principles of Population Genetics, Third Edition, Sinauer, Subderland, MA.
[25] Jéhiel, P. and S. Scotchmer (2001), Constitutional Rules of Exclusion in Jurisdiction Formation, Review of Economic Studies 68, 393-413.
[26] Jobling, M.A., Hurles, M.E. and C. Tyler-Smith (2004), Human Evolutionary Genetics. Origins, People \mathcal{E} Disease, Garland Science, New York, NY.
[27] Jorde, L.B. (1985), "Human Genetic Distance Studies: Present Status and Future Prospects," Annual Review of Anthropology 14, 343-373.
[28] Le Breton, M. and S. Weber (1995), "Stability of Coalition Structures and the Principle of Optimal Partitioning," in Social Choice, Welfare and Ethics, Barnett,W., Moulin, H., Salles, M. and N. Schofield, eds., Cambridge University Press, Cambridge, MA.
[29] Legendre P. and L. Legendre (1998). Numerical Ecology, Elsevier, New York, NY.
[30] Mantel N. (1967), "The Detection of Disease Clustering and a Generalized Approach," Cancer Research 27, 209-220.
[31] Milchtaich, I. and E. Winter (2002), "Stability and Segregation in Group Formation," Games and Economic Behavior 38, 318-346.
[32] Rosser, Z.H. et al. (2000), "Y-Chromosomal Diversity in Europe is Clinical and Influenced Primarily by Geography, Rather than by Language," American Journal of Human Genetics 67, 1526-1543.
[33] Shiller, R. and S. Athanasoulis (1999), "World Income Components: Measuring and Exploiting International Risk Sharing Opportunities," National Bureau of Economic Research, Working Paper \# 5095.
[34] Simoni, L., Calafell, F., Pettener, D., Bertrantpetit, J. and G. Barbujani (2000), "Geographic Patterns of mtDNA Diversity in Europe", American Journal of Human Genetics 66, 262-268.
[35] Smouse P.E., Long J.C. and R.R. Sokal (1986), "Multiple Regression and Correlation Extensions of the Mantel Test of Matrix Correspondence," Syst. Zool 35, 627-632.
[36] Sokal, Robert R. (1987), "Genetic, Geographic and Linguistic Distances in Europe," PNAC, vol 18, 1722-1726.
[37] Sokal, R.R. and F.J. Rohlf (1995), Biometry: The Principles and Practice of Statistics in Biological Research, W. H. Freeman and Company, New York, NY.
[38] Spolaore, E. and R. Wacziarg (2005), "Borders and Growth," Journal of Economic Growth 10, 331-386.
[39] Spolaore, E. and R. Wacziarg (2006), "The Diffusion of Development," mimeo.
[40] UNU-WIDER World Income Inequality Database, Version 2.0a, June 2005. http://www.wider.unu.edu/wiid/wiid.htm.

[^0]: *We thank Lola Collado, Andrés Romeu, Christian Schultz and Romain Wacziarg for helpful comments. Financial aid from the Spanish Ministerio de Educación y Ciencia (SEJ2005-05831), the Fundación BBVA 3-04X and the Fundación Ramón Areces is gratefully acknowledged.
 ${ }^{\dagger}$ Universidad Carlos III, Getafe (Madrid), Spain, and CEPR.
 ${ }^{\ddagger}$ Université de Toulouse I, GREMAQ and IDEI, Toulouse, France.
 ${ }^{\text {§ }}$ Universidad de Alicante and IVIE, Alicante, Spain.
 ${ }^{\text {a }}$ Southern Methodist University, Dallas, USA, CORE, Catholic University of Louvain, Louvain-laNeuve, Belgium, and CEPR.

[^1]: ${ }^{1}$ See Guiso, Sapienza and Zingales (2005) and Spolaore and Wacziarg (2006) for applications of genetic distances to economics.

[^2]: ${ }^{2}$ Environments where the heterogeneity parameter is one dimensional have been widely investigated (Alesina and Spolaore, 1997; Le Breton and Weber, 2003). Group stability has been explored there from both a noncooperative and a cooperative points of view.

[^3]: ${ }^{3}$ A recent paper by Giuliano et al. (2006) argues that in the case of trade genetic distances cease to be significant once geographical distances are properly measured. In contrast, our focus is on cultural distances, not on trade.
 ${ }^{4}$ See, however, Haak et al. (2005) for an opposite view regarding the diffusion of farming in Europe.

[^4]: ${ }^{5}$ See Drèze and Greenberg (1980).
 ${ }^{6}$ However, our game is not 'additively separable' which rules out the direct application of the results by Banerjee, Konishi and Sönmez (2001) and Bogomolnaia and Jackson (2002).

[^5]: ${ }^{7}$ See Hartl and Clark (1997) for an introduction to population genetics, and Jorde (1985) for a discussion on the use of the different types of genetic distances to measure human population distances.
 ${ }^{8}$ The distances in Cavalli-Sforza et al. (1994) are based on large sample sizes and use information about many different genes. Most of the frequencies used to obtain those distances come from allozymes, instead of from direct 'observation' of the DNA sequence, a technique which is now available. However, Cavalli-Sforza et al. (2003) argue that these new techniques and data do not change the basic results.
 ${ }^{9}$ Given the small population of Lapland, less than 100,000 and spread over three countries, we do not use this region in our subsequent analysis. We also drop Yugoslavia, as that country disintegrated in the 1990s.
 ${ }^{10}$ One possibility would be to incorporate more recent data from other sources, such as the ALFRED database, available at http://alfred.med.yale.edu/alfred/index.asp. However, merging the data would require a laborious and complex effort. Since our goal is to illustrate how data on genetic distances can be used to study issues of stability, we prefer to stick to the high quality data provided in Cavalli-Sforza et al. (1994).

[^6]: ${ }^{11}$ As a robustness check, we re-estimate α and β for a subset of countries which are relatively homogeneous, and use those alternative estimates for our subsequent analysis. This does not change our results qualitatively.

[^7]: ${ }^{12}$ We return to the issue of unions between more than two countries in Section 5.

[^8]: ${ }^{13}$ In particular, we used the two alternative definitions of government spending of Table 1. In addition, we also checked for α plus or minus its standard error, and β plus or minus its standard error.

[^9]: ${ }^{14}$ In the case of islands, such as Britain, or peninsulas, such as Denmark, we interpret this as countries which are geographically 'close'.

[^10]: ${ }^{15}$ Data on cultural distances are missing for Luxembourg.

[^11]: ${ }^{16}$ We limit ourselves to reporting the ranking, and not the relative utility gain for each country, as this measure is not meaningful.

[^12]: ${ }^{17}$ This is due to the triangle inequality property.
 ${ }^{18}$ See Mantel (1967), Sokal and Rohlf (1995), and Legendre and Legendre (1998). For the use of the Mantel test in economics, see Collado et al. (2005).

[^13]: ${ }^{19}$ Geographic distances were calculated "as the crow flies", and the coordinates of each region were obtained from Simoni et al. (2000). This matrix and all the other matrices calculated in the paper, as well as the software programs used for the computation of correlation tests, are available from the authors upon request.
 ${ }^{20}$ To do so, we follow Smouse et al. (1986) who extend the Mantel bivariate test to the context of multiple control variables.
 ${ }^{21}$ Our measure of distance between languages is based on the proportion of cognates between IndoEuropean languages elaborated by Dyen, Kruskal and Black (1992). See Ginsburgh et al (2005) and Desmet et. al (2005) for an application of these distances to economics. The linguistic distances between populations are calculated using the information from the Ethnologue Project on the number of people speaking each language in each country. We set the distance between Finland and any other country to 1, the maximum possible distance. The matrix L of linguistic distances, and the details of its construction, are available form the authors upon request.

[^14]: ${ }^{22}$ Performing an alternative multiple variable Mantel test to determine the significance of the correlation between W and G, controlling for D and L, gives a positive but less significant correlation, p-value $=0.10$.

