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Abstract

In this paper we discuss several aspects of simulation based Bayesian econometric infer-
ence. We start at an elementary level on basic concepts of Bayesian analysis; evaluating
integrals by simulation methods is a crucial ingredient in Bayesian inference. Next,
the most popular and well-known simulation techniques are discussed, the Metropolis-
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Carlo methods) and importance sampling. After that, we discuss two recently developed
sampling methods: adaptive radial based direction sampling [ARDS], which makes use of
a transformation to radial coordinates, and neural network sampling, which makes use of
a neural network approximation to the posterior distribution of interest. Both methods
are especially useful in cases where the posterior distribution is not well-behaved, in the
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1 INTRODUCTION 1

1 Introduction

In this paper we discuss several aspects of simulation based Bayesian econometric inference
[SBBEI]. In recent decades there has been a huge increase in the use of simulation methods
for the Bayesian analysis of econometric models. This ‘Simulation Revolution’ in Bayesian
econometric inference is to a large extent due to the advent of computers with ever-increasing
computational power; see e.g. the discussion in Geweke (1999), Van Dijk (1999) and Hamilton
(2006). This computational power allows researchers to apply elaborate Bayesian simula-
tion techniques for estimation in which extensive use is made of pseudo-random numbers
generated on computers.

The basic principle in this line of research is that in most cases of empirical econometric
models one can not directly simulate from the distribution of interest. Thus one applies in
such cases an indirect sampling method. Two classes of indirect simulation methods are
Importance Sampling and Markov chain Monte Carlo. The theory of Markov chain Monte
Carlo [MCMC] methods starts with Metropolis et al. (1953) and Hastings (1970). The
Gibbs sampling method, the most well-known MCMC method, is due to Geman and Geman
(1984). Importance sampling, due to Hammersley and Handscomb (1964), was introduced
in econometrics and statistics by Kloek and Van Dijk (1978), and further developed by Van
Dijk and Kloek (1980, 1984) and Geweke (1989).

The Gibbs sampler has, in particular, become a popular tool in econometrics for analyzing
a wide variety of problems; see Chib and Greenberg (1995) and Geweke (1999). Judging
from numerous articles in recent literature, Gibbs sampling is still gaining more and more
momentum. Recent textbooks such as Bauwens, Lubrano and Richard (1999), Koop (2003),
Lancaster (2004), and Geweke (2005) discuss how Gibbs sampling is used in a wide range of
econometric models, in particular in models with latent variables.

Evaluating integrals is a crucial ingredient in the Bayesian analysis of any model. The
reason is that the basic principle, Bayes’ rule, provides (a kernel of) the joint posterior
density of all parameters occurring in the model. One is typically interested in the posterior
means and standard deviations of some of the parameters; the posterior probability that a
parameter lies in a certain interval; and/or the marginal likelihood of the model. For these
purposes - and, of course, for prediction and decision analysis - one has to integrate the
joint posterior density kernel with respect to all parameters. Therefore, the development
of advanced sampling methods, that perform this integration operation efficiently, makes
Bayesian inference possible in a wider class of complex models. This allows for more realistic
descriptions of processes in many situations, for example in finance and macro-economics,
leading to more accurate forecasts and a better quantification of uncertainty.

In order to make this paper self contained we start with a discussion of basic principles
of Bayesian inference such as prior and posterior density, Bayes’ rule, Highest Posterior
Density [HPD] region, Bayes factor, and posterior odds. Good knowledge of these principles
is necessary for understanding the application of simulation methods in Bayesian econometric
inference. After the introduction to Bayesian inference we proceed and discuss basic ideas of
simulation methods. These methods are applicable to posterior densities that are reasonably
well-behaved. Recent work in SBBEI deals with cases where the posterior is not well-behaved.
We also discuss some methods that can be used in such a situation. Highly non-elliptical
shapes in posterior distributions typically arise when some parameters have a substantial
amount of posterior probability near or at the boundary of the parameter region. This
feature may occur and is relevant in several econometric models. A practical example is a
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dynamic economic process that is possibly non-stationary. Other examples are the presence
of very weak instruments in an instrumental variable regression model, and models with
multiple regimes in which one regime may have neglectable probability.

The contents of this paper is structured as follows. In Section 2 we briefly review the basic
principles of Bayesian inference. In Section 3 we first discuss several well-known simulation
techniques such as Importance Sampling, the Metropolis-Hastings algorithm and the Gibbs
sampler. Next, we discuss two recently developed simulation methods: adaptive radial based
direction sampling [ARDS], which makes use of a transformation to radial coordinates, and
neural network sampling, which makes use of a neural network approximation to the posterior
distribution of interest. The final section provides some concluding remarks.

2 A Primer on Bayesian Inference

2.1 Motivation for Bayesian Inference

The dissatisfaction that many applied economic researchers feel when they consider the
‘significance’ of regression coefficients, using the frequentist/classical approach, is one major
motivation to start with Bayesian inference. Consider the following example.

Example: growth of real GNP in the US

Throughout this paper we use the (annualized) quarterly growth rate of the real Gross Na-
tional Product (GNP) in the United States several times for illustrative purposes. The data are
shown in Figure 1. Consider the ordinary least squares (OLS) regression for T = 126 observations
yt from 1975 to the second quarter of 2006 (with t-values in parentheses):

yt = 1.99 + 0.22 yt−1 + 0.13 yt−2 + ût (t = 1, . . . , T )
(4.80) (2.57) (1.50)

where ût are OLS residuals. Now suppose one fixes the coefficient of yt−2 at zero; then one
obtains:

yt = 2.26 + 0.27 yt−1 + v̂t (t = 1, . . . , T )
(6.03) (3.13)

where v̂t are the OLS residuals. A naive researcher might conclude that in the second model the
influence of yt−1 on yt is “much more significant”. However, according to a proper interpretation
of the frequentist/classical approach, this is not a meaningful statement. The reason for this
is that in classical inference only the falsification of the null hypothesis is possible. Otherwise
stated, it is only relevant whether or not the null hypothesis is rejected.

Another point is that the concept of ‘unbiasedness’ of an estimator is not meaningful in non-
experimental sciences: an unbiased estimator takes on average the correct value when the
process is repeated (infinitely) many times. However, in non-experimental sciences this idea
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Figure 1: U.S. real Gross National Product - quantity index, 2000=100 (left), and corre-
sponding (annualized) growth rates in percents (right). The data are seasonally adjusted.
Source: U.S. Department of Commerce, Bureau of Economic Analysis.

of repeating the process is not realistic. In non-experimental sciences, a researcher cannot
repeat the process he/she studies, and he/she has to deal with only one given data set.

A proper way to consider the sensitivity of estimates and to use probability statements
that indicate a ‘degree of confidence’ is given by the framework of Bayesian inference. So,
apart from dissatisfaction with existing practice of the frequentist/classical approach, there
also exists a constructive motive to apply Bayesian inference. That is, a second major
motivation to start with Bayesian inference is that the Bayesian framework provides a natural
learning rule, that allows for optimal learning and (hence) optimal decision making under
uncertainty.

In this section the basic principle of Bayesian inference, Bayes’ theorem, will first be
discussed. After that, some concepts that play an important role within the Bayesian frame-
work will be described, and a comparison will be made between Bayesian inference and the
frequentist/classical approach.

2.2 Bayes’ theorem as a learning device

Econometric models may be described by the joint probability distribution of y = {y1, . . . , yN},
the set of N available observations on the endogenous variable yi, where yi may be a vector
itself, that is known up to a parameter vector θ. Bayesian inference proceeds from the likeli-
hood function L(θ) = p(y|θ), which is either the density of the data given the parameters in
case of a continuous distribution or the probability function in case of a discrete distribution,
and a prior density p(θ) reflecting prior beliefs on the parameters before the data set has
been observed. So, in the Bayesian approach the parameters θ are considered as random
variables of which the prior density p(θ) is updated by the information contained in the data,
incorporated in the likelihood function L(θ) = p(y|θ), to obtain the posterior density of the
parameters p(θ|y). This process is formalized by Bayes’ theorem:

p(θ|y) =
p(θ)p(y|θ)

p(y)
. (1)

Note that this is merely a result of rewriting the identity p(y)p(θ|y) = p(θ)p(y|θ), the two
ways of decomposing the joint density p(y, θ) into a marginal and a conditional density; see
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prior density stochastic model
p(θ) p(y|θ)

↘ ↙

joint density of y and θ:
p(y, θ) = p(θ)p(y|θ)

l

dual decomposition
of joint density:

p(y, θ) = p(y)p(θ|y)

↙ ↘
marginal likelihood posterior density
p(y) =

∫
p(θ, y)dθ p(θ|y) = p(θ)p(y|θ)/p(y)

Figure 2: Bayes’ theorem as a learning device

Figure 2 for a graphical interpretation of Bayes’ theorem. Notice that one starts with a
certain stochastic model with likelihood function p(y|θ) and a prior density function p(θ).
Multiplying these two functions yields the joint density of θ and y. Substituting our observed
data set y into this joint density yields a function of only θ: a kernel (=proportionality
function) of the posterior density of θ. This kernel merely has to be divided by a constant,
the marginal likelihood p(y) =

∫
p(θ, y)dθ =

∫
p(y|θ)p(θ)dθ, in order to make it a proper

(posterior) density function. The marginal likelihood is the marginal density of the data
y, after the parameters θ of the model have been integrated out with respect to their prior
distribution. The marginal likelihood can be used for model selection, see subsection 2.3.

Formula (1) can be rewritten as:

p(θ|y) ∝ p(θ)p(y|θ), (2)

where the symbol ∝ means “is proportional to”, i.e. the left-hand side is equal to the right-
hand side times a scaling constant (1/p(y) = 1/

∫
p(θ)p(y|θ)dθ) that does not depend on the

parameters θ; just like the integrating constant 1/
√

2π in the standard normal density.
The basic idea behind the Bayesian approach is that the prior density p(θ) and the pos-

terior density p(y|θ) are subjective evaluations of possible states of nature and/or outcomes
of some process (or action). A famous quote of De Finetti (1974) is: “probabilities do not
exist”, that is, probabilities are not physical quantities that one can measure in practice, but
they are states of the mind.

Bayes’ rule can be interpreted as follows. One starts with the prior density p(θ); this
contains intuitive, theoretical or other ideas on θ, that may stem from earlier or parallel
studies. Then one learns from data through the likelihood function p(y|θ). This yields
the posterior p(θ|y). Briefly stated, Bayes’ paradigm is a learning principle, which can be
depicted as follows:
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posterior density ∝ prior density × likelihood

beliefs after ⇐ beliefs before & influence
having observed data observing data of the data

Note that we can apply Bayes’ rule sequentially: when new data will become available, we
can treat the posterior density that is based on the current data set as the prior density.

The key problems in Bayesian inference are the determination of the probability laws in
the posterior kernel, i.e. what families of posterior densities are defined, and the computation
of the marginal likelihood.

Example: illustration of Bayes’ rule in TV show game (Monty Hall problem)

We illustrate the application of Bayes’ rule in a simple example of a game that was played
in the American TV show ‘Let’s make a deal’. It is known as the Monty Hall problem, after the
show’s host. In this TV show game, one could win a car by choosing among three doors the door
behind which a car was parked. The candidate was faced with three closed doors: behind one
door there was a car, behind the other two doors there was nothing.1 The procedure of the game
was as follows. First, the candidate chose one door, say door 1. Second, the TV show host - who
knew behind which door the car could be found - opened one of the other two doors with no car
behind it. So, if the car was behind door 2, the show’s host opened door 3, and vice versa. If
the car was behind door 1, the host would open either door 2 or 3 with probability 1/2. Suppose
that after the candidate had chosen door 1, the presenter opened door 3. Finally, the candidate
got the chance to switch his/her choice from his/her initial choice (door 1) to the other closed
door (door 2). Throughout the episodes of the TV show there were many candidates who chose
to stick with their initially chosen door. The question is now whether this was a wise decision; or
stated otherwise, was this rationally an optimal decision? To answer this question, we will make
use of Bayes’ rule.

In order to be able to apply Bayes’ rule in this example, we must formulate the TV show
game as a model. In this model there is one parameter θ reflecting the door with the car behind
it, θ ∈ {1, 2, 3}. The data y are given by the door that the host opens after the candidate has
chosen door 1, y ∈ {2, 3}. We assume that there is no prior preference for one of the three doors:
Pr[θ = i] = 1/3 for i = 1, 2, 3. In the case in which the host opens the third door, the likelihood
is given by: Pr[y = 3| θ = 1] = 1/2, Pr[y = 3| θ = 2] = 1, Pr[y = 3| θ = 3] = 0.

From the prior and the likelihood we can now obtain the posterior probability distribution of
θ using Bayes’ rule. First we obtain the marginal likelihood:2

Pr[y = 3] =
3∑

j=1

Pr[y = 3| θ = j] Pr[θ = j] =
1
2
· 1
3

+ 1 · 1
3

+ 0 · 1
3

=
1
6

+
1
3

=
1
2

1The Monty Hall problem is also described as the situation with a car behind one door and a goat behind
the other two doors. Obviously, this does not intrinsically change the situation: the point is that behind one
door there is something that is worth considerably more money than what is behind the other two doors.

2Note that we have a summation over the domain of θ here (instead of an integral), because this is a (quite
rare) case in which the parameter θ has a discrete distribution.
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Now we obtain the posterior probabilities:

Pr[θ = 1| y = 3] =
Pr[y = 3| θ = 1]Pr[θ = 1]

Pr[y = 3]
=

1/2 · 1/3
1/2

=
1
3

Pr[θ = 2| y = 3] =
Pr[y = 3| θ = 2]Pr[θ = 2]

Pr[y = 3]
=

1 · 1/3
1/2

=
2
3

Pr[θ = 3| y = 3] =
Pr[y = 3| θ = 3]Pr[θ = 3]

Pr[y = 3]
=

0 · 1/3
1/2

= 0

We conclude that it would actually be the best rational decision to switch to door 2, having
a (posterior) probability of 2/3, whereas door 1 merely has a (posterior) probability of 1/3.
The problem is also called the Monty Hall paradox, as the solution may be counterintuitive: it
may appear as if the seemingly equivalent doors 1 and 2 should have equal probability of 1/2.
However, the following reasoning explains intuitively why the probability that the car is behind
door 1 is merely 1/3, after door 3 has been opened. At the beginning the probability that the car
is behind door 1 was 1/3, and the fact that door 3 is opened does not change this: it is already
known in advance that the host will open one of the other doors with no car behind it. In other
words, the data do not affect the probability that the car is behind door 1. So after door 3 has
been opened, door 1 still has 1/3 probability, while door 2 now has the 2/3 probability that doors
2 and 3 together had before door 3 had been opened.

It is interesting to see which decision would result from the maximum likelihood approach
in this case. Here the ML approach would yield the same decision: θ̂ML = 2. The likelihood
Pr[y = 3| θ] is highest for θ = 2: Pr[y = 3| θ = 2] = 1. However, it should be noted that the
ML approach does not immediately indicate what the probability is that the car is behind door
2; it does not immediately reveal the uncertainty about the decision. Moreover, if one would
have the prior information that in 3 out of 5 TV shows the car is behind door 1, and in 1 out
of 5 shows behind door 2 or door 3, then the Bayesian approach would yield a different choice
than the ML approach. Then θ̂ML would still be θ̂ML = 2, whereas the posterior probabilities
would then be Pr[θ = 1| y = 3] = 3/5 versus Pr[θ = 2| y = 3] = 2/5. This illustrates how Bayes’
rule provides us with a natural method to include prior information that is relevant for optimal
decision making, and to assess the uncertainty about this decision.

Example: growth of real GNP in the US (continued)

We now illustrate Bayes’ theorem in a simple model for the quarterly data on U.S. real GNP.
Figure 1 displays real GNP and the corresponding growth rate in percents. Here we consider the
naive model

yt = θ + εt, εt ∼ N (0, 25) i.i.d., t = 1, . . . , T, (3)

where yt is the (annualized) growth rate in period t and θ is the average growth rate. So, growth
rates are assumed to obey a normal distribution with known standard deviation 5. Clearly, the
likelihood function is given by

p(y|θ) ∝ exp

(
−

∑T
t=1(yt − θ)2

2 · 25

)
, (4)
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where we have omitted the scaling constant of the normal density, as it is irrelevant in the
analysis. Next, a prior density has to be specified for θ. Suppose that it is a priori expected that
average real GNP growth is approximately 4 (percent), and that one believes that there is a 95%
probability that average real GNP growth lies between 0 and 8 (percent). Such prior beliefs can
be captured by a normal distribution with mean 4 and standard deviation 2 (percent), so that
the prior density is given by

p(θ) ∝ exp
(
−(θ − 4)2

2 · 4
)

. (5)

Applying Bayes’ theorem (2) to formulas (4) and (5) results in a posterior

p(θ|y) ∝ exp
(
−θ2 − 8θ + 16

2 · 4
)

exp

(
−

∑T
t=1(θ − yt)2

2 · 25

)

∝ exp
(
−θ2 − 8θ

2 · 4
)

exp

(
−Tθ2 − 2θ

∑T
t=1 yt

2 · 25

)

= exp

(
−1

2

{[
T

25
+

1
4

]
θ2 − 2

[∑T
t=1 yt

25
+ 1

]
θ

})

∝ exp


−1

2

[
T

25
+

1
4

]{
θ −

∑T
t=1 yt/25 + 1
T/25 + 1/4

}2



= exp


−1

2

[
T

25
+

1
4

]{
θ −

∑T
t=1 yt + 25
T + 25/4

}2

 (6)

which is a kernel (= proportionality function) of a normal density with mean
PT

t=1 yt+25
T+25/4 and

variance
(

T
25 + 1

4

)−1 . So,

θ|y ∼ N
(∑T

t=1 yt + 25
T + 25/4

,

(
T

25
+

1
4

)−1
)

. (7)

Note that for T → ∞ the posterior mean of θ approaches the sample mean
∑T

t=1 yt/T and

the posterior variance goes to 0, whereas filling in T = 0 (and
∑T

t=1 yt = 0) yields the prior
distribution.

Figure 3 provides a graphical illustration of Bayesian learning. It shows how the distribution
of the real GNP growth parameter θ changes when more observations become available. In the
graph, the posterior distributions are obtained from (7), where the considered observations run
from 1970 to 1971, 1975, 1980 and 1985, respectively. For instance, the first posterior density
includes the years 1970 and 1971, that is, 8 quarterly observations. All the posterior distributions
are located to the left of the prior, suggesting that the prior belief of 4 percent growth overes-
timates the actual growth rate. It is further seen that parameter uncertainty is reduced when
more observations are used.
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Figure 3: Illustration of Bayesian learning: average U.S. real GNP growth.

Conjugate priors

The example above demonstrates that a normal prior applied to a normal data generating
process results in a normal posterior. This phenomenon that the posterior density has the
same form as the prior density is called “conjugacy”. Conjugate priors are useful, as they
greatly simplify Bayesian analysis. There exist several forms of conjugacy. Without the
intention to be exhaustive, we mention that a Beta prior results in a Beta posterior for a
binomial data process, and that a gamma prior results in a gamma posterior for a Poisson
data process. Although using conjugacy facilitates Bayesian analysis, a possible critical re-
mark is that conjugate priors are often more driven by convenience than by realism.

General case of the normal model with known variance

The example above can be generalized. Suppose that the data y = (y1, . . . , yT ) are gen-
erated from a normal distribution N (θ, σ2) where the variance σ2 is known, and the prior
distribution for the parameter θ is N (θ0, σ

2
0). So, we consider the same model as before, but

now we do not fill in specific values for the process variance σ2 and the prior parameters θ0

and σ2
0. In a similar fashion as before, it can be shown that for this more general case

θ|y ∼ N
(

θ0σ
2 + σ2

0

∑T
t=1 yt

σ2 + Tσ2
0

,

(
1
σ2

0

+
T

σ2

)−1
)

. (8)

Interestingly, both the posterior expectation and the (inverse of the) posterior variance in
(8) can be decomposed into a prior component and a sample component. By defining the
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sample mean θ̂ = 1
T

∑T
t=1 yt and its variance σ2

θ̂
= σ2

T , (8) can be written as

θ|y ∼ N
(

σ−2
0

σ−2
0 + σ−2

θ̂

θ0 +
σ−2

θ̂

σ−2
0 + σ−2

θ̂

θ̂,
(
σ−2

0 + σ−2

θ̂

)−1
)

. (9)

In order to interpret (9), we note that the inverted variances σ−2
0 and σ−2

θ̂
essentially measure

the informativeness of prior beliefs and available data, respectively. For instance, if σ−2
0 is

much smaller than σ−2

θ̂
, then the prior density is flat relative to the likelihood function, so

that the shape of the posterior density is mainly determined by the data. It is seen from (9)
that the posterior expectation of θ is a weighted average of the prior expectation θ0 and the
sample mean θ̂; the weights reflect the amount of prior information relative to the available
sample information.

A practical problem, which we have ignored in the analysis so far, is that prior beliefs
are often difficult to specify and extremely subjective. So, it might happen that researchers
strongly disagree on which prior density is appropriate for the inference problem. As prior
beliefs directly affect the posterior results, different researchers may arrive at different con-
clusions. In order to reach some form of consensus, non-informative priors are therefore
frequently considered. Such priors are constructed in such a way that they contain little
information relative to the information coming from the data. In the (generalized) example
above, a “non-informative” prior can be obtained by making the prior distribution N (θ0, σ

2
0)

diffuse, that is, by letting the prior variance σ2
0 go to infinity. This essentially amounts to

choosing a uniform prior p(θ) ∝ 1, reflecting no a priori preference for specific θ values. This
implies that the posterior becomes proportional to the likelihood function. It immediately
follows from (9) that an infinitely large prior variance results in

θ|y ∼ N (θ̂, σ2
θ̂
), (10)

which shows a nice symmetry with classical maximum likelihood [ML], as the ML estimator
θ̂ is N (θ, σ2

θ̂
) distributed. Note that to do classical inference some “true” value has to be

assumed for the unknown parameter θ, as otherwise the distribution N (θ, σ2
θ̂
) would contain

unknown elements. Classical analysis is conditioned on postulated “true” parameter val-
ues, whereas Bayesian analysis is conditioned on the data. This is an important difference
between the two approaches. Figure 4 illustrates the difference between the Bayesian and
frequentist approach in our simple linear model with known variance. A Bayesian may inves-
tigate whether zero is a likely value for θ given the data (summarized in θ̂∗, the sample mean
of the observed data yt (t = 1, . . . , T )), by inspecting the posterior density p(θ|θ̂∗) at θ = 0.
On the other hand, a frequentist may analyze whether the data – again summarized in the
sample mean θ̂∗ – are likely under the hypothesis that the true value is θ0 = 0, by comparing
θ̂∗ with the density p(θ̂|θ0) of an (infinitely large) set of sample means θ̂ of (hypothetical)
data sets that are generated from the model under θ0 = 0.
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Figure 4: Illustration of symmetry of Bayesian inference and frequentist approach in linear
regression model and difference between these approaches

2.3 Model evaluation and model selection

In this section, we discuss two Bayesian testing approaches for model selection. The first
is based on the highest posterior density [HPD] region, which is the Bayesian counterpart
of the classical confidence interval. The second is posterior odds analysis, comparing the
probabilities of multiple considered models given the available data. An important difference
between the two approaches is that tests using the HPD region are based on finding evidence
against the null model, whereas posterior odds analysis considers the evidence in favor of
each of the models under scrutiny. So, the HPD approach treats models in an asymmetrical
way, just like frequentist/classical testing procedures. The posterior odds approach treats
models symmetrically.

2.3.1 The HPD region

The highest posterior density [HPD] region is defined such that any parameter point inside
that region has a higher posterior density than any parameter point outside. Consequently,
the usually considered 95% HPD region is the smallest region containing 95% of the posterior
probability mass. We note that an HPD region does not necessarily consist of a single
interval. For example, it might consist of two intervals if the posterior density is bimodal.

Figure 5 shows the 95% HPD region for the average real GNP growth rate θ in the
normal model with known variance. The standard normal distribution has 2.5% probability
mass both to the right of 1.96 and to the left of −1.96, so that the 95% HPD region for θ is
(2.92− 1.96 · 0.91, 2.92 + 1.96 · 0.91) = (1.14, 4.70). It is seen from Figure 5 that a real GNP
model imposing zero average growth is rejected, as θ = 0 is located outside the HPD region.

Although the Bayesian HPD region has similarities with the classical confidence interval,
the interpretations are very different. In the classical framework, the confidence interval
(constructed from the data) is considered random and the postulated parameter value is
given, so that one effectively tests whether the data are plausible for the assumed parameter
value. On the other hand, a Bayesian considers the HPD region as given and the parameter
outcome as random, so that it is effectively tested whether the parameter outcome is plausible
given the available data.
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2.3.2 Posterior odds analysis

An HPD region based test considers the amount of evidence against the null model, but it
does not say anything about the amount of evidence in favor of the alternative model relative
to the null model. So, the null model and the alternative model are treated asymmetrically.
A testing approach in which models are directly compared is posterior odds analysis. Its
formalization for two possibly non-nested competing models M1 and M2 is as follows. Given
the available data y, the model probabilities are Pr(M1|y) and Pr(M2|y), where Pr(M1|y)+
Pr(M2|y) = 1. Using Bayes’ theorem, we can write these model probabilities as

Pr(M1|y) =
p(M1, y)

p(y)
=

Pr(M1)p(y|M1)
Pr(M1)p(y|M1) + Pr(M2)p(y|M2)

, (11)

Pr(M2|y) =
p(M2, y)

p(y)
=

Pr(M2)p(y|M2)
Pr(M1)p(y|M1) + Pr(M2)p(y|M2)

. (12)

The posterior odds ratio in favor of model 1, that is, the ratio of (11) and (12), is now defined
by

K1,2 =
Pr(M1|y)
Pr(M2|y)

=
Pr(M1)
Pr(M2)

p(y|M1)
p(y|M2)

. (13)

Model 1 is preferred if K1,2 is larger than 1, and model 2 is preferred in the opposite case.
The relationship (13) states that the posterior odds ratio K1,2 equals the prior odds ratio
Pr(M1)
Pr(M2) , reflecting prior model beliefs, times the so-called Bayes factor

B1,2 =
p(y|M1)
p(y|M2)

, (14)
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accounting for the observed data y. We note that the posterior odds ratio equals the Bayes
factor if the two models are a priori assumed to be equally likely, that is, if Pr(M1) =
Pr(M2) = 0.5. The subsequent discussion on Bayes factors is quite brief, but a more
extensive treatment can be found in Kass and Raftery (1995).

The Bayes factor B1,2 is the ratio of the marginal likelihoods

p(y|M1) =
∫

p(y|θ1,M1)p(θ1|M1) dθ1, (15)

p(y|M2) =
∫

p(y|θ2,M2)p(θ2|M2) dθ2, (16)

where θ1 and θ2 are the parameter vectors in the two models, and where the prior densities
p(θ1|M1) and p(θ2|M2) and the likelihood functions p(y|θ1,M1) and p(y|θ2,M2) contain all
scaling constants. It is interesting to note that the Bayes factor is closely related to the
likelihood ratio. However, the latter maximizes over the model parameters, whereas the
former integrates them out. Furthermore, if both the models M1 and M2 do not contain
free parameters, then the Bayes factor is just the ratio of two likelihoods evaluated at fixed
parameter values.

Example: growth of real GNP in the US (continued)

As an illustration, we consider the normal real GNP growth model with standard deviation 5. As
before, the average growth parameter θ has a normal prior density with mean 4 and standard
deviation 2. We use Bayes factors to compare the zero growth model M1, imposing that θ = 0,
with the unrestricted model M2. As model M1 does not contain free parameters, the marginal
likelihood for this model is just the likelihood function evaluated at θ = 0, that is,

p(y|M1) = p(y|θ = 0) = (2π · 25)−T/2 exp

(
−

∑T
t=1 y2

t

2 · 25

)
. (17)

Furthermore, the marginal likelihood for model M2 is

p(y|M2) =
∫ ∞

−∞
p(y|θ, M2)p(θ|M2)dθ

=
∫ ∞

−∞
(2π · 25)−T/2 exp

(
−

∑T
t=1(yt − θ)2

2 · 25

)
(2π · 4)−1/2 exp

(
−(θ − 4)2

2 · 4
)

dθ

= (2π · 25)−T/2 exp

(
−

∑T
t=1 y2

t

2 · 25

)
1

2
√

2π
exp

(
−4

2

)
×

×
∫ ∞

−∞
exp


−

(T + 25/4)θ2 − 2
(∑T

t=1 yt + 25
)
θ

2 · 25


dθ.

(18)
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As it can be shown that the integral in (18) is given by3

∫ ∞

−∞
exp


−

(T + 25/4)θ2 − 2
(∑T

t=1 yt + 25
)
θ

2 · 25


dθ =

√
2π√

T + 25/4
exp




(∑T
t=1 yt + 25

)2

2 · 25 · (T + 25/4)


,

it follows from (17) and (18) that the Bayes factor B1,2 becomes

B1,2 =
p(y|M1)
p(y|M2)

=
2
√

2π√
2π

exp
(

4
2

)√
T + 25/4 exp


−

(∑T
t=1 yt + 25

)2

2 · 25 · (T + 25/4)




=
(2π)−1/2

(
T
25 + 1

4

)1/2 exp
[
−1

2

(
T
25 + 1

4

) (
0−

PT
t=1 yt+25
T+25/4

)2
]

(2π)−1/2 4−1/2 exp
(
− (0−4)2

2·4
)

=
p(θ|y)

∣∣∣
θ=0

p(θ)
∣∣∣
θ=0

. (19)

the ratio of the posterior density and the prior density, both evaluated at the restricted parameter
value θ = 0.

Savage-Dickey density ratio

The remarkable result in the example above, that the Bayes factor is the ratio of the pos-
terior density and the prior density, evaluated at the restricted parameter value, is not a
coincidence. It is a special case of the Savage-Dickey density ratio (Dickey 1971). We note
that the result above can also be derived immediately from Bayes’ theorem (1) by evaluating
it for θ = 0 and rearranging it as

p(θ|y)
∣∣∣
θ=0

p(θ)
∣∣∣
θ=0

=
p(y|θ = 0)

p(y)
=

p(y|M1)
p(y|M2)

. (20)

Figure 6 provides a graphical illustration of the result. It shows that for θ = 0 the unrestricted
model M2 is preferred over the restricted model M1, as the Bayes factor B1,2 is smaller than
1. Note that in the HPD approach the restricted model is also rejected (Figure 5). However,
it is certainly possible that the HPD approach and the Bayes factor give different ‘signals’.
For example, the value θ = 4.5 is not rejected by the HPD approach, whereas the Bayes
factor favors the unrestricted model (Figure 6).

We note that the Savage-Dickey density ratio (20) implies that the restricted model M1

would always be favored if the prior for the restricted parameters θ is improper (= not
3Dividing the integrand by the right-hand side yields a normal density that obviously integrates to 1.
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Figure 6: Prior and posterior densities for the average (annualized) real GNP growth rate,
where the posterior involves 24 quarterly observations from 1970 to 1975 (above), and the
Bayes factor to test that the average growth rate equals the value on the horizontal axis
(below).

integrating to a constant, “infinitely diffuse”), as the denominator in the Bayes factor B1,2

would tend to zero. This phenomenon is the Bartlett paradox (Lindley 1957, Bartlett 1957).
It demonstrates that, at least for the parameters being tested, improper priors should be
avoided in posterior odds analysis.

Example: illustration of Bayes’ rule, HPD region and posterior odds in World Series

Consider the following illustrative, simple model for the World Series 2004 between the Boston
Red Sox and the St. Louis Cardinals. In this model we have data y = {y1, . . . , yn} with

yt =
{

1 Boston Red Sox win match t
0 St. Louis Cardinals win match t

, t = 1, . . . , T.

that are assumed independently Bernoulli(θ) distributed, i.e. the model contains only one pa-
rameter θ, the probability that the Boston Red Sox beat the St. Louis Cardinals in match t
(t = 1, . . . , T ). The probability distribution of yt (t = 1, . . . , T ) is:

Pr[yt| θ] = θyt(1− θ)1−yt
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leading to the likelihood:

Pr[y| θ] =
T∏

t=1

Pr[yt| θ] = θT1(1− θ)T2

with T1 and T2 the numbers of matches that have been won by the Boston Red Sox and the
St. Louis cardinals, respectively. Suppose we have no a priori preference for the parameter θ, so
we specify a uniform prior: p(θ) = 1 for θ ∈ [0, 1], p(θ) = 0 else.

In the year 2004 the World Series consisted of only 4 matches that were all won by the Boston
Red Sox, so yt = 1 for t = 1, 2, 3, 4. Hence, after T of these matches the likelihood is given by
Pr[yi| θ] = θT , and the posterior density of θ is given by

p(θ| y) ∝ Pr[yt| θ] p(θ) =
{

θT 0 ≤ θ ≤ 1
0 else

for T = 1, 2, 3, 4. The scaling constant
∫

Pr[yt| θ] p(θ)dθ is

∫
Pr[yt| θ] p(θ)dθ =

∫ 1

0
θT dθ =

1
T + 1

so we have

p(θ| y) =
Pr[yt| θ] p(θ)∫
Pr[yt| θ] p(θ)dθ

=
{

(T + 1)θT 0 ≤ θ ≤ 1
0 else

.

Figure 7 shows the graphs of the prior and posterior density of θ after T = 1, 2, 3, 4 matches. Note
that after each match - won by the Boston Red Sox - more density mass is located on the right
side of θ = 0.5. The posterior cumulative distribution function [CDF] of θ after T = 1, 2, 3, 4
matches is given by Pr[θ ≤ θ̃] = θ̃T+1. So, the 95% HPD region is given by [0.051/(T+1), 1].
The 95% HPD region is [0.22, 1], [0.37, 1], [0.47, 1], [0.55, 1] after T = 1, 2, 3, 4 observations,
respectively.

We now consider a posterior odds analysis for the following two models M1 and M2: model
M1 in which θ ≤ 1/2 and model M2 in which θ > 1/2. Models 1 and 2 can be interpreted as the
hypotheses that “the St. Louis Cardinals are at least as good as the Boston Red Sox” and “the
Boston Red Sox are better than the St. Louis Cardinals”, respectively. The prior distributions for
θ under models 1 and 2 are assumed to be uniform on [0, 1/2] and (1/2, 1], respectively. Notice
that the models M1 and M2 are non-nested. In the case in which the Boston Red Sox have won
all matches, the marginals likelihoods are given by:

p(y|M1) =
∫

p(y|θ, M1)p(θ|M1)dθ =
∫ 1/2

0
θT 2dθ =

2
T + 1

(
1
2

)T+1

,

p(y|M2) =
∫

p(y|θ, M2)p(θ|M2)dθ =
∫ 1

1/2
θT 2dθ =

2
T + 1

[
1−

(
1
2

)T+1
]

.

So, if we assume equal prior probabilities Pr[M1] = Pr[M2] = 0.5, then the Bayes factor and
posterior odds ratio K1,2 are given by:

K1,2 ≡ Pr[M1|y]
Pr[M2|y]

=
(1/2)T+1

1− (1/2)T+1
.

The posterior probabilities of models M1 and M2 are given by Pr[M1|y] = (1/2)T+1 and
Pr[M2|y] = 1 − (1/2)T+1. So, the probability that “the St. Louis Cardinals are at least as
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Figure 7: Prior density and posterior density of parameter θ (probability that Boston Red
Sox win a match) after T = 1, 2, 3, 4 matches (that are won by the Boston Red Sox) in World
Series of the year 2004.

good as the Boston Red Sox” given T (T = 1, 2, 3, 4) observed matches (won by the Boston
Red Sox) is Pr[M1|y] = (1/2)T+1, which equals 0.25, 0.125, 0.06 and 0.03 for T = 1, 2, 3, 4.

We now compare these conclusions of Bayesian methods with the frequentist/classical ap-
proach. In the frequentist/classical framework, a test of null hypothesis H0 : θ ≤ 0.5 versus
alternative hypothesis H1 : θ > 0.5 (using the number of matches won by the Boston Red Sox as
a test statistic) has p-value (1/2)T after T (T = 1, 2, 3, 4) matches. After four matches we have
a p-value of 0.06, so that at 5% size we can not even reject the null. Note that the posterior
odds analysis already leads to a ‘preference’ of the Boston Red Sox over the St. Louis Cardinals
after one match, whereas four matches are ‘enough’ to make the HPD region based approach
lead to a rejection of θ = 0.5.

2.4 Comparison of Bayesian inference and frequentist approach

In the previous subsections we have considered the principles of Bayesian inference. In order
to gain more insight into the key elements of Bayesian inference, we now conclude this section
with a brief comparison between Bayesian inference and the frequentist/classical approach.
Table 1 provides an overview of four points at which these two approaches differ; for four
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Table 1: Comparison of frequentist (or classical) approach and Bayesian approach in a sta-
tistical/econometric model with parameter vector θ and data y

Frequentist approach Bayesian approach
The parameters θ are fixed unknown con-
stants. There is some unknown true value
θ = θ0.

The parameters θ are stochastic variables.
One defines a prior distribution on the pa-
rameter space. All values in a certain re-
gion are possible with a certain probability
density.

The data y are used to estimate and
check the validity of the postulated null
model, by comparing data with an (in-
finitely large, hypothetical) data set from
the null model.

The data y are used as evidence to update
the state of the mind: data transform the
prior into the posterior distribution by the
likelihood.

Frequency concept of probability : a prob-
ability is the fraction of occurrences when
a process is repeated infinitely often. It
should be noted that, although the fre-
quentist approach is often used in non-
experimental sciences, repeating the pro-
cess is only possible in experimental situ-
ations.

Subjective concept of probability : a prob-
ability is a degree of belief that an event
occurs. This degree of belief is revised
when new information becomes available.

One can use the maximum likelihood esti-
mator θ̂ of θ as an estimator of θ.

One uses Bayes’ theorem to obtain the
posterior distribution of θ. One can use
the posterior mean or mode as an estima-
tor of θ.

elements of Bayesian inference the frequentist counterpart is given. Note that at some points
the frequentist approach and Bayesian inference are each other’s opposite. In the frequentist
approach, the data are random and the parameters are fixed. Many realizations θ̂ are possible
under the assumption θ = θ0. Testing the hypothesis θ = θ0 amounts to checking whether
the observed realization θ̂∗ is plausible under θ = θ0 using the sampling density of θ̂. So, one
checks whether the observed data realization is plausible, while (infinitely) many realizations
are possible. On the other hand, in the Bayesian approach the parameters are random,
whereas the data are given. Testing the hypothesis θ = θ0 amounts to checking whether the
value of θ0 is plausible given the data. So, (infinitely) many values of θ are possible, but one
checks whether θ = θ0 is plausible under the one data realization.
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3 Simulation Methods

3.1 Motivation for Using Simulation Techniques

The importance of integration in Bayesian inference can already be seen from the results in
the previous section:

• In order to obtain the exact posterior density from Bayes’ theorem one needs to evaluate
the integral p(y) =

∫
p(y|θ)p(θ)dθ in the denominator of (1).

• In order to evaluate the posterior mean of (the elements of) θ, one requires additional
integration. For this purpose, two integrals have to be evaluated:

E[θ|y] =
∫

θp(θ|y)dθ =
∫

θ
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

dθ =
∫

θp(y|θ)p(θ)dθ∫
p(y|θ)p(θ)dθ

.

• In order to evaluate the posterior odds ratio in favor of model 1 versus model 2, one
needs to evaluate two marginal likelihoods, and hence two integrals.

In linear and binomial models (for certain prior specifications) these integrals can be com-
puted analytically. However, for more complicated models it is usually impossible to find
analytical solutions. In general, we need numerical integration methods for Bayesian infer-
ence. Basically there are two numerical integration methods: deterministic integration and
Monte Carlo integration. Deterministic integration consists of evaluating the integrand at a
set of many fixed points, and approximating the integral by a weighted average of the func-
tion evaluations. Monte Carlo integration is based on the idea that E[g(θ)|y], the mean of a
certain function g(θ) under the posterior, can be approximated by its ‘sample counterpart’,
the sample mean 1

n

∑n
i=1 g(θi), where θ1, . . . , θn are drawn from the posterior distribution.

At a first glance, deterministic integration may always seem a better idea than Monte
Carlo integration, as no extra uncertainty (caused by the required random variables) is added
to the procedure. However, in deterministic integration the number of required function
evaluations increases exponentially with the dimension of the integration problem, which is
in our case the dimension k of the vector θ. Therefore, deterministic integration approaches
like quadrature methods become unworkable if k exceeds, say, three. So, in many cases
one has to make use of Monte Carlo integration. However, only for a very limited set of
models and prior densities it is possible to directly draw random variables from the posterior
distribution. In general, direct sampling from the posterior distribution of interest is not
possible. Then one may use indirect sampling algorithms such as importance sampling or
Markov chain Monte Carlo [MCMC] methods such as the Metropolis-Hastings algorithm.
In the following subsections direct sampling methods, importance sampling and MCMC
methods will be discussed.

3.2 Direct sampling methods

Only in the ideal case, Monte Carlo integration reduces to estimating the posterior expecta-
tion E[g(θ)|y] by the sample mean gDS = 1

n

∑n
i=1 g(θi), where θ1, . . . , θn are directly sampled

from the posterior. However, even when the posterior distribution is non-standard, direct
sampling methods are useful, as they can serve as building blocks for more involved algo-
rithms. For example, any sampling algorithm is based on collecting draws from the uniform
U(0, 1) distribution, so that suitable methods to generate these “random numbers” are of
utmost importance.
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3.2.1 Uniform sampling

The most commonly used method to sample from the uniform distribution is the linear
congruential random number generator [LCRNG], initially introduced by Lehmer (1951).
This generator creates a sequence of “random numbers” u1, . . . , un using the recursion

ui = (a ui−1 + b) mod M, i = 1, . . . n, (21)

where mod M gives the remainder after division by M . The multiplier a and the modulus M
are strictly positive integers, while the increment b is also allowed to be zero. The initial value
u0 of the sequence is called the seed. In order to map u1, . . . ,un to the unit interval, these
values are divided by M . We note that the recursion (21) is completely deterministic, so that
the generated “random numbers” are actually not random at all. For properly chosen a, b and
M , it only seems as if they are random. In practice, multiplicative LCRNGs are frequently
considered. These arise from (21) by setting b = 0, so that the increment is turned off.
Two very popular multiplicative LCRNGs are the Lewis-Goodman-Miller generator (Lewis
et al. 1969), obtained by setting a = 16807 and M = 231 − 1, and the Payne-Rabung-Bogyo
generator (Payne et al. 1969), obtained by setting a = 630360016 and M = 231 − 1. This
concludes our discussion on uniform sampling. For a more comprehensive text on generating
pseudo-random numbers, the reader is referred to Law and Kelton (1991).

3.2.2 Inversion method

The inversion method is an approach which directly translates uniform U(0, 1) draws into
draws from the (univariate) distribution of interest. The underlying idea is very simple. If
the random variable θ follows a distribution with cumulative distribution function (CDF)
denoted by F , then the corresponding CDF value U = F (θ) is uniformly distributed, as

Pr(U ≤ u) = Pr(F (θ) ≤ u) = Pr(θ ≤ F−1(u)) = F (F−1(u)) = u (22)

with F−1 denoting the inverse CDF. By relying on this result, the inversion method consists
of first collecting a uniform sample u1, . . . , un, and subsequently transforming this sample
into realizations θ1 = F−1(u1), . . . , θn = F−1(un) from the distribution of interest. Figure
8 illustrates the inversion method for the standard normal distribution. Clearly, as the
standard normal CDF is steepest around 0, that region is “hit” most frequently, so that
most draws have values relatively close to 0. On the other hand, not many draws fall into
regions far away from 0, as these regions are difficult to “hit”. This mechanism causes that
draws are assigned to regions in accordance with their probability mass. We note that the
inversion method is particularly suited to sample from (univariate) truncated distributions.
For example, if a distribution is truncated to the left of some value a and to the right of some
value b, then all draws should fall into the region (a,b). This is easily achieved by sampling
u1 . . . , un uniformly on the interval (F (a), F (b)), instead of sampling them on the interval
(0, 1). All that has to be done is redefining

ui ≡ F (a) + [F (b)− F (a) ]ui, i = 1, . . . n. (23)

For the inversion method, it is desirable that the inverse CDF F−1 can be evaluated
easily. If F−1 has a closed-form expression, evaluation becomes trivial. For example, the
exponential distribution with mean 1

λ has CDF

F (θ) = 1− exp(−λθ), θ > 0. (24)
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Figure 8: Illustration of the inversion method for the standard normal distribution. The
uniform draws u1 = 0.4 and u2 = 0.7 correspond to the standard normal realizations x1 ≈
− 0.25 and x2 ≈ 0.52, respectively.

By solving
u = F (θ) = 1− exp(−λθ) (25)

for θ, it is seen that the inverse CDF is given by

θ = F−1(u) = − 1
λ

ln(1− u). (26)

As the random variable U = F (θ) has the same uniform distribution as 1 − U , it follows
from (26) that a sample θ1, . . . , θn from the exponential distribution is obtained by applying
the algorithm

Generate u1, . . . , un from U(0, 1).

Transform to θi = − 1
λ ln(ui), i = 1, . . . , n.

Although it is desirable that the inverse CDF F−1 has a closed form expression, this is not
required. It is not even necessary that the CDF itself has a closed form expression. However,
in such situations one has to resort to some numerical approximation. For example, an
approximating CDF can be constructed by evaluating the probability density function (or
some kernel) at many points to build a grid, and using linear interpolation. As the resulting
approximation is piecewise linear, inversion is straightforward. This strategy underlies the
griddy Gibbs sampling approach of Ritter and Tanner (1992), which will be discussed later
on.
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3.3 Indirect sampling methods yielding independent draws

If it is difficult to sample directly from the distribution of interest, hereafter referred to as
the target distribution, indirect methods might be considered. Such methods aim to collect
a representative sample for the target distribution by considering an alternative “candidate”
distribution. This candidate distribution should be easy to sample from and it hopefully
provides a reasonable approximation to the original target distribution. Indirect sampling
methods involve some correction mechanism to account for the difference between the target
density and the candidate density. In this section, we discuss two indirect sampling ap-
proaches resulting in independent draws, so that the Law of Large Numbers [LLN] and the
Central Limit Theorem [CLT] still apply.

3.3.1 Rejection sampling

The first indirect method we discuss is rejection sampling. Following this approach, one
collects a sample from the candidate distribution, and decides for each draw whether it
is accepted or rejected. If a draw is accepted, it is included in the sample for the target
distribution. Rejection means that the draw is thrown away. Note that the rejection step is
the correction mechanism which is employed in rejection sampling.

In order to apply the rejection method to some target density P , one first needs to
specify an appropriate candidate density Q. For example, one might consider some normal
or Student-t density. Next, some constant c has to be found such that

P (θ) ≤ c Q(θ) (27)

for all θ, so that the graph of the kernel cQ of the candidate density is entirely located above
the graph of the target density P . We note that (27) implies that P is allowed to be a kernel
of the target density, as the constant c can always adjust to P . However, the candidate
density Q should be such that the ratio P (θ)

Q(θ) is bounded for all θ, so that c is finite. The idea
of rejection sampling is illustrated by Figure 9 for a bimodal target density. Essentially, the
rejection method consists of uniformly sampling points below the graph of cQ, and accepting
the horizontal positions of the points falling below the graph of P . The remaining points
are rejected. The coordinates of the points below the cQ graph are sampled as follows. The
horizontal position θ is obtained by drawing it from the candidate distribution with density
Q. Next, the vertical position ũ is uniformly sampled from the interval (0, cQ(θ)), that is
ũ = cQ(θ)u with u ∼ U(0, 1). As the point (θ, ũ) is accepted if and only if ũ is located in
the interval (0, P (θ)), the acceptance probability for this point is given by P (θ)

cQ(θ) . The follow-
ing rejection algorithm collects a sample of size n from the target distribution with density P :
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Initialize the algorithm:

The set of accepted draws S is empty: S = ∅.
The number of accepted draws i is zero: i = 0.

Do while i < n:

Obtain θ from candidate distribution with density q.

Obtain u from uniform distribution U(0, 1).

If u < P (θ)
c Q(θ) then accept θ:

Add θ to the set of accepted draws: S = S ∪ {θ}.
Update the number of accepted draws: i = i + 1.

We note that although rejection sampling is based on using an approximating candidate
distribution, the method yields an exact sample for the target distribution. However, the
big drawback of the rejection approach is that many candidate draws might be required to
obtain an accepted sample of moderate size, making the method inefficient. For example,
in Figure 9 it is seen that most points are located above the P graph, so that many draws
are thrown away. For large n, the fraction of accepted draws tends to the ratio of the area
below the P graph and the area below the cQ graph. As the candidate density Q integrates
to one, this acceptance rate is given by

∫
P (θ) dθ/c, so that a smaller value for c results in

more efficiency. Clearly, c is optimized by setting it at

c = max
θ

P (θ)
Q(θ)

, (28)

implying that the optimal c is small if variation in the ratio P (θ)
Q(θ) is small. This explains that

a candidate density, providing a good approximation to the target density, is desirable.

3.3.2 Importance sampling

Importance sampling is another indirect approach to obtain an estimate for E[g(θ)], where
θ is a random variable from the target distribution. It is initially discussed by Hammersley
and Handscomb (1964) and introduced in econometrics by Kloek and Van Dijk (1978). The
method is related to rejection sampling. The rejection method either accepts or rejects
candidate draws, that is, draws either receive full weight or they do not get any weight at
all. Importance sampling is based on this notion of assigning weights to draws. However,
in contrast with the rejection method, these weights are not based on an all-or-nothing
situation. Instead, they can take any possible value, representing the relative importance of
draws. If Q is the candidate density (= importance function) and P is a kernel of the target
density, importance sampling is based on the relationship

E[g(θ)] =
∫

g(θ)P (θ) dθ∫
P (θ) dθ

=
∫

g(θ)w(θ)Q(θ) dθ∫
w(θ)Q(θ) dθ

=
E[w(θ̃)g(θ̃)]

E[w(θ̃)]
, (29)

where θ̃ is a random variable from the candidate distribution, and w(θ̃) = P (θ̃)

Q(θ̃)
is the weight

function, which should be bounded. It follows from (29) that a consistent estimate of E[g(θ)]
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Figure 9: Illustration of rejection sampling. The candidate density Q is blown up by a factor
c such that its graph is entirely located above the graph of the target density P . Next, points
are uniformly sampled below the cQ graph, and the horizontal positions of the points falling
into the shaded area below the P graph are accepted.

is given by the weighted mean

Ê[g(θ)]IS =
∑n

i=1 w(θ̃i)g(θ̃i)∑n
j=1 w(θ̃j)

, (30)

where θ̃1, . . . , θ̃n are realizations from the candidate distribution and w(θ̃1), . . . , w(θ̃n) are
the corresponding weights. As relationship (29) would still hold after redefining the weight
function as w(θ̃) = P (θ̃)

c Q(θ̃)
, yielding the acceptance probability of θ̃, there exists a clear

link between rejection sampling and importance sampling, that is, the importance sampling
method weights draws with the acceptance probabilities from the rejection approach. Figure
10 provides a graphical illustration of the method. Points for which the graph of the target
density is located above the graph of the candidate density are not sampled often enough. In
order to correct for this, such draws are assigned relatively large weights (weights larger than
one). The reverse holds in the opposite case. We note that although importance sampling
can be used to estimate characteristics of the target density (such as the mean), it does
not provide a sample according to this density, as draws are generated from the candidate
distribution. So, in a strict sense, importance sampling should not be called a sampling
method but it should be called a pure integration method.

The performance of the importance sampler is greatly affected by the choice of the
candidate distribution. If the importance function Q is inappropriate, the weight function
w(θ̃) = P (θ̃)

Q(θ̃)
varies a lot and it might happen that only a few draws with extreme weights

almost completely determine the estimate Ê[g(θ)]IS . This estimate would be very unstable.
In particular, a situation such that the tails of the target density are fatter than the tails of
the candidate density is concerning, as this would imply that the weight function might even
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Figure 10: Illustration of importance sampling. The weight function reflects the importance
of draws from the candidate density.

tend to infinity. In such a case, E[g(θ)] does not exist, see (29). It is for this reason that a
fat-tailed Student-t importance function is usually preferred over a normal candidate density.

Using importance sampling to compute the marginal likelihood

As an application of importance sampling, we show how it can be used to compute the
marginal likelihood

p(y) =
∫

p(y|θ)p(θ) dθ, (31)

where y denotes the data and θ is the parameter vector. The most straightforward approach
to estimate (31) is based on the interpretation p(y) = E[p(y|θ)], where the expectation is
taken with respect to θ that obeys its prior distribution with density p(θ). The resulting
estimate is given by

p̂A =
1
n

n∑

i=1

p(y|θi), (32)

where θ1, . . . , θn are sampled from the prior distribution. However, this approach is inefficient
if the likelihood is much more concentrated than the prior, as most draws from the prior would
correspond to extremely small likelihood values. Consequently, p̂A would be determined by
only a few draws with relatively large likelihood values. As an alternative, Newton and
Raftery (1994) developed an estimate for p(y) which is based on the importance sampling
approach. Using the interpretation that the marginal likelihood is p(y) = E[p(y|θ)], one
is clearly interested in E[g(θ)], where g(θ) = p(y|θ) is the likelihood value. Next, as the
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expectation is taken with respect to θ obeying its prior distribution, the target density is the
prior, that is, P (θ) = p(θ). Finally, by considering the posterior density as the candidate
density, that is, Q(θ) = p(θ|y) ∝ p(y|θ)p(θ), the weight function becomes

w(θ) =
P (θ)
Q(θ)

∝ p(θ)
p(y|θ)p(θ)

= p(y|θ)−1. (33)

This results in the importance sampling estimate

p̂NR =
∑n

i=1 w(θi)g(θi)∑n
j=1 w(θj)

=
∑n

i=1 p(y|θi)−1p(y|θi)∑n
j=1 p(y|θj)−1

=


 1

n

n∑

j=1

p(y|θj)−1



−1

, (34)

where θ1, . . . , θn are sampled from the posterior distribution. We note that the posterior
density p(θ|y) (used in p̂NR) usually gives a much better approximation to the likelihood
p(y|θ) than the prior p(θ) (used in p̂A). In particular, this holds if data information strongly
dominates prior information, which is the case if many observations are used. However, a
drawback of the harmonic mean p̂NR is that it is consistent but also unstable, as the weight
function w(θ) = p(y|θ)−1 takes extreme values for occasionally sampled θj for which the
likelihood value p(y|θj) is very small. In order to overcome this objection, several modifica-
tions and generalizations of p̂NR are proposed, see for example Gelfand and Dey (1994), and
Newton and Raftery (1994).

3.4 Markov chain Monte Carlo: Indirect sampling methods yielding de-
pendent draws

Another approach to sample from non-standard distributions is the Markov Chain Monte
Carlo [MCMC] approach. An MCMC method aims to collect a sample representative for
the target distribution by construction of a Markov chain converging to that distribution.
After a sufficiently long burn-in period, so that the influence of the initialization conditions
has become negligible, draws from the Markov chain are regarded as draws from the target
distribution itself. However, as Markov chain sampling naturally induces correlation, the
resulting draws are not independent, so that the Law of Large Numbers [LLN] and the Cen-
tral Limit Theorem [CLT] no longer apply. For ease of exposition, we only consider Markov
chain theory for discrete state spaces, but the obtained results can be extended immediately
to continuous distributions. The reader is referred to Norris (1997) and Ross (1997) for
textbook discussions on Markov chain theory.

Elementary Markov chain theory

In order to make this section self-contained, we start with reviewing some elementary Markov
chain theory. A Markov chain is a discrete-time stochastic process {θ0, θ1, . . . } satisfying the
Markov property, that is, the next state only depends on the current state and does not de-
pend on the path of previous states. For a finite discrete state space S, the one-step transition
probability from state θ to state θ̃ is denoted by

P (θ, θ̃) = Pr(θi+1 = θ̃|θi = θ), (35)
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where θ, θ̃ ∈ S. For example, we could specify a Markov chain process for a time series
indicating whether an economy is in a recession or expansion; given that the current period
is a recession (expansion), there is a certain probability p̃1 (p̃2) of escaping the recession
(expansion) in the next period, and a probability 1− p̃1 (1− p̃2) of staying in the recession
(expansion).

By definition, it should hold that P (θ, θ̃) ≥ 0 and
∑

θ̃∈S P (θ, θ̃) = 1. Similarly, the j-step
transition probability is denoted by

P (j)(θ, θ̃) = Pr(θi+j = θ̃|θi = θ), (36)

where θ, θ̃ ∈ S. We note that (36) can be computed by summing the probabilities of all
paths moving from state θ to state θ̃ in j steps. Under mild regularity conditions, it can be
shown that the Markov chain converges to a unique distribution

P (θ̃) = lim
j→∞

P (j)(θ, θ̃), (37)

not depending on the initial state and satisfying the “invariance” condition

P (θ̃) =
∑

θ∈S

P (θ)P (θ, θ̃) (38)

for all θ̃ ∈ S. Intuitively, condition (38) says that the long-run proportion of states being θ̃ is
given by the limiting probability P (θ̃). The regularity conditions which have to be satisfied
are irreducibility and aperiodicity. The first requirement means that all states in the state
space are accessible from each other, that is, for all θ, θ̃ ∈ S, there exists a non-negative
integer k such that P (k)(θ, θ̃) > 0. The second requirement means that, for any state θ ∈ S,
the number of transitions necessary to return to state θ does not need to be a multiple of
some integer ≥ 2. The two regularity conditions are, for example, satisfied if P (θ, θ̃) > 0 for
all θ, θ̃ ∈ S, that is, if it is possible to go from each state to any other state in one transition.
Next, we note that an irreducible and aperiodic Markov chain running backward is again
a Markov chain. After a sufficiently long burn-in period, the transition probabilities of the
reversed process are given by

R(θ, θ̃) = Pr(θi = θ̃|θi+1 = θ) =
Pr(θi = θ̃) Pr(θi+1 = θ|θi = θ̃)

Pr(θi+1 = θ)
=

P (θ̃)P (θ̃, θ)
P (θ)

, (39)

where θ, θ̃ ∈ S. The Markov chain is called time-reversible if it has the same transition
probabilities as its reversal, that is, if P (θ, θ̃) = R(θ, θ̃) for all θ, θ̃ ∈ S. It is seen from (39)
that this time-reversibility condition amounts to

P (θ)P (θ, θ̃) = P (θ̃)P (θ̃, θ) (40)

for all θ, θ̃ ∈ S. Intuitively, condition (40) says that, in the long-run, the process moves as
much from θ to θ̃ as it moves from θ̃ to θ.

3.4.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings [MH] algorithm, introduced by Metropolis et al. (1953) and gen-
eralized by Hastings (1970), samples from a time-reversible Markov chain converging to the
target distribution. It has similarities with rejection sampling, as some rejection mechanism
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is involved. However, rejected draws are dealt with in a different way. An excellent expo-
sition on the MH algorithm is Chib and Greenberg (1995) in which theory and intuition as
well as application of the algorithm are discussed. An important survey on the broader class
of MCMC methods is Tierney (1994).

The intuitive derivation of the MH algorithm starts from the time-reversibility condition

P (θ)PMH(θ, θ̃) = P (θ̃)PMH(θ̃, θ) ∀θ, θ̃ ∈ S, (41)

where P is a kernel of the target probability function and PMH is an appropriate but cur-
rently unknown transition density. So, the limiting distribution of the Markov chain is
available, but the underlying process is not. Note that this is the opposite of the situation in
which one knows the transition process and has to derive the limiting distribution, which is
often encountered in Markov chain theory. The key idea is that if the transition probabilities
P (θ, θ̃) and P (θ̃, θ) satisfy the time-reversibility condition (41) for the given target probabil-
ities P (θ) and P (θ̃) for each θ, θ̃ ∈ S, then this implies that the limiting distribution of the
Markov chain is the desired target distribution with probability function P (θ). The reason
is that the time-reversibility property implies that the invariance condition (38) is satisfied:

∑

θ∈S

P (θ)P (θ, θ̃) =
∑

θ∈S

P (θ̃)P (θ̃, θ) = P (θ̃)
∑

θ∈S

P (θ̃, θ) = P (θ̃), (42)

where the first equality follows from the time-reversibility property, and the last equality
obviously holds as the conditional probabilities of θ given θ̃ have to sum to 1. Intuitively, it
is clear that a Markov chain satisfying the time-reversibility condition for the given target
probabilities must have this target distribution as its limiting distribution. When the Markov
chain reaches the target distribution at a certain step, all following steps will have this target
distribution: at each following iteration, each point θ ∈ S ‘gets back’ exactly the same
probability mass that ‘leaves’ to any other point θ̃ ∈ S.

So, we are looking for a Markov chain with transition probabilities satisfying the time-
reversibility condition (41). What may still seem to be an impossible task, that is, recovering
such a Markov chain, can be done by considering the following approach. Suppose that the
unknown transition density PMH is replaced by some known but probably inappropriate
candidate transition density Q satisfying irreducibility and aperiodicity. Unless Q satisfies
the time-reversibility condition for all θ, θ̃ ∈ S, which is extremely unlikely, there exist states
θ and θ̃ such that the probability of going from θ to θ̃ is larger than the probability of going
from θ̃ to θ:

P (θ)Q(θ, θ̃) > P (θ̃)Q(θ̃, θ), (43)

where we note that only the “greater than” inequality > is considered, as the “less than”
inequality < amounts to just interchanging the arbitrary states θ and θ̃. In order to deal
with the violation of the time-reversibility condition, a function α : S×S → [0, 1], indicating
the probability of accepting a transition, is introduced such that

P (θ)Q(θ, θ̃)α(θ, θ̃) = P (θ̃)Q(θ̃, θ)α(θ̃, θ). (44)

As the right-hand-side value of (43) is too small as compared with the left-hand-side, α(θ̃, θ)
is set at its maximum value, which is 1 (since it is a probability):

α(θ̃, θ) = 1. (45)
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Next, substituting (45) into (44) yields

α(θ, θ̃) =
P (θ̃)Q(θ̃, θ)
P (θ)Q(θ, θ̃)

< 1. (46)

It follows from (45) and (46) that the function α is defined by

α(θ, θ̃) = min

{
P (θ̃)Q(θ̃, θ)
P (θ)Q(θ, θ̃)

, 1

}
, (47)

where θ, θ̃ ∈ S. Now, a first proposal for the unknown transition density PMH might be
such that PMH(θ, θ̃) = Q(θ, θ̃)α(θ, θ̃) for all θ, θ̃ ∈ S. However, as Q is already a transition
density integrating to unity, and there exist θ and θ̃ such that α(θ, θ̃) < 1, this proposal
cannot be a transition density itself. However, the “insufficient candidate probability mass
problem” is easily fixed by adjusting PMH(θ, θ) for which the time-reversibility condition is
satisfied by definition. For a discrete state space S, the adjusted transition density is defined
by

PMH(θ, θ̃) = Q(θ, θ̃)α(θ, θ̃), θ̃ 6= θ, (48)

PMH(θ, θ) = 1−
∑

θ̃ 6=θ

Q(θ, θ̃)α(θ, θ̃) = Q(θ, θ) +
∑

θ̃ 6=θ

Q(θ, θ̃)(1− α(θ, θ̃)), (49)

where α(θ, θ̃) is given by (47).
The MH algorithm is an interpretation of (48) and (49). For some current state θ, one

can make a transition according to the transition density PMH by drawing a candidate state
θ̃ from the density Q and accepting the transition, which is from θ to θ̃, with probability
α(θ, θ̃). Acceptance implies that the move is made, that is, the next state is θ̃. Rejection
means that the move is not made, that is, the next state is again θ. By repeating this
procedure many times, a Markov chain is constructed. After a burn-in period, draws from
the Markov chain are regarded as draws from the target distribution. A sufficient condition
for (long-run) convergence is that Q(θ, θ̃) > 0 for all θ and θ̃ such that P (θ̃) > 0. The MH
algorithm constructs a Markov chain of length n as follows:

Initialize the algorithm:

Choose a feasible initial state θ0.

Do for i = 1, . . . , n:

Obtain θ̃ from candidate transition density Q(θi−1, ·).
Obtain u from uniform distribution U(0, 1).

Compute transition probability α(θi−1, θ̃), defined by (47).

If u < α(θi−1, θ̃) then accept transition:

θi = θ̃.

Else reject transition:

θi = θi−1.
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Several approaches can be adopted to specify the candidate transition density Q, Frequently,
Q is such that the resulting Markov chain is either an “independence chain” or a “random
walk chain”. An independence chain has the property that the candidate state θ̃ is drawn
independently of the current state θ, that is,

Q(θ, θ̃) = Q(θ̃), (50)

where θ, θ̃ ∈ S. Typical choices for the candidate density Q(θ̃) are normal or Student-t
densities. It follows from (47) and (50) that the acceptance probability in an independence
chain is given by

α(θ, θ̃) = min

{
P (θ̃)Q(θ)
P (θ)Q(θ̃)

, 1

}
= min

{
w(θ̃)
w(θ)

, 1

}
, (51)

that is, the minimum of a ratio of importance weights and one. The interpretation of (51) is
that a transition from θ to θ̃ resulting in a larger importance weight is always made, whereas
a transition resulting in a smaller importance weight is not always performed. We note that
(51) establishes a link with importance sampling. As an alternative to the independence
chain, we have also mentioned the random walk chain. A random walk chain draws the
transition step θ̃ − θ instead of the state θ̃ resulting from this transition, that is,

Q(θ, θ̃) = Q(θ̃ − θ). (52)

Typical choices for Q(θ̃ − θ) are normal or Student-t densities centered around 0, so that
the expectation of the next state θ̃ = θ + (θ̃ − θ) is the current state θ. Finally, we mention
that if the transition density is symmetric, that is, if Q(θ, θ̃) = Q(θ̃, θ) for all θ, θ̃ ∈ S, the
acceptance probability α(θ, θ̃) reduces to

α(θ, θ̃) = min

{
P (θ̃)
P (θ)

, 1

}
, (53)

as in the original Metropolis algorithm (Metropolis et al. 1953). The acceptance probability
(53) has a similar interpretation as (51). A transition from θ to θ̃ implying an increase in
the target density is always made, whereas a transition implying a decrease is not always
performed.

3.4.2 Gibbs sampling

The MH algorithm is a very general MCMC approach; one can generally apply it – given
that one has a good candidate density, of course. A more problem specific method within
the MCMC class is the Gibbs sampling algorithm of Geman and Geman (1984). The Gibbs
sampler is based on decomposing the multidimensional random variable θ into k components
θ1, . . . , θk, which are not necessarily univariate. It constructs a Markov chain, converging to
the target distribution, by iteratively drawing the k components of θ conditional on the values
of all other components. Gibbs sampling may be seen as an application of the divide-and-
conquer principle. For many seemingly intractable target densities, it is possible to derive
a set of conditional densities for which sampling is straightforward. The Gibbs sampler
exploits this notion, as it precisely considers these conditional densities. Its usefulness is, for
example, demonstrated by Gelfand et al. (1990), Gelfand and Smith (1990), and Smith and
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Roberts (1993). Casella and George (1992) provide a tutorial on Gibbs sampling using simple
examples to explain how and why the method works. As Gibbs sampling is an intuitively
simple method that enables simulation from posterior distributions - and hence Bayesian
inference - in many models that are useful for decision making and forecasting in practice,
the Gibbs sampler has become enormously popular.

An obvious requirement for the Gibbs sampler is that all full conditional distributions can
be sampled from. These conditional distributions are described by the densities P (θj |θ−j),
j = 1, . . . , k, where θ−j = (θ1, . . . , θj−1, θj+1, . . . θk) denotes the set of k − 1 components ex-
cluding the j-th component. The Gibbs sampling algorithm collects n draws θi = (θ1

i , . . . , θ
k
i ),

i = 1, . . . , n, as follows. The components θj
i , i = 1, . . . , n, j = 1, . . . , k, are augmented into a

single sequence θ1
1, . . . , θ

k
1 , θ1

2, . . . , θ
k
2 , . . . , θ1

n, . . . , θk
n, and the elements of this Gibbs sequence

are generated such that

θj
i results from P (θj |θ−j

i−1), i = 1, . . . , n, j = 1, . . . , k, (54)

where θ−j
i−1 = (θ1

i , . . . , θ
j−1
i , θj+1

i−1 , . . . θk
i−1) denotes all components except θj at their most

recent values. The complete algorithm is as follows:

Initialize the algorithm:

Choose a feasible initial state θ0 = (θ1
0, . . . , θ

k
0).

Do for draw i = 1, . . . , n:

Do for component j = 1, . . . , k:

Obtain θj
i from conditional target density P (θj |θ−j

i−1).

Figure 11 illustrates how the Gibbs sampler works for two 2-dimensional target distributions
involving correlation and bimodality. Clearly, as each time one of the two components (either
θ1 or θ2) is fixed while the other component is sampled from its conditional distribution, a
Gibbs path moves in orthogonal directions parallel to the coordinate axes. So, the horizontal
position is updated given the current vertical position, and the vertical position is updated
given the current horizontal position. The figure displays Gibbs paths after 10 iterations and
after 1000 iterations, and it indicates that the orthogonal movement may cause the Gibbs
sampler to break down. First, the two left-hand graphs demonstrate that high correlation
results in a slowly moving Gibbs path, so that the Gibbs sampler might be stuck in a small
region for quite a long time. This problem increases when the correlation between the two
components becomes higher. Second, the two right-hand graphs demonstrate that if the
target density has two modes located far away from each other, “mode hopping” does not
occur often. This essentially induces the same problem as high correlation, that is, the Gibbs
sampler might be stuck in a local region for a very long time. Consequently, an enormous
number of draws might be needed to obtain a representative coverage of the entire target
density. However, we note that in many cases a reparameterization of the sampling prob-
lem can be found to deal effectively with such high correlations, see for example Gilks and
Roberts (1996).
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Figure 11: Illustration of the Gibbs sampler for a correlated target density (left) and a bimodal
target density (right). The generated Gibbs paths are shown for 10 iterations (above) and
1000 iterations (below).

Gibbs sampling is a special case of the Metropolis-Hastings algorithm

The Gibbs sampling algorithm is actually a special case of the MH algorithm. This can
be understood as follows. First, it should be noted that an overall transition from state
θi−1 = (θ1

i−1, . . . , θ
k
i−1) to state θi = (θ1

i , . . . , θ
k
i ) consists of k subsequent transitions from

(θj
i−1, θ

−j
i−1) to (θj

i , θ
−j
i−1), where j = 1, . . . , k. In each of these k transitions, one of the compo-

nents of θ is updated given the most recent values of the other components. As the density
for the j-th transition is given by

Qj((θ
j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1)) = P (θj

i | θ−j
i−1), (55)

where j = 1, . . . , k, the density for the overall transition from state θi−1 to state θi becomes

Q(θi−1, θi) =
k∏

j=1

P (θj
i | θ−j

i−1). (56)

By defining the candidate transition density of the MH algorithm by (55) and (56), the
corresponding acceptance probabilities can be computed. The acceptance probability of the
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j-th transition from (θj
i−1, θ

−j
i−1) to (θj

i , θ
−j
i−1) is given by

αj((θ
j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1)) = min

{
P (θj

i , θ
−j
i−1) Qj((θ

j
i , θ

−j
i−1), (θ

j
i−1, θ

−j
i−1))

P (θj
i−1, θ

−j
i−1) Qj((θ

j
i−1, θ

−j
i−1), (θ

j
i , θ

−j
i−1))

, 1

}

= min

{
P (θj

i , θ
−j
i−1) P (θj

i−1| θ−j
i−1)

P (θj
i−1, θ

−j
i−1) P (θj

i | θ−j
i−1)

, 1

}

= min

{
P (θj

i , θ
−j
i−1)/P (θj

i | θ−j
i−1)

P (θj
i−1, θ

−j
i−1)/P (θj

i−1| θ−j
i−1)

, 1

}

= min

{
P (θ−j

i−1)

P (θ−j
i−1)

, 1

}
= 1, (57)

where i = 1, . . . , k. As all k transitions are accepted with probability 1, the overall transition
from θi−1 to θi is accepted with probability 1, that is,

α(θi−1, θi) = 1. (58)

Thus, the Gibbs sampler is a special case of the MH algorithm in which rejections do not
occur. This absence of rejections has contributed to the popularity of the Gibbs sampler,
as compared to other cases of the Metropolis-Hastings algorithms in which many rejections
may occur.

Griddy Gibbs sampling and the Metropolis-Hastings-within-Gibbs method

For application of the Gibbs sampling algorithm it is desirable but not necessary that all
k conditional distributions can be directly sampled from. For example, if a “difficult” con-
ditional distribution is one-dimensional, an approximating cumulative distribution function
[CDF] can be constructed by building a density grid and using linear interpolation. Subse-
quently, the inversion method can be applied to the piecewise linear approximation. This is
the griddy Gibbs sampling approach, proposed by Ritter and Tanner (1992). Alternatively,
an MH step might be considered to sample from the (not necessarily univariate) “difficult”
conditional distribution. This implies that each time a candidate transition is considered
for the complicated component, which is either accepted or rejected in the Markov chain.
Although this approach is just a special case of the MH algorithm, it is usually called the
MH-within-Gibbs approach.

3.4.3 Gibbs sampling with data augmentation

For many models involving latent variables (such as the unobserved utilities in probit choice
models), the parameters θ have a non-standard posterior distribution. Moreover, for such
models, evaluation of the likelihood function and hence the posterior density might be com-
plicated and computationally intensive. This is for example the case in the conditional probit
model of Hausman and Wise (1978), see also McCulloch and Rossi (1994). However, stan-
dard distributions would arise if the latent data z would be known. So, “observing” z would
greatly facilitate the sampling procedure. The data augmentation algorithm of Tanner and
Wong (1987) is a useful extension of the Gibbs sampler which is based on this notion. It
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extends the sampling space, as both the parameters θ and the latent data z are sampled. In
the algorithm, z is drawn conditional on θ, and θ is drawn conditional on z. So, the latent
data are imputed using the current parameter values, and subsequently the parameters are
sampled as if the latent data are observed. By repeating this procedure many times, a
Gibbs sequence is constructed involving both θ and z. Disregarding z, the process results
in a Markov chain for the parameters θ converging to the posterior distribution. The data
augmentation algorithm has been applied in many models. For example, data augmentation
for the conditional probit model is discussed by Albert and Chib (1993), McCulloch and
Rossi (1994) and McCulloch et al. (2000). Wei and Tanner (1990) and Chib (1992) consider
data augmentation for the censored regression model.

Example: data augmentation in binary probit model for US recession indicator

In order to provide a simple illustration of the data augmentation approach, we apply it to a
binary probit model with the purpose to explain and predict recessions in the United States using
leading indicators. The data augmentation procedure follows Albert and Chib (1993). We define
a recession indicator such that the economy is in a recession if the growth rate of U.S. real GDP
is negative in at least the current period and either the preceding or next period. As leading
indicators, we consider the growth rate of the Dow Jones Industrial Average, real consumption
growth, the growth rate of the money stock M3, the term structure (the 10 year Treasury Bond
yield minus the 1 year Treasury Bond yield), and the oil price. We use quarterly data running
from the first quarter of 1968 to the fourth quarter of 2001. We find that the economy is in a
recession for 12 of the 136 observed periods. A preliminary analysis indicates that a lag of two
quarters between the leading indicators and the recession measure is appropriate. The binary
probit model is given by

zt = x′tβ + εt, εt ∼ N (0, 1) i.i.d., t = 1, . . . , T, (59)

yt =
{

1 if zt > 0
0 if zt ≤ 0

, (60)

where yt is the binary recession variable and xt contains an intercept and the five leading indi-
cators. The variable zt is not observed. We consider the non-informative prior p(β) ∝ 1 for the
parameters β.

The conditional distributions for β and z are easily derived. First, if zt would be observed, the
model would reduce to a linear regression model with known variance σ2. Using the symmetry
with classical maximum likelihood (which holds in this case but does not hold in general), we
obtain that

β|z, y ∼ N ((X ′X)−1X ′z, (X ′X)−1), (61)

where xt, t = 1, . . . , T , are stacked in the matrix X. Second, given the parameters β and the
observed data y, it holds that

{
zt|β, y ∼ N (x′tβ, 1) I{zt ≤ 0} if yt = 0
zt|β, y ∼ N (x′tβ, 1) I{zt > 0} if yt = 1

, (62)

for t = 1, . . . , T . In sum, this gives the data augmentation algorithm:
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Figure 12: Marginal posterior densities for the binary probit model with a U.S. recession
indicator as the dependent variable.

Initialize the algorithm:

Choose initial β0.

Do for draw i = 1, . . . , n:

Sample zt from
{ N (x′tβi−1, 1) I{zt ≤ 0} if yt = 0
N (x′tβi−1, 1) I{zt > 0} if yt = 1

.

Sample βi from N ((X ′X)−1X ′z, (X ′X)−1).

We take a burn-in period of 1000 draws and we consider 50000 effective draws with the zero
vector as the initial location for the Markov chain. Alternatively, one might take the Maximum
Likelihood [ML] parameter estimates as the initial values. In this illustration we use all draws
after the burn-in, but other popular operationalizations are thinning (for example, only keeping
every tenth draw) and independent runs (running many different chains from dispersed starting
values and only keeping the final value), see for example Smith and Roberts (1993). The latter
two approaches aim at reducing correlations at the expense of many (relatively uninformative)
lost draws.

The obtained marginal densities for β are displayed in Figure 12. It is seen that the posterior
densities have asymmetric tails and that, for all five leading indicators, nearly all posterior density
mass is located such that the sign of the response parameter is as expected. Table 2 reports the
estimated mean, standard deviation and autocorrelation for each parameter, together with the
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Table 2: Sampling results for the binary probit model with a U.S. recession indicator as
the dependent variable. In the first three columns, the estimated mean, standard deviation,
and autocorrelation (in the Gibbs sequence) are reported for each parameter. In the fourth
and fifth column, the Maximum Likelihood parameter estimates and corresponding standard
errors are shown.

mean s.d. a.c. ML s.e.

intercept 0.335 0.762 0.869 0.183 0.719

Dow Jones −0.144 0.048 0.946 −0.121 0.046

real consumption −1.262 0.520 0.936 −1.070 0.491

money stock M3 −1.782 0.596 0.978 −1.454 0.551

term structure −2.297 0.720 0.986 −1.860 0.669

oil price 0.062 0.031 0.918 0.053 0.030

ML parameter estimates and the corresponding standard errors. All autocorrelations are larger
than 0.85, and five of the six autocorrelations are larger than 0.90, indicating that the Markov
chain only moves slowly through the parameter space. The table further shows that the esti-
mated posterior standard deviations are larger than the corresponding ML standard errors and
that the estimated posterior means are larger (in absolute values) than the corresponding ML
parameter estimates. The explanation for this difference is that a Bayesian analysis allows for
exact inference when the number of observations is limited, whereas the ML results are based on
asymptotic approximations.

3.4.4 Auxiliary variable Gibbs sampling

Auxiliary variable Gibbs sampling is a sampling approach developed by Damien et al. (1999),
who extend the original work of Edwards and Sokal (1988). Similar to data augmentation
(Tanner and Wong 1987), latent variables are incorporated in the sampling process in order
to facilitate drawing from the full set of conditional distributions. However, contrary to
data augmentation, the latent variables are not “missing data” from the model. Instead, the
latent variables are introduced in an artificial way. The approach of Damien et al. (1999)
might be interpreted as a reversion of the independence chain MH algorithm. We recall
that the MH algorithm first draws a candidate state θ̃, given the current state θi−1, and
subsequently considers a uniform draw u ∈ (0, 1) to determine whether the candidate state
is accepted. The sampling approach of Damien et al. (1999) turns this around, that is, first
an auxiliary draw u from the uniform distribution is obtained and subsequently the state θ̃
is sampled inside the acceptance region determined by u. The gain of this reversion is that
the state θ̃ is accepted by definition. However, the price to pay is that sampling inside the
acceptance region amounts to drawing from some truncated distribution.

Auxiliary variable Gibbs sampling is based on a decomposition of the target density P .
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This decomposition is given by

P (θ) ∝ π(θ)
ñ∏

j=1

lj(θ), (63)

where π is a kernel of some density from which draws are easily obtained, and lj (j =
1, . . . , ñ) are non-negative functions. For practical implementation, lj (j = 1, . . . , ñ) should
be invertible for univariate θ, i.e. invertible for any univariate component of θ when keeping all
the other components constant. We note that decomposition (63) nests the prior-likelihood
decomposition from Bayes’ theorem, given by

p(θ|y) ∝ p(θ)
N∏

j=1

p(yj |θ), (64)

where p(yj |θ) is the contribution to the likelihood by the j-th observation. Note that such
a decomposition is possible, as long as the observations yj (j = 1, . . . , N) are independent
(conditional on θ and exogenous/predetermined variables). In the approach of Damien et
al. (1999), a set U = (U1, . . . , U ñ) of uniform auxiliary variables is introduced such that

U j |(θ = θ̃) ∼ U(0, lj(θ̃)), j = 1, . . . , ñ, (65)

resulting in the joint density

P (θ, u) = P (θ)P (u|θ)

∝ π(θ)
ñ∏

j=1

lj(θ)
ñ∏

j=1

I{ 0 < uj < lj(θ)}
lj(θ)

= π(θ)
ñ∏

j=1

I{ 0 < uj < lj(θ)} (66)

and the conditional density

P (θ|u) ∝ π(θ) I{ lj(θ) > uj , j = 1, . . . , ñ}. (67)

Note that the marginal density of θ remains formula (63). Similar to data augmentation,
the sampling space is extended, as both θ and U are sampled from their conditional distri-
butions. We note that an iteration of this Gibbs procedure requires drawing from ñ uniform
distributions, and drawing from some truncated version of an “easy” distribution (by the
assumption made on π). The complete algorithm is as follows:

Initialize the algorithm:

Choose a feasible initial state θ0.

Do for draw i = 1, . . . , n:

Obtain uj
i from uniform distribution U(0, lj(θi−1)), j =

1, . . . , ñ.

Obtain θi from π(θ) I{ lj(θ) > uj
i , j = 1, . . . , ñ}.

Collect θ1, . . . , θn.
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Now, by setting ñ = 1 and suppressing the index j, the link with the independence chain
MH algorithm becomes clear. First, it should be noted that ui = u l(θi−1), where u is some
draw from U(0, 1). Next, it should be noted that θi is such that l(θi) > ui. Consequently, θi

satisfies the condition u < l(θi)
l(θi−1) , which is equivalent to

u < min
{

l(θi)
l(θi−1)

, 1
}

, (68)

as u ∈ (0, 1). This shows that auxiliary variable Gibbs sampling is essentially a reversion of
the independence chain MH algorithm with target density P (θ) ∝ π(θ)l(θ) and candidate
density Q(θ) ∝ π(θ).

Example: auxiliary variable Gibbs sampling in binary logit model for US recession indicator

Damien et al. (1999) demonstrate that their approach is useful for non-conjugate and hierar-
chical models by working out several examples. As an illustration of the method, we consider the
binary logit model, given by

zt = x′tβ + εt, εt ∼ Logistic i.i.d., t = 1, . . . , T, (69)

yt =
{

1 if zt > 0
0 if zt ≤ 0

, (70)

where yt is the U.S. recession variable from the binary probit example, and xt contains an intercept
and the five leading indicators (lag of two quarterly periods: growth rate of the Dow Jones
Industrial Average, real consumption growth, growth of money stock M3, the term structure,
and the oil price). We note that Dellaportas and Smith (1993) put forward an alternative
procedure to sample the parameters, involving an adaptive rejection algorithm. The binary logit
model has likelihood function

p(y|β) =
T∏

t=1

(
exp(x′tβ)

1 + exp(x′tβ)

)yt
(

1
1 + exp(x′tβ)

)1−yt

=
T∏

t=1

exp(ytx
′
tβ)

1 + exp(x′tβ)
. (71)

We consider a (non-conjugate) normal prior for β with mean µ and covariance matrix Σ, so that

p(β) ∝ exp
(
− 1

2
(β − µ)′Σ−1(β − µ)

)
. (72)

It follows from (71) and (72) that the posterior is given by

p(β|y) ∝ exp
(
− 1

2
(β − µ)′Σ−1(β − µ)

) T∏

t=1

exp(ytx
′
tβ)

1 + exp(x′tβ)
= π(β)

T∏

t=1

lt(β). (73)

The decomposition in (73) provides the basis for an auxiliary variable Gibbs algorithm. For the
binary logit model, the truncation condition lt(β) > ut

i amounts to
{

x′tβ < ln(1− ut
i)− ln(ut

i) if yt = 0
x′tβ > ln(ut

i)− ln(1− ut
i) if yt = 1

, (74)
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Figure 13: Marginal posterior densities for the binary logit model with a U.S. recession
indicator as the dependent variable.

for t = 1, . . . , T . An algorithm to sample the parameters β would be:

Initialize the algorithm:

Choose a feasible initial state β0.

Do for draw i = 1, . . . , n:

Obtain ut
i from U

(
0,

exp(ytx′tβi−1)
1+exp(x′tβi−1)

)
, t = 1, . . . , T .

Obtain βi from N (µ,Σ) I{ (74) holds for t = 1, . . . , T }.
Collect β1, . . . , βn.

Unfortunately, a drawback of the algorithm above is that β has to be sampled from a multivariate
truncated distribution for which rejection-based sampling might be very inefficient. A more
efficient algorithm can be obtained by breaking up the parameter vector β and drawing its
components separately from truncated univariate normal distributions using the inversion method.
In order to determine the conditional distributions of the components βj conditional on the
remaining components β−j and the auxiliary variables U , it should be noted that if

(
βj

β−j

)
∼ N

((
µj

µ−j

)
,

(
Σj,j Σj,−j

Σ−j,j Σ−j,−j

))
, (75)
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Table 3: Sampling results for the binary logit model with a U.S. recession indicator as the
dependent variable. In the first three columns, the estimated mean, standard deviation, and
autocorrelation are reported for each parameter. In the fourth and fifth column, the Maximum
Likelihood parameter estimates and corresponding standard errors are shown.

mean s.d. a.c. ML s.e.

intercept 0.324 1.314 0.985 0.216 1.236

Dow Jones −0.268 0.091 0.923 −0.216 0.081

real consumption −2.159 0.966 0.935 −1.819 0.844

money stock M3 −3.190 1.044 0.991 −2.544 0.969

term structure −4.124 1.254 0.972 −3.259 1.146

oil price 0.117 0.062 0.980 0.095 0.052

then
βj

∣∣∣β−j ∼ N
(
µj + Σj,−jΣ−1

−j,−j(β
−j − µ−j), Σj,j − Σj,−jΣ−1

−j,−jΣ−j,j

)
. (76)

For ease of exposition and since the extension to the general case is straightforward, we assume
that Σ is a diagonal matrix, so that (76) boils down to

βj
∣∣∣β−j ∼ N

(
µj ,Σj,j

)
. (77)

Using this result and rewriting the truncation condition (74) in terms of βj , we obtain the final
algorithm:
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Initialize the algorithm:

Choose a feasible initial state β0.

Do for draw i = 1, . . . , n:

Obtain ut
i from U

(
0,

exp(ytx′tβi−1)
1+exp(x′tβi−1)

)
, t = 1, . . . , T .

Do for component j = 1, . . . , k:

Obtain βj
i from

N
(
µj , Σj,j

)
I

{
βj < min

t:yt=0,xt,j>0

{
ln(1− ut

i)− ln(ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj > max

t:yt=0,xt,j<0

{
ln(1− ut

i)− ln(ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj > max

t:yt=1,xt,j>0

{
ln(ut

i)− ln(1− ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}

I

{
βj < min

t:yt=1,xt,j<0

{
ln(ut

i)− ln(1− ut
i)−

∑
l 6=j xt,lβ

l

xt,j

}}
.

Collect β1, . . . , βn.

We apply the algorithm described above to the data set from the binary probit example. Again,
we take a burn-in period of 1000 draws and we consider 50000 effective draws with the zero vector
as the initial location for the Markov chain. Furthermore, we consider a (fairly non-informative)
normal prior p(β) with the density mass located around the origin and a covariance matrix which
is 100 times the identity matrix. The estimated marginal densities for β are displayed in Figure
13. As for the binary probit example, we observe that the posterior densities have asymmetric
tails and that, for all five leading indicators, nearly all posterior density mass is located such that
the sign of the response parameter is as expected. Table 3 reports the estimated mean, standard
deviation and autocorrelation for each parameter, together with the ML parameter estimates and
the corresponding standard errors. As for the binary probit example, it can be seen that the
Markov chain only moves slowly through the parameter space, and that the posterior densities
are more spread out, away from zero, than the ML results would suggest.

3.5 Some recently developed simulation methods

The simulation methods that we discussed in the previous subsections are popular simulation
algorithms that are applicable to many posterior densities, as long as these posterior densities
are reasonably well-behaved. In this subsection we discuss two recently developed simulation
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methods that are flexible and robust in the sense that these methods also yield reliable results
in the case of a posterior with highly non-elliptical shapes, e.g. multi-modality, extreme
skewness, and/or heavy tails.

3.5.1 Adaptive Radial-based Direction Sampling

Adaptive radial-based direction sampling [ARDS] methods, due to Bauwens et al. (2004),
constitute a class of Monte Carlo integration methods that involve a transformation from
the usual Carthesian coordinates to radial coordinates. The ARDS algorithms can be espe-
cially useful for Bayesian inference in models with non-elliptical, possibly multi-modal target
distributions. A key step is a radial-based transformation to directions and distances. Af-
ter the transformation a Metropolis-Hastings or importance sampling method is applied to
evaluate generated directions. Next, given these directions, distances are generated from the
exact target distribution. An adaptive procedure is applied to update the initial location
and covariance matrix in order to sample directions in an efficient way.

The main idea is that sampling from an ill-behaved distribution can be facilitated by
slicing this target distribution in a clever way, that is, by drawing along one-dimensional
lines. Suitable directions, defining these lines, are obtained through either an MH step or
an importance sampling step. The MH variant is called Adaptive Radial-Based Metropolis-
Hastings Sampling [ARMHS], and the importance sampling variant is called Adaptive Radial-
Based Importance Sampling [ARIS].

The ARDS algorithms have three major advantages. First, the algorithms do not re-
quire much information on the shape of the target density: only approximate guesses of
location and scale are required as initial values. Second, the ARDS algorithms are flexible
and robust: they can handle highly non-elliptical target densities such as multi-modal, ex-
tremely skew or heavy-tailed target densities. Third, the ARDS algorithms can handle linear
inequality conditions on the parameter space without any additional complications for the
implementation.

The ARDS methods are inspired by other algorithms in which directions are generated
in order to facilitate the integration or simulation process. The ARDS algorithms extend
earlier methods like the algorithm of Box and Muller (1958) for generating normal variates,
the adaptive direction sampling [ADS] algorithms due to Gilks et al. (1994), the mixed inte-
gration method by Van Dijk et al. (1985), and the spherical integration method by Monahan
and Genz (1997).

The radial transformation

Since the radial transformation is the key step of the ARDS algorithms, we start by de-
scribing the transformation from Cartesian coordinates to radial coordinates. The original
m-dimensional parameter space is transformed into an (m−1)-dimensional space of directions
and a unidimensional complementary space of distances. In our notation, θ̃ = (θ̃1, . . . , θ̃m)
denotes the Cartesian coordinates of a point, and (ρ, η) denotes the corresponding radial
coordinates. Here η = (η1, . . . , ηm−1) indicates the direction of the point relative to the
origin, and ρ is related to the Euclidean distance. The m-dimensional transformation from
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Figure 14: The relationship between Cartesian coordinates and radial coordinates in the
two-dimensional case

(θ̃1, . . . , θ̃m) ∈ Rm to (ρ, η) = (ρ, η1, . . . , ηm−1) ∈ R× {η ∈ Rm−1 : η′η < 1} is given by

ρ = sgn(θ̃m)
√

θ̃′θ̃, (78)

ηj =
θ̃j

ρ
, j = 1, . . . , m− 1, (79)

with inverse transformation

θ̃j = ρ ηj , j = 1, . . . m− 1, (80)

θ̃m = ρ
√

1− η′η . (81)

By defining θ̃∗ = (θ̃1, . . . , θ̃m−1), the Jacobian of the transformation is

Jθ̃(ρ, η) = det

(
∂θ̃∗(ρ,η)

∂η′
∂θ̃∗(ρ,η)

∂ρ
∂θ̃m(ρ,η)

∂η′
∂θ̃m(ρ,η)

∂ρ

)
= det

(
ρ Im−1 η

− ρ η′√
1−η′η

√
1− η′η

)

=
ρm−1

√
1− η′η

= Jθ̃(ρ)Jθ̃(η), (82)

where

Jθ̃(ρ) = ρm−1, (83)

Jθ̃(η) = (1− η′η)−1/2. (84)

Basically, θ̃ is transformed to m−1 Cartesian coordinates on the unit circle and a stretching
factor ρ. This is illustrated in Figure 14 for m = 2 dimensions. Here we note that the sign
of ρ determines whether θ̃ is located above or below the θ̃1 axis.
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Radial-based Metropolis-Hastings sampling

We now define the radial-based Metropolis-Hastings algorithm [RMHS], which is based on a
candidate density that is taken to be multivariate normal with parameters µ and Σ. However,
Bauwens et al. (2004) show that actually any elliptically contoured candidate distribution
can be considered without affecting the sampling results. After defining RMHS, we will de-
fine the adaptive RMHS algorithm [ARMHS], where µ and Σ are iteratively updated using
the sample of draws from a previous round of the RMHS algorithm.

RMHS is based on an independence chain MH algorithm. It uses draws from an N (µ,Σ)
candidate where hopefully µ and Σ provide good approximations to the unknown mean and
covariance matrix of the target distribution. In contrast with the MH algorithm, the draws
are not used for construction of a Markov chain in the original parameter space. Instead,
a composite transformation is made. For expository purpose we treat this transformation
explicitly in two steps. The first step is a location-scale transformation of a realization θ to a
realization θ̃. This transformation aims at standardizing the candidate density with respect
to the location, scale, and correlations of the target (posterior) density, denoted by p(θ). It
is defined by the affine transformation

θ̃ = θ̃(θ|µ,Σ) = Σ−1/2(θ − µ) (85)

with inverse transformation
θ = θ(θ̃|µ,Σ) = µ + Σ1/2θ̃ (86)

and Jacobian
Jθ(θ̃) = det(Σ1/2). (87)

The second step is the radial transformation, which is defined by (78) and (79), with inverse
transformation given by (80) and (81), and Jacobian (82).

Combining the two transformations, one obtains the composite transformation
(

ρ
η

)
=

(
ρ(θ̃(θ|µ,Σ))
η(θ̃(θ|µ,Σ)

)
(88)

with inverse transformation
θ = θ(θ̃(ρ, η)|µ,Σ) (89)

and Jacobian
Jθ(ρ, η) = Jθ̃(ρ, η)Jθ(θ̃) = Jθ̃(ρ)Jθ̃(η)det(Σ1/2). (90)

Applying the two transformations to a candidate realization θi fromN (µ,Σ) yields a distance
ρ∗i and a vector of directions η∗i . Ignoring the distance, the candidate direction is either
accepted or rejected in an MH step: the direction becomes

ηi =
{

η∗i with probability α(ηi−1, η
∗
i )

ηi−1 with probability 1-α(ηi−1, η
∗
i )

(91)

for some acceptance probability α(ηi−1, η
∗
i ) that will be given below. An iteration of RMHS

is completed by drawing from the target distribution on the line defined by the direction
ηi. This can be done as follows. First, one draws a distance ρi from the transformed target
distribution for given direction ηi using the numerical inverse transformation method. Next,
ηi and ρi are transformed to the original space by inverting the radial transformation and the
location-scale transformation. Therefore, the steps of one iteration of RMHS are as follows:
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1. Obtain candidate: Get realization θ∗i from N(µ,Σ).

2. Standardization: Transform θ∗i to θ̃∗i = Σ−1/2(θ∗i − µ).

3. Radialization: Transform θ̃∗i to (ρ∗i , η
∗
i ) using (78) and (79).

4. MH step: ηi =
{

η∗i with probability α(ηi−1, η
∗
i )

ηi−1 with probability 1− α(ηi−1, η
∗
i )

.

5. Inversion step: Sample ρi from its conditional density p(ρ|ηi) by applying the
inversion method to the density grid obtained in step 4.

6. Deradialization: Transform (ρi, ηi) to θ̃i using (80) and (81).

7. Destandardization: Transform θ̃i to θi = µ + Σ1/2θ̃i.

Note that step 4 of an RMHS iteration requires the acceptance probability α(ηi−1, η
∗
i ), while

step 5 requires the distribution of the distance ρi conditional on the direction ηi. Bauwens
et al. (2004) show that α(ηi−1, η

∗
i ) is given by

α(ηi−1, η
∗
i ) = min

{
I(η∗i )

I(ηi−1)
, 1

}
(92)

where
I(η) =

∫ ∞

−∞
κ(ρ|η)dρ, (93)

and where κ(ρ|η) is a kernel of the conditional density p(ρ|η) of step 5, defined by

p(ρ|η) ∝ κ(ρ|η) = P (θ(ρ, η|µ,Σ))|Jθ̃(ρ)|, (94)

where P (θ) is (a kernel of) the target density. Note that in order to obtain the acceptance
probability α(ηi−1, η

∗
i ), the one-dimensional integral I(η) defined by (93) is computed by

a deterministic integration rule. Since the density of ρ conditional on η is proportional
to the integrand of I(η), evaluations of the integrand, gathered during the deterministic
integration phase, can be used in order to construct a grid for κ(ρ|η). Using the numerical
inverse transformation method, sampling the distance ρ conditional on the direction η –
step 5 of RMHS – is straightforward. We can further reduce the computational effort by
generating several draws of ρ for each draw of η, thereby capitalizing on the construction of
the grid for κ(ρ|η).

Further note that the integral I(η) has infinite integration bounds. However, in practice
we use finite integration bounds for its numerical evaluation. In order to obtain bounds for
the distance ρ we impose minimum and maximum values for each element of θ in the original
space. It is often possible to find sensible bounds by either theory and/or common sense.
Bauwens et al. (2004) show that, as these bounds on the elements of θ can be considered as
linear restrictions, additional linear restrictions do not cause any additional complications
for the algorithm.
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Convergence of radial-based Metropolis-Hastings sampling

RMHS is a combination of a Metropolis-Hastings sampler for the directions and direct sam-
pling of the distance ρ. Hence, the transition kernel of RMHS is the transition kernel of the
MH step, and we can rely on known convergence results for the MH algorithm, see e.g. Smith
and Roberts (1993). As long as the covariance matrix Σ is non-singular, these convergence
results are preserved after applying the location-scale transformation. Moreover, they are
also preserved after applying the radial transformation given that this transformation does
not induce singularities, which is the case if η 6= ±1 and ρ 6= 0. As these singularities have
Lebesgue measure zero, the radial transformation does not affect convergence properties. So,
the sampled RMHS chain converges in distribution to the target distribution. Nevertheless,
in practice convergence after a finite number of draws should obviously be monitored by the
usual tools, see e.g. Van Dijk and Kloek (1980) and Oh and Berger (1992). But at least, since
only the direction η, and not the distance ρ, is generated from a possibly ‘wrong’ candidate
distribution, the risk of collecting a ‘wrong’ sample is substantially reduced. In other words,
ARMHS is quite robust, as the distance ρ conditional on the direction η immediately comes
from the target distribution, that is, sampling on a given line mimics exactly the target
density.
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Adaptive radial-based Metropolis-Hastings sampling

For implementation of RMHS, the mean µ and the covariance matrix Σ of the normal
candidate distribution have to be specified. Good enough initial approximations are usu-
ally the posterior mode and minus the inverse Hessian of the log posterior evaluated at the
mode. Heuristically, convergence of RMHS should improve if µ and Σ are taken closer to the
target mean and covariance matrix. Adaptive radial-based Metropolis-Hastings sampling
[ARMHS] considers a sequential adaptive approach. Given a generated sample θ1, θ2, . . . , θn

from a previous run of the algorithm, µ and Σ are replaced by the Monte Carlo estimates of
the posterior mean and covariance matrix, which are given by:

µ̂ =
1
n

n∑

i=1

θi (95)

Σ̂ =
1
n

n∑

i=1

(θi − µ̂)(θi − µ̂)′ (96)

Using these estimates, one can proceed with a new sampling round. This process can be
repeated any number of times. In order to monitor convergence over sampling rounds,
we find the Mahalanobis distance particularly useful. It is defined as Mahj = (µ̂(j) −
µ̂(j − 1))′[Σ̂(j)]−1(µ̂(j)− µ̂(j − 1)), where j indicates the sampling round. The Mahalanobis
distance measures the extent to which the estimated posterior mean changes between suc-
cessive sampling rounds, while accounting for parameter uncertainty and the underlying
correlation structure.

Adaptive radial-based importance sampling

Radial-based importance sampling (RIS) replaces the MH step of RMHS for the direction η
by an importance sampling step. So, step 4 of an RMHS iteration changes. In RIS, every
sampled direction ηi is kept, a distance ρi is sampled conditional on it, and the resulting
radial coordinates are transformed to a draw θi in the original space, which is weighted
according to the appropriate importance weight

w(ηi) =
p(ηi)
q(ηi)

∝ I(ηi), (97)

where I(η) is defined by (93). As RIS can be interpreted as a special case of importance
sampling, convergence properties of RIS follow directly from those for the latter method.
Important diagnostics are given by the distribution of the weights w(ηi). For details, see
Geweke (1989).

In a similar fashion to ARMHS, the parameters µ and Σ of the location-scale transfor-
mation can be updated by replacing them by their Monte Carlo estimates. We will refer to
this adaptive extension of RIS as adaptive RIS [ARIS].
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Example: ARDS in two-regime mixture model for the US GNP growth rate

In order to illustrate the advantages of the ARDS methods, we investigate a mixture model for
the analysis of economic growth in the USA, which is also considered by Bauwens et al. (2004).
Bauwens et al. (2004) compare the performance of the ARDS methods with the (independence
chain) Metropolis- Hastings algorithm and importance sampling with a Student-t candidate dis-
tribution (with 5 degrees of freedom). They compare estimation results after a given computing
time with the ‘true’ results - estimation results after many more draws - and inspect the graphs
of estimated marginal densities resulting from different sampling methods. Here we take another
approach to investigate the accuracy of different simulation methods given the same computing
time. For each simulation method, we repeat the simulation process ten times with different ran-
dom seeds, after which we compute the standard deviations of the ten estimates of the posterior
means. We note that in these empirical examples the mixture process refers to the data space.
However, such mixture processes may give rise to bimodality and skewness in the parameter
space.

In models for the growth rate of the gross national product, great advances have been made
by allowing for separate regimes in periods of recession and expansion. However, these models
may give rise to difficulties with respect to convergence of sampling methods due to multiple
modes. Here we consider a mixture model with two AR(1) regimes for real GNP growth:

yt =
{

β11 + β12yt−1 + εt with probability p,
β21 + β22yt−1 + εt with probability 1− p,

εt ∼ N(0, σ2), (98)

where yt denotes the quarterly growth rate. The data (source: Economagic) consist of observa-
tions from the first quarter of 1959 to the last quarter of 2001. Note that we have a 6-dimensional
vector θ = (β11, β12, β21, β22, σ, p)′. The priors for β11, β12, β21, β22 and p are chosen uniform,
and the prior for σ is taken proportional to 1/σ, which amounts to specifying a uniform prior for
log(σ). So, we have p(θ) = p(β11, β12, β21, β22, σ, p) = 1/σ. For identification, it is imposed
that β11 < β21. In order to numerically evaluate the integral I(η) in (93), parameter bounds are
specified; see Table 4.

We choose the same sampling setup as Bauwens et al. (2004). In our adaptive approach,
additional sampling rounds are considered as long as the Mahalanobis distance is larger than
0.02. However, we allow for at most 8 rounds. In any round, ARMHS and ARIS draw 5000
directions and 5 distances per direction, resulting in a sample of size 25 000. In order to make
the computing times comparable, the MH and importance sampling algorithms are allowed to
collect a larger sample of size 250 000. The scale of the initial candidate distribution is taken
sufficiently large, so that MH and importance sampling can initially cover the whole density mass.

Sampling results are given by Table 4, which also gives the ‘large sample’ values (computed
from 250 000 ARMHS draws). Notice that each standard deviation of the 10 estimates of the
posterior means is smaller for the ARDS methods than for the MH and IS approach with a
Student t candidate, where the ARIS somewhat outperforms the ARMHS method. Even though
10 times less draws have been generated, the ‘quality’ of those draws is much higher. This can be
seen from the acceptance rate that is much higher for ARMHS than for MH, and from the weight
of the 5% most influential points that is much smaller for ARIS than for IS. It should be noted
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that it is also possible to apply the data augmentation algorithm to this model. However, this
approach requires more ‘inputs’ than the ARDS methods. For the data augmentation method,
the conditional posterior distribution of each parameter has to be derived, whereas the ARDS
methods only require a kernel of the posterior density (and approximate guesses of the location
and scale).

In this model we define the latent variables zt (t = 1, . . . , T ) as:

zt =
{

0 if period t is a period of regime 1
1 if period t is a period of regime 2

t = 1, 2, . . . , T. (99)

Conditionally on the values of the parameters, the latent variables zt (t = 1, . . . , T ) have a
Bernoulli distribution. Conditionally on the latent variables z (and each other), (β11, β12), and
β21, β22 are normally distributed, while σ2 and p have an inverted gamma and a beta distribution,
respectively. The results of the data augmentation method are given by Table 5. The number of
draws has been chosen in order to make the computing time comparable with the ARIS method.
Notice that each standard deviation of the 10 estimates of the posterior means is smaller for the
data augmentation than for the ARDS methods. Estimates of the marginal densities are given
by Figure 15. Note the bimodality in the marginal posterior of p and the skewness for the β
parameters. These shapes can be explained by inspecting the scatter plots of parameter draws.
Figure 16 shows draws of (p, β11) and (p, β21). If p → 0 (p → 1), then β11 and β12 (β21 and
β22) become unientified, so that a wide range of values is possible for these parameters. Further,
note the two modes in the distributions of (p, β11) and (p, β21): one mode for p close to 0 and
one mode for p close to 1. In fact, the data augmentation algorithm hardly moves from one
mode to the other. This can be seen from the high serial correlation in the data augmentation
sequence for the parameter p, which is 0.996. For other models and data sets, the probability of
“mode hopping” can be even smaller than in this example. In that case, the data augmentation
may require billions of draws in order to obtain reliable estimation results. In such situations, the
ARDS methods are much more reliable (and quicker) alternatives.
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Table 4: Sampling results for the two-regime mixture model for US real GNP growth
Bounds ARDS ARMHS ARIS MH IS Large sample

min. max. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

β11 -4.00 4.00 0.11 0.64 0.10 0.59 -0.14 0.88 0.01 0.72 0.07 0.70

(s.d. 10x) (0.06) (0.04) (0.12) (0.09)

β12 -1.00 1.00 0.45 0.24 0.45 0.25 0.42 0.28 0.40 0.28 0.41 0.27

(s.d. 10x) (0.03) (0.03) (0.04) (0.04)

β21 -4.00 4.00 1.32 0.74 1.27 0.78 1.22 0.83 1.28 0.85 1.30 0.79

(s.d. 10x) (0.07) (0.05) (0.11) (0.10)

β22 -1.00 1.00 -0.07 0.39 -0.02 0.38 0.05 0.39 0.01 0.40 -0.04 0.41

(s.d. 10x) (0.03) (0.02) (0.04) (0.04)

σ 0.00 2.00 0.82 0.05 0.82 0.06 0.82 0.06 0.82 0.06 0.82 0.06

(s.d. 10x) (0.00) (0.00) (0.00) (0.00)

p 0.00 1.00 0.59 0.38 0.53 0.38 0.48 0.39 0.52 0.39 0.55 0.38

(s.d. 10x) (0.03) (0.02) (0.04) (0.04)

Draws per iteration (η × ρ) 5000× 5 5000× 5 250 000 250 000

Number of iterations 8 5 8 8

Average time per iteration (in s) 23.7 23.5 25.1 24.8

Mahalanobis distance 0.04 0.02 0.20 0.15

Acceptance rate (in %) 17.6 1.2

5% most influential weights (in %) 57.9 99.7

Table 5: Data augmentation sampling results for the two-regime mixture model for US real
GNP growth

mean s.d.

β11 0.019 0.748

(s.d. 10x) (0.018)

β12 0.407 0.287

(s.d. 10x) (0.002)

β21 1.237 0.737

(s.d. 10x) (0.017)

β22 -0.012 0.393

(s.d. 10x) (0.008)

σ 0.820 0.056

(s.d. 10x) (0.000)

p 0.525 0.377

(s.d. 10x) (0.012)

Draws 600 000

Computing time (in s) 119.4
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Figure 15: Estimates of marginal posterior densities in model (98) for US real GNP, based
on draws generated by the data augmentation algorithm

Figure 16: Model (98) for US real GNP: scatter plots of draws generated by the data aug-
mentation algorithm
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3.5.2 Neural network sampling

Neural network [NN] sampling methods, due to Hoogerheide et al. (2007), constitute a class
of Monte Carlo integration methods that involve a neural network approximation to (a kernel
of) the target density. Just like the ARDS algorithms, the NN algorithms may be especially
useful for Bayesian inference in models with non-elliptical, possibly multi-modal posterior
distributions. A key step is the construction of a NN function that provides a ‘reasonably
good’ approximation to the target density. After an NN approximation to the target density
has been obtained, this NN function is used as a candidate density in the Metropolis-Hastings
or importance sampling method.

Hoogerheide et al. (2007) show examples of highly non-elliptical, bimodal posterior dis-
tributions that may occur in the instrumental variables [IV] regression model with weak
instruments. In these cases a sampling method based on an approximation by a mixture of
Student-t densities (which is a specific type of NN function) outperforms several competing
algorithms – the Gibbs sampler, importance sampling and the Metropolis-Hastings algorithm
with a Student-t candidate distribution – in the sense of yielding more accurate estimates of
posterior moments in the same computing time. Hoogerheide et al. (2007) propose a quick,
iterative method for constructing such an approximation to a target density by a mixture of
t densities, the Adaptive Mixture of t [AdMit] method that will be discussed below.

The NN sampling algorithms share two advantages with the ARDS methods. First, the
NN sampling algorithms also require little information on the shape of the target density.
Again, only approximate guesses of location and scale are required as initial values. Second,
the NN sampling algorithms are also flexible and robust. NN sampling methods can also
handle highly non-elliptical target densities such as multi-modal, extremely skew or heavy-
tailed target densities.

Neural network sampling methods provide estimates of characteristics of a posterior
distribution with density kernel p(θ) with θ ∈ Rm by the following steps:

1. Construct a neural network approximation nn : Rm → R to the target density kernel p(θ).

2. Obtain a sample of draws from the density (kernel) nn(θ).

3. Perform importance sampling or the (independence chain) Metropolis-Hastings algorithm,
using this sample of draws from nn(θ) in order to obtain estimates of the characteristics
of p(θ).

Hoogerheide et al. (2007) consider three types of neural networks that are members of the
class of four-layer feed-forward neural networks. Here we only consider the type that performs
best in their examples, the mixture of Student-t distributions:

nn(θ) =
H∑

h=1

ph t(θ|µh,Σh, ν), (100)

where ph (h = 1, . . . , H) are the probabilities of the Student-t components and where
t(θ|µh,Σh, ν) is a multivariate t density with mode vector µh, scaling matrix Σh, and ν
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degrees of freedom:

t(θ|µh, Σh, ν) =
Γ((ν + m)/2)
Γ(ν/2)(πν)m/2

|Σh|−1/2

(
1 +

(θ − µh)′Σ−1
h (θ − µh)
ν

)−(ν+m)/2

. (101)

Note that this mixture of t densities is a four-layer feed-forward neural network function

nn(θ) = eG2 (CG1(Aθ + b) + d) + f, θ ∈ Rm, (102)

in which the vector functions G1(.) and G2(.) apply the following scalar functions g1(.) and
g2(.) to each element of their argument vector, respectively:

g1(x) = x2 and g2(x) = x−(ν+m)/2 Γ((ν + m)/2)
Γ(ν/2)(πν)m/2

, x ∈ R,

and with weights eh = ph |Σh|−1/2 (h = 1, . . . , H), f = 0 and:

A =




Σ−1/2
1
...

Σ−1/2
H


 , b =




−Σ−1/2
1 µ1
...

−Σ−1/2
H µH


 , C =




ι′m/ν 0 · · · 0

0 ι′m/ν
...

...
. . . 0

0 · · · 0 ι′m/ν




, d = ιH ;

ιk denotes a k× 1 vector of ones. Notice that (θ−µh)′Σ−1
h (θ−µh) is the sum of the squared

elements of Σ−1/2
h (θ − µh). The reason for this choice is that a mixture of t distributions

allows for easy and quick sampling, and that the Student t distribution has fatter tails than
the normal distribution. This property causes that these NN sampling methods can cope
with fat-tailed target distributions. Note that the ph (h = 1, . . . , H) in (100) have to satisfy∑H

h=1 ph = 1. Zeevi and Meir (1997) show that under certain conditions any density function
can be approximated to arbitrary accuracy by a convex combination of ‘basis’ densities; the
mixture of Student t densities in (100) falls within their framework. This makes these NN
sampling methods flexible and robust, as a wide variety of target density functions can be
well approximated by mixtures of t distributions.

The Adaptive Mixture of t [AdMit] method

The Adaptive Mixture of t [AdMit] method of Hoogerheide et al. (2007) constructs a mixture-
of-t approximation to a certain target density with kernel P (θ) by the following steps.

First, compute the mode µ1 and scale Σ1 of the first Student t distribution in the mixture
as µ1 = argmaxθ P (θ), the mode of the target distribution, and Σ1 as minus the inverse
Hessian of log P (θ) evaluated at its mode µ1. Then draw a set of points θi (i = 1, . . . , n)
from the ‘first stage candidate density’ nn(θ) = t(θ|µ1,Σ1, ν), with small ν to allow for fat
tails; for example, ν = 1. Next, add components to the mixture, iteratively, by performing
the following steps:

Step 1: Compute the importance sampling weights w(θi) = P (θi)/nn(θi) (i = 1, . . . , n). In
order to determine the number of components H of the mixture we make use of a
simple diagnostic criterion: the coefficient of variation, i.e. the standard deviation
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divided by the mean, of the IS weights w(θi) (i = 1, . . . , n). If the relative decrease
in the coefficient of variation of the IS weights caused by adding one new Student-t
component to the candidate mixture is small, e.g. less than 10%, then stop: the current
nn(θ) is our approximation to the target density. Otherwise, go to step 2. Notice that
nn(θ) is a proper density, whereas P (θ) is merely a density kernel. So, the neural
network does not provide an approximation to the target density kernel P (θ) in the
sense that nn(θ) ≈ P (θ). Instead, nn(θ) provides an approximation to the density
of which P (θ) is a kernel in the sense that the ratio P (θ)/nn(θ) has relatively little
variation.

Step 2: Add another Student t distribution with density t(θ|µh,Σh, ν) to the mixture with µh =
argmaxθ w(θ) = argmaxθ{P (θ)/nn(θ)} and Σh equal to minus the inverse Hessian
of log w(θ) = log P (θ) − log nn(θ) evaluated at its mode µh. Here nn(θ) denotes
the mixture of (h − 1) Student t densities obtained in the previous iteration of the
procedure. An obvious initial value for the maximization procedure for computing
µh = argmaxθ w(θ) is the point θi with the highest weight w(θi) in the sample {θi|i =
1, . . . , n}. The idea behind this choice of µh and Σh is that the new t component should
‘cover’ a region where the weights w(θ) are relatively large: the point where the weight
function w(θ) attains its maximum is an obvious choice for the mode µh, while the
scale Σh is the covariance matrix of the local normal approximation to the distribution
with density kernel w(θ) around the point µh.

If the region of integration of the parameters θ is bounded, it may occur that w(θ)
attains its maximum at the boundary of the integration region; in this case minus the
inverse Hessian of log w(θ) evaluated at its mode µh may be a very poor scale matrix; in
fact this matrix may not even be positive definite. In that case µh and Σh are obtained
as estimates of the mean and covariance matrix of a certain ‘residual distribution’ with
density kernel:

res(θ) = max{p(θ)− c̃ nn(θ), 0}, (103)

where c̃ is a constant; we take max{., 0} to make it a (non-negative) density kernel.
These estimates of the mean and covariance matrix of the ‘residual distribution’ are
easily obtained by importance sampling with the current nn(θ) as the candidate density,
using the sample θi (i = 1, . . . , n) from nn(θ) that we already have. The weights
wres(θi) and scaled weights w̃res(θi) (i = 1, . . . , n) are:

wres(θi) =
res(θi)
nn(θi)

= max{w(θi)− c̃, 0} and w̃res(θi) =
wres(θi)∑n
i=1 wres(θi)

, (104)

and µh and Σh are obtained as:

µh =
n∑

i=1

w̃res(θi)θi Σh =
n∑

i=1

w̃res(θi)(θi − µh)(θi − µh)′. (105)

There are two issues relevant for the choice of c̃ in (103) and (104). First, the new t
density should appear exactly at places where nn(θ) is too small (relative to P (θ)),
i.e. the scale should not be too large. Second, there should be enough points θi with
w(θi) > c̃ in order to make Σh nonsingular. A procedure is to calculate Σh for c̃ equal
to 100 times the average value of w(θi) (i = 1, . . . , n); if Σh in (105) is nonsingular,
accept c̃; otherwise lower c̃.
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Step 3: Choose the probabilities ph (h = 1, . . . ,H) in the mixture nn(θ) =
∑H

h=1 ph t(θ|µh, Σh, ν)
by minimizing the (squared) coefficient of variation of the importance sampling weights.
First, draw n points θh

i from each component t(θ|µh,Σh, ν) (h = 1, . . . , H). Then min-
imize E[w(θ)2]/E[w(θ)]2, where:

E[w(θ)k] =
1
n

n∑

i=1

H∑

h=1

ph w
(
θh
i

)k
(k = 1, 2), w

(
θh
i

)
=

P (θh
i )∑H

l=1 pl t
(
θh
i |µl, Σl, ν

) .

(106)

Step 4: Draw a sample of n points θi (i = 1, . . . , n) from our new mixture of t distributions,
nn(θ) =

∑H
h=1 ph t(θ|µh, Σh, ν), and go to step 1; in order to draw a point from

the density nn(θ) first use a draw from the U(0, 1) distribution to determine which
component t(θ|µh, Σh, ν) is chosen, and then draw from this multivariate t distribution.

It may occur that one is dissatisfied with diagnostics like the coefficient of variation of the
IS weights corresponding to the final candidate density resulting from the procedure above.
In that case one may start all over again with a larger number of points n. The idea behind
this is that the larger n is, the easier it is for the method to ‘feel’ the shape of the target
density kernel, and to specify the t distributions of the mixture adequately.

Note that an advantage of the AdMit approach is that it does not require the specification
of a certain bounded region where the random variable θ ∈ Rm takes its values.

After the construction of the NN approximation to the target density, one can simply
use the NN candidate density in importance sampling or the Metropolis-Hastings algorithm.
Here an advantage is that it is very easy to sample from a mixture of t distributions. Conver-
gence properties of the NN sampling methods follow directly from those for the importance
sampling and Metropolis-Hastings algorithms.

Example: NN sampling in two-regime mixture model for the US GNP growth rate

In order to illustrate the advantages of the AdMit methods, we investigate a mixture model for
the analysis of economic growth in the USA, which is also considered by Bauwens et al. (2004)
and the previous subsection of this paper. We consider a mixture model with two AR(1) regimes
for real GNP growth:

yt =
{

β11 + β12yt−1 + εt with probability p,
β21 + β22yt−1 + εt with probability 1− p,

εt ∼ N(0, σ2), (107)

where yt denotes the quarterly growth rate. The data (source: Economagic) consist of ob-
servations from the first quarter of 1959 to the last quarter of 2001. We specify the prior
p(θ) = p(β11, β12, β21, β22, σ, p) = 1/σ. For identification, it is imposed that β11 < β21.

First, the AdMit approach constructs a candidate distribution; in this case it yields a mixture
of 10 Student t distributions. Next, we use this candidate distribution in the (independence
chain) MH algorithm and IS. Sampling results are given by Table 6. The number of draws has
been chosen in order to make the computing time comparable with the methods in the previous
subsection (ARDS methods, MH, IS, and data augmentation). For both AdMit methods, we
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Table 6: NN Sampling results for the two-regime mixture model for US real GNP growth
AdMit-IS AdMit-MH

mean s.d. mean s.d.

β11 0.052 0.743 0.053 0.716

(s.d. 10x) (0.011) (0.013)

β12 0.409 0.284 0.410 0.282

(s.d. 10x) (0.005) (0.006)

β21 1.276 0.762 1.278 0.762

(s.d. 10x) (0.004) (0.009)

β22 -0.026 0.399 -0.025 0.400

(s.d. 10x) (0.002) (0.002)

σ 0.820 0.055 0.820 0.055

(s.d. 10x) (0.000) (0.000)

p 0.547 0.374 0.548 0.374

(s.d. 10x) (0.002) (0.005)

Draws 500 000 500 000

Computing time: NN construction (in s) 73.3 73.3

Computing time: NN sampling (in s) 40.5 40.9

Computing time: total (in s) 113.8 114.2

Acceptance rate (in %) 9.5

5% most influential weights (in %) 67.7

repeat the simulation process ten times with different random seeds, after which we compute
the standard deviations of the ten estimates of the posterior means. Notice that except for the
parameter β12, for which the data augmentation algorithm is somewhat more precise, the AdMit
methods outperform the competing approaches. This is remarkable, as the AdMit methods only
require a kernel of the posterior density (and approximate guesses of the location and scale),
whereas the data augmentation method requires that the conditional posterior distribution of
each parameter is derived. The serial correlation in the AdMit-MH sequence for the parameter
p is 0.914, which is much lower than the serial correlation of 0.996 in the data augmentation
approach.

In this example, the ARDS methods have a lower precision than the AdMit methods, given
the same computing time. This is caused by the much smaller number of draws in the ARDS
algorithms. The process of evaluating a one-dimensional integral over distances given a direction
and sampling from the exact conditional target distribution given a direction is relatively quite
time consuming. However, it should also be noted that the MH acceptance rate is higher and the
IS weight of the 5% most influential draws is lower for the ARDS methods than for the AdMit
algorithms. So, the quality of the draws generated by ARDS is higher than the AdMit draws.
Furthermore, because of the sampling from the exact target distribution given a direction, the
ARDS methods may be more robust and reliable than the AdMit methods in other cases of highly
non-elliptical posterior distributions. An interesting topic for further research is to combine these
algorithms in a clever way.
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4 Concluding remarks

In this paper we discussed several aspects of simulation based Bayesian econometric infer-
ence [SBBEI]. First, we showed that the Bayesian framework provides a natural learning rule,
that allows for optimal learning and (hence) optimal decision making under uncertainty. The
Bayesian framework provides a proper way to consider the sensitivity of estimates and to use
probability statements that indicate a ‘degree of confidence’. We discussed the basic princi-
ples of Bayesian inference (prior and posterior density, Bayes’ rule, Highest Posterior Density
[HPD] region, posterior odds) and described some substantial differences between Bayesian
inference and the frequentist/classical approach. We showed that evaluating integrals by
simulation methods is a crucial ingredient in Bayesian inference.

After that, we discussed some of the most popular and well-known simulation techniques,
plus two recently developed sampling methods: adaptive radial based direction sampling
[ARDS], which makes use of a transformation to radial coordinates, and neural network
sampling, which makes use of a neural network approximation to the posterior distribution
of interest. Both methods are especially useful in cases where the posterior distribution is
not well-behaved, in the sense of having highly non-elliptical shapes. We illustrated the
simulation techniques with several example models, such as a model for the real US GNP
and models for binary data of a US recession indicator.

The development of advanced sampling methods, that perform the evaluation of integrals
efficiently, makes Bayesian inference possible in an ever increasing number of complex models.
This allows for more realistic descriptions of many processes in several fields of research,
for example in finance and macro-economics, leading to more accurate forecasts, a better
quantification of uncertainty, and hence better policies.

It should be noted that we did not attempt to provide a complete survey of simulation
methods. For further reading we refer to the textbooks by, in alphabetical order, Bauwens
et al. (1999), Geweke (2005), Koop (2003), Lancaster (2004) and Rossi et al. (2005).
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