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Abstract

Providing a good formulation is an important part of solving a mixed integer program. We
suggest to measure the quality of a formulation by whether it is possible to strengthen the coef-
ficients of the formulation. Sequentially strengthening coefficients can then be used as a tool for
improving formulations. We believe this method could be useful for analyzing and producing
tight formulations of problems that arise in practice. We illustrate the use of the approach on a
problem in production scheduling. We also prove that coefficient strengthening leads to formu-
lations with a desirable property: if no coefficient can be strengthened, then no constraint can
be replaced by an inequality that dominates it. The effect of coefficient strengthening is tested
on a number of problems in a computational experiment. The strengthened formulations are
compared to reformulations obtained by the preprocessor of a commercial software package. For
several test problems, the formulations obtained by coefficient strengthening are substantially
stronger than the formulations obtained by the preprocessor. In particular, we use coefficient
strengthening to solve two difficult problems to optimality that have only recently been solved.
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1 Introduction

Mixed integer linear programming (MILP) is used to analyze and provide solutions to many prac-
tical problems. Examples of such problems can be found in airline crew scheduling, combinatorial
auctions, electricity generation, financial engineering, sports scheduling and telecommunication
network design. One reason for the success of MILP in these areas is that it is possible to model
important practical problems as MILP problems. This is not an easy task for many applications.
Another important reason is that the MILP problems that are formulated can be solved with
current MILP solvers within a reasonable amount of time.

Unfortunately, the performance of a MILP solver is very dependent on the quality of the for-
mulation of the MILP problem. It is crucial that the LP relaxation gives a good approximation
to the set of mixed integer solutions. For many classes of problems, there is literature on how to
obtain such MILP formulations. If a formulation has many problem specific and/or non-standard
constraints, however, this knowledge might not be useful. It therefore seems desirable to have a
general tool available that can be used to produce tight formulations of MILP problems.

Most MILP solvers have a component called a preprocessor that attempts to repair a bad
formulation (see Brearley, Mitra and Williams [5], Hoffman and Padberg [9] and Savelsbergh [13]).
A typical preprocessing technique examines the formulation of a problem and checks whether a given
structure is present. If so, a number of variables are removed, some coefficients are changed and/or
some constraints are removed. A disadvantage of this heuristic approach is that the structure of
certain problems might not be recognized.

In this paper, we present a general approach for creating tight formulations of MILP problems.
We consider two possible measures for the quality of a formulation. The first measure considers
whether it is possible to replace an inequality constraint of the formulation with a better inequality.
By a ”better” inequality, we mean a valid inequality that strictly dominates the constraint on the
LP relaxation. We call the new inequality a dominating inequality, and the operation of replacing a
constraint with a dominating inequality is called constraint replacement. This operation gives a new
formulation with an LP relaxation that provides a better approximation to the set of mixed integer
solutions. A formulation for which it is not possible to perform constraint replacement is then
considered a good formulation. Observe that constraint replacement does not increase the number
of constraints. A better approximation to the set of mixed integer solutions can also be obtained
by adding cutting planes. However, this also increases the size of the formulation (see Nemhauser
and Wolsey [11] for a general introduction to polyhedral theory and cutting plane algorithms).

The idea of constraint replacement can be viewed as a natural extension of an approach of
Bradley, Hammer and Wolsey [4], where a single constraint of the LP relaxation is considered, and
the integrality constraints are used to improve the coefficients in the constraint. This gives a new
valid inequality that dominates the constraint. Constraint replacement extends this idea to sets of
inequalities, exploiting that several different sets of inequalities (identical in number) can have the
same set of mixed integer solutions, but very different linear relaxations.

An alternative measure of the quality of a formulation is to consider whether it is possible to
strengthen a coefficient. We show (Theorem 1) that it is possible to obtain a formulation that is
good with respect to constraint replacement by sequentially strengthening the coefficients of the
formulation. In other words, a formulation that is good with respect to coefficient strengthening
is also good with respect to constraint replacement. We present the optimization problem for
strengthening a coefficient as much as possible, and we give an algorithm for solving this problem.
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How good are formulations obtained from coefficient strengthening compared to reformulations
obtained from a preprocessor? To answer this question, we apply coefficient strengthening to a
number of test problems in MIPLIB, an electronically available library of MILP problems (Bixby
et al. 1998). The formulations are compared to formulations obtained from the preprocessor
of CPLEX version 9.1. For several MIPLIB instances, the formulations obtained by coefficient
strengthening were substantially stronger than the formulations obtained from the preprocessor
of CPLEX 9.1. For one instance the solution of the LP relaxation was integer after modifying
coefficients. Using coefficient strengthening and branch-and-cut, we were able to solve to optimality
two difficult instances in MIPLIB that have only recently been solved.

Coefficient strengthening can also be used to strengthen the coefficients in the cuts that are
used in MILP solvers. A natural question is how strong these strengthened cuts can be compared
to cuts that have not been strengthened. We investigate this question for mixed integer Gomory
cuts, a class of general purpose cutting planes, in a computational experiment on the MIPLIB
instances. On several test problems, the amount of integrality gap that is closed with strengthened
cuts is more than twice as large as the amount of gap that is closed without strengthening the cuts.
This suggests that it might be useful to include an option in MILP solvers that allows coefficient
strengthening of cuts for difficult instances.

For a practical MILP problem, it seems likely that a reasoning can be found, which is specific
to that particular application, that explains why a coefficient can be strengthened. This suggests
that coefficient strengthening can be used as follows as a tool for constructing tight formulations of
practical MILP problems. First, produce an initial small instance of the problem and strengthen
the coefficients as much as possible. Then try to trace the logic of each strengthened coefficient.
If an explanation can be found, a new model can be constructed that does not have the same
weaknesses as the old model. The result is an understanding of how to build tight formulations for
this problem class. We illustrate how to use this approach to construct a tight formulation for a
problem in production scheduling.

Consider any mixed integer linear program (MILP)

min cT x

s.t. aT
i.x = bi, for i ∈ M=, (1)

aT
i.x ≥ bi, for i ∈ M≥ and (2)
xj integer, for j ∈ NI , (3)

where c, x ∈ Rn, M≥ and M= are index sets for the inequality and equality constraint respectively,
NI ⊆ N := {1, 2, . . . , n} and (ai., bi) ∈ Rn+1 for i ∈ M := M= ∪ M≥. The linear programming
relaxation of MILP is obtained from MILP by dropping (3) and is denoted LP. The sets PI and P
denote the feasible solutions to MILP and LP respectively, and we assume PI 6= ∅. By a formulation
of MILP we mean the set P and the constraints that define P .

The following notation is used to describe polyhedra obtained by eliminating some of the con-
straints defining P . Let S := S= ∪ S≥ denote some subset of the constraints that define P . The
set P (S) := {x ∈ Rn : aT

i.x = bi, i ∈ S=, aT
i.x ≥ bi, i ∈ S≥} denotes the polyhedron obtained from

P by only considering the constraints in S ⊆ M .
Constraint replacement is defined from the following concept. Given a constraint aT

k.x ≥ bk, the
inequality αT x ≥ β dominates aT

k.x ≥ bk on P if P ′ := P (M \ {k})∩ {x ∈ Rn : αT x ≥ β} ⊆ P .
If also P ′ ( P , the inequality αT x ≥ β strictly dominates aT

k.x ≥ bk on P . In this paper, an
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inequality αT x ≥ β that strictly dominates an inequality constraint aT
k.x ≥ bk on P is called a

strictly dominating inequality. If a strictly dominating inequality is valid for PI , it can replace the
constraint it dominates in the description of P and give a tighter approximation to PI .

We are only interested in dominating inequalities αT x ≥ β that are valid for PI , i.e., no mixed
integer solution should be cut off by αT x ≥ β. In other words, αT x ≥ β must be valid for some
relaxation R of PI , where a relaxation of PI is defined to be a superset of PI . Throughout this
paper, R denotes a relaxation of PI . We assume R is a polyhedron, and that PI ⊆ R ⊆ P .

The remainder of this paper is organized as follows. In Section 2 we derive theoretical properties
of constraint replacement and coefficient strengthening. We show that a formulation for which no
constraint can be replaced with a dominating inequality can be obtained by sequentially strength-
ening coefficients. We also present the optimization problem for strengthening a coefficient as much
as possible, and we give an algorithm for solving this problem. Computational results are presented
in Section 3. We test the quality of the formulations in MIPLIB, and we attempt to strengthen the
coefficients in the mixed integer Gomory cuts. In Section 4 we introduce a problem in production
scheduling, and we use coefficient strengthening to produce a tight formulation for this problem.
The proofs of the statements in Section 2 are given in the appendix.

2 Theoretical foundation

In this section we discuss how to improve the formulation of MILP by either strengthening its
coefficients, or by replacing a constraint with a dominating inequality. In Section 2.1 we show how
to use a relaxation R of PI to strengthen the coefficients of an inequality constraint. We characterize
the set of dominating inequalities that can replace a constraint in the formulation of MILP in Section
2.2. The concepts of constraint replacement and coefficient strengthening are related in Section
2.3. In Section 2.4 we present a disjunctive program that formulates the problem of strengthening
a left hand side coefficient. A branch and bound algorithm for solving this disjunctive program is
given in Section 2.5. The proofs of the statements in this section are given in the appendix.

2.1 Coefficient strengthening relative to a polyhedral relaxation

We now discuss how to improve the inequality aT
k.x ≥ bk by modifying a coefficient. We require that

the resulting inequality is valid for R. First consider strengthening the coefficient on a non-negative
surplus variable. Let l ∈ M≥ be arbitrary, l 6= k, and let sl := aT

l. x− bl denote the surplus variable
in the lth constraint. The variable sl is non-negative, and it currently appears in the constraint
aT

k.x ≥ bk with a coefficient of zero. Suppose we can find wk,l > 0 such that the inequality

aT
k.x− wk,l(aT

l. x− bl) ≥ bk (4)

is valid for R. Inequality (4) is stronger than the inequality aT
k.x ≥ bk. Any x ∈ P that satisfies

aT
l. x ≥ bl and (4) also satisfies aT

k.x ≥ bk. Replacing aT
k.x ≥ bk with (4) in the description of

P therefore leads to a polyhedron P ′ satisfying P ′ ⊆ P , i.e., (4) dominates aT
k.x ≥ bk on P .

Furthermore, any x′ ∈ P satisfying aT
k.x

′ = bk and aT
l. x

′ > bl violates (4). Therefore, if such a point
x′ ∈ P exist, (4) strictly dominates aT

k.x ≥ bk on P . Since (4) is valid for R, (4) is also valid for PI .
The best value w∗k,l(R) of wk,l can be found by solving the following linear program (SPk,l(R))

w∗k,l(R) := max{wk,l : (4) is valid for R }. (5)
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The problem SPk,l(R) is a linear program, because the cone of valid inequalities for R is a
polyhedral cone. Also, since aT

k.x ≥ bk is valid for R, SPk,l(R) is feasible. Finally, if SPk,l(R) is
unbounded, then aT

l. x = bl for all x ∈ R. In other words, if SPk,l(R) is unbounded, l can be moved
from M≥ to M=. We also consider this an improvement in the formulation LP of MILP. If the
problem SPk,l(R) is both feasible and bounded, and w∗k,l(R) > 0, then the coefficient on sl in the
constraint aT

k.x ≥ bk can be strengthened.
Observe that, if aT

l. x ≥ bl is of the form xj ≥ 0 where j ∈ N , then solving the problem SPk,l(R)
corresponds to strengthening the coefficient on xj in the constraint aT

k.x ≥ bk. The above procedure
can therefore be used to strengthen the coefficient on any non-negative variable.

It is also possible to use R to strengthen the right hand side of the inequality aT
k.x ≥ bk. This

can be done by solving the following linear program (SPk(R))

b∗k(R) := max{β : aT
k.x ≥ β is valid for R }. (6)

The problem SPk(R) is feasible since aT
k.x ≥ bk is valid for R. Furthermore, the problem SPk(R) is

unbounded if and only if R = ∅. Also, if R = ∅, then PI = ∅. If SPk(R) is feasible and bounded,
and b∗k(R) > bk, the right hand side of aT

k.x ≥ bk can be strengthened from bk to b∗k(R).
In the remainder of the paper, by sequential strengthening, we mean strengthening the formula-

tion LP of MILP by solving a sequence of problems SPk,l(R) and SPk(R) for various combinations
of rows k, l ∈ M≥ and relaxations R. Once a strengthened coefficient is found, or it is realized that
a surplus variable can be fixed to zero, we say the formulation LP of MILP can be improved.

In Section 2.3 our main interest is in formulations LP of MILP that can not be improved by
using R and sequential strengthening. We say that such formulations are optimal relative to R and
sequential strengthening.

Definition 1 Let R be a polyhedral relaxation of PI satisfying PI ⊆ R ⊆ P . The formulation LP
of MILP is optimal relative to R and sequential strengthening, iff

(i) For every k ∈ M≥, we have b∗k(R) = bk (no right hand side can be increased).

(ii) For every k, l ∈ M≥, k 6= l, we have w∗k,l(R) = 0 (no left hand side coefficient can be reduced).

In Section 2.3 we show that formulations which are optimal relative to R and sequential strength-
ening are also optimal relative to R and constraint replacement. We next consider dominating
inequalities.

2.2 Constraint replacement relative to a polyhedral relaxation

We now characterize the set of dominating inequalities. A dominating inequality can replace the
constraint it dominates in the formulation of LP and give a tighter LP relaxation. As in the previous
section, R denotes a polyhedral relaxation of PI satisfying PI ⊆ R ⊆ P . We say the formulation
LP of MILP is optimal relative to R and constraint replacement, if there is no strictly dominating
inequality that is valid for R.

Definition 2 Assume PI ⊆ R ⊆ P and R is a polyhedron. The formulation LP of MILP is optimal
relative to R and constraint replacement iff there is no strictly dominating inequality that is valid
for R
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Below we present a polyhedral cone that characterizes the set of valid inequalities for R that
dominate a given inequality constraint aT

k.x ≥ bk of LP, where k ∈ M≥. We call this cone the
reformulation cone. An inequality that belongs to the reformulation cone has to be both valid for
R and dominate the inequality aT

k.x ≥ bk. The set of valid inequalities for R is denoted CV (R).
The set of inequalities αT x ≥ β that dominate the constraint aT

k.x ≥ bk on P are given by the
following description. To give the description, we need auxiliary variables w0 and {wi}i∈M\{k}.
The inequalities that dominate aT

k.x ≥ bk on P are described by the following system

α = w0ak. −
∑

i∈M\{k}
wiai. (7)

β ≥ w0bk −
∑

i∈M\{k}
wibi (8)

w0 ≥ 0 (9)

wi ≥ 0, i ∈ M≥ \ {k}. (10)

Lemma 1 below gives the properties of the set of (α, β,w0, {wi}i∈M\{k}) that satisfy (7)-(10).
We assume aT

k.x ≥ bk is not redundant for P , i.e., we assume P 6= P (M \ {k}). Observe that, if
aT

k.x ≥ bk is redundant for P , then every valid inequality αT x ≥ β for R dominates aT
k.x ≥ bk on

P . Also observe that, if αT x ≥ β cuts off P (M \ {k}), i.e., if P (M \ {k})∩ {x ∈ Rn : αT x ≥ β} =
∅, then αT x ≥ β trivially dominates aT

k.x ≥ bk on P .

Lemma 1 Assume aT
k.x ≥ bk is not redundant for P , and that the inequality αT x ≥ β does not cut

off every point in P (M \ {k}).

(i) αT x ≥ β dominates aT
k.x ≥ bk on P ⇐⇒ there is a solution to (7)-(10) in which w0 > 0.

(ii) αT x ≤ β is valid for P (M \ {k}) ⇐⇒ there is a solution to (7)-(10) in which w0 = 0.

The system (7)-(10) describes the set of inequalities αT x ≥ β that dominate the constraint
aT

k.x ≥ bk on P . Hence, if we add the condition (α, β) ∈ CV (R) to conditions (7)-(10), we obtain a
description of the set of valid inequalities αT x ≥ β for R that dominate aT

k.x ≥ bk on P .

(7)− (10),

(α, β) ∈ CV (R). (11)

The reformulation cone RCk(R) for a constraint aT
k.x ≥ bk and a polyhedral relaxation R is

defined to be the set of (α, β,w0, {wi}i∈M\{k}) ∈ Rn+1+|M | that satisfy the system (7)-(11). The
reformulation cone RCk(R) lives in a space of dimension (n+1+ |M |). Furthermore, the inequality
αT x ≥ β is valid for R for any (α, β, w0, {wi}i∈M\{k}) ∈ RCk(R), and the reformulation cone
contains all valid inequalities for R that strictly dominate aT

k.x ≥ bk on P .
The reformulation cone also contains inequalities that are equivalent to aT

k.x ≥ bk on P . These
inequalities can replace aT

k.x ≥ bk in the formulation of MILP, but this will not produce a tighter
formulation. We now describe this set of inequalities. Firstly, since aT

k.x ≥ bk is valid for R (because
R ⊆ P ), and the values α = ak., β = bk, w0 = 1 and wi = 0 for i ∈ M \{k} satisfy (7)-(10), RCk(R)
contains the ray {(w0ak., w0bk, w0, 0|M |−1) : w0 ≥ 0}. Secondly, inequalities αT x ≥ β obtained from
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(w0ak.)T x ≥ w0bk by adding the equalities −aT
i.x = −bi, i ∈ M= with scalars {wi}i∈M= are clearly

valid for R. It follows that RCk(R) contains the set of (α, β,w0, {wi}i∈M\{k}) that satisfy

α = w0ak. −
∑

i∈M=

wiai. , (12)

β = w0bk −
∑

i∈M=

wibi , (13)

wi = 0, i ∈ M≥ \ {k} , (14)
w0 ≥ 0. (15)

We call the set of (α, β, w0, {wi}i∈M\{k}) that satisfy (11)-(15) the trivial reformulation cone.
The trivial reformulation cone is denoted TRCk(R). For every (α, β, w0, {wi}i∈M\{k}) ∈ TRCk(R),
replacing aT

k.x ≥ bk with the inequality αT x ≥ β does not give a tighter formulation of MILP. In
the next section, we characterize the case when TRCk(R) = RCk(R), and this case is related to
formulations LP of MILP that are optimal relative to R and sequential strengthening.

2.3 A relationship between constraint replacement and coefficient strengthen-
ing

The purpose of this section is the following relationship between constraint replacement and coef-
ficient strengthening.

Theorem 1 Assuming PI 6= ∅, the formulation LP of MILP is optimal relative to R and sequential
strengthening ⇐⇒ for every constraint aT

k.x ≥ bk, k ∈ M≥, we have RCk(R) = TRCk(R).

Theorem 1 shows that, unless the reformulation cone only contains inequalities that are equiv-
alent to aT

k.x ≥ bk on P , then there is a coefficient in the constraint aT
k.x ≥ bk that can be

strengthened. We note that Theorem 1 implies that for a formulation, which is optimal relative
to R and sequential strengthening, there are no valid inequalities for R that strictly dominate a
constraint of LP.

Corollary 1 Assume the formulation LP of MILP is optimal relative to R and sequential strength-
ening. Then no valid inequality for R strictly dominates an inequality constraint of LP.

The proof of Theorem 1 is obtained by charactering the rays of the cone RCk(R). For an
arbitrary ray (αr, βr, wr

0, {wr
i }i∈M\{k}) of RCk(R), the inequality (αr)T x ≥ βr is valid for R by

definition. Also, if wr
0 = 0, Lemma 1.(ii) shows that (αr)T x ≤ βr is valid for P (M \{k}). It follows

that the equality (αr)T x = βr holds for all x ∈ R when wr
0 = 0. The following lemma characterizes

the case when wr
0 = 0.

Lemma 2 Let (αr, βr, wr
0, {wr

i }i∈M\{k}) ∈ RCk(R) satisfy wr
0 = 0. We have either

(i) R = ∅ (this implies PI = ∅), or

(ii) There exists i ∈ M≥ such that every x ∈ R satisfies aT
i.x = bi

(the ith surplus variable can be fixed to zero), or
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(iii) (αr, βr, wr
0, {wr

i }i∈M\{k}) ∈ TRCk(R)
(the inequality (αr)T x ≥ βr is equivalent to aT

k.x ≥ bk).

Lemma 2 shows that, under the assumption PI 6= ∅, if there is a ray (αr, βr, wr
0, {wr

i }i∈M\{k})
of RCk(R) that satisfies wr

0 = 0, then either the formulation LP of MILP can be improved, or
(αr, βr, wr

0, {wr
i }i∈M\{k}) ∈ TRCk(R). The following lemma considers the case when wr

0 > 0. Wlog
we can assume wr

0 = 1.

Lemma 3 Let (αr, βr, wr
0, {wr

i }i∈M\{k}) ∈ RCk(R) satisfy wr
0 = 1. We have either

(i) There exists l ∈ M≥ \ {k} such that wr
l > 0 and aT

k.x− wr
l (a

T
l. x− bl) ≥ bk is valid for R

(the coefficient on sl in the kth constraint can be improved), or

(ii) There exists b′k > bk such that aT
k.x ≥ b′k is valid for R

(The right hand side in the kth constraint can be improved), or

(iii) (αr, βr, wr
0, {wr

i }i∈M\{k}) ∈ TRCk(R)
(the inequality αT x ≥ β is equivalent to aT

k.x ≥ bk).

Lemma 2 and Lemma 3 show one direction of Theorem 1, i.e., if there is a ray of RCk(R)
which is not in TRCk(R), then it is possible to improve the formulation LP of MILP with R and
sequential strengthening. Lemma 6 in the appendix proves the other direction.

2.4 The optimization problems for strengthening a coefficient relative to the
mixed integer hull

We now present the mathematical problems that need to be solved to strengthen a coefficient in
the important special case when R = Conv (PI). The right hand side of an inequality aT

k.x ≥ bk,
k ∈ M≥, can be strengthened relative to Conv (PI) by solving the mixed integer program

min{aT
k.x : x ∈ PI}.

We next discuss how to strengthen the coefficient on a surplus variable sl := aT
l. x− bl ≥ 0 in the

constraint aT
k.x ≥ bk, where k, l ∈ M≥ and k 6= l. We will demonstrate that the following disjunctive

program (DPk,l) solves the problem of whether or not the coefficient on sl in the constraint aT
k.x ≥ bk

can be strengthened.

wdp
k,l = inf aT

k.y − λbk

s.t. aT
i.y ≥ λbi, ∀i ∈ M≥, (16)

aT
i.y = λbi, ∀i ∈ M=, (17)

aT
l. y − λbl = 1, (18)

λ ≥ 0, (19)
yj ≤ dλ ∨ yj ≥ (d + 1)λ, ∀(j, d) ∈ NI × Z. (20)

The following proposition shows that, if DPk,l is infeasible, then the lth constraint is satisfied
with equality by all mixed integer solutions. In that case, the formulation LP of MILP can be
improved by moving l from M≥ to M=.
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Proposition 1 Assume PI 6= ∅. The problem DPk,l is feasible ⇐⇒ there exists x ∈ PI such that
aT

l. x > bl.

Now assume DPk,l is feasible. Since aT
k.y − λbk ≥ 0 is part of the formulation of DPk,l, the

problem DPk,l is bounded. Proposition 2 below shows wdp
k,l = w∗k,l(Conv (PI)), and that wdp

k,l is
attained by a feasible solution to DPk,l. It follows that the infimum in the definition of DPk,l can
be replaced by a minimum.

Proposition 2 Assume DPk,l is feasible and the right hand side of aT
k.x ≥ bk can not be increased.

(i) wdp
k,l = w∗k,l(Conv (PI)).

(ii) The optimal objective value wdp
k,l to DPk,l is attained by a feasible solution to DPk,l.

It follows that DPk,l is indeed the optimization problem for finding the optimal coefficient on sl

in the constraint aT
k.x ≥ bk. However, we note that the assumption of Proposition 2 that the right

hand side of aT
k.x ≥ bk can not be strengthened is necessary for this to be true. This suggests that

right hand sides should be strengthened before left hand side coefficients are strengthened. We give
an algorithm for solving DPk,l in the next section.

2.5 A branch and bound algorithm for solving DPk,l

A branch and bound algorithm for strengthening a left hand side coefficient is now presented, i.e.,
an algorithm for solving DPk,l. This branch-and-bound method is called B&Bdp in the following
for simplicity. We assume the right hand side of the constraint aT

k.x ≥ bk can not be strengthened.
Let LPk,l denote the LP relaxation of the disjunctive program DPk,l, i.e., the linear program

obtained from DPk,l by eliminating the constraints (20). B&Bdp starts by solving LPk,l. Let
(ylp, λlp) denote an optimal solution. If (ylp, λlp) satisfies constraints (20), that is if ylp

j /λlp is
integer for all j ∈ NI , DPk,l is solved.

If (ylp, λlp) does not satisfy (20), there is a disjunction yj′ ≤ d′λ ∨yj′ ≥ (d′ + 1)λ which is
violated by (ylp, λlp) for some j′ ∈ NI and d′ = bylp

j′ /λlpc. B&Bdp now creates two subproblems.
One subproblem is obtained from DPk,l by adding the constraint yj′ ≤ d′λ to the formulation, and
the other is obtained by adding the constraint yj′ ≥ (d′ + 1)λ. The fact that B&Bdp branches on
disjunctions with two variables is the main difference between B&Bdp and the usual branch-and-
bound method.

The two subproblems are now solved recursively by B&Bdp. This process creates a branch-and-
bound tree, where each node of the tree has a disjunctive program associated to it.

We now consider the processing of an arbitrary node v. Define the following sets.

S≤ := {(j, d) ∈ NI × Z : yj ≤ dλ is enforced at v},
S≥ := {(j, d) ∈ NI × Z : yj ≥ (d + 1)λ is enforced at v},

and let S:= S≤ ∪ S≥. The disjunctive program DPk,l(S) that must be solved at node v is given by

min aT
k.y − λbk

s.t. (16)− (20),

yj ≤ dλ, ∀(j, d) ∈ S≤,

yj ≥ (d + 1)λ, ∀(j, d) ∈ S≥.
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Let LPk,l(S) denote the linear program obtained from DPk,l(S) by deleting the disjunctive
constraints (20). To process node v, B&Bdp first solves LPk,l(S). If LPk,l(S) is feasible, let
(ylp(S), λlp(S)) denote an optimal solution, and let wlp

k,l(S) denote the optimal objective value. Also,

let wf
k,l denote the objective value of the best known solution to DPk,l, where initially wf

k,l = ∞.
The following four cases can occur.

(1) The problem LPk,l(S) is infeasible: this implies that DPk,l(S) is also infeasible. B&Bdp then
closes node v, i.e., node v is deleted from the list of open nodes.

(2) LPk,l(S) is feasible, and wlp
k,l(S) ≥ wf

k,l: this means that no feasible solution to DPk,l(S) can

have a better objective value than the solution with objective value wf
k,l. In this case B&Bdp

closes node v, and node v is said to be fathomed by bound.

(3) LPk,l(S) is feasible, and (ylp(S), λlp(S)) satisfies the disjunctive constraints (20): this means
(ylp(S), λlp(S)) is feasible for both DPk,l(S) and DPk,l. If wlp

k,l(S) < wf
k,l, the solution

(ylp(S), λlp(S)) is better than the best known solution to DPk,l. B&Bdp therefore updates
wf

k,l to wlp
k,l(S). Since DPk,l(S) is solved, B&Bdp closes node v.

(4) LPk,l(S) is feasible, and (ylp(S), λlp(S)) does not satisfy the disjunctive constraints (20): in
this case one can choose (j′, d′) ∈ NI × Z such that (ylp(S), λlp(S)) violates the disjunction
yj′ ≤ λd′ ∨ yj′ ≥ λ(d′ + 1). B&Bdp then creates two nodes v≤ and v≥ that are added to the
list of open nodes. The constraints from (20) enforced on v≤ are given by (S≤∪{(j′, d′)}, S≥),
and the constraints enforced on v≥ are given by (S≤, S≥ ∪ {(j′, d′)}).

This finishes the processing of node v. Next B&Bdp selects another open node for processing
(if an open node is available). This is continued until no more open nodes are available.

The following observations can be used to reduce the computational effort when a number of
strengthening problems are solved in sequence. Consider two problems DPk,l and DPq,l, where
k, l, q ∈ M≥, k 6= l, k 6= q and l 6= q. Observe that any feasible solution (yf , λf ) to DPk,l is also
a feasible solution to DPq,k. In particular, if (yf , λf ) is feasible for DPk,l, and aT

q.y
f = λfbq, then

(yf , λf ) is an optimal solution to DPq,k. In other words, solving the problem DPk,l also solves other
strengthening problems.

Finally note that any lower bound on wdp
k,l provides a valid coefficient on sl in the constraint

aT
k.x ≥ bk. Hence, as a heuristic, B&Bdp can be terminated after enumerating a number of nodes.

Also, constraints of DPk,l can be removed as a heuristic before starting the algorithm, because this
ensures a valid lower bound on the value of the original disjunctive program.

3 Effect of Coefficient Strengthening

We now apply coefficient strengthening to a number of MILP instances from the MIPLIB library.
The questions we attempt to answer are the following.

(a) Are the MIPLIB instances well formulated, and to what extend does a state-of-the-art pre-
processor repair a bad formulation?
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(b) Can the coefficients in mixed integer Gomory cuts be strengthened? If so, how significant
can the difference be between strengthened cuts and cuts that have not been strengthened?

(c) Can coefficient strengthening be used to solve difficult mixed integer programs?

We use instances from the MIPLIB 3.0 and MIPLIB 2003 libraries in our experiments. MIPLIB
2003 is an updated version of MIPLIB 3.0. To simplify the discussion, we refer to the instances in
both libraries as the MIPLIB instances. We use the software of CPLEX for our experiments (version
9.1). Many formulations in MIPLIB contain a large number of coefficients that can be strengthened
with the preprocessor of CPLEX 9.1. In order to make a fair comparison with the preprocessor of
CPLEX 9.1, and to measure the additional effect of coefficient strengthening, the preprocessor of
CPLEX 9.1 is applied to the MIPLIB instances before applying coefficient strengthening. Hence,
in the following, when we refer to an instance of MIPLIB, we mean the formulation obtained after
applying the preprocessor of CPLEX 9.1.

The remainder of this section is organized as follows. In Section 3.1 we present the algorithm we
have implemented for coefficient strengthening. The quality of the MIPLIB formulations is tested
in Section 3.2. We attempt to strengthen the coefficients in mixed integer Gomory cuts in Section
3.3. Finally, coefficient strengthening is used to solve two difficult problems in MIPLIB in Section
3.4.

3.1 An algorithm for coefficient strengthening

The algorithm we use for strengthening coefficients is now presented. This algorithm is used in
later sections for computational experiments.

We only attempt to strengthen coefficients on binary variables. The reason is that coefficient
strengthening is easier for binary variables than for other variables. For a binary variable xj and
a constraint aT

k.x ≥ bk, the inequality aT
k.x + δxj ≥ bk is valid for PI if and only if it is valid

for PI ∩ {x : xj = 1}. In other words, only one side of the integer disjunction on xj needs to
be considered, and the strengthening problem reduces to a mixed integer program. Furthermore,
for most problems in MIPLIB, binary variables are the only integer variables that appear in the
formulation.

We do not try to strengthen coefficients in constraints that express bounds on the variables,
i.e., constraints of the form xj ≤ uj , or of the form xj ≥ lj , where lj < uj . Bounds are not treated
as other constraints by an LP solver. Changing a coefficient in such a constraint would therefore
be similar to adding a constraint.

To improve the coefficient on a binary variable xj in the constraint aT
k.x ≥ bk, where k ∈ M≥

and j ∈ NI , the following problem MIPj,k is given to CPLEX 9.1 and solved.

min aT
k.x− bk

s.t. aT
i.x = bi, ∀i ∈ M=, (21)

aT
i.x ≥ bi, ∀i ∈ M≥, (22)
xj = 1, (23)
xs integer, ∀s ∈ NI \ {j}. (24)

Let x∗ be an optimal solution to MIPj,k. The strengthened coefficient on xj is δ∗j,k := bk−aT
k.x

∗.
If δ∗j,k < 0, the inequality aT

k x + δ∗j,kxj ≥ bk is stronger than aT
k x ≥ bk. If δ∗j,k = 0, the coefficient
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on xj in the constraint aT
k x ≥ bk can not be strengthened. Observe that, if x∗j′ = 1 and aT

k′x
∗ = bk′

for some binary variable j′ ∈ NI \ {j} and constraint k′ ∈ M≥ \ {k}, then x∗ is also an optimal
solution to MIPj′,k′ , and x∗ certifies that the coefficient on xj′ can not be strengthened in the
constraint aT

k′x ≥ bk′ . After solving the problem MIPj,k, we therefore identify all pairs (j′, k′) of
binary variables and constraints that satisfy x∗j′ = 1 and aT

k′x
∗ = bk′ , and the problem MIPj′,k′ will

not be solved.
We measure the quality of a formulation by the amount of integrality gap that remains. We

therefore only try to strengthen coefficients on binary variables that have a positive value in the
current LP solution. Strengthening coefficients on variables with a value of zero in the current
solution does strengthen the formulation. However, it does not change the integrality gap.

The variables are considered sequentially, and all strengthening problems are solved for a given
variable before considering the next variable. The binary variable that has the largest positive
value in the current LP solution is chosen as the next variable (ties broken arbitrarily). We stop
the strengthening algorithm when all strengthening problems have been considered once, because
all coefficients have then been strengthened as much as possible.

3.2 Strengthening the coefficients of the MIPLIB instances

We now apply coefficient strengthening to the formulations in MIPLIB. For all test problems, we
attempt to create strengthened formulations with the following property.

(*) The LP solution to the formulation is an LP solution to a formulation for which no coefficient
on any binary variable can be strengthened.

We do not create formulations for which no coefficient on a binary variable can be strengthened.
We only produce the LP solution of such a formulation. There might be coefficients on binary
variables with a value of zero in the LP solution that can be strengthened. However, strengthening
these coefficients does not change the LP solution, and does therefore not change the amount of
integrality gap that is closed.

Table 1 and Table 2 below contain our results for those instances for which we were able to
create formulations that satisfy (*). Table 1 contains those instances for which no coefficient could
be strengthened, and Table 2 contains the instances where some coefficients could be strengthened.
The second and third columns contain the size of the problems after applying the preprocessor
of CPLEX 9.1. The columns headed ”Preprocessed LP value” contain the objective values of the
LP relaxations. The column headed ”Strengthened LP value” in Table 2 contains the objective
values after applying the strengthening algorithm. The columns headed ”Value of MILP optimum”
contain the objective values of the optimal mixed integer solutions. Finally, the column headed
”Gap closed” in Table 2 contains the amount of integrality gap that is closed by our algorithm,
where the gap closed is defined by (Str. LP - Prep. LP)/(MILP - Prep. LP).

Not all instances in MIPLIB are included in Table 1 and Table 2. The problem flugpl does
not involve any binary variables and is therefore excluded from our experiments. Other problems
are only described with equalities (for example the instances air04, air05, fiber, markshare1 and
markshare2). Since we only attempt to strengthen (structural) inequalities, these problems do not
have any coefficients that can be strengthened. There are also problems in MIPLIB that do not
have any integrality gap (for instance the problems dsbmip and enigma). Since we measure the
quality of a formulation by the amount of integrality gap that remains, we excluded these instances
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Problem Number of Number of Preprocessed Value of MILP
name constraints variables LP value optimum

10teams 210 1600 897 (=) 904
bell3a 86 100 862117 874375
egout 35 47 242.524 299.001
fixnet6 477 877 3190.04 3981

gt2 28 181 20146.76 21166
khb05250 100 1299 95919464 (=) 106940226
l152lav 97 1988 4656.36 (=) 4722

lseu 28 86 947.96 1120
mas74 13 148 10482.80 (=) 11801.19
mas76 12 148 38893.90 (=) 40005.05

mod008 6 319 290.93 (=) 307
modglob 286 384 19790206 (=) 20099766
opt1217 64 768 -20.02 (=) -16

pk1 45 86 0 (=) 11
pp08a 133 234 2748.35 (=) 7350

pp08acuts 239 235 5280.61 (=) 7350
qiu 1192 840 -931.639 (=) -132.873

qnet1o 245 1330 12907.78 16029.69
rgn 24 180 48.799 (=) 82.199

set1ch 423 643 30269.86 49689.50
vpm1 128 188 16.43 20

Table 1: Preprocessed MIPLIB instances that can not be strengthened

as well. Finally, some instances in MIPLIB do not appear in Table 1 and Table 2 because we were
unable to provide a formulation that satisfies (*) within a reasonable amount of time.

We first discuss the results in Table 1. For all problems in Table 1, no coefficient on any binary
variable that has a positive value in the LP solution can be strengthened. We offer two explanations
for this: either these problems are well formulated, or the preprocessor of CPLEX 9.1 strengthens
the coefficients that can be strengthened. For the problems 10teams, khb05250, l152lav, mas74,
mas76, mod008, modglob, opt1217, pk1, pp08a, pp08acuts, qiu and rgn marked with a ”=” sign in
Table 1, we note that the integrality gap before and after applying the preprocessor of CPLEX 9.1
remains the same. We suggest this means that these instances are well formulated, and that this
explains why no coefficient can be strengthened.

For the remaining problems in Table 1, the preprocessor of CPLEX 9.1 reduced the integrality
gap. For some problems, this reduction was quite substantial (the problems egout, fixnet6, gt2,
lseu, qnet1o and set1ch are examples of this). It is interesting that the preprocessor of CPLEX 9.1
is able to create formulations that satisfy (*) for these instances, since this is achieved in a very
small amount of time.

We next consider the results in Table 2. For all of these problems, some coefficients could be
strengthened. For the problems cap6000, misc06, p2756 and vpm2, coefficient strengthening did
not close any of the integrality gap. Coefficient strengthening did also not have a large impact on
the integrality gap for the instances bell5, dcmulti, gesa2, gesa2o, p0282 and tr12-30. This suggests
that these instances are either relatively well formulated, or that the preprocessor of CPLEX 9.1
identifies and modifies the most interesting coefficients that can be strengthened.

For the remaining ten instances, coefficient strengthening significantly reduced the integrality
gap. The impact of coefficient strengthening was most dramatic for the problem P0201, where the
integrality gap was completely eliminated. In fact, the solution to the strengthened formulation is
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Problem Number of Number of Preprocessed Strengthened Value of MILP Gap
name constraints variables LP value LP value optimum closed

bell5 77 94 8341834.36 8343652.39 8699689.24 0.5%
cap6000 2095 5911 -2412601.33 -2412601.33 -2412441 0%
dcmulti 239 515 184034.38 184136.65 188182 2.5%

gen 384 543 58307.89 58334.17 58349.09 63.8%
gesa2 1344 1176 25492512.14 25501347.05 25779856.37 3.1%
gesa2o 1176 1152 18717600.80 18733189.78 19020967.49 5.1%
gesa3 1296 1080 27846449.46 27885122.81 27991042.65 26.7%
gesa3o 1104 1032 12274783.19 12287562.58 12432193.38 8.1%
misc03 95 153 1910 2520.29 3360 42.1%
misc06 461 1317 12841.69 12841.69 12850.86 0%
misc07 211 253 1415 1937.5 2810 37.5%

nsrand-ipx 535 4158 49667.9 50257.6 51200 38.5%
p0033 13 28 2262.55 2428.06 2513 66.1%
p0201 107 183 7155 7615 7615 100%
p0282 160 200 179990.30 180169.64 258401 0.2%
p0548 140 451 4533.81 5275.54 8691 17.8%
p2756 702 2642 2701.67 2701.67 3124 0%
qnet1 363 1417 14274.10 14998.43 16029.69 19.3%

tr12-30 722 1052 13924.2 14324.1 130596 0.2%
vpm2 128 188 11.14 11.14 13.75 0%

Table 2: Preprocessed MIPLIB instances that can be strengthened

integer. Coefficient strengthening therefore solved this problem. Two other interesting examples
are the problems misc03 and misc07. For both of these instances, the preprocessor of CPLEX 9.1
did not close any of the integrality gap, whereas roughly 40% of the integrality gap was closed
by coefficient strengthening. Finally we note that 38.5% of the integrality gap was eliminated by
coefficient strengthening for the problem nsrand-ipx. This is interesting because this is a difficult
instance for CPLEX 9.1 to solve. We will investigate this instance in more detail in Section 3.4.

We note that the difficulty of solving the strengthening problems associated with a given instance
is not necessarily related to the difficulty of solving the instance. For example, the problems nsrand-
ipx and tr12-30 are known to be difficult for CPLEX 9.1. Nevertheless, we were able to solve all
the strengthening problems associated with these two instances within a couple of minutes.

Conversely, the instances blend2 and rout are easy problems. However, these instances do not
appear in neither Table 1 nor Table 2 because we were unable to solve the associated strengthening
problems within a reasonable amount of time.

We conclude that coefficient strengthening can be a useful tool for analyzing the strength of a
formulation of a mixed integer program. Our experiments also suggest that it may be possible to
improve the performance of the preprocessor of CPLEX 9.1.

3.3 Strengthening the coefficients in mixed integer Gomory cuts

Coefficient strengthening can be applied to any MILP formulation. Coefficient strengthening can
therefore also be used on formulations that include cuts. For a given class of cuts, a natural question
is whether the coefficients in these cuts can be strengthened. Furthermore, if so, do strengthened
cuts lead to significantly stronger formulations than formulations obtained with non-strengthened
cuts? We now investigate these questions for mixed integer Gomory (MIG) cuts [8].

Initial experiments that we performed showed that MIG cuts almost always have coefficients
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that can be strengthened. The purpose of this section is to measure the quality of formulations
that can be obtained with strengthened MIG cuts.

We designed the following computational experiment for this purpose. We compare the quality
of two formulations obtained from two different cutting plane algorithms. Both cutting plane
algorithms use MIG cuts. The difference is that one cutting plane algorithm attempts to strengthen
the coefficients in the MIG cuts, whereas the other does not. For simplicity, we call the cutting
plane algorithm that applies coefficient strengthening the strengthened cutting plane algorithm.
The other cutting plane algorithm is called the pure cutting plane algorithm.

Both cutting plane algorithms maintain a formulation of the MILP problem. The LP relaxation
of the MILP problem is the starting formulation for both algorithms. Five iterations are performed
by the two algorithms starting from this initial formulation, where an iteration is defined below. At
the start of every iteration of the two cutting plane algorithms, a formulation of the MILP problem
is given, and the result of an iteration is a new formulation of the MILP problem.

A cut pool is maintained by both cutting plane algorithms. The cut pool is used to store cuts
that have been removed from the formulation. The cuts are stored in a cut pool because they might
become useful at a later stage of the algorithm. The purpose of the cut pool is to avoid that the
size of the formulation becomes too large.

MIG cuts can be derived from an optimal solution xlp to a formulation of the MILP problem
(this formulation can contain cuts). Each integer variable with a fractional value in xlp can be used
to produce exactly one MIG cut.

The pure cutting plane algorithm can now be described as follows. Every iteration has a
starting formulation associated to it, where the LP relaxation of the MILP problem is the starting
formulation for the first iteration. The cut pool is initially empty. The following steps are performed
in every iteration of the pure cutting plane algorithm.

(1) Let xstart be the optimal solution to the current formulation.

(a) Generate all MIG cuts that can be obtained from xstart.

(b) Find all cuts in the cut pool that are violated by xstart (if any).

(2) Add all cuts obtained in step 1 to the current formulation, and re-optimize the corresponding
linear program. Let xend be the optimal solution. If xend is integer - STOP.

(3) Find all cuts in the formulation that are not satisfied with equality by xend, and move these
cuts to the cut pool.

The formulation obtained at the end of an iteration of the pure cutting plane algorithm con-
sists of the original constraints, and the cuts that remain after step 3 has been performed. This
formulation is the starting formulation for the next iteration.

The difference between the strengthened cutting plane algorithm and the pure cutting plane
algorithm is the following. In the strengthened cutting plane algorithm, the coefficients in the
active cuts that remain after step 3 has been performed are strengthened in every iteration. In
other words, the strengthened cutting plane algorithm performs the following fourth step in every
iteration.

(4) Strengthen the coefficients on the binary variables in the cuts in the current formulation.
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The coefficients in the cuts are strengthened with the algorithm described in Section 3.1. Ob-
serve that we only attempt to strengthen coefficients in cuts. Also, we only consider binary variables
that have a positive value in the current LP solution. The question is how much impact step 4
above can have on the quality of the resulting formulation.

We now discuss the computational results. We experienced that the strengthening problems
can be difficult to solve for some coefficients in the cuts. This seems to be because the coefficients
in MIG cuts can be very fractional. We chose a very high accuracy for the strengthened coefficients
to ensure validity (the tolerance was set to 10−8), and this was hard to achieve for some coefficients.
For those test problems where we observed that some strengthening problems were difficult to solve,
we did not necessarily solve all strengthening problems to optimality. An upper bound on the size
of the branch-and-bound tree was enforced on the strengthening problems for these instances.

Table 3 contains the main results of our experiment. All instances in Table 3 (except the problem
rout) refer to formulations after applying coefficient strengthening to the original formulations. For
all test problems, the strengthened cutting plane algorithm closed more integrality gap than the
pure cutting plane algorithm. Among all MIPLIB instances, we only included those instances in
Table 3 where the difference between the two algorithms was most significant. More precisely,
Table 3 contains those instances where the difference in the amount of integrality gap closed by
the two algorithms was more than 5%. We note that this implies that problems for which both
cutting plane algorithms closed more than 95% of the integrality gap are excluded from Table 3.
This was the case for the instances 10teams, egout, gt2, p0033, p0548 and p2756. In particular, the
pure cutting plane algorithm (and the strengthened cutting plane algorithm) produced an integer
solution after one iteration for the problem p0033.

The first five columns of Table 3 have the same meaning as described earlier for Table 1 and
Table 2. The column headed ”Gap closed pure” (resp. ”Gap closed strengthened”) contains the
amount of integrality gap that was closed after five iterations of the pure (resp. strengthened)
cutting plane algorithm. For some problems, it was necessary to enforce a bound on the size of
the branch-and-bound trees created when solving the strengthening problems, and this bound is
given in the column headed ”Node bound”. Finally, the ratio between the amount of integrality
gap closed by the strengthened cutting plane algorithm and the amount of integrality gap closed
by the pure cutting plane algorithm is given in the column headed ”Ratio”.

The results in Table 3 demonstrate that strengthened mixed integer Gomory cuts can be sub-
stantially stronger than mixed integer Gomory cuts that have not been strengthened. For eleven
of the instances in Table 3, the strengthened cutting plane algorithm closed more than twice as
much of the integrality gap than the pure cutting plane algorithm. This was most impressive for
the problem misc07, where the strengthened cutting plane algorithm closed a factor of 17.8 more
of the integrality gap than the pure cutting plane algorithm.

We have only tested the effect of coefficient strengthening on mixed integer Gomory cuts. It
would be interesting to investigate the effect of coefficient strengthening when several classes of
cuts are used in combination.

3.4 Solving two difficult MIPLIB instances with coefficient strengthening

We now use coefficient strengthening to solve the problems nsrand-ipx and roll3000 of MIPLIB 2003.
Table 4 contains the main results. These problems have only recently been solved to optimality
(see [10] for a discussion on how to use Xpress-MP to solve these problems).
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Problem Number of Number of Strengthened MILP Gap closed Gap closed Node Ratio
name constraints variables LP value value Pure Strengthened bound

bell5 77 94 8343652.39 8699689.24 25.0% 76.6% - 3.1
dcmulti 239 515 184034.38 188182 60.8% 76.2% - 1.3
fiber 290 1049 186320 394147.58 85.7% 96.4% 10000 1.1
gen 384 543 58334.17 58349.09 25.7% 36.1% - 1.4

l152lav 97 1988 4656.36 4722 20.0% 49.9% 1000 2.5
lseu 28 86 947.96 1120 41.0% 79.9% - 1.9

mas74 13 148 10482.80 11801.19 8.2% 33.5% 100000 4.1
mas76 12 148 38893.90 40005.05 7.1% 42.7% - 6.0
misc03 95 153 2520.29 3360 16.6% 91.2% - 5.5
misc07 211 253 1937.5 2810 3.4% 60.5% - 17.8
mod008 6 319 290.93 307 43.2% 65.5% - 1.5
p0282 160 200 180169.64 258401 14.5% 58.7% - 4.0
qiu 1192 840 -931.639 -132.873 7.9% 20.8% 1000 2.6

qnet1 363 1417 14998.43 16029.69 26.8% 59.3% 100 2.2
qnet1o 245 1330 12907.78 16029.69 47.4% 53.0% 100 1.1

rgn 24 180 48.799 82.199 33.1% 69.3% - 2.1
rout(NS) 290 555 -1393.39 -1297.69 8.2% 36.7% 100 4.5

vpm2 128 188 11.14 13.75 34.9% 39.8% - 1.1

Table 3: Strengthening 5 rounds of mixed integer Gomory cuts

We first discuss how we solve the problem nsrand-ipx. We start with creating the formulation of
this instance obtained in Section 3.2. The LP value of the strengthened formulation of this instance
is 50257.6 (recall that strengthening the coefficients in the initial formulation of nsrand-ipx closed
38.5% of the initial integrality gap). For this formulation, no coefficient on a variable that has a
positive value in the optimal solution of the LP relaxation can be strengthened. The next step
we perform on this formulation is to also strengthen the coefficients on the variables that have a
value of zero in the optimal solution to the LP relaxation. This does not change the amount of
integrality gap that is closed, but does tighten the formulation. As a result, we obtain a formulation
of nsrand-ipx for which no coefficient of any binary variable can be strengthened (a node bound
was not needed).

The pure cutting plane algorithm was then applied for five iterations to give the final formula-
tion. The cuts that were inactive at the end of the cutting plane algorithm were removed from the
formulation. The final number of constraints (after adding the cuts) and the objective value of the
LP relaxation of the resulting formulation are given in Table 4.

This gives the final formulation that we attempt to solve with CPLEX 9.1. The amount of
time used to construct this formulation was roughly two hours. The formulation was given to
CPLEX 9.1 with the option ”strong branching” and solved. The number of branch-and-bound
nodes needed to solve this formulation with this approach and the amount of time needed are given
in the last two columns of Table 4. As can be seen in the table, the amount of time used was quite
substantial. However, we can mention that CPLEX 9.1 creates a branch-and-bound tree with more
than 4 million nodes when solving the problem mas74, even though it does not take more than an
hour to solve the problem. Hence, the main reason for the difference in time to solve these two
instances is the size of the problems, and not the size of the branch-and-bound tree.

We now explain how we solved the problem roll3000. It was not possible to strengthen the
coefficients in this formulation as much as possible, because it was too time consuming. Instead,
the following simple heuristic for strengthening a coefficient was used. To strengthen the coefficient

16



Problem Original Original Original MILP Final Final Number Total

name number of number of LP value number of LP of time

constraints variables value constraints value nodes

nsrand-ipx 535 4158 48880 51200 557 50466.55 171500 42h 33m 10s
roll3000 960 1170 11098.05 12890 1529 11965.64 1485100 486h 28m 37s

Table 4: Computational results for the problems nsrand-ipx and roll3000

on the binary variable xj in the constraint aT
k.x ≥ bk, we solved the linear program min{aT

k.x : x ∈
P and xj = 1}. If the optimal solution x∗ satisfies aT

k.x
∗ > bk, the coefficient ak,j on xj can be

strengthened to bk −
∑

l∈N\{j} ak,lx
∗
l .

The initial formulation is strengthened by strengthening the coefficients on all binary variables,
i.e., coefficients on variables with a value of zero in the LP solution are also strengthened. As
mentioned earlier, this does not change the LP solution, but does improve the quality of the
formulation. Also, since a heuristic strengthening procedure is applied, a second pass through
the variables might provide further improvements. We therefore iterate the procedure until no
coefficients can be strengthened.

After strengthening the initial formulation, ten iterations of the strengthened cutting plane
algorithm are performed, where we used the relaxation Rj = P ∩ {x : xj ∈ {0, 1}} (instead
of the mixed integer hull) to strengthen the coefficients on xj . To improve the quality of the
resulting formulation, the following modifications were made to the strengthened cutting plane
algorithm. Firstly, coefficients on binary variables that have a value of zero in the LP solution are
also strengthened. This increased the computational effort substantially, but proved to be crucial
for obtaining a formulation that could be solved with CPLEX 9.1. Secondly, instead of simply
deleting the cuts that were not active at the current LP solution, we only deleted cuts that were
redundant for the formulation. Given a formulation {x ∈ Rn : aT

i.x ≥ bi, i ∈ M} of a mixed integer
program, the inequality aT

k.x ≥ bk is redundant for the formulation, if the optimal objective value
to the linear program min{aT

k.x : aT
i.x ≥ bi, i ∈ M \ {k}} is at least bk. After adding a round of

MIG cuts to the formulation, every cut was tested for redundancy in the formulation. This was
also an expensive operation, but it was important that all non-redundant cuts were present in the
final formulation.

The size and quality of the final formulation are shown in the last row of Table 4. CPLEX 9.1.
used 486 hours to solve this formulation to optimality by examining roughly 1.5 million nodes with
”strong branching”.

4 Strengthening a scheduling formulation

We now use coefficient strengthening to obtain an improved formulation of a specific optimization
problem. More precisely, starting from an initial MILP model of the problem, we first produce an
improved formulation for some specific instances by using the strengthening procedure. Then we
analyze the strengthened formulations to produce an improved MILP model which is valid for all
data instances of the problem. We illustrate this on a specific continuous time scheduling problem
involving both batch tasks and continuous tasks, which is typical of process and chemical industries.
The starting point is an initial model of this scheduling problem. We then generate some (small)

17



instances of this model and strengthen their coefficients. Finally we analyze the strengthened for-
mulations in order to understand how coefficients can be strengthened for general data. In other
words, our approach is to use the strengthening procedure as a tool to build tight formulations for
a certain problem class.

As a very simplified example, consider the production facility whose process flows are represented
in Figure 1 . This production process produces a single product and consists of several stages:

1. An initial product is produced in batches in two identical reactors. The production process of
each reactor is characterized by its duration p = 3 [h] and its batch size B = 8 [m3], defined
as the quantity of the product obtained at the end of a batch. The reactors can process
simultaneously.

2. At the end of a batch, the product is discharged from the reactor into a buffer. A new batch
can then be started in the reactor. The buffer is characterized by its capacity S = 15 [m3],
which is the maximum quantity of the product it can contain. Both reactors feed the same
buffer.

3. The product is then discharged from the buffer and it is used to perform a continuous task
which outputs the finished product. The continuous task is characterized by its minimum
and maximum process rates, respectively ρ = 1 and ρ = 10 [m3/h], defined as the minimum
and maximum quantity of product processed per unit of time.

reactor 

I

reactor 

II

buffer stock continuous flow

Figure 1: A simple instance of process flows

We refer to Pochet and Warichet [14] for extensions of this simple scheduling problem that
involves more stages in the process flow, and in which batch tasks are decomposed into subtasks
to model the utilization of scarce resources shared by the different reactors.

The purpose of the short term scheduling problem is to build a production schedule (start times
for batch tasks, process rate over time for the continuous task) that maximizes the total production
of the finished product. The production schedule can not violate the capacity restrictions for the
reservoir.

Traditionally, this scheduling problem is formulated by dividing the scheduling horizon into
discrete time periods of uniform length. The drawback of this discrete time formulation is usually
that the time period length must be very small in order to accurately model the start times and
sequence of events (e.g. start time of a batch task), even though the number of events occurring
during the whole time horizon is typically very small. Consequently, the size of the formulation

18



becomes very large, which makes it very difficult to solve real life instances to optimality.
To overcome this difficulty, continuous time formulations have been proposed in which the schedul-
ing horizon is divided into a number of time slots (time periods with a non-uniform duration). The
duration of each time slot is a decision variable, and the end of each time slot corresponds to an
event where the status of the process is changed (e.g. start or end of a batch). Moreover, in order
to reduce the length of the planning horizon and the size of the resulting formulation, cyclic models
where the same schedule is repeated indefinitely have been introduced.

We present here a continuous time formulation for the cyclic scheduling problem corresponding
to the simple scheduling instance defines above. This formulation is inspired by Schilling and
Pantelides [15]. We also refer to Wu and Ierapetritou [16] for another formulation.

In our instance, the objective is to maximize the total quantity produced by the continuous task
over a single cycle (in this instance, the cycle is composed of T = 4 time slots) minus the operating
costs. The latter are defined as µ times the cycle duration, where the parameter µ represents the
fixed operating cost per unit of time that typically comes from the linearization of productivity,
see Pochet and Warichet [14].
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Figure 2: Cyclic batch variables with T = 4

To formulate the problem, we use an index t = 1, · · · , T for the time slots, and the continuous
variables τt ∈ R+, 1 ≤ t ≤ T , to represent the durations of time slots. The variables zkl ∈ {0, 1}, 1 ≤
k, l ≤ T , model the batch tasks, where zkl = 1 when there is a batch task in a reactor that runs from
time slot k up to l. The definition of the batch variables zkl is illustrated in Figure 2. In particular,
when zkl = 1 and k > l, the batch runs over time slots k up to T and also time slots 1 up to l in the
next cycle. The set A(t) ⊂ {1, · · · , T}×{1, · · · , T} denotes the set of batches that are active during
time slot t. For instance, A(2) = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (2, 1), (3, 2), (4, 2), (4, 3)}
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(see Figure 2).
The other variables, defined for each time slot t = 1, · · · , T , are qt ∈ R+ for the quantity

produced by the continuous task, Et ∈ R+ for the inventory level in the reservoir at the end of time
slot t, before feeding in the batch just finished, and St ∈ R+ for the inventory level in the reservoir
at the start of time slot t, after feeding in the batch finished at the end of time slot t − 1. The
starting formulation of this cyclic scheduling problem is the following.

max
T∑

t=1

qt − µ
( T∑

t=1

τt) (25)

s.t.
∑

(k,l)∈A(t)

zkl ≤ 2, 1 ≤ t ≤ T, (26)

k−1⊕

l=k

zkl ≤ 1, 1 ≤ k ≤ T, (27)

l⊕

k=l+1

zkl ≤ 1, 1 ≤ l ≤ T, (28)

l⊕

t=k

τt ≥ p zkl, 1 ≤ k, l ≤ T, (29)

l⊕

t=k

τt ≤ p zkl + M (1− zkl), 1 ≤ k, l ≤ T, (30)

ρ τt ≤ qt ≤ ρ τt, 1 ≤ t ≤ T, (31)

0 ≤ St ≤ S, 1 ≤ t ≤ T, (32)

0 ≤ Et ≤ S, 1 ≤ t ≤ T, (33)
0 ≤ τt ≤ p, 1 ≤ t ≤ T, (34)
Et = St − qt, 1 ≤ t ≤ T, (35)

St+1 = Et + B (
t⊕

k=t+1

zkt), 1 ≤ t ≤ T, (36)

zkl ∈ {0, 1}, 1 ≤ k, l ≤ T, (37)

where
⊕

denotes the cyclic sum, i.e.,
l⊕

v=k

αv =
l∑

v=k

αv if k ≤ l, and
l⊕

v=k

αv =
∑T

v=k αv +
∑l

v=1 αv if

k > l. Constraints (26) ensure that at most 2 reactors are busy at any time. Constraints (27)-(28)
model the restriction that events cannot occur at the same time, i.e., at most one batch can start
(resp. finish) at each time slot. Constraints (29)-(30) ensure that

⊕l
t=k τt = p when zkl = 1, where

M = p T = 12 is an upper bound on the length of a cycle. Constraints (31) express the variable
lower and upper bounds on continuous production. Constraints (32)-(34) are the simple bounds
on the inventory levels and time slot durations. Finally, constraints (35)-(36) are mass balance
constraints for the reservoir.
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Unfortunately this smaller formulation compared to the discrete time formulation is weak (The
MIP is hard to solve for commercial MIP solvers, in the case of real size instances). We strength-
ened the right hand sides and the coefficients on all the 0-1 variables as much as possible (using the
mixed integer hull as the relaxation R). When one applies the strengthening procedure directly on
this formulation and particular instance, one gets an integral linear programming relaxation, and
the MIP problem is solved without any branching. This remains true for larger values of T . We
checked up to T = 20.
Moreover, we were able to analyze, explain and generalize all the improved coefficients produced by
coefficient strengthening, as a function of the parameters B, p, ρ, ρ and S). This therefore provides
a tighter formulation for general data and more complex problems, see Pochet and Warichet [14].

As an illustration of the effect of strengthening, we now show two improved constraints. The
first is constraint (30) for (k, l) = (4, 2), p = 3 and M = 12 given by:

τ4 + τ1 + τ2 ≤ 3 z42 + 12 (1− z42) = 12− 9 z42

which was improved to the following inequality:

τ4 + τ1 + τ2 ≤ 9− 6 z42 − 3 z12 .

A first improvement is to reduce the value of the big M to 3p = 9. This generates a RHS equal to
(9− 6 z42). The RHS can be further reduced by observing that, if z12 = 1, then z42 = 0 (by (28))
and (τ4 + τ1 + τ2) ≤ 6 (because (τ1 + τ2) = 3 from (29)-(30) and τ4 ≤ 3 from (34)). This and similar
explanations allowed us to generalize the strengthening of constraints (30).

The second example is constraint (29) for (k, l) = (2, 4) and p = 3 given by:

τ2 + τ3 + τ4 ≥ 3 z24

which was improved to the following inequality:

τ2 + τ3 + τ4 ≥ 3 (z22 + z23 + z24) + 3 z44 + 0.1 z34 .

The term 3 (z22 + z23 + z24) comes from the fact that z22 + z23 + z24 ≤ 1 by (27) and, if z22 +
z23 + z24 = 1, then τ2 + τ3 + τ4 ≥ 3 by (29)-(30) and τt ≥ 0 for all t. For instance, z22 = 1 implies
τ2 + τ3 + τ4 ≥ τ2 = 3.
The term 3 z44 can be explained in a similar way as above, i.e. using (28)-(30). If z44 = 1, then
τ4 = p = 3, and if, in addition, z22 + z23 + z24 = 1, then we must have z24 = 0, z22 + z23 = 1,
τ2 + τ3 ≥ p = 3, and hence τ2 + τ3 + τ4 ≥ 6.
The explanation of the coefficient 0.1 z34 is more involved. If z34 = 1, then (τ3 + τ4) = 3 from
(29)-(30), z24 = z44 = 0 from (28), and from (27) we have

1. either z22 = z23 = 0 and the inequality is valid because (τ2 + τ3 + τ4) ≥ (τ3 + τ4) = 3 ≥ 0.1,

2. or z22 = 1 and the inequality is valid because (τ2) + (τ3 + τ4) = 3 + 3 ≥ 3.1,

3. or z23 = 1 and the inequality is valid because

(a) z23 = 1 implies S4 ≥ B = 8 (one batch is finished at the end of time slot 3, and put in
inventory at the beginning of time slot 4),
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(b) z34 = 1 implies E4 ≤ S−B = 15− 8 = 7 (one batch is finished at the end of time slot 4,
and there must be enough storage space available to stock it at the start of time slot 1),

(c) E4 = S4−q4 by (35) implies q4 ≥ 1 (at least 1 unit of product must be consumed during
time slot 4),

(d) constraint (31) implies τ4 ≥ 1
ρ = 0.1,

(e) and therefore (τ2 + τ3) + (τ4) ≥ 3 + 0.1.

So we see that, in this example, the improved coefficient of 0.1 on z34 in the second example is
given by 2B−S

ρ . This shows the way of possible generalizations.
Similar results have been obtained for other scheduling problems of the same type. In all

cases, the strengthening procedure suggested improved formulations. This indicates that coefficient
strengthening can be a powerful tool for constructing tight formulations for practical problems.

5 Concluding Remarks

We conclude that coefficient strengthening can be a useful tool for analyzing the strength of a
formulation of a mixed integer program. First, our experiments suggest that it may be possible
to improve the performance of the preprocessor of CPLEX 9.1, and to tighten the cuts produced
by commercial MIP solvers. Next, we have illustrated how strengthening can be used to reveal
properties of a specific production scheduling MIP problem, and thereby provide information on
how to construct tighter formulations of the problem.

It might be useful for practitioners of integer programming to have a tool for coefficient strength-
ening. This tool could be very useful in modeling practical problems by testing the strength of
original formulations and by identifying coefficients that can be strengthened.
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Appendix. Proofs

PROOF OF LEMMA 1. We have that αT x ≤ β is valid for P (M \ {k}) ⇐⇒ max{αT x :
x ∈ P (M \ {k})} ≤ β ⇐⇒ (from LPduality) min{−∑

i∈M\{k}wibi : α = −∑
i∈M\{k}wiai.,

wi ≥ 0 for i ∈ M≥ \ {k}} ≥ β ⇐⇒ there exists a solution to (7) − (10) in which w0 = 0. This
shows (ii).

We now show (i). First suppose αT x ≥ β dominates aT
k.x ≥ bk on P . Consider the linear

program (LP′)

min aT
k.x

s.t. aT
i.x ≥ bi, ∀i ∈ M≥ \ {k} (wi)

aT
i.x = bi, ∀i ∈ M=, (wi)

αT x ≥ β. (w0)

Since P (M \{k})∩ {x ∈ Rn : αT x ≥ β} 6= ∅, the problem LP′ is feasible. Further, since αT x ≥ β
dominates aT

k.x ≥ bk on P , LP′ is bounded from below by bk. By linear programming duality, there
exists w′0 and {w′i}i∈M\{k} such that

∑
i∈M\{k}w′ibi + w′0β ≥ bk and

∑
i∈M\{k}w′iai. + w′0α =

ak., where w′0 ≥ 0 and w′i ≥ 0 for i ∈ M≥ \ {k}. If w′0 = 0, then aT
k.x =

∑
i∈M\{k}w′ia

T
i.x ≥
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∑
i∈M\{k}w′ibi ≥ bk for any x ∈ P (M \{k}). In other words, if w′0 = 0, then aT

k.x ≥ bk is redundant

for P . We therefore have w′0 > 0. Defining w0 := 1
w′0

and wi := w′i
w′0

gives w0 and {wi}i∈M\{k} that
satisfy (7)− (10).

Conversely, suppose {wi}i∈M\{k} and w0 > 0 satisfy (7)− (10). For any x′ ∈ P (M \ {k}) such
that αT x′ ≥ β, we have w0a

T
k.x

′ ≥ αT x′+
∑

i∈M\{k}wia
T
i.x

′ ≥ β +
∑

i∈M\{k}wibi ≥ w0bk. Since
w0 > 0, it follows that αT x ≥ β dominates aT

k.x ≥ bk on P .
2

PROOF OF PROPOSITION 1. First suppose there exists xI ∈ PI such that aT
l. x

I > bl. Then
(yI , λI) := (xI

sI
l

, 1
sI
l

) is feasible for DPk,l, where sI
l := aT

l. x
I − bl denotes the value of the surplus

variable in the lth constraint. Note that the fact that xI = yI

λI is integer implies that (20) is
satisfied. Hence, if there exists xI ∈ PI satisfying aT

l. x
I > bl, then DPk,l is feasible.

Now suppose DPk,l is feasible. Let (yD, λD) be an arbitrary feasible solution to DPk,l. There
are two cases. Either it is possible to choose (yD, λD) such that λD > 0, or every feasible solution
(yD, λD) to DPk,l satisfies λD = 0. If it is possible to choose (yD, λD) such that λD > 0, then
xD := xD

λD ∈ PI and aT
l. x

D = (1+λDbl)
λD = 1

λD + bl > bl. It therefore only remains to consider the case
when every feasible solution (yD, λD) to DPk,l satisfies λD = 0. This means the problem DPk,l

reduces to the linear program

min aT
k.y

s.t. aT
i.y ≥ 0, ∀i ∈ M≥, (38)

aT
i.y = 0, ∀i ∈ M=, (39)

aT
l. y = 1, (40)

yj = 0, ∀j ∈ NI . (41)

Since we assumed DPk,l is feasible, there exists yr ∈ Rn that satisfies (38)-(41). This implies
that, given any xI ∈ PI , we have xI + yr ∈ PI and aT

l. (x
I + yr) > bl.

2

To prove Proposition 2, we first show that wdp
k,l provides a valid coefficient for the variable

sl = aT
l. x− bl in the constraint aT

k.x ≥ bk.

Lemma 4 Assume DPk,l is feasible. The inequality aT
k.x − wdp

k,l(a
T
l. x − bl) ≥ bk is valid for PI ,

where wdp
k,l denote the optimal objective value of DPk,l.

PROOF. Let xI ∈ PI be arbitrary. If aT
l. x

I = bl, we have aT
k.x

I − wdp
k,l(a

T
l. x

I − bl) ≥ bk, so assume
aT

l. x
I > bl. Define λI := 1

aT
l. x

I−bl
and yI := λIxI . Clearly (yI , λI) is feasible for DPk,l, so we

have wdp
k,l ≤ aT

k.y
I − λIbk. Multiplying with aT

l. x
I − bl > 0 on both sides of this inequality gives

wdp
k,l(a

T
l. x

I − bl) ≤ aT
k.x

I − bk, which implies aT
k.x

I − wdp
k,l(a

T
l. x

I − bl) ≥ bk.
2
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Lemma 4 shows the relation w∗k,l(Conv (PI)) ≥ wdp
k,l ≥ 0. To prove prove Proposition 2, we also

need the following lemma that concerns certificates for when a coefficient can not be improved.

Lemma 5 Let R be a polyhedral relaxation of PI satisfying PI ⊆ R ⊆ P . Let k, l ∈ M≥, k 6= l,
and assume w∗k,l(R) = 0. Then either (i) or (ii) holds.

(i) b∗k(R) > bk (the right hand side of aT
k.x ≥ bk can be increased).

(ii) ∃xR ∈ R s.t. aT
k.x

R = bk and aT
l. x

R > bl (there is a certificate xR ∈ R showing w∗k,l(R) = 0).

PROOF. Assume (i) does not hold, i.e. we have b∗k(R) = bk. Let xC ∈ R be a certificate satisfying
aT

k.x
C = bk. We will prove there exists xR ∈ R satisfying aT

k.x
R = bk and aT

l. x
R > bl, i.e. a certificate

showing w∗k,l(R) = 0.
Let the extreme points of R be {vr}r∈V R , and let the extreme rays be {es}s∈ER , where V R and

ER are finite index sets. We have R = Conv ({vr}r∈V R)+ Cone ({es}s∈ER). An inequality αT x ≥ β
is valid for R if and only if αT vr ≥ β for all r ∈ V R, and αT es ≥ β for all s ∈ ER. It follows that
w∗k,l(R) is the optimal objective value to the linear program

max wk,l

s.t. wk,l(aT
l. v

r − bl)≤ aT
k.v

r − bk, ∀r ∈ V R,

wk,l(aT
l. e

s) ≤ aT
k.e

s, ∀s ∈ ER.

We have aT
k.v

r − bk ≥ 0, aT
l. v

r − bl ≥ 0, aT
k.e

s ≥ 0 and aT
l. e

s ≥ 0 for all (r, s) ∈ V R × ER,
since R ⊆ P . Furthermore, since w∗k,l(R) = 0, we have either (i) There exists r ∈ V R such that
aT

k.v
r − bk = 0 and aT

l. v
r − bl > 0, or (ii) There exists s ∈ ER such that aT

k.e
s = 0 and aT

l. e
s > 0.

If (i) holds, let xR := vr, and if (ii) holds, let xR := xC + es. We have xR ∈ R, aT
k.x

R = bk and
aT

l. x
R > bl.

2

We are now ready to give the proof of Proposition 2.

PROOF OF PROPOSITION 2. Assume DPk,l is feasible, and that the right hand side of aT
k.x ≥ bk

can not be improved. Then there exists xI ∈ PI satisfying aT
k.x

I = bk. Also, let {(yt, λt)}t∈N be
a sequence of feasible solutions to DPk,l that satisfies lim

t→∞(aT
k.y

t − λtbk) = wdp
k,l. By extracting a

convergent subsequence, we can assume either λt = 0 for all t ∈ N, or λt > 0 for all t ∈ N.
First suppose λt = 0 for all t ∈ N. Then for every t ∈ N, yt is a solution to the system (42)-(45).

aT
i.y ≥ 0, ∀i ∈ M≥, (42)

aT
i.y = 0, ∀i ∈ M=, (43)

aT
l. y = 1, (44)

yj = 0, ∀j ∈ NI . (45)
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Since aT
k.y is continuous, lim

t→∞aT
k.y

t = wdp
k,l and the set (42)-(45) is closed, there exists y∗ ∈ Rn

satisfying (42)-(45) and aT
k.y

∗ = wdp
k,l. Hence (y∗, 0) is both feasible and optimal for DPk,l, which

shows (ii). In addition, we have zI := xI + y∗ ∈ PI and aT
l. z

I = aT
l. x

I + aT
l. y

∗ = aT
l. x

I + 1 > bl.
First suppose aT

k.z
I = bk. Then aT

k.y
∗ = wdp

k,l = 0. Using Lemma 5.(ii) then gives w∗k,l(Conv (PI)) =

0, and applying Lemma 4 gives 0 = w∗k,l(Conv (PI)) ≥ wdp
k,l ≥ 0, which shows (i).

Now suppose aT
k.z

I > bk. This implies aT
k.y

∗ = wdp
k,l > 0. Observe that we must have aT

l. x
I = bl,

since otherwise the inequality aT
k.x − wdp

k,l(a
T
l. x − bl) ≥ bk would cut off xI , which contradicts

Lemma 4. Also observe that Lemma 4 implies w∗k,l(Conv (PI)) ≥ wdp
k,l. Now, the inequality aT

k.x−
(wdp

k,l + ε)(aT
l. x − bl) ≥ bk is not valid for PI for any ε > 0, since aT

k.z
I − (wdp

k,l + ε)(aT
l. z

I − bl) =

bk + wdp
k,l − (wdp

k,l + ε)(aT
l. x

I + aT
l. y

∗ − bl) = bk + wdp
k,l − (wdp

k,l + ε) < bk. It follows that wdp
k,l is the

largest possible coecfficient on sl := aT
l. x − bl, which means w∗k,l(Conv (PI)) = wdp

k,l by definition,
and therefore (i) holds.

The final case to consider is when λt > 0 for all t ∈ N. We first show this implies (i), i.e. that
w∗k,l(Conv (PI)) = wdp

k,l. This is done by showing aT
k.x − (wdp

k,l + ε)(aT
l. x − bl) ≥ bk is not valid for

PI for any ε > 0. Let ε > 0 be arbitrary. Since lim
t→∞(aT

k.y
t − λtbk) = wdp

k,l, there exists t∗ ∈ N
such that aT

k.y
t∗ − λt∗bk < wdp

k,l + ε. Define x∗ := yt∗

λt∗ . We have x∗ ∈ PI and λt∗ = 1
aT

l. x
∗−bl

.

Multiplying with aT
l. x

∗ − bl > 0 on both sides of the inequality wdp
k,l + ε > aT

k.y
t∗ − λt∗bk gives

(aT
l. x

∗ − bl)(w
dp
k,l + ε) > aT

k.x
∗ − bk, which implies aT

k.x
∗ − (wdp

k,l + ε)(aT
l. x

∗ − bl) < bk. It follows that

wdp
k,l = w∗k,l(Conv (PI)).

We now show (ii), i.e., that the optimal objective value wdp
k,l = w∗k,l(Conv (PI)) is obtained by a

feasible solution to DPk,l. Since the coefficient on (aT
l. x−bl) in aT

k.x−w∗k,l(Conv (PI))(aT
l. x−bl) ≥ bk

can not be improved, Lemma 5.(ii) implies that there exists xk,l ∈ PI that satisfies aT
l. x

k,l > bl and
aT

k.x
k,l − w∗k,l(Conv (PI)) (aT

l. x
k,l − bl) = bk. Define λk,l := 1

aT
l.x

k,l−bl
and yk,l := λk,lxk,l. We have

that (yk,l, λk,l) is feasible for DPk,l and aT
k.y

k,l − λk,lbk = w∗k,l(Conv (PI)).
2

PROOF OF COROLLARY 1. Suppose, for a contradiction, that the formulation LP of MILP
is optimal relative to R and sequential strengthening, and that the valid inequality (α′)T x ≥ β′

for R strictly dominates the inequality constraint aT
k.x ≥ bk on P . Then Lemma 1.(i) shows that

there exists w′0 > 0 and {w′i}i∈M\{k} such that (7)-(10) are satisfied. In other words, we have
(α′, β′, w′0, {w′i}i∈M\{k}) ∈ RCk(R). By scaling, if necessary, we may assume w′0 = 1. Applying
Theorem 1 gives RCk(R) = TRCk(R). However, this implies (α′)T x ≥ β′ is equivalent to aT

k.x ≥ bk

on P .
2

PROOF OF LEMMA 2. We have αr = −∑
i∈M\{k}wr

i ai., βr ≥ −∑
i∈M\{k}wr

i bi and (αr)T x = βr

for all x ∈ R. Let WS := {i ∈ M≥ \ {k} : wr
i > 0}. There are three cases.

(a) βr > −∑
i∈M\{k}wr

i bi: then for every x ∈ R, we have (αr)T x = −∑
i∈M\{k}wr

i a
T
i.x ≤

−∑
i∈M\{k}wr

i bi < βr, which implies R = ∅.
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(b) βr = −∑
i∈M\{k}wr

i bi and WS 6= ∅: If aT
i.x

′ > bi for some x′ ∈ R and i ∈ WS , then
(αr)T x′ = −∑

i∈M\{k}wr
i a

T
i.x

′ < −∑
i∈M\{k}wr

i bi = βr. It follows that aT
i.x = bi for all

x ∈ R and i ∈ WS , which means all surplus variables si, i ∈ WS , can be fixed to zero.

(c) βr = −∑
i∈M\{k}wr

i bi and WS = ∅: This implies wr
i = 0 for all i ∈ M≥ \ {k}, αr =

−∑
i∈M= wr

i ai. and βr = −∑
i∈M= wr

i ai., which implies (αr, βr, wr
0, {wr

i }i∈M\{k}) ∈ TRCk(R).

2

PROOF OF LEMMA 3. By using (7), (αr)T x ≥ βr can be written as aT
k.x−

∑
i∈M\{k}wr

i a
T
i.x ≥ βr.

Observe that, since βr ≥ bk−
∑

i∈M\{k}wr
i bi, the inequality (αr)T x ≥ βr dominates the inequality

aT
k.x −

∑
i∈M\{k}wr

i (a
T
i.x − bi) ≥ bk. Furthermore, since every x ∈ R satisfies aT

i.x = bi for all
i ∈ M=, we have that the inequality

aT
k.x−

∑

i∈M≥\{k}
wr

i (a
T
i.x− bi) ≥ bk (46)

is valid for R. Assume there exists l ∈ M \ {k} such that wr
l > 0. Then the inequality aT

k.x −
wr

l (a
T
l. x − bl) ≥ bk is dominated by (46) on R, and therefore aT

k.x − wr
l (a

T
l. x − bl) ≥ bk is valid for

R, which implies (ii).
For the remaining cases we can assume wr

i = 0 for all i ∈ M≥\{k}. This implies that αr = ak.−∑
i∈M= wr

i ai. and βr ≥ bk −
∑

i∈M= wr
i bi. If βr = bk −

∑
i∈M= wr

i bi, then (αr, βr, wr
0, {wr

i }i∈M\{k})
∈ TRCk(R), which implies (iii). So suppose βr > bk −

∑
i∈M= wr

i bi. This implies that every x ∈ R
satisfies aT

k.x = (αr)T x +
∑

i∈M= wr
i a

T
i.x ≥ βr +

∑
i∈M= wr

i bi > bk. It follows that the optimal
objective value b′k of the linear program min{aT

k.x : x ∈ R} satisfies b′k > bk, which implies (iii).
2

We now prove the missing direction of Theorem 1.

Lemma 6 Suppose RCk(R) = TRCk(R) for every k ∈ M≥. Then the formulation LP of MILP is
optimal relative to R and sequential strengthening.

PROOF. The proof is by contradiction. Suppose RCk(R) = TRCk(R) for every k ∈ M≥. As-
sume there exists k, l ∈ M≥, k 6= l, such that w∗k,l(R) = max{wk,l : aT

k.x − wk,l(aT
l. x − bl) ≥

bk is valid for R} > 0. Define α′ := ak.−w∗k,l(R)al., β′ := bk−w∗k,l(R)bl, w′0 := 1, w′l := w∗k,l(R) > 0
and w′i = 0 for i ∈ M \ {k, l}. Then we have (α′, β′, w′0, {w′i}i∈M\{k}) ∈ RCk(R) \ TRCk(R).

Similarly if b∗k(R) = max{β : aT
k.x ≥ β is valid for R} > bk, then (α′′, β′′, w′′0 , {w′′i }i∈M\{k}) ∈

RCk(R) \ TRCk(R), where α′′ := ak., β′′ := b∗k, w′′0 := 1 and w′′i := 0 for i ∈ M \ {k}.
2
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