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Abstract

In this paper we use a new analytical approach to the Lucas-Uzawa model (Boucekkine
and Ruiz Tamarit, 2007) to extend the existing results on the dynamics, and notably on
the imbalance effects arising in the model. The approach does not only allow to extend
the traditional analysis to any initial conditions and for all variables in level, but it also
permits a more general investigation of imbalance effects.
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1 Introduction

The Lucas-Uzawa model has been at the heart of macroeconomic research for many
decades, and it is still widely considered as a fundamental benchmark for ongoing re-
search programs in many fields, notably in economic development. Two characteristics of
the model makes it, however, nontrivial mathematically speaking: it is a two-sector model
(with two controls and two state variables), which induces a much larger set of optimality
conditions compared to the typical Ramsey model, and it is an endogenous growth model,
and such models have the property of indeterminacy in the long-run variables’ levels. A
substantial part of the literature dealing with Lucas-Uzawa is precisely devoted to get
through these problems. Important contributions in this topic are Caballé and Santos
(1993), Xie (1994), Benhabib and Perli (1994) and Ortigueira (1998). None of this paper
solves the model completely but they certainly allow to get an accurate picture of the
mechanisms at work in the model. With the exception of Xie who solves explicitly a very
special parametric case of the model, the other authors build on a transformed model
with a lower dimension (3 against 4 in the original model) to overcome the problem of
indeterminacy in levels. Typically, the (three) variables considered in the auxiliary mod-
els are the ratios physical to human capital and consumption to physical capital, and the
fraction of human capital devoted to the final good sector. The same approach is taken
in textbooks (see Barro and Sala-i-Martin, 1995, chapter 5).

Boucekkine and Ruiz-Tamarit (2007) propose a new method inspired from mathemat-
ical physics. Precisely, they show that the Lucas-Uzawa model can be explicitly solved
for all variables in level using Gaussian hypergeometric functions. These solutions paths
in levels have been shown to exhibit some specific non-monotonicities, a feature let in
the dark in the traditional literature. However, the essential contribution of the paper
is to supply the solution paths in closed form for any further exploration of the global
dynamics of all the variables, a task which was considered as unrealistic for a long time.
In this paper, we are aiming to show how the new approach can be advantageously used
to dig deeper in the imbalance effects literature. A textbook presentation of it can be
found in Barro and Sala-i-Martin (1995), chapter 5 (see also Mulligan and Sala-i-Martin,
1993).

Imbalance effects refer to the transition dynamics of a model when its state variables
start below or above the corresponding long-run equilibrium value. The economy is ini-
tially out of equilibrium, and if the adequate stability conditions are met, it has to come
back after a certain adjustment phase. Admittedly, such a topic is better appraised and
more interesting in a global framework, that is, by allowing the economy to start arbitrar-
ily far from equilibrium. Unfortunately, the traditional method is based on linearization
around steady-states, which disqualify it for any global inspection.

In the Lucas-Uzawa model, the imbalance effect story has been quickly reduced to
the transition dynamics of the model when the ratio physical to human capital stocks
is initially below or above the corresponding long-run value. This might make sense.
On the theoretical ground, however, very few papers have been devoted to clarify this
point. Of course, this is largely due to the limitations imposed by the traditional method.
Ortigueira (1998) is an exception. Extending in a way the previous work of Caballé
and Santos (1993), he studied the imbalance effects in the Lucas-Uzawa model with the
traditional method, and he shows in particular that in the normal parametric case1, the
human capital stock should always increase at a rate higher than the long-run counterpart

1We shall be very clear about the meaning of a normal parameterization in Section 4.
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if the ratio physical to human capital stocks starts above the corresponding long-run
value. That is, the initially scarce factor should be accumulated at a higher pace with
respect to its long run balanced path. There are two important aspects in Ortigueira’s
analysis that could be easily improved within the new methodological set-up designed
by Boucekkine and Ruiz-Tamarit. First of all, and at almost zero cost, the properties
can be established for all variables in level, and for arbitrary initial conditions. Second,
precisely thanks to the availability of all the solution paths in level and closed form,
one can have a much more complete story of imbalance effects. Ortigueira restricts his
analysis to the dynamics of human capital accumulation. What about physical capital?
Suppose the economy starts with a ratio physical to human capital stocks above the
corresponding long-run value. Then even though this ratio decreases monotonically to its
long-run equilibrium value, physical capital can in principle either decrease or increase
(at a rate lower than human capital) at least for some bounded time interval. Moreover,
in the case the stock of physical grows from the beginning, there is no guarantee that it
will grow at a rate lower than its long-run counterpart. Therefore, it is not clear at all
a priori whether the stock of physical capital will have the same kind of behaviour as
human capital, specially because, as established by Boucekkine and Ruiz-Tamarit (2007),
such variable may exhibit non-monotonic paths in contrast to human capital stock. We
will extend the theoretical analysis of imbalance effects to physical capital, and we will
highlight an important asymmetry between physical and human capital, which is omitted
in the related theoretical literature.

We shall clarify these issues in this paper. The next section reminds the main equations
involved in the Lucas-Uzawa model. Section 3 summarizes the main properties of the
closed-form solutions detected by Boucekkine and Ruiz-Tamarit. Section 4 revisits the
imbalance effects properties with the new approach.

2 The optimal control problem

The problem is standard in economic growth (Lucas, 1988, for example). The economy is
populated with many identical, rational agents, choosing the controls c (t), consumption
per capita, and u (t) ∀t ≥ t0, the fraction of non-leisure time devoted to goods production,
which solve the dynamic optimization problem

max

∫
∞

0

c (t)1−σ − 1

1 − σ
N (t) e−ρtdt (1)

subject to

•

K (t) = AK (t)β (u (t) N (t) h (t))1−β − πK (t) − N (t) c (t) ,

•

h (t) = δ (1 − u (t)) h (t) − θh (t) ,

K (0) = K0, h (0) = h0, N (0) = N0,

c (t) > 0, u (t) ∈ [0, 1] , K (t) > 0, h (t) > 0.

The considered instantaneous utility function is standard, with σ−1 > 0 representing
the constant elasticity of intertemporal substitution. Population at time t is N (t), which
is assumed to grow at a constant exogenously given rate n. Parameter ρ is the rate of
time preference or discount rate. We assume ρ > n. h (t) is the human capital level.
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The output, Y (t), which may be allocated to consumption or to physical capital accumu-
lation depends on the capital stock, K (t), and the effective work force, u (t) N (t) h (t).
Parameter β is the elasticity of output with respect to physical capital. The efficiency pa-
rameter A represents the constant technological level in the goods sector of this economy.
The efficiency parameter δ represents the constant technological level in the educational
sector. Both physical and human capital depreciate at constant rates, which are π > 0
and θ > 0, respectively. We shall also assume that δ + n > θ + ρ for positive (long run)
growth to arise, as it will be transparent later.

The current value Hamiltonian associated with the previous intertemporal optimiza-
tion problem is

Hc(K, h, ϑ1, ϑ2, c, u; A, σ, β, δ, π, θ, {N(t) : t ≥ 0}) =

=
c1−σ − 1

1 − σ
N + ϑ1

[
AKβ(uNh)1−β − πK − Nc

]
+ ϑ2 [δ (1 − u) h − θh] , (2)

where ϑ1 and ϑ2 are the co-state variables for K and h, respectively.
The first order necessary conditions are

c−σ = ϑ1, (3)

ϑ1 (1 − β) AKβ (uNh)−β
N = ϑ2δ, (4)

the Euler equations

•

ϑ1= (ρ + π) ϑ1 − ϑ1βAKβ−1 (uNh)1−β
, (5)

•

ϑ2= (ρ + θ) ϑ2 − ϑ1 (1 − β) AKβ (uN)1−β
h−β − ϑ2δ (1 − u) , (6)

the dynamic constraints

•

K= AKβ(uNh)1−β − πK − Nc, (7)

•

h= δ (1 − u) h − θh, (8)

the boundary conditions K0, h0, and the transversality conditions

lim
t→∞

ϑ1K exp {−ρt} = 0, (9)

lim
t→∞

ϑ2h exp {−ρt} = 0. (10)

From (3) and (4) we can express the control functions, c and u in terms of the other
variables. These conditions also imply that, at any finite date, ϑ1 6= 0 and ϑ2 6= 0.
After substituting these expressions into equations (5)-(8), we obtain the following four
dimensional system, in terms of state and co-state variables only,

•

ϑ2= − (δ − ρ − θ) ϑ2, (11)

•

ϑ1= (ρ + π) ϑ1 − ψ1 (t) ϑ
1
β

1 , (12)

•

K= ψ2 (t) K − ψ3 (t) , (13)

•

h= (δ − θ) h − ψ4 (t) , (14)
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where

ψ1(t) = βA

(
(1 − β) A

δ

) 1−β

β

N
1−β

β ϑ
−

1−β

β

2 , (15)

ψ2(t) = A

(
(1 − β) A

δ

) 1−β

β

N
1−β

β

(
ϑ1

ϑ2

) 1−β

β

− π, (16)

ψ3(t) = Nϑ
−

1
σ

1 , (17)

ψ4(t) = δ

(
(1 − β) A

δ

) 1
β

N
1−β

β

(
ϑ1

ϑ2

) 1
β

K. (18)

These equations, together with the initial conditions, K0 and h0, and the transversality
conditions (9) and (10) constitute the dynamic system which drives the economy over
time. This dynamic system can be recursively solved in closed form. Boucekkine and
Ruiz-Tamarit (2007) show that such a system can be solved explicitly without resorting
to any dimension reduction. We summarize their results in the next section.

3 Explicit solutions

Boucekkine and Ruiz-Tamarit (2007) use Gaussian hypergeometric functions in their
closed-form solution. Recall that the Gauss hypergeometric function (see Abramowitz
and Stegun, 1972, or Temme, 1996), 2F1(a, b, c; z), with complex arguments a, b, c and z,
is given by the series

2F1(a, b, c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n!
,

where (x)n is the so-called Pochhammer symbol, defined by

(x)n =
Γ(x + n)

Γ(x)
,

where Γ(.) is the special function Gamma. One of the main properties of the Gauss
hypergeometric function is that its circle of convergence is the unit circle. Fortunately,
there are some ways to define it outside the unit circle, the Euler integral representation
being the most practical continuation formula

2F1(a, b, c; z) =
Γ(c)

Γ(b) Γ(c − b)

∫ 1

0

tb−1 (1 − t)c−b−1 (1 − tz)−a dt,

when Re(c) > Re(b) > 0 (see Abramowitz and Stegun, 15.3.1, page 558). Boucekkine and
Ruiz-Tamarit show that the solutions of the system (11)-(14) can be written in terms of
Gaussian hypergeometric functions in their Euler integral representation.

More precisely, let us define the hypergeometric function

2F1(t) = 2F1

(
a, b, c;

(
1 −

δ + n + π − θ

ǫ

(
ϑ1(0)

ϑ2(0)

)
−

1−β

β

)
exp

{
−

(1 − β) (δ + n + π − θ)

β
t

})
,

2F1(0) = 2F1

(
a, b, c; 1 −

δ + n + π − θ

ǫ

(
ϑ1(0)

ϑ2(0)

)
−

1−β

β

)
,
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with

ǫ = βA

(
(1 − β) AN0

δ

) 1−β

β

,

a = −
(δ + n + π − θ) (β − σ) − β (ρ + π − nσ − πσ)

σ (δ + n + π − θ) (1 − β)
, b = −

β − σ

σ (1 − β)
, c = 1 + a.

Then the optimal trajectory of physical capital can be exactly characterized by the
following proposition:

Proposition 1 (i) The unique optimal positive path for the physical capital stock K,
starting from K0 > 0, is given by

K = K0

(
ϑ1(0)

ϑ2(0)

) 1
β

(
ǫ

δ + n + π − θ

) 1
1−β

2F1(t)

2F1(0)

· exp

{
(δ + n + π − θ) (β − σ) − β (ρ + π − nσ)

βσ
t

}

·

[
−1 + exp

{
(1 − β) (δ + n + π − θ)

β
t

}
+

δ + n + π − θ

ǫ

(
ϑ1(0)

ϑ2(0)

)
−

1−β

β

] 1
1−β

; (19)

(ii) this equilibrium path shows transitional dynamics, approaching asymptotically the
unique positive balanced growth path

−

K=
K0

2F1(0)

(
ϑ1(0)

ϑ2(0)

) 1
β

(
ǫ

δ + n + π − θ

) 1
1−β

exp

{
δ + n − θ − ρ + nσ

σ
t

}
, (20)

along which, given δ + n > θ + ρ, K grows permanently at a positive constant rate
−

gK= δ+n−θ−ρ+nσ
σ

.

Proof : See Boucekkine and Ruiz-Tamarit (2007), Proposition 4.

Similarly, one can define the auxiliary hypergeometric function for the solution path
of human capital

2F̃1(t) = 2F1

(
ã, b, c;

(
1 −

δ + n + π − θ

ǫ

(
ϑ1(0)

ϑ2(0)

)
−

1−β

β

)
exp

{
−

(1 − β) (δ + n + π − θ)

β
t

})
,

2F̃1(0) = 2F1

(
ã, b, c; 1 −

δ + n + π − θ

ǫ

(
ϑ1(0)

ϑ2(0)

)
−

1−β

β

)
,

with

ã = a − 1 = −
(δ + n + π − θ) β (1 − σ) − β (ρ + π − nσ − πσ)

σ (δ + n + π − θ) (1 − β)
.

Then the optimal human capital trajectory should fulfill the following proposition:

Proposition 2 (i) The unique positive path for the human capital stock h, starting from
h0 > 0, is given by

h = h0
2F̃1(t)

2F̃1(0)
exp

{
δ + n − θ − ρ

σ
t

}
; (21)
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(ii) Unless function 2F̃1(t) is identically equal to 1, this equilibrium path shows tran-
sitional dynamics, approaching asymptotically to the unique positive balanced growth path

−

h=
h0

2F̃1(0)
exp

{
δ + n − θ − ρ

σ
t

}
, (22)

along which, given δ + n > θ + ρ, h grows permanently at a positive constant rate
−

gh=
δ+n−θ−ρ

σ
.

Proof : See Proposition 5 in Boucekkine and Ruiz-Tamarit (2007).

It should be noted that (19) to (22) characterize completely the solution paths for
both stocks of capital in the short- and long-run provided that the shadow price values
ϑ1(0) and ϑ2(0) be identified. Boucekkine and Ruiz-Tamarit (2007) set also this issue:

Proposition 3 Any particular non-explosive solution to the dynamic system (11)-(14)
has to satisfy the initial conditions K0 and h0, as well as the limit conditions (9) and
(10).

1. The transversality conditions impose the constraints

(δ + n + π − θ) (β − σ) − β (ρ + π − nσ − πσ) < −σ (1 − β) (δ + n + π − θ) < 0,
(23)

(δ − θ) (1 − σ) + n − ρ < 0, (24)

K0

2F1(0)

(
ϑ1(0)

ϑ2(0)

) 1
β

= −
σβN0ϑ2(0)−

1
σ

(
δ+n+π−θ

ǫ

) σ−β

σ(1−β)

(δ + n + π − θ) (β − σ) − β (ρ + π − nσ − πσ)
, (25)

2F1(0)

2F̃1(0)
=

(1 − β) ǫσ

− ((δ − θ) (1 − σ) + n − ρ) β

K0

h0

(
ϑ1(0)

ϑ2(0)

) 1
β

.. (26)

2. Set Λ = δ+n+π−θ
ǫ

, η = ϑ1(0)
ϑ2(0)

, and z0 =
(
1 − Λη

−
1−β

β

)
. Then, if K0

N0h0
>

(
K
Nh

)
, we get

z0 < 0. If K0

N0h0
<

(
K
Nh

)
, we get 0 < z0 < 1. Finally, if K0

N0h0
=

(
K
Nh

)
, we have z0 = 0.

Proof : See Proposition 3, Lemma 2, Lemma 3 and Proposition 7 in Boucekkine and
Ruiz-Tamarit (2007).

Remark 1: It should be noted here that condition (23) implies that parameter a of
the hypergeometric functions defined above should satisfy a > 1. This is a very important
property for the shape of optimal global dynamics as we shall see afterwards.

Remark 2: Note also that by construction, parameters a and b of the hypergeometric
functions can be permuted; that is, 2F1(a, b, c; z) = 2F1(b, a, c; z). Since c = 1 + a and
a > 1, it follows that conditions for the Euler integral representation hold for the two
involved hypergeometric functions, namely 2F1(t) and 2F̃1(t). Notice that the case where
the Euler integral representation is allowed, the hypergeometric functions are necessarily
positive.

Remark 3: Notice that Property 2 of the above Proposition 3 gives the position of
the relative shadow price η depending upon the position of the initial physical capital
to human capital ratio with respect to its long-run counterpart. Such a property is, of
course, of crucial importance in the global study of the imbalance effects reported below.
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4 Global dynamics and imbalance effects

We start with a brief discussion of the concept of imbalance effects. For the sake of
simplicity, from now on we shall assume constant population (n = 0) normalized at
N0 = 1.

4.1 Imbalance effects: revisiting the concept

As mentioned in the introduction, the imbalance effects refer to the transition dynamics
of an economy subject to an imbalance between initial and long-run values of the state
variables. Such effects have been deeply studied in two-sector endogenous growth models,
especially thanks to the contributions of Sala-i-Martin and his co-authors. Nonetheless,
the analysis has been so far mostly computational, with the notable exception of Caballé
and Santos (1993) and Ortigueira (1998). Using the 3-dimensional transformed Lucas-
Uzawa model, and linearizing around the corresponding steady state, these authors have
noticed that the transition dynamics depend strongly on the value of the capital share in
the final good production function, β, and on the inverse of the intertemporal elasticity
of substitution, σ. Ortigueira, in page 330, defines the normal case as follows:

Definition 1 If the economy starts with a higher physical-human capital ratio than that
of the stationary solution, then the (short-run) rate of human capital accumulation is
higher than that of the long-run equilibrium. That is,

K0

h0

>

(
K

h

)
⇒

ḣ

h
>

−̇

h
−

h

Then, he proves that the economy belongs to the normal case if and only if β < σ

(Corollary 1, page 332). The same result was obtained by Caballé and Santos (1993)2.
The proof of such a property within the traditional approach is definitely easy since
the growth rate of human capital is exclusively driven by 1 − u (i.e., the fraction of
human capital channeled into the education sector), and the variable u is one of the three
variables considered in the 3-dimensional auxiliary model. The transition dynamics of
physical capital are then supplied numerically.

As argued in the introduction, we do believe that a more global appraisal of imbalance
effects should take into account the two state variables, physical and human capital.
The fact that the short-run rate of human capital accumulation is higher than that of
the long-run equilibrium does not guarantee that the short-run rate of physical capital
accumulation is lower than that of the long-run equilibrium. We shall therefore consider
a more general definition of the normal case as follows:

Definition 2 If the economy starts with a higher physical-human capital ratio than that
of the stationary solution, then the short-run rate of human capital accumulation is higher
than that of the long-run equilibrium, and the short-run rate of physical capital accumu-
lation is lower than that of the long-run equilibrium. That is,

K0

h0

>

(
K

h

)
⇒

ḣ

h
>

−̇

h
−

h

,

2It should be noted that Ortigueira’s model also includes taxation of income from both capital stocks.

Corollary 1, page 332, refers to the original Lucas-Uzawa model, without taxes.
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and

K0

h0

>

(
K

h

)
⇒

K̇

K
<

−̇

K
−

K

.

We are simply stating that in case of initial imbalance, the relatively scarce variable
should grow at a higher rate than in the long-run, while the variable relatively in excess
should have the opposite behaviour. The next section is first devoted to show that the
parametric characterization of Caballé and Santos (1993) and Ortigueira (1998) can be
extended to any initial conditions (global dynamics). Then, we will analyze the imbalance
effects in the light of the stricter concept defined just above. We will highlight an im-
portant asymmetry between physical and human capital which is omitted in the related
theoretical literature.

4.2 Human capital dynamics

We start, as in the traditional approach, with human capital dynamics.

Set Θ = (1−β)ǫσ
−((δ−θ)(1−σ)−ρ)β

, and recall that now ǫ = βA
(

(1−β)A
δ

) 1−β

β

and Λ = δ+π−θ
ǫ

. Then,

using equation (20) and (22) respectively, one can rewrite the balanced growth paths of
physical and human capital stocks as

−

K=
K0

2F1(0)
η

1
β

1

Λ
1

1−β

exp

{
δ − θ − ρ

σ
t

}
,

−

h=
h0

2F̃1(0)
exp

{
δ − θ − ρ

σ
t

}
.

This allows to write the long-run ratio physical to human capital as

(
K

h

)
=

K0

h0

2F̃1(0)

2F1(0)

1

Λ
1

1−β

η
1
β . (27)

Therefore, if the economy starts from above, that is K0

h0
>

(
K
h

)
, we have

1 >
2F̃1(0)

2F1(0)

1

Λ
1

1−β

η
1
β (28)

or, using the transversality condition (26) from Proposition 3,

K0

h0

>
1

Θ

1

Λ
1

1−β

. (29)

We shall now study the growth rate of human capital using the closed-form solution
of this variable given in Proposition 2 by equation (21), that is

h = h0
2F̃1(t)

2F̃1(0)
exp

{
δ − θ − ρ

σ
t

}
.

Comparing with (22), one gets immediately h as a function of
−

h and 2F̃1(t), which is very
useful for the inspection of imbalance effects,

h = 2F̃1(t)
−

h . (30)
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Indeed, it follows immediately that

ḣ

h
=

2
˙̃
F 1(t)

2F̃1(t)
+

−̇

h
−

h

, (31)

and finally we may conclude

ḣ

h
>

−̇

h
−

h

⇐⇒
2
˙̃
F 1(t)

2F̃1(t)
> 0.

It is then almost trivial to obtain a global counterpart of Ortigueira’s result on the para-
metric characterization of the normal case:

Proposition 4 If the economy is characterized by σ > β, and only in this case, we have

K0

h0

>

(
K

h

)
⇒

ḣ

h
>

−̇

h
−

h

Proof : The proof is somewhat immediate after the computation of the growth rate of
the hypergeometric function 2F̃1 (t). The algebra needed for such a computation is trivial
for special functions users and it is reported in the Appendix. We get

2
˙̃
F 1(t)

2F̃1(t)
> 0 ⇐⇒

b(a − 1)

a + 1
ż(t)

2F1(b + 1, a, a + 2; z(t))

2F1(b, a − 1, a + 1; z(t))
> 0,

with z(t) = z0 exp
{
− (1−β)(δ+π−θ)

β
t
}

. Notice that since we start from above, Property 2

of Proposition 3 implies that z0 < 0. Because

ż(t) = −
(1 − β) (δ + π − θ)

β
z0 exp

{
−

(1 − β) (δ + π − θ)

β
t

}
,

and by transversality condition (23) we get δ + π > θ, it follows that ż(t) is strictly

positive. Now, it is sufficient to look at the expression of 2
ėF 1(t)

2
eF1(t)

just above to get the

result. Since a > 1, and the involved hypergeometric functions 2F1(b + 1, a, a + 2; z(t))

and 2F1(b, a−1, a+1; z(t)) are strictly positive3, the sign of 2
ėF 1(t)

2
eF1(t)

is the sign of b = − β−σ
σ(1−β)

.

¤

4.3 The dynamics of physical capital

We now move to the dynamics of physical capital, and provide a similar global analysis
as for human capital in accordance with our interpretation of imbalance effects. Not
surprisingly, the task proves more difficult than for human capital. However the algebra
needed is by no way intractable.

3This is because they admit the Euler integral representation, see Remark 2 above.
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Let us first recall the closed-form solution for physical capital given in Proposition 1
by equation (19),

K = K0η
1/β

(
1

Λ

) 1
1−β

2F1(t)

2F1(0)
exp

{
(δ + π − θ)(β − σ) − β(ρ + π)

βσ
t

}

..

[
−z0 + exp

{
(1 − β)(δ + π − θ)

β
t

}] 1
1−β

.

Comparing with the balanced growth path given in Proposition 1 by equation (20), we
can rewrite K into a more interesting and manageable form given our purposes,

K(t) =
−

K (t) 2F1(t) G(t),

where

G(t) = exp

{
(−(δ + π − θ)

β
t

}[
−z0 + exp

{
(1 − β)(δ + π − θ)

β
t

}] 1
1−β

.

Then, the growth rate of physical capital is given by

K̇

K
=

−̇

K
−

K

+
2Ḟ1(t)

2F1(t)
+

Ġ(t)

G(t)
. (32)

Accordingly, for physical capital to behave in accordance with the normal case defined in
Section 4.1, we need to assess the inequality

2Ḟ1(t)

2F1(t)
+

Ġ(t)

G(t)
< 0,

when the economy starts with a physical to human capital ratio above its long-run counter-
part. We shall first prove that if we are in the normal parametric case identified by Caballé
and Santos, then such an inequality is indeed fulfilled.

Proposition 5 When the economy starts with a higher physical-human capital ratio than
that of the stationary solution and the condition β < σ is checked, the short-run rate of
physical capital accumulation is lower than that of the long-run equilibrium.

Proof : Using the Euler integral representation of the hypergeometric function 2F1(t) one
finds, after some trivial algebra,

2Ḟ1(t)

2F1(t)
= −bz0

(1 − β)(δ + π − θ)

β
exp

{
−

(1 − β)(δ + π − θ)

β
t

}
a

a + 1

2F1(b + 1, a + 1, a + 2; z (t) )

2F1(b, a, a + 1; z (t) )
,

where z (t) = z0 exp{− (1−β)(δ+π−θ)
β

t} as before. Note that 2Ḟ1(t)

2F1(t)
is a positive function that

tends to −bz0
(1−β)(δ+π−θ)

β
a

a+1
2F1(b+1,a+1,a+2;z0)

2F1(b,a,a+1;z0)
when t → 0, and tends to 0 when t → ∞.

On the other hand,

Ġ(t)

G(t)
=

(δ + π − θ)

β

z0

−z0 + exp
{

(1−β)(δ+π−θ)
β

t
} ,
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which is a negative function that tends to δ+π−θ
β

z0

1−z0
when t → 0, and tends to 0 when

t → ∞. So unfortunately, the sign of 2Ḟ1(t)

2F1(t)
+ Ġ(t)

G(t)
is undetermined at this stage, and we

have to dig deeper. Using the two previous expressions we find that4

2Ḟ1(t)

2F1(t)
+

Ġ(t)

G(t)
= −

(δ + π − θ)z

β

[
ba(1 − β)

a + 1
2F1(b + 1, a + 1, a + 2; z)

2F1(b, a, a + 1; z)
−

1

1 − z

]
. (33)

Applying formula (15.2.1) from Abramowitz and Stegun (1972), we can rewrite the pre-
vious expression in a more advantageous way

2Ḟ1(t)

2F1(t)
+

Ġ(t)

G(t)
= −

(δ + π − θ)(1 − β)z

β

[
d[2F1(b,a,a+1;z)]

dz

2F1(b, a, a + 1; z)
−

1

1 − β

1

1 − z

]
. (34)

Given that by transversality condition (23) we get δ + π > θ, and z < 0 because by
Proposition 3 z0 < 0 when the initial physical to human capital ratio is above its long-run
value, it follows that the short-run rate of physical capital accumulation is lower than
that of the long-run equilibrium if and only if

d[2F1(b,a,a+1;z)]
dz

2F1(b, a, a + 1; z)
−

1

1 − β

1

1 − z
< 0, ∀z < 0. (35)

Integrating the previous inequality between z (< 0) and 0, we obtain that the latter
inequality is indeed equivalent to

2F1(b, a, a + 1; z) − (1 − z)−
1

1−β > 0, ∀z < 0. (36)

We denote by H(z) the function defined as the expression on the left hand side of the
previous inequality. Then, the short-run rate of physical capital accumulation is lower
than that of the long-run equilibrium if and only if H(z) is positive ∀ z < 0.

Suppose σ > β or b > 0. We shall prove that in such a parametric case: (i) H (0) = 0,
H ′ (0) < 0, and the limit of H (z) when z tends to −∞ is zero, and (ii) H ′ (z) has a
unique root. These conditions are sufficient for H (z) positive ∀z < 0.

Note that H (0) = 2F1(b, a, a + 1; 0) − 1 = 0. By continuity, H (z) → 0 when z → 0.

This result implies, in our dynamical model, that K̇
K

tends to
−̇

K
−

K
when t tends to ∞.

Moreover,

H ′ (z) =
ab

1 + a
2F1(b + 1, a + 1, a + 2; z) −

1

1 − β
(1 − z)−

2−β

1−β , (37)

which implies that

H ′ (0) =
ab

1 + a
−

1

1 − β
=

1

1 − β

(
a

a + 1

σ − β

σ
− 1

)
< 0.

In order to prove that H(z) goes to zero when z goes to −∞, we use the Euler integral
representation of the hypergeometric function 2F1(b, a, a + 1; z) to find an upper bound

4For the sake of simplicity, from now on we have removed the temporal index corresponding to the

variable z.
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going to zero when z goes to −∞. This will be enough to conclude since 2F1 (.) is positive

∀z < 0 and the limit of (1 − z)−
1

1−β is zero when z tends to −∞. Indeed,

2F1(b, a, a + 1; z) =
Γ(a + 1)

Γ(a)Γ(1)

∫ 1

0

va−1(1 − vz)−bdv ≤ a

∫ 1

0

(1 − vz)−bdv

=
a

(1 − b) z
−

a (1 − z)1−b

(1 − b) z
.

The limit of the first term on the right hand side when z tends to −∞ is zero, but it
is also zero the limit of the second term when b > 0. The latter being obvious if b > 1,
and immediate if 1 > b > 0 after application of the l’Hôpital’s rule. This allows already
to conclude that H(z) goes to zero when z goes to −∞ under b > 0.

Now, recall (37) denoting h1(z) = ab
1+a 2F1(b + 1, a + 1, a + 2; z) and h2(z) = 1

1−β
(1 −

z)−
2−β

1−β so that H ′(z) = h1(z) − h2(z). It can be easily shown that both functions h1(.)
and h2(.) are both strictly increasing and strictly convex for z < 0. Moreover, one can
readily see that both functions cannot intersect in more than 2 points if any intersection.
We shall show that the two functions do always intersect in a single point. Because of
H ′(0) < 0, we know that h1(0) < h2(0). We now show that this inequality should be
reverted for z big enough (in absolute value). Indeed, one can straightforwardly find a
lower bound for h1(z) because

2F1(b + 1, a + 1, a + 2; z) =

(1 + a)

∫ 1

0

va(1 − vz)−b−1dv ≥ (1 + a)(1 − z)−b−1

∫ 1

0

vadv = (1 − z)−b−1.

Using this result we can see that

h1 (z)

h2 (z)
≥

ab

1 + a
(1 − β) (1 − z)−b−1+ 2−β

1−β .

Then, omitting the constant terms, it follows that the ratio h1(z) to h2(z) behaves like
the function (1− z)φ, with φ = −b− 1+ 2−β

1−β
= 1

1−β
− b > 0 as shown above. Hence, h1(z)

is necessarily above function h2(z) for z large enough (in absolute value). This implies
not only that H ′(z) = 0 has a root but also that it can not have two. ¤

It should be noted that the statement of Proposition 5 is a sufficient condition for
normal dynamics in K: b > 0 is such a condition. Instead, for human capital Proposition
4 shows that normal dynamics are obtained if and only if b > 0. Actually, one can go
a step further and show that whatever the value of b, we get always normal dynamics for
K. This features a kind of asymmetry between the two capital stocks, which is hidden in
the theoretical literature taking the traditional approach5. We prove this property next.

Proposition 6 When the economy starts with a higher physical-human capital ratio than
that of the stationary solution, the short-run rate of physical capital accumulation is lower
than that of the long-run equilibrium whatever the sign of σ − β.

Proof : The proof is trivial using the previous proposition and equation (37). If b ≤ 0,
then H ′(z) < 0 for all z ≤ 0. Since H(0) = 0, this means that H(z) is always positive for
z negative.¤

5It is fair to recognize that this feature is neatly pointed out in the computational literature à la

Sala-i-Martin.
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5 Conclusion

In this paper, we have shown how the closed-form solutions of the Lucas-Uzawa model,
found out by Boucekkine and Ruiz-Tamarit (2007), can be advantageously used to dig
deeper in some traditional economic topics in multi-sector models. It have been shown
that not only these new solutions allow for an inspection into the imbalance effects for any
initial conditions and for all variables in level (which is a highly desirable perspective for
this kind of inspections), but it also allows to capture some important features missed by
the related literature taking the traditional local approach. Non-monotonicity or asym-
metry (between state variables) are some of the new insights brought out by the new
approach. It should be noted that beside the important initial effort which was needed to
compute the closed-form solutions, the properties demonstrated in this paper only require
the very simple algebra of special functions.
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Appendix

Using the symmetry property in the arguments a and b, and taking into account that
ã = a − 1 and c = a + 1, we can rewrite 2F̃1(t) as

2F̃1(t) = 2F1(ã, b, c; z (t)) = 2F1(a − 1, b, a + 1; z (t)) = 2F1(b, a − 1, a + 1; z (t)).
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Since the previous hypergeometric function checks conditions under which the Euler
integral representation holds (a + 1 > a − 1 > 0), we can rewrite it as

2F1(ã, b, c; z (t)) = 2F1(b, a−1, a+1; z (t)) =
Γ(a + 1)

Γ(a − 1)Γ(2)

∫ 1

0

va−2(1−v)(1−vz (t))−bdv =

a(a − 1)

∫ 1

0

va−2(1 − v)(1 − vz (t))−bdv.

The derivative of the previous expression with respect to t is

2
˙̃
F 1(t) = a(a − 1)bż (t)

∫ 1

0

va−1(1 − v)(1 − vz (t))−b−1dv.

Since
∫ 1

0

va−1(1 − v)(1 − vz (t))−b−1dv =
Γ(a)Γ(2)

Γ(a + 2)
2F1(b + 1, a, a + 2; z (t) ) =

=
1

a(a + 1)
2F1(b + 1, a, a + 2; z (t) ),

then

2
˙̃
F 1(t) = b ż(t)

a − 1

a + 1
2F1(b + 1, a, a + 2; z (t) ).

Finally, we get

2
˙̃
F 1(t)

2F̃1 (t)
= b ż (t)

a − 1

a + 1
2F1(b + 1, a, a + 2; z (t))

2F1(b, a − 1, a + 1; z (t))
.
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