
CORE DISCUSSION PAPER

2007/48

Single Item Lot-Sizing with

Non-Decreasing Capacities

Yves Pochet1 and Laurence A. Wolsey2

June 2007

Abstract

We consider the single item lot-sizing problem with capacities that
are non-decreasing over time. When the cost function is i) non-speculative
or Wagner-Whitin (for instance, constant unit production costs and
non-negative unit holding costs), and ii) the production set-up costs
are non-increasing over time, it is known that the minimum cost lot-
sizing problem is polynomially solvable using dynamic programming.

When the capacities are non-decreasing, we derive a compact mixed
integer programming reformulation whose linear programming relax-
ation solves the lot-sizing problem to optimality when the objective
function satisfies i) and ii). The formulation is based on mixing set
relaxations and reduces to the (known) convex hull of solutions when
the capacities are constant over time.

We illustrate the use and effectiveness of this improved LP formu-
lation on a few test instances, including instances with and without
Wagner-Whitin costs, and with both non-decreasing and arbitrary ca-
pacities over time.

Keywords: Lot-Sizing, Mixing set relaxation, Compact reformulation,
Production Planning, Mixed Integer Programming.

1Center for Operations Research and Econometrics (CORE) and Louvain School of
Management (IAG-LSM), Université catholique de Louvain, Voie du Roman Pays 34,
1348 Louvain-la-Neuve, Belgium. email: pochet@core.ucl.ac.be

2Center for Operations Research and Econometrics (CORE) and Mathematical
Engineering Department (INMA), Université catholique de Louvain, Voie du Roman
Pays 34, 1348 Louvain-la-Neuve, Belgium. email: laurence.wolsey@uclouvain.be

This work was partly carried out within the framework of ADONET, a European network
in Algorithmic Discrete Optimization, contract no. MRTN-CT-2003-504438.
This text presents research results of the Belgian Program on Interuniversity Poles of
Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Pro-
gramming. The scientific responsibility is assumed by the authors.

1 Introduction

Single item lot-sizing with capacities that vary over time is known to be NP-
hard. However a little known result of Bitran and Yanasse establishes that
with non-speculative (Wagner-Whitin) production and storage costs, non-
decreasing capacities and non-increasing set-up costs, there is a polynomial
time dynamic programming algorithm.

The main goal in this paper is to develop a mixed integer programming
formulation whose linear programming relaxation solves the lot-sizing prob-
lem in this special case. The MIP formulation that we propose has the
following features:
i) Its linear programming relaxation solves the lot-sizing problem in the spe-
cial case
ii) The approach taken is not to develop facet-defining inequalities for the
convex hull of feasible solutions, but rather to construct an alternative re-
laxation for which a tight linear programming (convex hull) representation
is known
iii) When the capacities are constant over time, the formulation reduces to
the standard formulation used in the Wagner-Whitin case
iv) Whatever the costs, the formulation is valid for the lot-sizing problem
with non-decreasing capacities, and can be shown to provide improved so-
lution times on a variety of instances. In addition, it can be adapted for
instances with arbitrary capacities.

We now discuss related work. Although most variants of single item lot-
sizing with varying capacities, denoted LS-C are NP -hard, see Florian et
al. [9], the single item lot-sizing problem with constant capacities over time,
denoted LS-CC, is polynomially solvable. This was proved by Florian and
Klein [8] with a dynamic programming algorithm running in O(n4), where
n is the number of time periods in the planning horizon. This complexity
was later improved to O(n3) by van Hoesel and Wagelmans [10]. A tight
and compact extended formulation for LS-CC was proposed by Pochet and
Wolsey [13], involving O(n3) variables and constraints. An explicit linear
description of the convex hull of solutions in the original space of variables
(O(n) production, setup and inventory variables) is still not known, although
a large class of facet defining valid inequalities (the so-called (k, l, S, I) in-
equalities) was identified in Pochet and Wolsey [13].

These results can be improved in the special case of LS-CC in which
the objective function satisfies the so-called Wagner-Whitin cost conditions.
This problem is denoted by WW -CC. The WW cost conditions assume

1

that there are no speculative motives to hold inventory, i.e., it always pays
to produce as late as possible for any given set of production periods. For
WW -CC, Van Vyve [16] proposed an optimization algorithm running in
O(n2 log n), and Pochet and Wolsey [14] gave a tight and compact refor-
mulation with O(n2) variables and constraints. The latter was based on
a reformulation of the stock minimal solutions leading to mixing set relax-
ations. They also gave a complete linear description in the original variable
space with an exponential number of constraints, and a separation algorithm
running in O(n2 log n).

As indicated above, the problem LS-C is NP-hard, see [9, 2]. Nothing
appears to be known about reformulations for LS−C, or any of its variants,
apart from the valid inequalities proposed by Pochet [12], derived from flow
cover inequalities, and the submodular and lifted submodular inequalities
proposed by Atamtürk and Munoz [1]. Most of the results cited above are
described in detail in the recent book of Pochet and Wolsey [15].

Here we consider the single item lot-sizing problem with non-decreasing
capacities over time, denoted LS-C(ND), and more specifically the case in
which the cost function is non-speculative or Wagner-Whitin and, in addi-
tion, the production set-up costs are non-increasing over time. This special
case is denoted WW ∗-C(ND). Bitran and Yanasse [2] showed that WW ∗-
C(ND) is polynomially solvable. They gave a polynomial time dynamic
programming algorithm running in O(n4). An improved O(n2) algorithm
was proposed later by Chung and Lin [3]. Thus problem WW ∗-C(ND) is
one of the very few lot-sizing problem with varying capacities for which there
is some hope to find a good formulation.

Outline. In Section 2 we describe the two relaxations on which our result
is based, and present the main results of the paper. Specifically we describe
the relaxation that provides a tight formulation for problem WW -C, as well
as a tight extended linear programming formulation for WW -CC. This in
turn motivates the second (mixing) set relaxation used to build an improved
formulation of problem LS-C(ND).

Sections 3 and 4 are devoted to a proof of the main result. In Section 3
we show that the right hand side values of the constraints defining the re-
laxation can be constructed in polynomial time, as well as deriving certain
properties linking these values. In Section 4 we prove that the mixing set
relaxation solves problem WW ∗-C(ND). In Section 5 we report on compu-
tational tests. Finally, in Section 6 we discuss future directions of research

2

and the use of other mixing set relaxations to build improved formulations
for various lot-sizing problems.

2 Formulations and Results

2.1 An Initial MIP Formulation

The single-item lot-sizing problem LS−C is described by the following data.
There are n time periods. For each time period t, p′t, qt and h′

t represent the
unit production cost, the fixed production set-up cost and the unit inventory
cost per period, respectively.

The other data defining the problem are the demand Dt and the produc-
tion capacity Ct in each period t. For feasibility, we assume that

∑t
i=1 Ct ≥

∑t
i=1 Dt. We assume also that 0 ≤ Dt ≤ Ct for all t. The assumption

that Dt ≤ Ct is made without loss of generality. This holds because when
Dt > Ct it is impossible to produce the amount Dt −Ct in period t. There-
fore Dt can be replaced by Ct, the amount Dt−Ct must be produced before
period t and can be added to Dt−1.

Throughout the paper we use the notation Dkt ≡
∑t

u=k Du when 1 ≤
k ≤ t ≤ n, and Dkt ≡ 0 otherwise, and similarly ykt ≡

∑t
u=k yu.

We now present a standard mixed integer programming formulation for
LS − C.

The decision variables are xt, yt and st. They model the production lot
size in period t, the binary set-up variable which must be set to one when
there is positive production in period t, and the inventory at the end of
period t, respectively. The initial formulation of problem LS − C is

ZLS−C := min
n

∑

t=1

(p′t xt + qt yt + h′
t st) (1)

st−1 + xt = Dt + st for 1 ≤ t ≤ n (2)

s0 = sn = 0 (3)

xt ≤ Ct yt for 1 ≤ t ≤ n (4)

xt, st ≥ 0, yt ∈ {0, 1} for 1 ≤ t ≤ n, (5)

where the objective (1) is to minimize the sum of production and inventory
costs, under the demand satisfaction constraint (2) imposing that the de-
mand Dt in each period t can be satisfied by producing some quantity xt

3

in period t or by holding some inventory st−1 from period t− 1. Constraint
(4) forces the set-up variable yt to take the value 1 when there is a posi-
tive production in period t, i.e., xt > 0, and limits the amount produced to
Ct. Finally, constraint (3) says that there is no initial and final inventory,
and constraint (5) defines the nonnegativity and binary restrictions on the
variables.

The costs are non-speculative or Wagner-Whitin (WW) if

p′t + h′
t ≥ p′t+1 for all t.

The set-up costs are non-increasing (WW ∗) if in addition

qt ≥ qt+1 for all t.

The capacities are nondecreasing (C(ND)) when

Ct ≤ Ct+1 for all t.

Using the equations (2), it is a simple calculation to show that the variable
costs

∑n
t=1 p′txt +

∑n
t=1 h′

tst =
∑n

t=1 ptxt + K1 =
∑n

t=1 htst + K2 where
pt = p′t +

∑n
u=t h′

u, and ht = p′t + h′
t − p′t+1 for all t. Note that the WW

condition becomes pt ≥ pt+1 for all t, or equivalently ht ≥ 0 for all t.

Production
Cost

Lot Size

Ct Ct+1

pt+1

pt

qt+1

qt

Figure 1: The WW ∗ cost conditions with variable costs
∑n

t=1 ptxt

As can be seen in Figure 1, the WW ∗ − C(ND) conditions imply that it
always pays to produce as late as possible. In other words, any full batch of
size Ct produced in some period t, but not used to satisfy demand in period
t, can always be postponed to period t+1, where the production and set-up
costs will be at least as small, and the capacity at least as large as in period
t.

4

2.2 The Wagner-Whitin Relaxation of LS-C

Aggregating the flow balance constraints (2) for periods k, . . . , l and using
the capacity constraints (4) leads to the first well-known relaxation:

min
∑n

t=1 htst +
∑n

t=1 qtyt (6)

sk−1 +
∑t

u=k Cuyu ≥ Dkt for 1 ≤ k ≤ t ≤ n (7)

s0 = sn = 0 (8)

s ∈ R
n+1
+ , y ∈ {0, 1}n (9)

with feasible region XWW−C .
The following well-known results indicate why Wagner-Whitin costs lead

to special results.

Proposition 1. [14] In an extreme point of conv(XWW−C),
i) sk−1 = maxk=t,...,n(Dkt −

∑t
u=k Cuyu)+ for 1 ≤ k ≤ t ≤ n

ii) 0 ≤ Dk + sk − sk−1 ≤ Ckyk for 1 ≤ k ≤ n.

Therefore any extreme point of conv(XWW−C) defines a feasible solution
of LS−C by taking xk = Dk+sk−sk−1. This immediately shows the interest
of this relaxation.

Theorem 1. The Wagner-Whitin relaxation

min{hs + qy : (s, y) ∈ XWW−C}

solves WW − C (i.e. solves problem LS − C in the presence of Wagner-
Whitin costs).

Solutions of (2)-(5) satisfying i) of Proposition 1 are called stock-minimal
solutions. So Theorem 1 says that with WW costs (i.e. ht ≥ 0 for all t),
there always exists an optimal stock-minimal solution to WW − C.

A second important result concerns the special case when the capacities
are constant over time, in which case the set of solutions to (7)-(9) is denoted
XWW−CC . Note that XWW−CC can be rewritten as the intersection of n
sets, called mixing sets, all having a similar structure, namely

XWW−CC =
n
⋂

k=1

XMIX
k

where

XMIX
k = {(sk−1, yk, . . . , yn) ∈ R1

+ × {0, 1}n−k+1 :

sk−1/C + ykt ≥ Dkt/C for t = k, . . . , n}.

5

There are two important results concerning such sets.

Theorem 2. [11]

conv(XWW−CC) =
n
⋂

k=1

conv(XMIX
k).

Theorem 3. [11, 15] A tight and compact extended formulation of conv(XMIX
k)

is given by

sk−1 = Cµk + C
∑n

j=k fk
j σk

j
∑n+1

j=k σk
j = 1

µk + ykt +
∑

j:fk
j ≥fk

t
σk

j ≥ ⌊
Dkt

C
⌋+ 1 for k ≤ t ≤ n

µk ∈ R
1
+, yt ∈ [0, 1] for k ≤ t ≤ n, σk

j ∈ R
1
+ for k ≤ j ≤ n + 1

where fk
t = Dkt

C
− ⌊Dkt

C
⌋ and fk

n+1 = 0.

These results suggest that, if we can build a relaxation of XWW−C(ND)

that is an intersection of mixing sets, it is then easy to describe the convex
hull.

2.3 A Mixing Set Relaxation for WW − C(ND)

Here we assume both Wagner-Whitin costs and non-decreasing capacities.
The feasible region (7)-(9) is denoted by XWW−C(ND) when Ct is non-

decreasing over time, and by X
WW−C(ND)
0 when, in addition, the constraint

s0 = 0 is relaxed to s0 ≥ 0.
The right hand-side values that we will need to construct our relaxation

are obtained by solving the problem:

(Pkt) δkt = min{sk−1 + Ck

t
∑

u=k

yu : (s, y) ∈ X
WW−C(ND)
0 } (10)

for 1 ≤ k ≤ t ≤ n. We can now describe the second relaxation of WW −
C(ND).

min
∑n

t=1 htst +
∑n

t=1 qtyt (11)

sk−1 + Ckykt ≥ δkt for 1 ≤ k ≤ t ≤ n (12)

s0 = sn = 0, (13)

s ∈ R
n+1
+ , y ∈ {0, 1}n (14)

6

with feasible region X
WW−C(ND)
R . Note that XWW−C(ND) ⊆ X

WW−C(ND)
R

because all the constraints (12) are valid for XWW−C(ND) by definition of
the δkt.

Our main result can now be stated.

Theorem 4. The mixing set relaxation

min{hs + qy : (s, y) ∈ X
WW−C(ND)
R }

solves WW ∗ − C(ND).

Example 1. Consider the instance of WW ∗-C(ND) represented in Figure
2. For k = 2 and for all t ∈ {2, . . . , 6}, the constraints (12) in the mixing

1 1 1 5 40 25Dt=

20 20 30 40 50 50Ct=

 [1,2]
 + =
 [3,6]

50212

2515201

Figure 2: An instance of WW ∗-C(ND)

set relaxation are the following:

s1 + 20 y2 ≥ δ22 = 1

s1 + 20 (y2 + y3) ≥ δ23 = 2

s1 + 20 (y2 + y3 + y4) ≥ δ24 = 7

s1 + 20 (y2 + y3 + y4 + y5) ≥ δ25 = 27

s1 + 20 (y2 + y3 + y4 + y5 + y6) ≥ δ26 = 41.

The feasible point represented in Figure 2 with s1 = 1, y3 = y5 = 1 is the
optimal solution of (10) for k = 2 and t = 6 obtained in computing δ26.

As this relaxation is the intersection of n mixing sets, its convex hull is
known. What is more the δkt can be calculated in polynomial time.

Theorem 5. i) The mixing set relaxation (11)-(14) can be constructed ex-
plicitly in polynomial time.

ii) conv(X
WW−C(ND)
R) =

⋂n
k=1 conv(XMIX∗

k) where

7

XMIX∗

k = {(sk−1, yk, . . . , yn) ∈ R
1
+ × [0, 1]n−k+1 :

sk−1/Ck + ykt ≥ δkt/Ck for k ≤ t ≤ n, } (15)

and conv(XMIX∗

k) is given by Theorem 3 (with Ck in place of C and δkt in
place of Dkt).
iii) The linear program

min{hs + qy : (s, y) ∈ conv(X
WW−C(ND)
R)}

solves WW ∗ − C(ND).

iv) There is an extended formulation for conv(X
WW−C(ND)
R) with O(n2)

constraints and O(n2) variables, or alternatively there is a O(n2 log n) sep-
aration algorithm in the (s, y) space.

The next two sections are devoted to the proof of Theorem 4. Theorem
5 ii)-iv) is a direct consequence of Theorems 2 to 4. In Section 3 we describe
two different ways to calculate the δkt, establishing i) of Theorem 5, and we
derive different relations between these values. Then in Section 4 we prove
that there is an optimal solution of the mixing set relaxation (11)-(14) that
is feasible and thus optimal in XWW−C(ND) when the qt are non-increasing.

3 Calculation and Properties of the δ’s

The values δkt defined in (10) for 1 ≤ k ≤ t ≤ n can be computed in
polynomial time using either a forward or a backward procedure. Here we
describe these procedures and then we examine various properties of the δ’s.

Forward computation of δ

For fixed k, we compute the δkt values for all t ≥ k. Let α be the possible
values of sk−1 in the optimal solution to (10).

First observe that we can take α < Ck without loss of generality. This
holds because, if sk−1 ≥ Ck in a solution to (10), then at least as good
a solution can be constructed by decreasing α by Ck, and setting yq = 1,
where q = min{j : k ≤ j ≤ t, yj = 0}. If all y’s were originally equal to
1, then we can simply decrease α by Ck. This modified solution remains
feasible because Du ≤ Cu ≤ Cu+1 for all u.

8

In order to compute δkt for fixed sk−1 = α, we need to solve

min
t

∑

u=k

yu :

j
∑

u=k

Cuyu ≥ Dkj − α, yj ∈ {0, 1} for j = k, . . . , t. (16)

Because Cu ≤ Cu+1 for all u, an optimal solution can be found greedily
by producing as late as possible, while maintaining feasibility. Formally, an
optimal solution yα,k of (16) is obtained by the following procedure.

1. For j = k, . . . , t, let φα,k
j = (Dkj − α)+ −

∑j−1
u=k Cuyα,k

u .

2. If φα,k
j > 0, set yα,k

j = 1, and otherwise set yα,k
j = 0.

Observe that the computation of yα,k for fixed k and α can be done in a
single pass for all t ≥ k. So far, we have shown that

δkt = min
0≤α<Ck

{α + Ck

t
∑

u=k

yα,k
u } (17)

This procedure to compute all δ values can implemented in polynomial
time because at least one set-up is shifted to a later period for each value of
α. Thus, for each k, at most O(n2) values of α = sk−1 need to be considered.
Given k ∈ {1, . . . , n}, the following procedure selects the values of α that
one needs to consider.

1. Set α = 0.

2. While α < Ck, Compute yα,k
t for all t = k, . . . , n.

3. Let γ = min
t:φα,k

t >0
φα,k

t > 0.

4. Set α← α + γ and iterate.

Example 2. Consider again the instance of WW ∗-C(ND) represented in
Figure 2. Starting from α = 0, the computation of δ26 = 41 involves the
following iterations.

α = 0 y0,2
2 = y0,2

5 = y0,2
6 = 1 α + 20(y0,2

2 + · · ·+ y0,2
6) = 60

α = 1 y1,2
3 = y1,2

5 = 1 α + 20(y1,2
2 + · · ·+ y1,2

6) = 41

α = 2 y2,2
4 = y2,2

5 = 1 α + 20(y2,2
2 + · · ·+ y2,2

6) = 42

α = 7 y7,2
5 = y7,2

6 = 1 α + 20(y7,2
2 + · · ·+ y7,2

6) = 47

α = 22 STOP because α ≥ C2, δ26 = min(60, 41, 42, 47) = 41.

9

Backward computation of δ

For fixed t ∈ {1, . . . , n}, the backward procedure computes all δkt variables
for k = t, t− 1, . . . , 1. It is similar to the approach taken by Chung and Lin
[3] to compute of the minimum cost for a regeneration interval.

Given δkt from (10), define αkt and βkt by expressing δkt = αkt + Ckβkt

with 0 ≤ αkt < Ck.
Before describing the procedure, we need to prove some properties of the

α, β and δ values.

Lemma 1. For k, t with 1 ≤ k ≤ t ≤ n,

i. βkt = min{
∑t

u=k yu : (s, y) ∈ X
WW−C(ND)
0 , sk−1 < Ck}.

ii. If αkt > 0, ⌈ δkt

Ck
⌉ = min{

∑t
u=k yu : (s, y) ∈ X

WW−C(ND)
0 , sk−1 < αkt}.

Proof. i. Let (s, y) be an optimal solution for problem Pkt in (10) with
sk−1 = αkt < Ck and ykt = βkt. Such a solution always exists, as we already
observed in the discussion of the forward procedure. This solution defines a

feasible solution of the problem min{
∑t

u=k yu : (s, y) ∈ X
WW−C(ND)
0 , sk−1 <

Ck}. If this solution is not optimal for the latter problem, then there exists a

solution (s∗, y∗) ∈ X
WW−C(ND)
0 with s∗k−1 < Ck and y∗kt ≤ βkt− 1, but then

s∗k−1 + Cky
∗
kt < Ck + Ck(βkt − 1) = Ckβkt ≤ δkt contradicting the definition

of δkt.
ii. As δkt = αkt + Ckβkt, there is no feasible solution (s, y) ∈ X

WW−C(ND)
0

with sk−1 < αkt and ykt ≤ βkt.

Therefore, min{
∑t

u=k yu : (s, y) ∈ X
WW−C(ND)
0 , sk−1 < αkt} ≥ βkt + 1 =

⌈ δkt

Ck
⌉, where the last equality follows from αkt > 0.

It remains to show that there is a solution (s, y) ∈ X
WW−C(ND)
0 with

sk−1 < αkt and ykt = βkt + 1. Let (s, y) be an optimal solution for problem
Pkt in (10) with sk−1 = αkt < Ck and ykt = βkt. Modify this solution by
setting sk−1 = 0, and fixing yq to 1, where q = min[u ∈ {k, . . . , t} : yu = 0].
Note that q is well defined, because αkt > 0 implies that there is at least one
of the y variables equal to 0. This modified solution remains feasible because
Du ≤ Cu ≤ Cu+1 for all u, and satisfies sk−1 = 0 < αkt and ykt = βkt+1.

The next proposition provides the main properties of the δ values re-
quired to construct the backward procedure.

Proposition 2. Consider k, t with 1 ≤ k ≤ t ≤ n.

i. δtt = Dt, βtt = ⌊δtt/Ct⌋ and αtt = δtt − Ctβtt.

10

ii. If k < t and αk+1,t ≥ Ck, then δkt = Dk + Ck(1 + βk+1,t)

iii. If k < t and αk+1,t < Ck, then δkt = Dk + αk+1,t + Ckβk+1,t.

Proof. Consider problem Pkt in (10) defining the value of δkt. There is
always a stock minimal solution (s, y) to (10), i.e., such that

sk−1 = max
t=k,...,n

[

Dk,t −
t

∑

u=k

Cuyu

]+

for k = 1, . . . , n ,

that is optimal for problem Pkt. For such a solution, Dk − Ckyk + sk ≤
sk−1 ≤ Dk + sk for all k, see ii) of Proposition 1.
If (s∗, y∗) and (s, y) are two optimal solutions to Pkt, (s∗, y∗) dominates
(s, y) lexicographically if there exists t ∈ {1, . . . , n} such that y∗u = yu for
1 ≤ u ≤ t − 1 and 0 = y∗t < yt = 1. A lexico-min solution to Pkt is a
minimal (optimal) solution that is not lexicographically dominated by any
other optimal solution. There always exists a lexico-min solution. In such
a solution, production occurs as late as possible, and, in particular, for
any u with k ≤ u ≤ t, su−1 ≥ Du implies yu = 0. This holds because
Du ≤ Cu ≤ Cu+1, and the fixed costs are positive and constant in the
objective function of Pkt for u = k, . . . , t. Therefore, if (s, y) is such that
su−1 ≥ Du and yu = 1, then a lexicographically better solution (s∗, y∗) is
obtained by setting y∗u = 0 and, if {j : u < j ≤ n, yj = 0} 6= ∅, then y∗q = 1
with q = min[j : u < j ≤ n, yj = 0].
Finally, as we already observed in the forward procedure, there always exists
an optimal solution (s, y) to Pkt with sk−1 < Ck for all k.

i. The result is trivial because Dt ≤ Ct implies that an optimal solution
to Ptt is st−1 = Dt and yt = 0, which implies δtt = Dt. If Dt < Ct, then
βtt = 0, αtt = Dt. If Dt = Ct, then βtt = 1, αtt = 0 (in this case, another
optimal solution is st−1 = 0 and yt = 1).

ii. The solution (s, y) with sk−1 = Dk, yk = 0, sk = 0, yk+1,t = βk+1,t + 1
as constructed in the proof of Lemma 1 is feasible for Pkt and has cost
Dk + Ck(βk+1,t + 1). This proves that δkt ≤ Dk + Ck(βk+1,t + 1).
We prove that this last inequality holds at equality by proving that any
lexico-min and stock minimal solution (s, y) to Pkt with sk−1 < Ck has cost
at least equal to Dk + Ck(βk+1,t + 1). Let (s, y) be such a solution.

1. If yk = 0 then sk−1 ≥ Dk and sk = sk−1 − Dk < Ck ≤ αk+1,t.
Therefore, by Lemma 1, yk+1,t ≥ βk+1,t + 1. Such a solution has cost
in Pkt at least equal to sk−1 + Ck(yk + yk+1,t) ≥ Dk + Ck(βk+1,t + 1).

11

2. If yk = 1, then sk−1 < Dk and sk ≤ sk−1 + Ck − Dk < Ck ≤ αk+1,t.
Therefore, by Lemma 1, yk+1,t ≥ βk+1,t + 1. Such a solution has cost
in Pkt at least equal to sk−1+Ck(yk +yk+1,t) ≥ 0+Ck(1+βk+1,t+1) ≥
Dk + Ck(βk+1,t + 1).

iii. The solution (s, y) with sk−1 = Dk + αk+1,t, yk = 0, sk = αk+1,t,
yk+1,t = βk+1,t (as obtained from problem Pk+1,t) is feasible for Pkt and has
cost Dk + αk+1,t + Ckβk+1,t. This proves that δkt ≤ Dk + αk+1,t + Ckβk+1,t.
Note that if Dk + αk+1,t ≥ Ck, another equivalent optimal solution of Pkt is
obtained by taking sk−1 = Dk + αk+1,t − Ck and yk = 1.
We prove that δkt = Dk +αk+1,t+Ck(βk+1,t) by showing that any lexico-min
and stock minimal feasible solution (s, y) to Pkt with sk−1 < Ck has cost at
least equal to Dk + αk+1,t + Ck(βk+1,t). Let (s, y) be such a solution.

1. If yk = 0, then sk−1 ≥ Dk and sk = sk−1 −Dk < Ck −Dk.

(a) If sk < αk+1,t, then by Lemma 1 yk+1,t ≥ βk+1,t + 1, and (s, y)
has cost in Pkt at least equal to sk−1 + Ck(yk + yk+1,t) ≥ sk−1 +
Ck + Ckβk+1,t > Dk + αk+1,t + Ckβk+1,t.

(b) If sk ≥ αk+1,t, then sk < Ck−Dk ≤ Ck ≤ Ck+1 and by Lemma 1
yk+1,t ≥ βk+1,t. Therefore (s, y) has cost in Pkt at least equal to
sk−1 +Ck(yk +yk+1,t) ≥ Dk +sk +Ck(0+βk+1,t) > Dk +αk+1,t +
Ckβk+1,t.

2. If yk = 1, then 0 ≤ sk−1 < Dk and sk ≤ sk−1 + Ck −Dk < Ck.

(a) If sk < αk+1,t < Ck, then by Lemma 1 yk+1,t ≥ βk+1,t + 1, and
(s, y) has cost in Pkt at least equal to sk−1 + Ck(yk + yk+1,t) ≥
sk−1 + Ck(1 + βk+1,t + 1) = sk−1 + 2Ck + Ck(βk+1,t) > 0 + Dk +
αk+1,t + Ckβk+1,t.

(b) If sk ≥ αk+1,t, then sk < Ck ≤ Ck+1 and by Lemma 1 yk+1,t ≥
βk+1,t. Therefore (s, y) has cost in Pkt at least equal to sk−1 +
Ck(yk + yk+1,t) ≥ sk −Ck + Dk + Ck(1 + βk+1,t) ≥ αk+1,t + Dk +
Ckβk+1,t.

The backward procedure based on Proposition 2 works as follows, for all
t with 1 ≤ t ≤ n.

1. δtt = Dt, βtt = ⌊δtt/Ct⌋, αtt = δtt − Ctβtt

2. For k = t− 1, t− 2, . . . , 1,

12

(a) If αk+1,t ≥ Ck, then δkt = Dk + Ck(1 + βk+1,t)

(b) If αk+1,t < Ck, then δkt = Dk + αk+1,t + Ck(βk+1,t)

(c) βkt = ⌊δkt/Ck⌋, αkt = δkt − Ckβkt.

This procedure computes all δ values in O(n2).

Example 3. Consider again the same instance of WW ∗-C(ND) repre-
sented in Figure 2. We illustrate the backward computation of δ26 = 41.

δ66 = 25 β66 = 0 α66 = 25 < C5

δ56 = 40 + 25 + 50× 0 = 65 β56 = 1 α56 = 15 < C4

δ46 = 5 + 15 + 40× 1 = 60 β46 = 1 α46 = 20 < C3

δ36 = 1 + 20 + 30× 1 = 51 β36 = 1 α36 = 21 ≥ C2

δ26 = 1 + 20× (1 + 1) = 41 β26 = 2 α26 = 1 < C1.

We will need some additional properties of the δ values.

Lemma 2. For any (k, p, t) such that 1 ≤ k < p ≤ t ≤ n,

i. δkt ≤ δk,p−1 + ⌈δpt/Cp⌉Ck

ii. δkt ≥ δk,p−1 + ⌊δpt/Cp⌋Ck

iii. If αpt ≥ Cp−1, then δkt = δk,p−1 + ⌈δpt/Cp⌉Ck.

Proof. i. By Lemma 1, the solution (s, y) such that sk−1 = αk,p−1,
yk,p−1 = βk,p−1, sp−1 = 0, ypt = ⌈δpt/Cp⌉ is feasible for problem Pkt.
Its objective value in Pkt is sk−1 + Ckykt = αk,p−1 + Ckyk,p−1 + Ckypt =
δk,p−1 + Ck⌈δpt/Cp⌉Ck providing an upper bound on the optimal value δkt.

ii. We derive a lower bound on the cost of any optimal solution of Pkt. Con-
sider a lexico-min optimal solution (s, y) to Pkt (we know that there exists
such an optimal solution for Pkt), i.e. δkt = sk−1 + Ckykt. Using the same
argument as in the discussion of the forward procedure, we may assume that
0 ≤ sp−1 < Cp. Then, by Lemma 1, sp−1 < Cp implies ypt ≥ βpt = ⌊δpt/Cp⌋.
As sp−1 ≥ 0, one must have sk−1 + Ckyk,p−1 ≥ δk,p−1. The claim follows
because δkt = sk−1 + Ckyk,p−1 + Ckypt ≥ δk,p−1 + Ck⌊δpt/Cp⌋.

iii. This follows directly from Proposition 2, and from the backward
procedure to compute δtl. If αpt ≥ Cp−1, then δp−1,t = Dp−1 + Cp−1(1 +
βpt) = δp−1,p−1 + Cp−1(⌈δpt/Cp⌉), and therefore αut = αu,p−1 and βut =
βu,p−1 + βpt + 1 for all u ≤ p− 1.

13

4 The Mixing Relaxation Solves WW ∗-C(ND)

We are now ready to prove Theorem 4.

Proof. We have established that (11)-(14) is a relaxation of WW −C(ND),
so it suffices to show that there exists an optimal solution to (11)-(14) which
is feasible for LS-C(ND).

Consider an optimal solution (s, y) of (11)-(14) which is stock minimal
in (12)-(14), i.e. such that sj−1 = maxt≥j [δjt − Cjyjt]

+. Such an optimal
solution always exists because hu ≥ 0 for all u. We decompose this solution
into regeneration intervals, and we consider each regeneration interval [k, l]
where sk−1 = sl = 0 and st > 0 for k ≤ t < l. We prove the Theorem via a
series of Claims.

Claim 1. If [k, l] is a regeneration interval of a stock minimal optimal so-
lution (s, y) of (11)-(14), then
i. ykj ≥ ⌈δkj/Ck⌉ for j = k, . . . , l,
ii. yl+1,j ≥ ⌈δl+1,j/Cl+1⌉ for j = l + 1, . . . , n,
iii. yjl ≤ βjl = ⌊δjl/Cj⌋ for j = k + 1, . . . , l, and
iv. sj−1 = δjl − Cjyjl for j = k + 1, . . . , l.

Proof of Claim 1. i. As [k, l] is a regeneration interval of (s, y), sk−1 = 0.
As (s, y) satisfies (12), me must have Ckykt ≥ δkt for t = k, . . . , l. The claim
follows from the integrality of y.

ii. Similarly, as [k, l] is a regeneration interval of (s, y), sl = 0. Therefore,
Cl+1yl+1,j ≥ δl+1,j for j = l + 1, . . . , n, and the claim follows.

iii. and iv. Note that there is nothing to prove, unless k < l. We have
that sj−1 = maxt≥j [δjt −Cjyjt] > 0 for j = k + 1, . . . , l. First we show that
sj−1 = maxt:j≤t≤l[δjt − Cjyjt]. Consider some period p > l.

δjp − Cjyjp ≤ δjl + Cj⌈
δl+1,p

Cl+1
⌉ − Cjyjl − Cjyl+1,p (by Lemma 2 i.)

≤ δjl − Cjyjl (by Claim 1 ii.).

Now define H(j) to be true if iii) and iv) hold for all t such that j ≤ t ≤ l.
First consider H(l). As δll = Dl, we have that sl−1 = dl−Clyl > 0. If yl = 1,
then sl−1 ≤ 0, a contradiction. Thus yl = 0 and the claim holds for j = l,
i.e., H(l) is true.
Now suppose that H(j + 1) is true for some j + 1 ≤ l, j ≥ k + 1. Thus

14

ytl ≤ βtl for j + 1 ≤ t ≤ l and sj = δj+1,l −Cj+1yj+1,l. Consider any period
p with j < p ≤ l. Then

δjl − Cjyjl ≥ δj,p−1 + Cj⌊
δpl

Cp
⌋ − Cjyjl (by Lemma 2 ii.)

= δj,p−1 − Cjyj,p−1 + Cj(⌊
δpl

Cp
⌋ − ypl)

≥ δj,p−1 − Cjyj,p−1 (as ypl ≤ βpl).

Thus sj−1 = δjl−Cjyjl. Finally as sj−1 > 0, we must have yjl ≤ ⌊
δjl

Cj
⌋ = βjl,

and H(j) is true. Repeating recursively this proof for j = l−1, l−2, . . . , k+1
proves the claim.

Note that the above proof shows that for any feasible solution (s, y) to
(11)-(14) with sl = 0 and yjl ≤ βjl for j = k+1, . . . , l, then sj−1 = δjl−Cjyjl,
for j = k + 1, . . . , l.

Recall that a lexico-min solution (s, y) to (11)-(14) is an optimal solution
that is not lexicographically dominated by any other optimal solution. That
is, if yt = 1 for some t, there does not exist another optimal solution (s∗, y∗)
with yu = y∗u for u < t, and y∗t = 0.

Claim 2. If (s, y) a stock minimal lexico-min solution to (11)-(14), and
[k, l] is a regeneration interval of (s, y), then yjl = βjl and sj−1 = αjl for
j = k + 1, . . . , l.

Proof of Claim 2. By Claim 1, yjl = βjl implies sj−1 = αjl for j =
k+1, . . . , l. Therefore we only need to prove that yjl = βjl for j = k+1, . . . , l.
Note also that there is nothing to prove unless k < l.

Let (s, y) be a stock minimal lexico-min solution to (11)-(14), and [k, l]
be a regeneration interval of (s, y). By contradiction, assume that ypl < βpl

for some p ≥ k + 1, and ytl = βtl for p + 1 ≤ t ≤ l. We distinguish the two
cases: yp = 0 and yp = 1.

Case yp = 0. Let q = max[j : k ≤ j < p, yj = 1]. Such a q always exists
because ypl < βpl ≤ βkl ≤ ⌈δkl/Ck⌉ ≤ ykl and therefore yk,p−1 > 0. Also
yjl < βjl for q < j ≤ p because yjl = ypl < βpl ≤ βjl.

Now we construct the solution (s∗, y∗) as y∗ = y − eq + ep, where ej is
the unit vector with a 1 in position j, and s∗j−1 = maxt≥j [δjt − CjY

∗
jt]

+.
This solution is feasible in (11)-(14), and dominates (s, y) lexicographically.

15

To obtain a contradiction, it remains to show that the cost of (s∗, y∗) is not
greater than that of (s, y).

By construction, y∗jl ≤ βjl for all k < j ≤ l, and s∗l = sl = 0. So, by the
proof of Claim 1, we still have that s∗j−1 = δjl − Cjy

∗
jl, for j = k + 1, . . . , l.

Therefore

s∗j−1 = sj−1 for j > l

s∗j−1 = δjl − Cjy
∗
jl = δjl − Cjyjl = αjl = sj−1 for p < j ≤ l

s∗j−1 = δjl − Cjy
∗
jl = δjl − Cj(yjl + 1) < δjl − Cjyjl = sj−1 for q < j ≤ p

s∗j−1 = δjl − Cjy
∗
jl = δjl − Cjyjl = sj−1 for k < j ≤ q.

We check now that s∗k−1 = sk−1 = 0 which implies that s∗j−1 = sj−1 for all
j ≤ k, as shown in the proof of Claim 1. By Lemma 2 ii. δkl ≥ δk,j−1+Ckβjl

for j = q + 1, . . . , p, and by Claim 1 ykl ≥ ⌈δkl/Ck⌉. Therefore ykl ≥
⌈δk,j−1/Ck⌉ + βjl > ⌈δk,j−1/Ck⌉ + yjl implying that yk,j−1 > ⌈δk,j−1/Ck⌉
and y∗k,j−1 = yk,j−1− 1 ≥ ⌈δk,j−1/Ck⌉ for j = q + 1, . . . , p. As y∗k,j = yk,j for
j = k, . . . , q − 1 and j = p, . . . , l, we have y∗kj ≥ ⌈δk,j/Ck⌉ for j = k, . . . , l.
Together with s∗l = 0, this implies that s∗k−1 = 0.

So, we have shown that s∗ ≤ s, and the solution (s∗, y∗) has cost not
larger than (s, y) because set-up costs are non-increasing and inventory costs
are non-negative in (11)-(14).

Case yp = 1. Note that p < l in this case, because yl = yll = 1 and yll < βll

is impossible. Note also that this case, with ypl = yp+1,l+1 = βp+1,l+1 < βpl,
can only occur if βpl = βp+1,l +2, which happens if and only if Dp = Cp and
αp+1,l ≥ Cp.

Let q = min[j : p < j ≤ l, yj = 0]. Such a q always exists because
yl = yll = βll = 0 if Dl < Cl, and if Dl = Cl then yl = yll = βll = 1 implies
k = l (i.e., sl−1 = 0) and there is nothing to prove.

Now we construct the solution (s∗, y∗) as y∗ = y − ep + eq, and s∗j−1 =
maxt≥j [δjt−Cjy

∗
jt]

+. Again, this solution is feasible in (11)-(14), and domi-
nates (s, y) lexicographically. To obtain a contradiction, it remains to show
that s∗ ≤ s, which implies that the cost of (s∗, y∗) is not greater than that
of (s, y).

i. For j > q, we have s∗j−1 = sj−1.

ii. By Claim 1 and yql = βql, sq−1 = maxt≥q[δqt − Cqyqt]
+ = αql < Cq.

Since y∗qt = yqt + 1 for all t ≥ q, s∗q−1 = maxt≥q[δqt − Cqy
∗
qt]

+ =

16

maxt≥q[δqt − Cq − Cqyqt]
+ = [sq−1 − Cq]

+ = 0. This implies that
s∗q−1 ≤ sq−1 and y∗qt ≥ ⌈δqt/Cq⌉ for all t ≥ q.

iii. For j = p + 1, . . . , q − 1 and t ≥ q, by Lemma 2 i., δjt − Cjy
∗
jt ≤

δj,q−1 + ⌈δqt/Cq⌉Cj − Cjy
∗
j,q−1 − Cjy

∗
qt ≤ δj,q−1 − Cjy

∗
j,q−1, where the

last inequality holds because y∗qt ≥ ⌈δqt/Cq⌉ for all t ≥ q.

Therefore, for j = p + 1, . . . , q − 1, s∗j−1 = maxt≥j [δjt − Cjy
∗
jt]

+ =
maxt:j≤t≤q−1[δjt − Cjyjt]

+ = 0, where the last equality holds because
for j ≤ t ≤ q − 1, y∗u = 1 for all u = j, . . . , t and δjt ≤ (t − j +
1)Cj by Lemma 2 i. (because δjt ≤ δj,t−1 + ⌈δtt/Ct⌉Cj ≤ δj,t−2 +
⌈δt−1,t−1/Ct−1⌉Cj + ⌈δtt/Ct⌉Cj ≤ . . . ≤

∑t
u=j⌈δuu/Cu⌉Cj = (t − j +

1)Cj).

In particular, s∗p = 0 implies y∗p+1,t ≥ ⌈δp+1,t/Cp+1⌉ for all t ≥ p + 1.

iv. For j = k + 1, . . . , p, using Lemma 2 i. δjl ≤ δjp + ⌈δp+1,l/Cp+1⌉Cj .
Thus βjl ≤ βj,p + ⌈δp+1,l/Cp+1⌉ ≤ βj,p + y∗p+1,l. As y∗jl = yjl ≤ βjl,
y∗j,p ≤ βj,p, for all j = k + 1, . . . , p. Together with s∗p = 0, using the
same proof as in Claim 1, this implies that s∗j−1 = δjp − Cjy

∗
jp for all

j = k + 1, . . . , p. In fact this shows that [k, p] is a new regeneration
interval in (s∗, y∗).

As αp+1,l ≥ Cp > 0, by Lemma 2 iii., we have δjl = δjp+Cj(1+βp+1,l),
for all j = k + 1, . . . , p. So for j = k + 1, . . . , p,

s∗j−1 = δjp − Cjy
∗
jp

= δjl − Cj(1 + βp+1,l)− Cj(yjp − 1)

= δjl − Cj(1 + yp+1,l)− Cjyjp + Cj

= δjl − Cjyjl

= sj−1.

v. Finally to prove that s∗k−1 = 0, we only need to show that y∗kj ≥
⌈δkj/Ck⌉, for j = p, . . . , q−1, because by Claim 1 y∗kj = ykj ≥ ⌈δkj/Ck⌉
for j = k, . . . , p− 1 and j = q, . . . , l.

As αp+1,l ≥ Cp, we have δkl = δkp + Ck(1 + βp+1,l) by Lemma 2 iii.
Therefore y∗kl = ykl ≥ ⌈δkl/Ck⌉ ≥ ⌈δkp/Ck⌉+ 1 + βp+1,l = ⌈δkp/Ck⌉+
y∗p+1,l, which implies y∗kp ≥ ⌈δkp/Ck⌉.

For j = p + 1, . . . , q − 1, Lemma 2 i. implies that δkj ≤ δkp +
∑j

u=p+1⌈δuu/Cu⌉Ck = δkp +(j−p)Ck. Therefore, y∗kj = y∗kp +y∗p+1,j ≥
⌈δkp/Ck⌉+ (j − p) ≥ ⌈δkj/Ck⌉.

17

Claim 3. If (s, y) a stock minimal lexico-min solution to (11)-(14), and [k, l]
is a regeneration interval of (s, y), then yjl = βjl and sj−1 = αjl < Cj−1 for
j = k + 1, . . . , l.

Proof of Claim 3. By Claim 2, we know that yjl = βjl and sj−1 = αjl for
j = k + 1, . . . , l. So, we assume by contradiction that sp = αp+1,l ≥ Cp for
some p ∈ {k, . . . , l − 1}. Because αp+1,l ≥ Cp, we must have ypl = βpl >
βp+1,l = yp+1,l, and thus yp = 1. The proof by contradiction is identical to
the proof of Claim 2 in the case yp = 1.

To conclude the proof of the main Theorem, it suffices to show that
a stock minimal lexico-min solution (s, y) of (11)-(14) is feasible for LS-
C(ND). Let (s, y) be a stock minimal lexico-min solution of (11)-(14). So,
we have to prove that xt = st + Dt − st−1 satisfies 0 ≤ xt ≤ Ctyt, for all
t ∈ {1, . . . , n}.

Let [k, l] be any regeneration interval of (s, y) with k < l.

i. As sl = 0 and sl−1 = αll = δll − Clβll = Dl − Clyl by the previous
claims, we have xl = sl + Dl − sl−1 = Clyl ∈ [0, Clyl].

ii. Consider any j ∈ {k + 1, . . . , l− 1} with yj = 0. As yjl = βjl, yj+1,l =
βj+1,l and yjl = yj+1,l, we must have βjl = βj+1,l. This implies that
Dj+αj+1,l < Cj and αjl = Dj+αj+1,l. Therefore xj = sj+Dj−sj−1 =
αj+1,l + Dj − αjl = 0 ∈ [0, Cjyj].

iii. Consider any j ∈ {k + 1, . . . , l− 1} with yj = 1. As yjl = βjl, yj+1,l =
βj+1,l and yjl = yj+1,l + 1, we must have βjl = βj+1,l + 1. As αj+1,l <
Cj , this implies that Dj + αj+1,l ≥ Cj and αjl = Dj + αj+1,l − Cj .
Therefore xj = sj + Dj − sj−1 = αj+1,l + Dj − αjl = Cj ∈ [0, Cjyj].

iv. Finally, ykl ≥ ⌈δkl/Ck⌉, yk+1,l = βk+1,l and therefore δkl = Dk +
αk+1,l + Ckβk+1,l. As sk = αk+1,l > 0 in a regeneration interval,
we must have 0 < Dk + αk+1,l ≤ Ck and yk = 1. Therefore xk =
sk + Dk − sk−1 = αk+1,l + Dk ∈ [0, Ckyk].

Finally, if [k, k] is a regeneration interval of (s, y), we must have ykk ≥
⌈δkk/Ck⌉, that is yk = 1 if Dk > 0. Therefore, xk = sk + Dk − sk−1 = Dk ∈
[0, Ckyk].

Example 4. Figure 3 shows an example of a regeneration interval [1, 6]
and a stock minimal solution for an instance of (11)-(14). This solution is

18

not a lexico-min solution, and does not correspond to a feasible solution of
LS-C(ND).

1 1 1 5 40 25Dt=

20 20 30 40 50 50Ct=

[1,6] =

y5 = 1y2 = 1y1 = 1

251520211

42 41 51 60 65 25δt6 =

Figure 3: A stock minimal solution, not feasible for LS-C(ND)

In this instance, yj6 = βj6 for all j = 2, . . . , 6, but s2 = α36 ≥ C2. The
proof of Claim 3 shows how to transform this solution to a lexico-dominating
solution (here, p = 2 and q = 3) without increasing the cost. This latter
solution is represented in Figure 4. Since it is a lexico-min and stock minimal
solution of (11)-(14), it defines a feasible solution of LS-C(ND).

1 1 1 5 40 25Dt=

20 20 30 40 50 50Ct=

[1,6] =

y5 = 1y3 = 1y1 = 1

2515201

42 41 51 60 65 25δt6 =

Figure 4: A stock minimal and lexico-min solution, feasible for LS-C(ND)

Remark It can be checked that all the reformulation results presented so
far remain valid for the case where the integer variables y have arbitrary
bounds yt ≤ vt with vt ∈ Z

1
+ or are unbounded yt ≤ ∞. In this case

preprocessing must again be carried out to ensure that Dt ≤ vtCt. The
backward procedure to compute δ is then unchanged, and the proofs can be
modified appropriately.

5 Numerical Results for WW ∗-C(ND) and LS-C

Here we illustrate the impact of adding the extended formulation for

conv(X
WW−C(ND)
R) to the initial lot-sizing formulation (1)-(5). Specifically

19

we add the extended formulation of Theorem 3 for each mixing set XMIX∗

k

defined in (15).
We first illustrate our reformulation results on an instance with n = 20

time periods, Dt ∈ [6, 35], ht ∈ [0.01, 0.05], yt ∈ Z+. From Theorems 4
and 5, this reformulation will solve the problem as an LP , i.e., without any
branching, for WW ∗-C(ND). The reformulation is also valid and tightens
the formulation of other lot-sizing problems. For the following lot-sizing
problems, we test the impact of this reformulation on the solution perfor-
mance using a state-of-the-art mixed integer programming solver.

1. WW -C(ND), where the objective satisfies the WW cost conditions
without any assumption on set-up costs,

2. LS-C(ND), where there is no assumption on the objective function
coefficients,

3. Prob-C, with Prob=WW ∗, WW or LS, where there is no monotonic-
ity restriction on the capacities, i.e., capacities increase and decrease
arbitrarily over time.

To use the reformulation results for the general capacity problems Prob−
C, we first have to build a valid relaxation Prob−C(ND), in which the ca-
pacities are non-decreasing over time. To avoid a very weak relaxation, we
build a non-decreasing capacity sequence starting from each period k. For-
mally, for each k, we define non-decreasing capacities CNDk

t , for t ≥ k, as
CNDk

k = Ck and CNDk
t = max[Ct, C

NDk

t−1] for t > k. This allows us to com-
pute δkt values for all t ≥ k and define valid mixing set relaxations of the
form (15). Note that in contrast to the case of non-decreasing capacities, the
computations of δkt and δk+1,t, δk+2,t, . . . require different capacities CNDk ,
CNDk+1 , CNDk+2 , . . ., and thus cannot be performed in a single execution
of the backward procedure. Therefore, the computation of δ runs in O(n3)
for Prob− C.

Table 1 describes the data generation process for the instance solved,
where U([a, b]) refers to the uniform distribution with values in [a, b],ր [a, b]
(resp. ց [a, b]) refers to a non-decreasing (resp. non-increasing) sequence in
[a, b]. All data Ct, qt, pt are integral. With WW costs, we assume without
loss of generality that pt = 0 for all t.

For these lot-sizing instances, we compare the performance of four differ-
ent formulations using Xpress-MP (on a P-IV running at 1.73 GHz), namely

1. INIT : Initial formulation (1)-(5) in the (x, s, y) space,

20

Problem Ct qt pt

WW ∗ − C(ND) ր [5, 25] ց [2, 21] 0
WW − C(ND) ր [5, 25] U([16, 20]) 0
LS − C(ND) ր [5, 25] U([16, 20]) U([0.01, 0.05])

WW ∗ − C U([16, 25]) ց [2, 21] 0
WW − C U([16, 25]) U([16, 20]) 0
LS − C U([16, 25]) U([16, 20]) U([0.01, 0.05])

Table 1: Data generation process for the lot-sizing instances

2. XPRESS: Initial formulation, plus default Xpress cuts,

3. MIXING: Initial, plus extended reformulation in the (x, s, y, µ, σ)
space of the mixing set relaxations,

4. MIX −XPR: Mixing, plus default Xpress cuts.

With n = 20 time periods, the initial formulation involves 40 constraints,
61 variables, and 20 integer variables, and the mixing reformulation involves
290 constraints, 311 variables and 40 integer variables y and µ. These small
problems are all solved in 0 or 1 second with all formulations tested. So,
we do not compare the running times, but the number of branch-and-bound
nodes needed to solve the problems, and the integrality gap obtained at the
root node of the enumeration tree, where Gap = 100 × (Optimal value −
Root LP value)/ Optimal value (%). The results are given in Table 2.

Formulation INIT XPRESS MIXING MIX −XPR
Problem Gap nodes Gap nodes Gap nodes Gap nodes

WW ∗ − C(ND) 5.62 1868 2.60 1495 0 1 0 1
WW − C(ND) 2.52 823 1.54 666 0.23 46 0 1
LS − C(ND) 4.26 9724 2.60 7747 0.21 54 0.14 14

WW ∗ − C 6.53 5653 4.30 1111 1.31 88 1.18 104
WW − C 2.84 824 1.76 297 0.42 7 0.05 3
LS − C 3.63 4582 3.19 1998 1.30 751 1.14 422

Table 2: Numerical result for instances with n = 20.

The results in Table 2 show clearly that the reformulation is effective for
all instances. For problems that are not solved at the root node, the best

21

formulation is MIX −XPR.

To analyze the impact of the reformulations on the running time, we
solved a larger instance of LS − C with n = 100 time periods, with Dt ∈
U([16, 35]), Ct ∈ U([16, 25]), qt ∈ U([16, 20]), ht ∈ U([0.01, 0.05]), pt ∈
U([0.01, 0.05]). The initial formulation involves 200 constraints, 301 vari-
ables and 100 integer variables, and the mixing reformulation involves 5450
constraints, 5551 variables and 200 integer variables.

As the size of the mixing set reformulation becomes quite large as n is
increased, we have also tested a partial or reduced reformulation defined by
only including in the mixing sets the constraints sk−1+Ck

∑t
u=k yu ≥ δkt for

which t− k ≤ 10. This reduces the size of the extended reformulation from
O(n2) to O(10n) variables and constraints at the cost of a slightly weaker re-
formulation. The corresponding formulations are called MIXING−RED,
and MIX − RED −XPR when Xpress cuts are added. For this instance,
the formulation MIXING−RED involves 1445 constraints and 1546 vari-
ables. The results with these formulations for an instance with n = 100 are
shown in Table 3.

Formulation rootLP final nodes time
gap (%) gap (%) (secs)

INIT 1.14 0.34 > 1 540 000 > 1 200
XPRESS 0.53 0 389 778 466
MIXING 0.20 0 15 506 194
MIX −XPR 0.15 0 6 518 192

MIXING−RED 0.29 0 14 929 38
MIX −RED −XPR 0.18 0 8 126 34

Table 3: Numerical results for an instance of LS-C with n = 100.

The initial formulation cannot solve the problem to optimality in 1200
seconds. The final gap after 1200 seconds is still 0.34 %. The other formula-
tions solve the instance in less than 1200 seconds. Although the integrality
gap at the root node is larger with the reduced reformulation, this has little
or no effect on the total number of nodes needed to solve the instance to
optimality. Since each LP is smaller, the total running time with reduced
reformulations is substantially lower than with the complete reformulation.
The best reformulation MIX − RED −XPR is able to solve the instance
6 times faster than the complete mixing reformulation, and 14 times faster

22

than default Xpress.

6 Conclusion

We have described a compact LP formulation for solving the polynomial
problem WW ∗-C(ND), based on a mixing set relaxation, and its known
reformulations. We have also shown that this reformulation approach can
be used to build improved formulations for the NP − hard capacitated lot-
sizing problem LS-C.

As a first extension, it is possible to derive tighter mixing set relaxations
for problem LS-C. For instance, if the capacities are non-decreasing in all
but one period, i.e. Ct ≤ Ct+1, for all t 6= q, and Cq > Cq+1. Then it
is easy to show that the problem Pkt defined in (10) can still be solved in
polynomial time by using a combination of the forward and backward pro-
cedures proposed in this paper to compute δ. Therefore, a mixed integer
set relaxation can be built efficiently, and its extended reformulation used
to improve the formulation of LS-C. Such extensions could be investigated
further.

More generally mixing sets have been used to model a wide variety of
simple mixed integer sets and constant capacity lot-sizing sets, for example:
Conforti et al. [4] study the mixing set with flows; Miller and Wolsey [11],
and Van Vyve [17] study the continuous mixing set, whose reformulations
have been used in Van Vyve [18] to propose extended formulations for lot-
sizing problems with backlogging and constant capacity; Di Summa and
Wolsey [6] have used mixing sets to model lot-sizing problems on a tree,
leading to improved formulations for the stochastic lot-sizing problem with
a tree of scenarios; Conforti and Wolsey [5] and Van Vyve [16] have studied
an extension of the mixing set with two divisible capacities, that could lead
to improved formulations for variants of LS-C, and recently de Farias and
Zhao [7] have studied mixing sets with any number of divisible capacities.

The natural question to ask is whether the approach of this paper can
be extended to some of these models, so as to provide effective formulations
for variants with arbitrarily varying capacities.

More generally the link between such extensions of mixing sets and for-
mulations of various lot-sizing problems still seems to merit further investi-
gation.

23

References

[1] Atamtürk, A., Munoz, J.: A study of the lot-sizing polytope. Mathe-
matical Programming 99, 443–466 (2004)

[2] Bitran, G., Yanasse, H.: Computational complexity of the capacitated
lot size problem. Management Science 28, 1174–1186 (1982)

[3] Chung, C., Lin, M.: An O(T 2) algorithm for the NI/G/NI/ND capac-
itated single item lot size problem. Management Science 34, 420–426
(1988)

[4] Conforti, M., Di Summa, M., Wolsey, L.: The mixing set with flows.
SIAM Journal of Discrete Mathematics 29, 396–407 (2007)

[5] Conforti, M., Wolsey, L.: Compact formulations as a union of polyhe-
dra. Mathematical Programming doi 10.1007/s10107-007-0101-0
(2007)

[6] Di Summa, M., Wolsey, L.: Lot-sizing on a tree. Operations Research
Letters doi:10.1016/j.orl.2007.04.007 (2007)

[7] de Farias Jr., I., Zhao, M.: The mixing-mir set with divisible capacities.
Working paper, University of Buffalo, U.S.A (2006)

[8] Florian, M., Klein, M.: Deterministic production planning with concave
costs and capacity constraints. Management Science 18, 12–20 (1971)

[9] Florian, M., Lenstra, J.K., Rinnooy Kan, H.G.: Deterministic produc-
tion planning: Algorithms and complexity. Management Science 26,
669–679 (1980)

[10] van Hoesel, C., Wagelmans, A.: An O(T 3) algorithm for the economic
lot-sizing problem with constant capacities. Management Science 42,
142–150 (1996)

[11] Miller, A., Wolsey, L.: Tight formulations for some simple MIPs and
convex objective IPs. Mathematical Programming B 98, 73–88 (2003)

[12] Pochet, Y.: Valid inequalities and separation for capacitated economic
lot-sizing. Operations Research Letters 7, 109–116 (1988)

[13] Pochet, Y., Wolsey, L.: Lot-sizing with constant batches: Formulation
and valid inequalities. Mathematics of Operations Research 18, 767–
785 (1993)

24

[14] Pochet, Y., Wolsey, L.: Polyhedra for lot-sizing with Wagner-Whitin
costs. Mathematical Programming 67, 297–324 (1994)

[15] Pochet, Y., Wolsey, L.: Production Planning by Mixed Integer Pro-
gramming. Springer Series in Operations Research and Financial En-
gineering, New York (2006)

[16] Van Vyve, M.: Algorithms for single item constant capacity lotsizing
problems. Discussion Paper DP03/07, CORE, Universite catholique de
Louvain, Louvain-la-Neuve (2003)

[17] Van Vyve, M.: The continuous mixing polyhedron. Mathematics of
Operations Research 30, 441–452 (2005)

[18] Van Vyve, M.: Linear programming extended formulations for the
single-item lot-sizing problem with backlogging and constant capacity.
Mathematical Programming 108, 53–78 (2006)

25

