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Abstract

A central result in the theory of integer optimization states that a system
of linear diophantine equations Ax = b has no integral solution if and only
if there exists a vector in the dual lattice, yT A integral such that yT b is
fractional. We extend this result to systems that both have equations and
inequalities {Ax = b, Cx ≤ d}. We show that a certificate of integral in-
feasibility is a linear system with rank(C) variables containing no integral
point.
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02 CORE and INMA, Université catholique de Louvain, Belgium, email: lou-
veaux@core.ucl.ac.be

03 Department of Mathematics, Otto-von-Guericke Universität Magdeburg, Germany,
email: weismant@mail.math.uni-magdeburg.de

1



1 Introduction

It is a fundamental result in the theory of integer optimization that one can
give a certificate for a vector not being a member of a lattice. This result can
be viewed as a sort of an integer Farkas Lemma.

Theorem 1 [4] Let A ∈ Zm×n of full row rank and let b ∈ Zm. The system
Ax = b has no integral solution iff the system yT A integer, yT b fractional is
solvable over the rational numbers.

Among other applications, this result is important in developing the theory
of totally dual integral systems and for proving finiteness of cutting plane al-
gorithms in the pure integer case, see [5]. Its applicablility is, however, limited
to systems of equations and unbounded variables. Indeed, if inequalities or if
bounds on the variables are present, then it is easy to design examples even
in three variables for which a certificate of this kind cannot be given, see also
Example 2 in Section 2 for such an example.

It is the purpose of this paper to develop certificates for systems of inequal-
ities and equations,

A x = b
C x ≤ d

, (1)

in integer variables x ∈ Zn.
We derive in Section 2 a certificate similar to the one in Theorem 1 that

applies to the integer solutions of system (1) when the rank of C is equal to one.
In order to generalize this result to higher order ranks of the inequality system,
we next develop the geometry of so-called split bodies. Roughly speaking, those
bodies are maximal lattice point free bodies in their interior. We present a
general result about lattice point free polyhedra in Section 3 that, in turn,
allows us to develop in Section 4 an algebraic certificate, when System (1) has
no integer solution. This certificate is a linear integral system using as many
variables as rank(C).

In this paper we use the +-operator to denote the Minkowski-sum of two
sets in Rn. The linear space generated by the vectors w1, . . . , wd is denoted by
lin(w1, . . . , wd), while the null space of a matrix B is denoted by ker(B). For a
set S ⊆ Rn, the symbol S⊥ denotes the linear space generated by the orthogonal
complement of the vectors in S.

2 The classical integer Farkas Lemma revisited

Theorem 1 can be interpreted geometrically. To this end, let A be of full row
rank and let b be an integral vector. Then, Ax = b defines an affine space
that we can represent in the form {v∗} + lin (w1, . . . , wd), where v∗ ∈ Qn and
w1, . . . , wd ∈ Zn are linearly independent vectors. Then it follows that the set
{yT A | y ∈ Qm} is a subset of lin (w1, . . . , wd)⊥. Hence, Theorem 1 is equvalent
to the following result

Theorem 2 (
{v∗}+ lin (w1, . . . , wd)

)
∩ Zn = ∅

iff there exists π ∈ lin (w1, . . . , wd)⊥ ∩ Zn such that π>v∗ /∈ Z.
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Note that the latter condition, π ∈ lin (w1, . . . , wd)⊥ ∩ Zn such that π>v∗ /∈ Z,
is equivalent to saying that the body

L =
{
x ∈ Rn | bπ>v∗c ≤ π>x ≤ dπ>v∗e

}
contains v∗ + lin (w1, . . . , wd)

fully in its interior.
Next, we would like to generalize this result to polyhedra that one can rep-

resent as the Minkowski sum of an edge plus a linear span. We obtain

Theorem 3 Let v∗1 , v∗2 ∈ Qn and let E∗ = conv(v∗1 , v∗2) denote an edge.(
E∗ + lin (w1, . . . , wd)

)
∩ Zn = ∅

iff there exists a vector π ∈ lin (w1, . . . , wd)⊥ ∩ Zn such that

π>v /∈ Z for all v ∈ E∗.

Proof: We begin to show that both systems cannot have a solution simulta-
neously. Suppose that

(
E∗ + lin (w1, . . . , wd)

)
∩ Zn 6= ∅ Then it follows that

there exists an x∗ ∈ Zn and multipliers 0 ≤ λ ≤ 1, µ1, . . . , µd ∈ Q such that
x∗ = λv∗1+(1−λ)v∗2+

∑
µiw

i. This implies that for all π ∈ lin (w1, . . . , wd)⊥∩Zn

we have that

π> (λv∗1 + (1− λ)v∗2) = π>
(
λv∗1 + (1− λ)v∗2 +

∑
µiw

i
)

= 0 + π>x∗ ∈ Z,

i.e., the system

π ∈ lin (w1, . . . , wd)⊥ ∩ Zn, π>v /∈ Z for all v ∈ E∗

is inconsistent.
As a next step we want to show that if the primal system is not solvable,

then the dual has a solution. Let us assume that
(
E∗ + lin (w1, . . . , wd)

)
∩Zn =

∅. The following two cases may be distinguished. In the first case, the set(
v∗1 + lin (w1, . . . , wd, v∗2 − v∗1

)
∩ Zn = ∅. Then the result follows directly from

the classical Farkas Lemma using v∗1 in place of v∗. Otherwise, there exist
smallest positive rational numbers λ∗1, λ∗2 ∈ Q such that

interior
(
v∗2 + λ2(v∗2 − v∗1) + lin (w1, . . . , wd)

)
∩ Zn 6= ∅,

interior
(
v∗1 + λ1(v∗1 − v∗2) + lin (w1, . . . , wd)

)
∩ Zn 6= ∅.

Let us denote by z1 and z2 the corresponding integer points, respectively, i.e.,

z1 = v∗1 + λ1(v∗1 − v∗2) +
∑d

i=1 µi,1w
i, for some µi,1 ∈ Q,

z2 = v∗2 + λ2(v∗2 − v∗1) +
∑d

i=1 µi,2w
i, for some µi,2 ∈ Q.

Noting that λ1 > 0 and λ2 > 0, it follows that for all 0 < σ < 1 we have that

(1) interior
(
{z1 + σ(z2 − z1)}+ lin(w1, . . . , wd)

)
∩ Zn = ∅.

As a next step we consider the following system of equations in integer variables
π1, . . . , πn:
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(z2 − z1)> π = 1
w>

1 π = 0
...
w>

d π = 0
π ∈ Zn.

If this system is inconsistent, then by invoking Theorem 1 we may conclude
that the following dual system is solvable:

There exists y ∈ Qd+1 such that

(z2 − z1)y1 +
d∑

i=1

wiyi ∈ Zn, but y1 /∈ Z.

Since z2 − z1 ∈ Zn, we can assume without loss of generality that 0 < y1 < 1.
This, however, implies that z1 + y1(z2 − z1) +

∑
wiyi ∈ Zn, contradicting

Equation (1). Hence, the primal integral system is feasible and determines
the desired split with normal vector π. This completes the proof.

Interestingly, this geometric statement can be turned into an algebraic cer-
tificate for the inconsistency of a system of equations and an inequality system
of row rank equal to one.

Corollary 4 The set X = {x ∈ Rn|Ax = b, l ≤ cT x ≤ u} has no integral

solution if and only if there exist y ∈ Qm and z ∈ Q+ such that (yT , z)
(

A
c

)
∈

Zn and the interval [yT b + zl, yT b + zu] contains no integer point.

Proof:
Case 1: If X is empty, then the result follows from Theorem 1.
Case 2: Suppose that for all x such that Ax = b, we have l ≤ cT x ≤ u. Then
we can apply Theorem 1 to the system Ax = b and obtain a vector y such that
yT A is integral and yT b is fractional. Then, (y, 0) yields the desired result.
Case 3: In this case we have that rank(A) ≤ n− 1, otherwise we are in one of
the two previous cases. Notice also that if c is in the subspace spanned by the
rows of A, we are in one of the two previous cases. We can therefore express the
set X as X = {x ∈ Rn|x = λx0 + (1− λ)x1 +

∑n−m
i=1 µiyi, λ ∈ [0, 1]}, where x0

satisfies Ax = b, cT x = l and x1 satisfies Ax = b, cT x = u and (yi) are a basis
of Ax = 0, cT x = 0. We now obtain the result from Theorem 2.

Example 1. Consider the system

X = {x ∈ R4| 2x1+ x2+3x3− x4 = 3 (2)
6x1− x2−2x3+ x4 = 5 (3)

5 ≤ 4x2+ x3−4x4 ≤ 8 }. (4)

It is possible to provide a short proof of the fact that X has no integral solution.
Indeed, computing 2

5 (2) + 1
5 (3) + 1

5 (4), we obtain that the integral quantity
2x1 + x2 + x3 − x4 must be included in the interval [ 165 , 19

5 ]. Since this is not
possible, this implies that X ∩ Z4 = ∅.
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Figure 1: A certificate that X has no integral solution

In the remainder of this paper we refer to a certificate in the sense of Corollary
4 as a certificate of interval-type. This is motivated by the fact that [yT b +
zl, yT b + zu] defines an interval that is lattice point free.

Of course, we cannot hope for a certificate of interval-type for every system
as in Corollary 4 because, if this were true, then integral infeasibility could
always be verified by split cuts of rank one. This is however known to be false,
see [2].

Example 2. Consider the system

X = {x ∈ R3| x1+2x2+3x3 = 0 (5)
−3x1+4x2 ≤ 0 (6)
− x1−2x2 ≤ −3 (7)

2x1− x2 ≤ 5 }. (8)

Remark that the system can be written in the form X = {x ∈ Rn|Ax = b, Cx ≤
d} with rank(C) = 2. It is readily checked that both Ax = b and Cx ≤ d have
integral solutions considered as single systems. It can also be proven that no
“interval-certificate” exists for X. To prove that X ∩ Z3 = ∅, we first write the
following three valid relaxations of X,

−2
3
(5)− 1

3
(7) : −2x2 − 2x3 ≤ x1 − 1 (9)

(5)− (8) : 3x2 + 3x3 ≥ x1 − 5 (10)
4(5) + (6) : 12x2 + 12x3 ≤ −x1 (11)

The quantities x2 + x3 and x1 must be integral. By denoting z1 := x1 and
z2 := x2 + x3, we are able to write (9)-(11) as

Y = {(z1, z2) ∈ R2| − z1 − 2z2 ≤ −1, z1 − 3z2 ≤ 5, z1 + 12z2 ≤ 0}.

Y defines a two-dimensional triangle that has no integral solution as can be read
off from Fig. 1. Henceforth, the initial feasible region X does not contain any
integral point.

Example 2 illustrates that in order to verify integral infeasibility for a system
with at least two linearly independent inequalities, then this requires to derive
a certificate using two integral variables z1 and z2 and several constraints. It
turns out that this can be formalized, indeed.
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3 From edges to higher dimensional polyhedra

With the developments in this section we pave the way for generalizing Corollary
4 to inequality systems with arbitrary rank. Our point of departure is that if
the Minkowski sum of an edge with a linear space does not contain any integer
point, then this set can be extended to a full dimensional body that is (i) lattice
point free in its full interior; (ii) each of its facets contains an integer point
and (iii), it fully contains the given set in its strict interior. This is, roughly
speaking, what we define to be a split body.

Definition 1 L ⊆ Rn is a split body if

• dim(L) = n.

• interior (L) ∩ Zn = ∅;

• each facet F of L contains an integer point and can be represented by an
integer vector (π, π0) ∈ Zn+1 as

F =
{
x ∈ L | πT x = π0

}
.

• L can be represented as the orthogonal Minkowski-sum of a polytope plus
a linear space, i.e., there exist affinely independent vectors v1, . . . vs and
linearly independent vectors w1, . . . , wd ∈ Zn such that (wi)T vj = 0 for
all i = 1, . . . , d and j = 1, . . . , s such that

L =
{
x ∈ Rn | x =

∑s
i=1 λiv

i +
∑d

j=1 µjw
j

∑s
i=1 λi = 1, λi ≥ 0}.

The split-dimension of L is defined to be n− d.

A split body of split-dimension 1 is the Minkowski sum of an edge conv({v1, v2})
and the linear space generated by n− 1 linearly independent integer vectors in
the orthogonal complement of the edge such that the two parallel hyperplanes
passing through v1 and v2 contain integer points, respectively. Clearly, such a
body can be represented by a split

L =
{
x ∈ Rn | π>v1 ≤ π>x ≤ π>v2

}
.

This outer description of L provides us with an algebraic certificate for the
infeasibility of the mixed integer system

Ax = b + λv, x ∈ Zn, 0 ≤ λ ≤ 1.

The question emerges whether this can be generalized to higher dimensional
polytopes on the right hand side of the system, i.e., when we consider systems
of the kind

Ax = b +
∑

i

λiv
i, x ∈ Zn, λ ≥ 0,

∑
i

λi ≤ 1.

One major difficulty arises in this context. Unlike in very low dimensions we
cannot expect to have an explicit description for all the maximal split-bodies
when the dimension is allowed to vary. We next show a general result along
these lines that we use in Section 4 to state an algebraic certificate for a primal
system with linear equations and inequalities to be infeasible.
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Theorem 5 Let P ∗ ⊆ Rn be a polytope of dimension p and let w1, . . . , wd,
d ≤ n− p be linearly independent vectors. Then,(

P ∗ + lin (w1, . . . , wd)
)
∩ Zn = ∅

iff there exists a split body L of split-dimension at most p such that P ∗ +
lin (w1, . . . , wd) is strictly contained in the interior of L.

Proof: If
(
P ∗ + lin (w1, . . . , wd)

)
∩ Zn 6= ∅, then there cannot exist a split

body L of dimension at most p such that P ∗ + lin (w1, . . . , wd) is strictly con-
tained in the interior of L. Conversely, let us assume that(

P ∗ + lin (w1, . . . , wd)
)
∩ Zn = ∅.

Without loss of generality we can assume that P ∗ ⊆ {v∗}+ lin(l1, . . . , lp) such
that the vectors l1, . . . , lp are linearly independent and all lie in the orthogonal
complement of lin(w1, . . . , wd). (Otherwise, we can work with the projection of
P ∗ on the orthogonal complement of lin(w1, . . . , wd).) Next we proceed using
induction on p. If p = 1, then, by Theorem 2, the result follows. Hence, let us
assume that the result is correct for all split-dimensions less than or equal to
p − 1. We recall the following facts from linear algebra and polyhedral theory.
P ∗ is a p-dimensional polyhedron in Rn. Hence, there exists a description of P ∗

that satisfies

P ∗ = {x ∈ Rn | Ax = a, Cx ≤ c} with A ∈ Z(n−p)×n, C ∈ Zm×n.
Ai·l

j = 0 for all i = 1, . . . , n− p, j = 1, . . . , p.
lin(w1, . . . , wd) ⊆ {x ∈ Rn | CT

i· x = 0} for all i = 1, . . . , d.

As a next step we consider the recursive extension of the polytope P ∗ along
each of the directions li. If there exists an index i such that

interior
(
P ∗ + lin (w1, . . . , wd, li)

)
∩ Zn = ∅,

then the result follows from the induction hypothesis. Otherwise, we proceed
with the order of the indices i = 1, . . . , p. Let us define

P ∗
0 :=

(
P ∗ + lin (w1, . . . , wd)

)
.

Iteratively, we determine smallest nonnegative rational numbers λ∗+, λ∗− ∈ Q+

such that

interior
(
P ∗

i−1 + λ+li + lin (w1, . . . , wd)
)
∩ Zn 6= ∅,

interior
(
P ∗

i−1 − λ−li + lin (w1, . . . , wd)
)
∩ Zn 6= ∅.

We define

P ∗
i :=

(
P ∗

i−1 + λli + lin (w1, . . . , wd)
)
, where λ ∈ [−λ−, λ+].

Let zj , j ∈ J denote all the integer points that lie on a facet of P ∗
i . It follows

that an outer description of P ∗
i is given by

P ∗
i = {x ∈ Rn | Ax = a, Cx ≤ ci} with ci ≥ c

and ci
k ∈ Z, whenever {x ∈ Rn | CT

k·x = ci
k} ∩ {zj | j ∈ J} 6= ∅.
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After p steps we have generated a polyhedron P ∗
d that fully contains P ∗

0 .
Let us denote by Cd and Md the submatrix of C and the index set of rows, for
which cd

k ∈ Z, respectively. We claim that

L = {x ∈ Rn | Ax = a, Cd
kx ≤ cd

k, k ∈ Md}

is the desired split body. Indeed, it can be verified that L satisfies the conditions
of Definition 1. Moreover, L contains the initial set P ∗

0 in its full interior. This
completes the proof.

According to Theorem 5, every lattice point free polyhedron is contained in
a split body of appropriate dimension. This fact together with the characteri-
zation of one-dimensional split bodies enable us to give an algebraic certificate
for the corresponding primal system to have no integer solution. In fact, for a
one-dimensional split body, {x ∈ Rn | α ≤ πT x ≤ α + 1}, say, we know that
the interior satisfies that πT x 6∈ Z. In higher dimensions, the situation is much
more complex. In such cases, a lattice-point free body is restricted by many
hyperplanes and it is by no means obvious to characterize the interior of such a
body as nicely as in the one-dimensional case. We next shed some light on this
complication.

Our point of departure is that every lattice-point-free polyhedron of dimen-
sion greater or equal than two can be represented as

L =
{
x ∈ Rn | Πx ≤ Π0

}
,

where Π0 is an integral vector of right hand sides and where Π ∈ Zt×n. We
associate with such a matrix Π ∈ Zt×n the following lattices,

L = {x ∈ Qn | Πx ∈ Zt} and im(L) = {Πx | x ∈ L}.

Notice, that L is a refinement of Zn, because Π is an integral matrix. In the
special situation, when L = Zn, then all the points x in the interior of a lattice-
point-free body satisfy Πx /∈ Zt. This is quite similar to the situation in the one-
dimensional case. However, in the general case the situation is more complicated
since there are typically interior points x in the split body for which Πx is
integral. In order to cope with this situation we define BΠ ∈ Zn×n to be a basis
of L, i.e., L = {BΠλ | λ ∈ Zn}. We call BΠ the basis transformation matrix
associated with Π. BΠ is unique up to multiplication with a unimodular matrix.
We obtain

Theorem 6 Let L = {x ∈ Rn : Πx ≤ Π0} be a lattice-point-free polyhedron.
There exists a basis transformation matrix BΠ such that

interior(L) ⊆ {x ∈ Rn | ΠBΠx 6∈ Zt}.

Proof: For a given lattice-point-free body L, there exists Π ∈ Zt×n such that

L =
{
x ∈ Rn | Πx ≤ Π0

}
,

where Π0 is an integral vector of right hand sides. Moreover, L does not contain
integer points in its interior. We claim that

Πx ∈ Zt ⇐⇒ B−1
Π x ∈ Zn.
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Once this claim is verified, we obtain our desired result because in a a lattice-
point-free body there does not exist any interior integer point. Hence,

interior(L) ⊆ {x ∈ Rn | x = B−1
Π BΠx 6∈ Zn} = {x ∈ Rn | ΠBΠx 6∈ Zt}.

It remains to verify that Πx ∈ Zt ⇐⇒ B−1
Π x ∈ Zn. In order to see this, we

remark that Πx ∈ Zt if and only if x ∈ L. This is equivalent to the statement
that x = BΠλ, λ ∈ Zn has a solution. Multiplying both sides of the equation
by B−1

Π , we obtain that latter condition is equivalent to B−1
Π x = λ ∈ Zn. This

completes the proof.

With our preparations in this section we can turn Theorem 5 into an al-
gebraic characterization for the corresponding infeasibility of a system (1) in
integer variables. This is the topic to be addressed next.

4 An algebraic certificate

In the previous section we developped a geometric view towards integral infea-
sibility for systems with equalities and inequalities. In this section, we turn this
geometry insight into an algebraic certificate. The certificate per se, however,
must become more and more elaborate as the rank of the matrix C increases
as it was already pointed in Section 2. The proof of our main theorem requires
two basic lemmas on representations of polyhedral sets that we stae first.

Lemma 1 Let P = {x ∈ Rn|Cx ≤ d} with rank(C) = l. Then there exist
p1, . . . , pr, z1, . . . , zs, w1, . . . , wn−l ∈ Rn such that

P = conv{p1, . . . , pr}+ cone{z1, . . . , zs}+ lin{w1, . . . , wn−l},

with dim(conv{p1, . . . , pr}+ cone{z1, . . . , zs}) = l.

Proof: Since rank(C) = l, there exist linearly independent vectors w1, . . . , wn−l

such that ker(C) = lin{w1, . . . , wn−l}. Furthermore we can extend the collection
of vectors w to a basis w1, . . . , wn of Rn. In that basis any x ∈ Rn can be
expressed as x =

∑n
i=1 λiw

i. With respect to such a representation, we also
define a projection operator, namely proj(x) =

∑n
i=n−l+1 λiw

i. Furthermore,
by Minkowski’s theorem on representation of polyhedra, we can express P as

P = conv{p̄1, . . . , p̄r}+ cone{z̄1, . . . , z̄s}. (12)

The result is obtained by observing that (12) together with the expression of
ker(C) allows us to write P as

P = conv{proj(p̄1), . . . ,proj(p̄r)}+ cone{proj(z̄1), . . . ,proj(z̄s)}
+ lin{w1, . . . , wn−l}.

Furthermore, the first two terms are included in a l-dimensional linear space
and therefore represent a polyhedron that is at most l-dimensional.

Lemma 2 Let P = conv{p1, . . . , pd} + cone{r1, . . . , rs} + lin{w1, . . . , wt} and
let Q = conv{p1, . . . , pd} + lin{r1, . . . , rs, w1, . . . , wt}, with pi, rj , wk ∈ Zn for
all i, j, k. We have P ∩ Zn = ∅ ⇐⇒ Q ∩ Zn = ∅.
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Proof: Since P ⊆ Q, the implication from right to left is trivial. Assume
Q ∩ Zn 6= ∅. We prove that this implies that P ∩ Zn 6= ∅. Indeed consider
x ∈ Q ∩ Zn. There exist λ1, . . . , λd ≥ 0 and µ1, . . . , µs, ν1, . . . , νt ∈ R with
x =

∑d
i=1 λip

i +
∑s

j=1 µjr
j +

∑t
k=1 νkwk and

∑d
i=1 λi = 1. Let J = {j|µj < 0}.

Since all rays are integers, we can add integral combinations of rays rj to x
keeping its integrality. Therefore y := x +

∑
j∈Jbµjcrj ∈ Zn. We also have

y ∈ P which proves the lemma.

We are now prepared for the main result of this paper. It states that a
system X = {x ∈ Rn|Ax = b, Cx ≤ d} has no integral solution if and only if
there exists a system with rank(C) variables which has no integral solution. In
fact, this system is derived from combinations of the constraints describing X.

Theorem 7 Let A ∈ Zm×n, C ∈ Zp×n and let l = rank (C). For integer
vectors b and d, the primal system

A x = b
C x ≤ d

, x ∈ Zn.

is empty if and only if there exist rational vectors y1, . . . , yt ∈ Qm×Qp
+, and at

most l linearly independent integral vectors v1, . . . , vl ∈ Zn such that

(yk)T

[
A
C

]
=

l∑
i=1

λk
i vi ∈ Zn with λk

i ∈ Z ∀i = 1, . . . , l, k = 1, . . . , t.

Introducing variables zi, i ∈ {1, . . . , l} (representing (vi)T x), the following sys-
tem of t inequalities in l variables has no integral solution.∑l

j=1 λk
j zj ≤ yT

k

[
b
d

]
for all k = 1, . . . , t.

Proof: We can assume that A has full row rank and that

rank [
A
C

] = m + l.

Let X = {x ∈ Rn | x satisfies (1)}. From Lemma 1 and Lemma 2 it follows
that there exist w1, . . . , wn−m−l ∈ Zn and a polyhedron P ∗ of dimension m + l
such that X has no integral solution if and only if P ∗ + lin (w1, . . . , wn−m−l)
has no integral solution. Therefore, we may assume from now on that

X = P ∗ + lin (w1, . . . , wn−m−l).

If X ∩ Zn = ∅, then by applying Theorem 5 we conclude that there exists a
split-body L of split dimension l such that X ⊆ L. Then, L must be of the form

L = L∗ + lin (w1, . . . , wn−m−l, wn−m−l+1, . . . , wn−l),

where L∗ is a polytope of dimension l, wn−m−l+1, . . . , wn−l ∈ Zn and the matrix
W = [w1 . . . wn−l] ∈ Zn×(n−l) has rank n − l, i.e., all its column vectors are
linearly independent. We can then complete w1, . . . wn−l to a basis of Rn by
adding some vectors v1, . . . , vl ∈ Zn in a way such that (wj)T vk = 0 for all
j ∈ {1, . . . , n− l} and k ∈ {1, . . . , l}. L can be described by linear inequalities,

L =
{
x ∈ Rn | πT

1 x ≤ π0
1 , . . . , πT

t x ≤ π0
t

}
10



with integral normal vectors π1, . . . , πt and integral right-hand-side vector π0. In
fact, since L = L∗ + lin (w1, . . . , wn−m−l, wn−m−1, . . . , wn−l), we can conclude
that πT

k wj = 0 for all k and j ≤ n− l, i.e.,

πk =
∑l

i=1 λk
i vi, λk

i ∈ Z for all k
πT

k x ∈ Z for all x ∈ Zn.
(13)

On the other hand, since X is fully contained in the interior of L, we have that
max {πT

k x | x ∈ X } < π0
k for all k = 1, . . . , t. Therefore, this maximum value

exists. From linear programming duality we obtain that

max πT
k x = min[bT , dT ] yk

s.t. Ax = b, s.t. [AT , CT ]yk = πk

Cx ≤ d yk,m+1, . . . , yk,m+l ≥ 0

Hence, the minimum-value in the LP-duality relation satisfies [bT , dT ] yk < π0
k.

This relation together with Eq. (13) allows us to set up a certificate for X∩Zn =
∅:

l∑
i=1

λk
i (vi)T z = πT

k z ≤ yT
k [bT , dT ] for all k = 1, . . . , t.

This system has no integer solution and hence, proves the result.

Example 2 revisited. Consider again the system

X = {x ∈ R3| x1+2x2+3x3 = 0 (14)
−3x1+4x2 ≤ 0 (15)
− x1−2x2 ≤ −3 (16)

2x1− x2 ≤ 5 }. (17)

One can verify that ker(A) = lin


 2

−1
0

 ,

 3
0
−1

 = lin{w1, w2} and

ker(C) = lin


 0

0
1

 . It can be also checked that X = conv{p1, p2, p3}.

Notice also that X ⊆ ker(A) = lin{w1, w2}. We can then extend {w1, w2} to a

unimodular matrix using w3 =

 0
−1
1

. Therefore {w1, w2, w3} is a basis of

Z3. Hence if X ∩Z3 = ∅, then P = X + lin{w3} = conv{p1, p2, p3}+ lin{w3} is
a (non-maximal) split body of split-dimension 2. We next extend {w3} by two

linearly independent orthogonal vectors v1, v2, for example v1 =

 1
0
0

 and

v2 =

 0
1
1

 . It is now possible to express P using inequalities πT
k x ≤ π0

k that

can be written as

πk =

 1
0
0

 λk
1 +

 0
1
1

 λk
2 .
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Using p1, p2, p3, we can compute a representation of P as follows:

π1 = (−1, −2, −2)T , π0
1 = −1,

π2 = (1, −3, −3)T , π0
2 = 5,

π3 = (1, 12, 12)T , π0
3 = 0.

We are now able to write three linear programs

min[bT , dT ]yk

(AT , CT )yk = πk

yk,m+1, . . . , yk,m+l ≥ 0

whose optimal solution provides us with the coefficients leading to the certificate.
For example, with π1 = (−1 − 2 − 2)T we associate the linear program

min −3y3+5y4

s.t. y1 −3y2− y3 +2y4=− 1
2y1+4y2−2y3− y4 =− 2
3y1 =− 2

y2, y3, y4 ≥0.

The corresponding optimal solution is y1 = − 2
3 , y2 = 0, y3 = 1

3 , y4 = 0 which
results in exactly the combination (9) in Example 2. Using π2 = (1 − 3 − 3)T ,
we obtain another linear program with optimal solution y1 = −1, y2 = 0, y3 =
0, y4 = 1 yielding to (10). Finally, if we use π3 = (1 12 12)T , we obtain
multipliers y1 = 4, y2 = 3 which leads to (11).

At this point it is in order to analyze the special case of Theorem 7 when the
dimension of the polyhedron P ∗ is equal to two. The reason for this is that we
can classify the set of all potential two-dimensional split bodies. In particular,
any maximal lattice point free two-dimensional body with integer points on each
of its facets is either a triangle or a quadrilateral. Indeed, this result follows
from elementary two-dimensional geometric considerations.

Lemma 3 [1] A split body of split-dimension two is the Minkowski sum of either
a triangle or a quadrilateral plus a linear space of dimension n− 2.

We can, hence, specialize Theorem 7 to the situation where rank (C) ≤ 2.

Theorem 8 Let A ∈ Zm×n, C ∈ Zp×n and let 1 ≤ l = rank (C) ≤ 2. For
integer vectors b and d, the primal system

A x = b
C x ≤ d

, x ∈ Zn.

is empty if and only if there exist t ∈ {2, 3, 4} rational vectors y1, . . . , yt ∈
Qm × Qp

+, and at most 2 linearly independent integral vectors v1, . . . , v2 ∈ Zn

such that

yT
k

[
A
C

]
= λk

1v1 + λk
2v2 ∈ Zn with λk

1 , λk
2 ∈ Z ∀ k = 1, . . . , t,

12



with the following system of t inequalities in 1 or 2 variables has no integral
solution

λk
1z1 + λk

2z2 ≤ yT
k

[
b
d

]
for all k = 1, . . . , t.

Theorem 7 shows that determining infeasibility of a system {x ∈ Zn|Ax =
b, Cx ≤ d} can be reduced to an integer programming problem in dimension
rank(C). The certificate per se, however, consists of t inequalities and hence, it
might not be short in comparison with the number of variables. From a theorem
of Doignon [3] it follows that if the reduced program in rank(C) variables has
no integral solution, then at most 2rank(C) inequalities suffice to determine an
infeasible integral system. Henceforth, if the number rank(C) is fixed, then we
see that the feasibility problem for {x ∈ Zn|Ax = b, Cx ≤ d} is in co-NP.

More specific information regarding our certificate is available for systems in
one or two variables. In the first case it is required to check whether an interval
has integer points. This is easiliy checkable. For two variables, we have seen
that all systems can be reduced to systems with at most four inequalities, a
number that appears reasonable for performing computations. It can be shown
however that as soon as there are at least three variables present, then the
number of inequalities required for the certificate might explode. This limits at
least practically the applicability of Theorem 7 for larger values of rank(C).
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programming, Mathematical Programming 47, 155 – 174, (1990).

[3] J. P. Doignon, Convexity in crystallographic lattices, Journal of Geometry
3, 71 – 85, (1973).
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