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Abstract

We derive an R&D-based semi-endogenous growth model where
technological progress depends on the available amount of technolog-
ical opportunity. Incremental innovations provide direct increases in
the knowledge stock but they reduce technological opportunity and
thus the potential for further improvements. Technological opportu-
nity can be renewed only by radical innovations (which have no direct
impact on factor productivity).

Investigating the model for its implications on economic growth
leads to two basic observations. One, in the long-run, a balanced
growth path with a constant and semi-endogenous long-run economic
growth rate exists only in a specific knife-edge case which implies that
technological opportunity and knowledge grow at equal rates. Two,
the transition need not be monotonic. Specifically, we show under
which conditions our model generates endogenous business cycles via
complex dynamics without uncertainty.

Keywords and Phrases: technological opportunity, incremental innova-
tion, radical innovation, endogenous business cycles, balanced growth, And-
ronov–Hopf bifurcation, complex dynamics.
JEL Classification Numbers: E32, O30, O41.



1 Introduction

This article is centered around the following two questions. First, we ask how
one could characterize the opportunity for new innovations, and in what ways
this opportunity could evolve over time. Second, we inquiry under what cir-
cumstances the growth implications of models featuring technological oppor-
tunity correspond to those found in the endogenous (and semi-endogenous)
growth literature up to now.

The mainstream literature on R&D and growth assumes that the amount
of newly created knowledge depends primarily on the number of active re-
searchers and on the current stock of knowledge (Romer [27], Jones [15]).
The list of other potential, additional factors appearing in the knowledge
accumulation function includes, among others, human capital (Strulik [32]),
spillovers (Howitt [14]), R&D expenditures and R&D difficulty (Segerstrom
[30]). It is presumed that as long as all these ingredients are supplied in
required quantities, the opportunity for innovations is unlimited.

Our intention here is to work out when these standard characterizations
are sufficient for understanding the sources of economic growth and drawing
policy implications, and under what circumstances one ought to be more
careful. We are looking for a more precise description of the opportunity
for innovations, which underlies the aggregate R&D output. In the quest
for such, we shall provide one potential characterization of technological
opportunity and investigate its consequences for economic growth and the
transition path. Our approach bases upon the assumption that the R&D
sector produces two inherently different kinds of innovations, namely incre-
mental and radical innovations, which are related as follows. Incremental
innovations are the backbone of the economy’s productivity and utilize tech-
nological opportunity opened up by radical innovations. Radical innovations
extend the existing technological opportunity by combining previous dis-
coveries (abstract ideas which are initially useless) with existing knowledge.
Technological opportunity behaves like a renewable resource here: it is ex-
hausted by incremental innovations and renewed by radical innovations. This
characterization is based upon Olsson [23]. However, we extend his work in
several crucial ways, the reasons for which will become clearer in the next
paragraphs.

The main results of our analysis are the following. Under a rather restric-
tive knife-edge case, which implies that knowledge and technological oppor-
tunity grow at equal rates in the long run, our approach delivers long-run
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predictions very much along the lines of the semi-endogenous growth liter-
ature (Jones [15], Kortum [21], Segerstrom [29]). However, in addition to
the standard result of monotonic convergence, we obtain the possibility of
complex dynamics for a wide variety of parameter values. These complex
dynamics can come in the form of converging (or diverging) oscillations or
even Andronov-Hopf bifurcations. As opposed to the standard models in
business cycle theory our model does not require uncertainty to generate the
endogenous cycles.

We investigate the long-run implications of relaxing the specific knife-edge
assumption in section 4. For example, one of the findings is that economic
growth will come to a halt if the amount of radical innovations is too low in
comparison to the number of incremental innovations. The amount of and
changes in technological opportunity therefore are decisive for the long-run
growth implications.

The main result of Olsson’s [23] framework is that a linearity assumption
is the source of oscillatory dynamics. This linearity assumption implies that
workers either work in the incremental or the radical innovation sector, but
never in both at the same time. Intuitively, this is not a convincing result:
even while this incremental innovation paper is being written, radical inno-
vations across the globe take place. Nevertheless, even though we allow for,
among others, decreasing returns to research effort, which implies (optimal)
research in both R&D sectors at the same time, we are still able to obtain
(converging, permanent or diverging) oscillations on the optimal path. How-
ever, the returns to labor in the innovation sectors must be sufficiently large
in order to create permanent oscillations. This, therefore, confirms Olsson’s
[23] initial intuition of the importance of labor allocations in the creation of
permanent cycles.

When introducing different kinds of innovations into growth models, sev-
eral researchers have already suggested the possibility of cycles to occur
(Aghion and Howitt [1], Cheng and Dinopoulos [6], Amable [2], Francois
and Lloyd-Ellis [8], Phillips and Wrase [25], Jovanovic and Rob [19], Bres-
nahan and Trajtenberg [4], Freeman, Hong and Peled [9]). However, their
approaches and therefore their implied sources of cyclical growth differ from
ours. In particular, in none of these approaches does technological progress
depend on an exhaustible factor, as technological opportunity is in our case.
We shall provide a comparison of our approach to these articles in section
3.2.

The remainder of the article is structured as follows. In section 2 we lay
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out the foundations of our framework. In section 3 we set up and solve the
basic growth model. In section 4 we discuss some generalizations of our basic
model and other related issues. Section 5 concludes.

2 Technological Opportunity and the Evolu-

tion of Knowledge

There exists a large amount of anecdotal evidence which can be used to
support the view that technological opportunity is a relevant concept and
that the distinction between incremental and radical innovations is vital for
the proper understanding of technological change across centuries.
Example 1. In 1814, Joseph Niépce invented the first photo camera. It
took 8 hours to take one picture. This certainly must be viewed as a radical
innovation but it was not yet a useful technology for increasing the produc-
tivity of the economy. However, in 1851 the exposure time was reduced to
2-3 seconds, in 1888 the first roll-film was developed, and in 1941 – the color
film. One and a half century later, we have digital cameras which are avail-
able at prices accessible to the general public and pictures can be printed at
home. It is clear that the small improvements to the photo camera, in our
terminology the incremental innovations, ought to be viewed as the crucial
steps for spreading the technology into the economy, whereas the radical in-
novation of Joseph Niépce was the one which opened up the opportunity for
these incremental innovations.
Example 2. The first locomotive was developed in 1804 by Richard Tre-
vithick. It was the first steam-powered locomotive, and therefore ought to
be considered a radical innovation. However, it was too heavy and even
broke the very own rails it was supposed to travel on. Compared to this, the
incremental innovations following that radical innovation were tremendous.
In 1814 came the first steam locomotive that was actually able to travel,
although at only 6 km/h; today the Maglev, the high-speed magnetic train,
travels at more than 550 km/h. Again, the initial idea of Richard Trevithick
was the one opening up the possibilities for the incremental innovations,
whereas the radical innovation proved useless for improving productivity.
Example 3. In 1928, Alexander Fleming had, by accident, left a Staphy-
lococcus plate culture lying in the warm cellar. Several days later, upon
reminding himself of the forgotten plate culture, he noticed that there was a
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blue-green colored mold destroying the bacteria. He called this mold Peni-
cillin. It was however too weak and unstable to provide a useful means
of destroying bacterial infections in humans. Only subsequent research by
Chain, Florey and Heatley developed the kind of Penicillin which now saves
human lives throughout the world. As Sir Henry Harris had aptly put it:
“Without Fleming, no Chain; without Chain, no Florey; without Florey, no
Heatley; without Heatley, no Penicillin.”

Similar stories can be told about the invention of the first battery by
Alessandro Volta in 1799, the first champagne by Dom Pérignon in 1670, ny-
lon by DuPont in 1928, the steam engine, the airplane, electricity, and many
more. What can be seen here is that we view radical innovations as spanning
a broader class of innovations than for example General Purpose Technolo-
gies (e.g. Jovanovic and Rousseau [20]). However, they all have something
in common: they all open up opportunities for small improvements, for in-
cremental innovations that help make the technology accessible, practical
and operative. Without the radical innovations being able to open up new
opportunities, there would be no place for incremental innovations. And
without doubt, in a considerable if not exhaustive number of cases, it were
the incremental innovations which really proved to be useful for economic
purposes.

Our understanding of the evolution of technological knowledge differs also
slightly from the articles basing on combinatorial calculations (Romer [28],
Weitzman [35]). We do not consider the potential for technological change as
the number of possible ways to combine ideas. For example, 20 objects may
be combined in 220 = 1, 048, 576 ways. Given an enormous number like this,
papers in this vein conclude that there are no practical limits to technological
change. However, why should we combine every possible idea? Intuitively,
it seems more likely that mostly the latest technologies, those on the tech-
nological frontier (Caselli and Coleman [5]), are improved. The importance
of the technological frontier can be supported e.g. by the Poincaré’s obser-
vation: “To create consists precisely in not making useless combinations.”
So, we suggest that only ideas on the technology frontier may be usefully
improved, an assumption which this article shares with Kortum [21], Jones
[18] and Olsson [23]. The implication is that incremental innovations would
by themselves come to a halt if the technological frontier were not constantly
pushed ahead by radical innovations.

So, how does technological opportunity increase? What qualifies as a
radical innovation? We suggest that a radical innovation arises whenever a
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new class of known phenomena (physical, biological, chemical, etc.) is found
to have economically useful applications. For example, “[f]or thousands of
years, silicon dioxide provided utility mainly as sand on the beach, but now it
delivers utility through the myriad of goods that depend on computer chips”
(Jones [17]). Conclusively, we believe that the flows of radical innovations
are related to the stock of existing knowledge. The larger the existing knowl-
edge base, the more discoveries will be transformed into radical innovations.
Now being equipped with the basic understanding of how we understand the
evolution of technology, we will commence to model the relationships above.

2.1 The Laws Of Motion

Let us now provide some notation. By B(t) we shall denote the amount
of technological opportunity at time t, by R(t) – the flow of radical inno-
vations, by C(t) – the flow of incremental innovations, and by A(t) – the
current stock of knowledge. Following the preceding arguments we assume
that technological opportunity is increased by radical innovations, whereas
incremental innovations add to the stock of knowledge but diminish techno-
logical opportunity. We thus write Ȧ(t) = C(t) and Ḃ(t) = R(t)− C(t).

We are now equipped with the basic understanding of how innovations
and knowledge evolve over time, and we shall proceed to provide a more
specific characterization which would then allow us to solve for the precise
dynamic paths. To assure analytical tractability as well as comparability
to the semi-endogenous growth literature which evolved from Jones [15], we
use standard Cobb-Douglas functional forms. Omitting time arguments for
convenience, these read:

Ȧ = δ(u`AL)βBµ, (1)

Ḃ = −δ(u`AL)βBµ︸ ︷︷ ︸
incremental innovations

+ γ((1− u)`AL)βAν︸ ︷︷ ︸
radical innovations

, (2)

We denote total population by L and assume it to be equal to the total
amount of working time available in the economy at time t. Population is
assumed to grow exogenously at constant rate n > 0. Then, `A is the propor-
tion of working time devoted to R&D, with u`A being the proportion of time
spent on working in the incremental innovation sector and (1−u)`A the time
spent in the radical innovation sector. The parameter δ > 0 is proportional
to the rate at which incremental innovations come about, whereas γ > 0
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relates to the rate at which radical innovations arrive. The exponents µ and
ν are crucial for the dynamic behaviour of our model. From our preceding
argumentation, we know that they ought to be strictly positive. We shall fur-
ther assume that µ, ν ∈ (0, 1) which assures non-explosive semi-endogenous
growth in the long run. The relative size of these exponents is decisive for
the long-run evolution of innovations, which we investigate in the next sub-
section. The parameter β > 0 measures the degree of returns to scale in the
R&D sectors. Our assumption that β ∈ (0, 1) implies decreasing returns to
scale in R&D activity which are required for positive shares of both kinds of
innovation to be pursued in optimum and stands in contrast to Olsson [23]
who has β = 1 and thus constant returns to scale, which leads to bang-bang
solutions.

We contrast the setup of our model with several standard R&D-based
models of (semi-)endogenous growth. Romer’s [27] specification of technical
change would correspond to equation (1) only, with B = A and µ = 1. This
of course leads to the scale effect discussed by Jones [15] and implies explo-
sive dynamics if n > 0. However, even the Jones’s R&D equation, which has
µ < 1, is only a subcase of our specification. In comparison to Olsson [23],
we allow for both incremental and radical innovations happening at the same
time. We shall explain what is the direct implication of considering the ad-
ditional feedback loop through technological opportunity. Generally, it gives
two new results. Firstly, the long-run results of e.g. Jones [15] are preserved
only when the specific knife-edge condition µ = ν holds, and secondly, the
optimal path can be subject to oscillations. Our model is thus able to span
a bridge from the oscillatory transition of Olsson to the monotonic dynamics
of Jones or Romer.1 Let us analyze the long-run implications first.

2.2 Long-Run Evolution

We shall now focus on the properties of the balanced growth path (BGP)
under different relative sizes of the exponents in the radical and incremental
innovations, µ and ν (or of the asymptotic balanced growth path, if a proper
BGP does not exist).2 We shall do this by finding the necessary conditions

1Dynamics of the Jones’ [15] model have been analyzed in detail by Arnold [3]. Perhaps
a bit surprisingly, he finds that the possibility of oscillatory convergence to the BGP cannot
be ruled out there.

2When we refer to semi-endogenous growth we mean growth ultimately driven by pop-
ulation growth, see e.g. Jones [15].
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under which the growth rates of all economic variables are constant. These
conditions imply in particular that the sectoral allocation of labor does not
change over time.

Let us take equations (1)–(2) and solve for the BGP. It is easy to see that
the growth rate of technological opportunity, Ḃ/B = R/B−C/B is constant
only if both the radical and incremental innovation flows grow at the same
rate as technological opportunity itself does. This is the case if µ = ν. When
this condition is satisfied, it implies that both knowledge and technological
opportunity grow at the same rate, too. As can be observed from equation
(2), the growth rates of C and R are different if the exponents µ and ν are
not equal. The implications are summarized in the following table.

Long-Run Behavior of A and B

Case 1 µ = ν Â = B̂ = βn
1−µ

Case 2 µ < ν limt→∞ B̂ = 1+ν
1+µ

Â

Case 3 µ > ν limt→∞ Ȧ = Ḃ = B = 0

The intuition is as follows. In Case 1 we observe that if our knife-edge
condition µ = ν is satisfied, and in consequence, the extents of external re-
turns from technology to radical innovations and from technological oppor-
tunity to incremental innovations are equal, then this gives rise to standard
semi-endogenous growth along the lines of Jones [15]. Unfortunately, this
knife-edge condition is crucial for the result. This can be seen from Case 2
and Case 3. In Case 2, the external returns to radical innovations are larger
than to incremental ones, and thus technological opportunity can grow at a
faster rate than knowledge. Clearly, in the limit, technological opportunity
will be exhaustively driven by radical innovations in that case. This is still
not so bad news for the economy in comparison to Case 3. In such case, even
though technological opportunity is renewed by radical innovations, the ef-
fect of its depletion due to more efficient incremental innovations is dominant
in the long run. Growth comes to a halt in the limit.

Let us remark here that if one allows for different degrees of decreasing
returns to scale in the two R&D sectors, such that Ḃ = −δ(u`AL)βBµ +
γ((1 − u)`AL)ξAν , the crucial knife-edge condition µ = ν translates into a
different knife-edge condition: β/(1 − µ) = ξ/(1 − ν). This condition has
exactly the same interpretation: flows of incremental and radical innovations
are supposed to grow at equal rates. Further on, the counterpart for Case
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2 is β/(1 − µ) < ξ/(1 − ν), and the counterpart for Case 3 is β/(1 − µ) >
ξ/(1−ν). All further implications are preserved. We shall abstract from this
unnecessary complexity throughout the remainder of the article.

It is now clear that if technological opportunity is accepted to be the
driving force behind the possibility to innovate, then the long-run behavior
of the economy depends crucially on the relative size of external returns to
different kinds of innovations. In consequence, long-run predictions along
the lines of Jones [15], Kortum [21], Segerstrom [29] or Peretto [24] hold only
in the case where the extents of external returns to incremental and radical
innovations are exactly equal. Since current literature compares the model
predictions with historical time paths of R&D expenditures and factor pro-
ductivities, with the single dynamical equation of technology in mind, our
knife-edge result here suggests one should be more cautious with those pre-
dictions. Given one accepts technological opportunity as the driving force
behind actual technology, then it could very well be that the empirical lit-
erature misses the influence of the evolution of technological opportunity on
effective technological progress and thus runs into systematic error.

As our main interest lies in elaborating the implications of introducing
technological opportunity into a standard semi-endogenous growth frame-
work, we shall concentrate mostly on the case µ = ν which allows for a BGP.
As we will show, even in the knife-edge case we will obtain novel results, this
time for the transition.

3 The Social Planner Problem

Let us now embed the dynamical equations analyzed above in a semi-endo-
genous growth model and find its social planner solution. Our interest is to
understand in which way will the planner allocate consumption across time
and labor across sectors in order to achieve the social optimum. We shall base
on the standard Ramsey framework, where the infinitely-lived representative
agent obtains utility from the discounted stream of a single consumption
good. The utility function takes the CRRA form: u(c) = c1−θ/(1− θ), with
θ > 0 being the inverse of the intertemporal elasticity of substitution in con-
sumption. Moreover, we shall assume a standard Cobb-Douglas production
function which takes as inputs: technology A with elasticity σ, physical capi-
tal K with elasticity α, and labor (1−`A)L with elasticity 1−α. Technology
accumulates faster the more labor is allocated to research, but its underlying
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possibility to accumulate is constrained by technological opportunity.
As suggested previously, we shall concentrate on the case of µ = ν here.

We impose this restrictive condition for analytical tractability and compara-
bility to the semi-endogenous growth literature. We shall first solve for the
BGP of the system. The maximization problem looks as follows.

max
{c,u,`A;k,A,B}∞t=0

L0

∫ ∞

0

c1−θ

1− θ
e−(ρ−n)tdt subject to: (3)

y = Aσkα(1− `A)1−α, (4)

k̇ = y − c− (d + n)k, (5)

Ȧ = δ(u`AL)βBµ, (6)

Ḃ = [−δuβBµ + γ(1− u)βAµ](`AL)β, (7)

L = L0e
nt, n > 0, (8)

L0, k0, A0, B0 given.

The parameter restrictions are 0 < n < ρ, necessary to guarantee a positive
effective discount rate, and σ, α, β, d ∈ (0, 1) as well as θ, µ, δ, γ > 0. Finally,
µ < 1 is required to guarantee positive semi-endogenous growth in the long-
run. d is the instantaneous depreciation rate of physical capital.

3.1 The Balanced Growth Path

Maximizing the Hamiltonian associated with the above optimization problem
and solving for the BGP yields the following long-run growth rate of the
economy:

g ≡ ŷ = k̂ = ĉ =
σ

1− α

βn

1− µ
, (9)

whereas the long-run growth rates of technology and technological opportu-
nity are (as in Jones [15]):

Â = B̂ =
βn

1− µ
. (10)

As expected from the previous section, technological opportunity and tech-
nology grow at a common rate, and consumption, income and capital grow
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at a rate being a multiple of this rate. Along the BGP, shadow prices our
state variables evolve according to:

λ̂k = n− ρ− θg, (11)

λ̂A = λ̂B = n− ρ− (θ − 1 +
1− α

σ
)g, (12)

and thus all transversality conditions boil down to the single requirement
that n < ρ + (θ − 1)g.

Denoting the steady-state ratio of technology to technological opportunity
A/B by X, we find that the optimal share of incremental research effort
relative to radical research effort is:

u∗ =
1

1 + F
1

1−β X
1+µ
1−β
(

γ
δ

) 1
1−β

, (13)

where X ≡ A/B solves the following implicit equation:(γ

δ

) 1
1−β

F
β

1−β (X)
1+µ
1−β = 1 + X, (14)

with F = −µÂ

λ̂A
> 0. It is straightforward to show that (14) always has

a unique positive solution. The argument goes as follows. The right-hand
side of equation (14) as a function of the ratio X increases linearly from
limX→0 = 1 to limX→∞ = ∞. The left-hand side increases in a strictly
convex manner from limX→0 = 0 to limX→∞ = ∞. Since both sides are
continuous, there necessarily exists a unique, positive point in which they
intersect.

Furthermore, we find that the optimal share of labor allocated to R&D
along the BGP is

`∗A =
1

1 + u∗ (1−α)µ
βσ

(
ΦX − 1−u∗

u∗

) , (15)

where

Φ = 1 +
γ

δ

(
1− u∗

u∗

)β−1

Xµ.

The interpretation of these results is as follows. The determinants of the
optimal sectoral allocation of labor are, among others:
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(i) the growth rate of technology relative to the growth rate of its shadow
price. The higher the growth rate of technology, the more worthwhile
it is to increase technological opportunity by radical innovations;

(ii) the size of technology relative to the size of technological opportunity.
The larger is technological opportunity, the more researchers should be
allocated to incremental innovations and the more workers should be
allocated to the overall R&D sector;

(iii) the ratio of the exogenous intensities of producing incremental and
radical innovations, captured by γ and δ respectively. The higher is
the chance of coming up with a radical innovation, the more researchers
should be allocated to radical innovations, and vice versa;

(iv) the elasticity parameters. The smaller is the technology share in pro-
duction (smaller σ), the less efficient researchers are (smaller β), or the
smaller is the extent of external effects in R&D (smaller µ), the less
workers will be employed in research;

(v) the effect of radical innovations creating an additional demand for re-
search. The more researchers are allocated in the radical innovation
sector (the smaller u∗), the more researchers are employed in overall
R&D (larger `∗A).

3.2 The Transition

In this section we shall analyze the transition dynamics of our model around
the balanced growth path. We derive the dynamical equations for variables
which are stationary along the BGP. Hence, our system is going to be rewrit-
ten in terms of the six following variables: {c/k, u, `A, y/k, A/B, Lβ/A1−µ}.
We shall again denote X ≡ A/B, and use also the notation Y ≡ Lβ/A1−µ.

The transition dynamics are fully characterized by the following dynam-
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ical system.

ĉ/k =
(α

θ
− 1
) y

k
− d + ρ

θ
+

c

k
+ d + n (16)

ŷ/k = σδ(u`A)βX−µY + (α− 1)(
y

k
− c

k
− d− n)− (1− α)

(
`A

1− `A

)
ˆ̀
A (17)

X̂ = δ(u`A)βX−µY + δ(u`A)βX1−µY − γ((1− u)`A)βXY (18)
Ŷ = βn− (1− µ)δ(u`A)βX−µY (19)

û = −(1− u)
1− β

{
µX̂ +

[
βσ

1− α

(
1− `A

u`A

)
− µX

(
1 +

γ

δ

(
1− u

u

)β−1

Xµ

)
+

+µ

(
1− u

u

)]
δ(u`A)βX−µY

}
≡ −(1− u)

1− β
· Ξ, (20)

ˆ̀
A =

1
1− β + α `A

1−`A

{
α

c

k
− (1− α)(d + n) + βn + (µ− σ)δ(u`A)βX−µY +

−µ

(
u

1− u

)
γ((1− u)`A)βXY − u · Ξ

}
. (21)

In the remainder of this section, we shall resort to numerical approxima-
tions because the implied analytical formulas, although readily attainable,
are too large to be informative.

We assign baseline values to all parameters in our model. To bring our
numerical example as close to reality as possible, we shall pick these values
within a calibration exercise. This we do by drawing on a similar calibra-
tion exercise carried out by Steger [31] for a generalized R&D-based semi-
endogenous growth model. Following him, we choose σ = 0.3, α = 0.36, d =
0.04, ρ = 0.05, n = 0.015, µ = 0.5, β = 0.512, parameters which have also
been used in Eicher and Turnovsky [7] and other articles. We also pick
θ = 2 which roughly corresponds to the empirical estimates of the intertem-
poral elasticity of substitution in consumption for developed economies, even
though the debate around this value has not yet been settled.

Further parameters, γ and δ, have clearly never had the opportunity to be
discussed in the literature. Thus, we pick them at arbitrary plausible values
and then discuss what happens if we manipulate them. All the calibrated
parameters are listed in Table 1.

For the baseline calibration of our model, we obtain the following set of
BGP characteristics (Table 2). Please note that below the actual steady-
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δ γ β n θ d α σ ρ µ
2 2 .512 .015 2 .04 .36 .3 .05 .5

Table 1: The baseline calibration.

state values, we included comparative statics. These are helpful for the un-
derstanding of the workings of the analyzed model. A “+” means that an
increase in a given parameter raises the given steady-state value, whereas a
“–” means it lowers it. 0 denotes no impact. Please note that some of these
comparative statics need not hold for all parameter values; what we assure
is that they must hold in the vicinity of our baseline calibration.

g Â y
k

c
k

s A
B

Lβ

A1−µ u `A `Y

.0072 .0154 .2900 .2278 .2145 3.163 .0674 .6429 .0688 .9312

β + + + + - - + - + -
µ + + + + - - + - + -
α + 0 - - + + - + + -
σ + 0 + + - + - + + -
n + + + + + - + - + -
θ 0 0 + + - + - + - +
γ 0 0 0 0 0 - - + + -
δ 0 0 0 0 0 + + - - +
ρ 0 0 + + - + + + - +

Table 2: The social planner allocation and comparative statics.

Our intention now is to emphasize some of the particularly noteworthy
facts.

(i) Technological opportunity plays a similar role to savings. In particular,
increases in the discount rate ρ and reductions in the intertemporal
elasticity of substitution in consumption 1/θ reduce both the savings
rate and technological opportunity relative to technology.

(ii) The β parameter, measuring returns to scale in R&D, influences the
steady-state variables in the same way as the µ parameter, measuring
the extent of external effects in R&D.

(iii) Increases in the population growth rate raise long-run growth rates, but
reduce the level of de-trended technology. The ratio of technology to
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technological opportunity is decreased as well. Relatively more techno-
logical opportunity goes then together with an increase in overall R&D
labor share.

(iv) Apart from the cases of parameters γ and δ which are directly related to
the arrival rates of incremental and radical innovations, technological
opportunity and radical research intensity 1− u move together. Apart
from the case of a changing discount rate ρ, they move in the opposite
direction than the de-trended stock of knowledge.

(v) Increased dependence on physical capital (higher α) triggers both a
higher steady-state R&D intensity, and a higher intensity of incremen-
tal research as compared to radical research. This lowers technological
opportunity but, on balance, increases the de-trended stock of knowl-
edge.

The most important reason why we are so explicit about the calibrated
parameter values is nevertheless that we would like to show that even under
these very standard parameter choices, our second main result – namely
various kinds of transition along the optimal path – is easily obtained. This
can be seen in the subsequent table which presents the eigenvalues of the
dynamical system after its linearization around the steady state. The two
complex eigenvalues with negative real parts imply that under our benchmark
calibration, dampened oscillations are observed.

Furthermore, we confirm by the means of a sensitivity analysis that such
oscillations indeed occur under a large variety of parameter choices. In con-
trast, occurrence of oscillatory dynamics is impossible in setups with semi-
endogenous growth but without technological opportunity, such as the one
of Jones [15].

0.1233 + 0.0176i
0.1233 - 0.0176i
0.0557

-0.0811 + 0.0176i
-0.0811 - 0.0176i
-0.0135

Table 3: Eigenvalues of the linearized system.
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Conclusively, if one adopts the technological opportunity approach pre-
sented here, then his model can easily generate business-cycle dynamics along
the transition to the BGP. The source of these cycles is found in the relative
rates at which radical and incremental innovations arrive.

The intuition for the oscillatory dynamics is as follows. Incremental inno-
vations at the same time reduce technological opportunity and improve actual
technology. This technology then feeds back into radical innovations which
increase technological opportunity. If radical innovations come at amounts
lower than that of incremental innovations, then the increases in technological
opportunity are small, and smaller than the reductions through incremental
innovations. This leads to a monotonic convergence of the optimal ratio A/B
to the steady-state value from above. On the contrary, if radical innovations
come at relatively large amounts, then the same mechanism leads to con-
vergence of A/B from below. In the case radical innovations arrive at some
intermediate number, then the improvements in technological opportunity
will be counterbalanced by the reductions through incremental innovations
at an amount which makes the ratio of actual technology to technological
opportunity fluctuate and converge to the steady-state value of A/B in a
non-monotonic manner.

We can therefore conclude that growth in our model is subject to fluctu-
ations around a trend which is ultimately driven by population growth.

We wish to provide further analysis of the complex dynamics by doing
some comparative statics with respect to the decisive parameters. As is vis-
ible in the subsequent Figure 1, complex eigenvalues and thus oscillations
occur for an intermediate range of arrival rates of the radical innovations
relative to incremental innovations (ceteris paribus). Moreover, the oscilla-
tion frequency and thus the length of the cycles depends on the γ/δ ratio,
with a maximum frequency appearing around γ/δ = 1 (in the Figure, this
corresponds to γ = δ = 2). Even though not decisive for the growth rate,
these two arrival rates are decisive for the transition.

To take the analysis of the model’s dynamics a step further, we shall now
discuss the consequences of varying the returns-to-scale parameter β in its
range (0, 1], as presented in Figure 2.3 In such case, not only dampened
oscillations appear but also limit cycles. We identify an Andronov–Hopf
bifurcation.

As can be seen in Figure 2, as long as β < 0.96569, greater returns to scale

3All other parameters are set at their benchmark values.
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Figure 1: Oscillatory dynamics. The effect of varying δ, holding γ = 2 fixed.

in R&D imply faster convergence to the BGP but also oscillations of higher
frequency. When β crosses the threshold value of 0.96569 from below, the
relevant conjugate eigenvalues have their real parts crossing zero from below
and there emerges a limit cycle. This means that we observe an Andronov–
Hopf bifurcation. The intuition for this result is the following. If returns to
scale in the R&D sector are reduced fast (low β), convergence to the BGP is
monotonic, because R&D output is quickly becoming less and less responsive
to labor reallocations. This curbs the incentives to constantly reallocate re-
searchers across the two R&D sectors and thus eliminates fluctuations. If β is
larger then dampened oscillations appear, and their frequency increases with
β. If returns to scale in R&D are high or close to constant, then incentives
to reallocate labor are very strong, and business cycles become persistent.
Obviously, as we noticed above, the intuition for cycles does not only depend
on the returns to scale to labor in the R&D sector, but indeed requires the
two kinds of innovations to come in approximately similar amounts, too.
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Figure 2: Changes in dynamics following changes in β. The Andronov–Hopf
bifurcation appears around β ≈ 0.96569.

We also notice that the Olsson’s [23] initial intuition for obtaining per-
sistent cycles, namely the linearity assumption which he imposes (here it
corresponds to β = 1), was correct. However, as we demonstrate, β = 1 is
not a necessary condition for cycles in our setup. Indeed, optimal permanent
cycles occur already for less-than-constant returns to scale in R&D, β < 1,
although given our baseline parameters, β needs to be close to 1.4 Obviously,
the higher is population growth, the lower the β which leads to permanent
cycles.

As suggested, even though oscillations may occur for rather low values of
β, it seems that a necessary condition for limit cycles is a high value of β.
That this is not sufficient will be shown now. We assign β a value of 0.97,
close to the bifurcation value discussed above, and check the consequences
of varying the R&D spillover parameter µ as in Figure 3. The larger the
spillover parameter µ the slower are the oscillations, and for large values (here
µ > 0.85) oscillations disappear completely. The Andronov-Hopf bifurcation
occurs, of course, again and is identified at µ ≈ 0.56. A smaller µ suggests a
relatively higher importance of labor for the creation of innovations, which
implies that the preferences of the social planner have a larger influence over
the path of innovations (which we confirm below). On the contrary, the
larger is µ the more important become the relative amounts of technology
and technological opportunity.

4This finding, of course, does not exclude the possibility that other parameter values
lead to bifurcations for values of β significantly below 1.
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Figure 3: Changes in dynamics following changes in µ. When β = 0.97, the
Andronov–Hopf bifurcation appears around µ ≈ 0.56.

We have also performed a similar analysis for changes in the discount rate,
as in Figure 4. At ρ ≈ 0.053 we observe a similar Andronov–Hopf bifurca-
tion. When ρ < 0.053, we have converging oscillations, and smaller values of
ρ lead to oscillations of smaller frequency, as intuition would suggest. This
result suggests that not only technology matters, but the preferences of the
planner play a role, too. So, if the planner is sufficiently impatient (large ρ)
then he will initially allocate more labor to incremental innovations, allow-
ing faster growth now and therefore more consumption. However, because
radical innovations will then come in smaller amounts, and technological op-
portunity will be gradually exhausted, at some point the planner will have to
increase the number of researchers in the radical innovations sector in order
to prevent economic stagnation. In the moment that enough technological
opportunity will have been created, the planner will shift the workers again
to the incremental innovations sector to satisfy his impatience for consump-
tion. In case the discount rate is too large, the economy will never converge
to the BGP because the planner will be too quick in reallocating labor across
the two R&D sectors.

3.3 Cycles: A Comparison to the Literature

Our result of oscillatory dynamics ought to be compared to the predictions
found in previous literature. The following list of contributions is obviously
not exhaustive; it only serves to illustrate the differences between our ap-
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Figure 4: Changes in dynamics following changes in the discount rate ρ.
When β = 0.97, the Andronov–Hopf bifurcation appears around ρ ≈ 0.053.

proach and the other ones. We have also grouped together articles where
cycles are generated through channels which are broadly the same. In these
articles, the main sources of oscillatory dynamics are:

(i) the relationship between wage costs, population growth, and profits
(Goodwin [10]; Francois and Lloyd-Ellis [8]). If growth is high, then
unemployment falls, raising wages and decreasing profits. When growth
is lower than population growth, this leads to a recession, increases
unemployment and starts the cycle again;

(ii) creative destruction (Aghion and Howitt [1]; Cheng and Dinopoulos
[6]; Amable [2]; Francois and Lloyd-Ellis [8]; Phillips and Wrase [25]);

(iii) uncertainty (Kydland and Prescott [22]). This is the basic assumption
of the real business cycle theory which utilizes productivity shocks and
adjustment lags to generate aggregate fluctuations;

(iv) monopoly profits accrued from the distinction between fundamental
and secondary innovations (Jovanovic and Rob [19]; Cheng and Dino-
poulos [6]). These models are based on a similar distinction as our
model is. Effectively though, the fluctuations in monopoly profits are
the actual source of cycles;

(v) General Purpose Technologies – GPTs (Bresnahan and Trajtenberg [4];
Helpman and Trajtenberg [13], Freeman, Hong and Peled [9]). GPTs
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are assumed to have the property that before they can be applied,
costly adaptation to them is required. This reduces economic growth
in the short run but increases it afterwards;

(vi) linearity (Olsson [23]). Due to the Olsson’s linearity assumption, labor
is either fully allocated to radical or to incremental research. The
interplay between these two types of innovations leads to cycles just
like in our model, but it does so through the bang-bang labor allocation
and discrete jumps in technological opportunity.

Unlike all these works, our model generates smooth endogenous cycles
through the interplay between currently available knowledge and technologi-
cal opportunity. Because of the sources as well as the nature of cycles in our
model, it cannot be considered a member of any of the groups (i)-(vi).

4 Further Questions

Since the article so far has focused on the need for a knife-edge condition
for the technological opportunity-based model to replicate the results of a
standard semi-endogenous growth model, and on the oscillatory transition
dynamics, there are some questions which we left unanswered. An interest-
ing issue is the contribution of technological opportunity to growth. If this
contribution proves to be large, then further empirical investigations should
try to address this issue. Another of the essential unanswered questions
is the problem of finding a tractable decentralization of the technological
opportunity-based model which would enable welfare analysis. Yet another
related issue is concerned with capturing technological opportunity empir-
ically. The final question deals with the social planner outcome when the
external returns to radical and incremental innovations are not equal, µ 6= ν.
Since most of these aspects are beyond the scope of this article, we shall only
hint at how they might be approached in future research.

4.1 The Contribution of Technological Opportunity to
Growth

The contribution of technological opportunity to growth can be assessed as
follows. At the highest level, there is of course no direct impact. Indeed, we
obtain the following growth rate decomposition (on the BGP): ŷ = σÂ+αk̂.
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With our calibrated parameters, it follows that the technology share accounts
for σÂ/ŷ = (1−α) = 64% of total growth; the capital accumulation share is
αk̂/ŷ = α = 36%. Having accounted for the total accumulation of physical
capital, resulting from an increase in GDP, and taken the BGP identity ŷ = k̂,
we can readily attribute all GDP growth to technology growth. Going one
step deeper, though, one realizes that the increments in technology can also
be attributed to various variables. We have Â = µB̂ + βL̂. The central issue
is that incremental innovations, increasing the stock of knowledge, cannot go
on without technological opportunity. However, the share of technological
opportunity growth in technology growth is µ = 50%. The remaining 50% is
attributed to pure population growth, the ultimate source of growth in our
model. We can thus conclude that if technology growth is decomposed into
its constituent parts, σµB̂/ŷ = µ(1− α) = 32% of total GDP growth can be
attributed to the growth in technological opportunity, σβn/ŷ = (1− µ)(1−
α) = 32% to pure population growth, and the remaining α = 36% to capital
accumulation. Summing up, given that our baseline parameter choices are
accepted, our growth accounting exercise implies that 32% of GDP growth
should be attributed to growth in technological opportunity, which is a large
number.

4.2 Decentralizing the Allocation

The decentralization of our model ought to handle the value of radical in-
novations with care. Their value should approximated by the technological
opportunity they open up, but the problem is that in direct terms, they
have no value. In the decentralized economy, who would then reap the prof-
its from incremental innovations following a given radical innovation? Are
patents able to span the whole addition to technological opportunity? How
could the profits from technology improvements be shared between radical
and incremental innovators in an interior equilibrium? Should the radical
innovation sector be, at least partially, funded by the state to obtain a result
comparable to the social optimum? We leave these questions open with the
hope that they will be addressed in the subsequent research.
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4.3 An Empirical Approach to Technological Oppor-
tunity

Another difficult issue is how to capture technological opportunity empiri-
cally. It is clear that if one accepts technological opportunity as the driving
force behind technological advances, then to understand the evolution of
economic variables it is not sufficient to look at the evolution of actual tech-
nology. One has to look at the evolution of technological opportunity as well.
But how would one be able to capture technological opportunity, which is a
forward-looking variable?5

A hint for a promising approach can be found in the works of Hall, Jaffe
and Trajtenberg [12] as well as Trajtenberg, Henderson and Jaffe [34]. Hall,
Jaffe and Trajtenberg [12] construct a comprehensive U.S. patent citation
dataset. Two indexes, called originality and generality, are of particular
interest here. Generality measures how often a patent is cited by subsequent
patents that belong to different fields, whereas originality estimates how large
the range of fields is that a given patent cites. The idea would then be then
that patent citations and the measures of generality and originality can help
find a method of discriminating between patents and estimating their impact
on technological opportunity.

Patent citations come in two forms, citations made and received. Cita-
tions made give information on the amount of prior knowledge a given patent
is based on. Citations received give information on how useful the innovation
was for other patents. Thus, if a patent receives a citation, then this means
the innovation underlying that patent had opened up technological oppor-
tunity. The more citations a patent receives, the larger is the amount of
technological opportunity opened up. What Hall, Jaffe and Trajtenberg [12]
show is that around 80% of all citations are made during the first 20 years
after a patent was accepted. Thus, it seems evident that when an innovation
opens up technological opportunity, this opportunity is always finite. This
finding seems to provide some support for our approach.

The open question is still how to estimate the degree to which an in-
novation is radical, and to which it is incremental. We conjecture that the
information on patent citations in combination with the indexes of original-

5Thompson [33] attempts to estimate the elasticities of R&D production functions and
suggests to think about these as measures of technological opportunity. Obviously, this
interpretation is not applicable in our case and thus the results obtained are not extendable
to the framework presented here.
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ity and generality might possess enough information to provide an empirical
justification to the proposed division of innovations. We feel that the dataset
on U.S. patent citations ought to be utilized for this purpose.

Quantifying technological opportunity is an important question for fu-
ture research: this concept may be used to discriminate between competing
growth theories. In particular, the technological complexity-based literature
(e.g. Greenwood and Yorukoglu [11]; Pintea and Thompson [26]) which con-
siders the recent slowdown in U.S. GDP growth to be a transitional effect due
to the extensive application of information technologies which are inherently
complex, could be given a new basis for empirical comparisons against the
semi-endogenous growth literature that links this slowdown to the slowdown
in population growth (e.g. Jones [16]) and assumes returns to scale in R&D
to be not constant but decreasing.

4.4 What if µ 6= ν?

Here we shall discuss what happens if the magnitudes of external returns to
incremental and radical innovations are not equal. The knife-edge condition
µ = ν forces technology and technological opportunity to grow at equal
rates along the BGP which somewhat blurs the clear-cut distinction between
these two variables and suggests that if for some reason the condition µ = ν
was automatic, it would be sufficient to use the reduced-form technology
accumulation framework along the lines of Jones [15] for the assessment of
long-run economic growth (but not for convergence to the BGP).

Let us now investigate whether a social planner can allocate factors of
production across sectors and time in a way that guarantees long-run growth
even if µ 6= ν. The answer to this question is a clear yes, and one possible
tool is continuous labor re-allocations. Researchers should be continuously
re-allocated from the sector that has higher returns to the sector that has
lower returns, making up for the arising deficiency in output of a particular
type of innovations.

To help with the intuition, let us take the ratio of incremental to radical
innovations, which is given as

C

R
=

δ

γ

(
u∗

1− u∗

)β
Bµ

Aν
, (22)

which implies a growth rate of (̂C/R) = µB̂ − νÂ 6= 0 if labor re-allocations
are assumed out. So, if the spillovers in incremental innovations are larger
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than those in radial innovations (µ > ν), technological opportunity will be
depleted over time and the economy will experience stagnation afterwards.
Intuitively, this means that there will be not enough radical innovations
(like new product lines or general purpose technologies) to incrementally
improve upon. Hence, a social planner who notices that there are insufficient
radical innovations ought to re-allocate more researchers towards the sector
creating radical innovations. From equation (22), one can directly deduce
that continuous shifts of researchers towards radical innovations can, if fast
enough, offset the depletion effect due to incremental innovations.

On the other hand, if µ < ν, then incremental innovations will arrive
at a lower pace than radical innovations,6 making technological opportunity
expand over time faster than technology. This means that more and more
opportunities for technological improvements will emerge, which cannot be
utilized. Hence, a planner who allocates more and more researchers to incre-
mental innovations over time, will be able to do better than a planner who
sticks to a static labor allocation.

Please note that for µ 6= ν, but with both parameters sufficiently close
to each other, the model does not offer a BGP, but preserves its major char-
acteristics by continuity: growth remains semi-endogenous, both kinds of
innovations are produced simultaneously, and the potential for cyclical dy-
namics (dampened oscillations) is preserved. What is changed is the fact that
labor allocations and the ratio of technology to technological opportunity are
no longer stationary in the long run.

Of course, we did not evaluate the optimal social planner solution for
the general case with µ 6= ν but merely hinted at the requirements which
are sufficient to place the economy on a long-run (unbalanced) growth path.
Whether the social planner would optimally chose this kind of re-allocations
is a question that requires further investigation.

5 Conclusion

In this article we have derived an R&D-based semi-endogenous growth model
where technological advances depend on the available amount of technologi-
cal opportunity. We distinguish between two types of innovations, which have

6Of course, initially incremental innovations might arrive faster, but over time radical
innovations will for sure overtake.
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different impacts on the evolution of knowledge. Incremental innovations pro-
vide direct increases to the stock of knowledge but reduce the technological
opportunity which is required for further incremental innovations. Radical
innovations serve to renew this opportunity. Hence, technological opportu-
nity behaves like a renewable resource. Even though the basic idea follows
Olsson [23], we generalize his framework in order to incorporate Jones’ [15]
and Romer’s [27] models and to compare under what subset of parameter
conditions these models predict the same outcomes as ours.

We analyze the model for its growth implications, leading to two novel
observations. One, it predicts long-run growth along the lines of Jones [15],
Kortum [21], and Segerstrom [29] only if a specific knife-edge condition holds.
This condition requires incremental and radical innovations to arrive at the
same rates, and thus imply that technology and technological opportunity
grow at the same speed. If one expects that this condition is satisfied, then
the analytically more tractable model of e.g. Jones [15] might be sufficient
to estimate the growth effects of technological progress. If, however, one
presumes that it is unlikely that this condition holds, then, of course, our
model can help derive the long-run predictions. For example, as we have
shown, economic growth can easily come to a halt if technological opportunity
is not renewed sufficiently fast because e.g. the technology spillovers in the
radical innovations sector are too small.

The second novel result is with respect to the transition. We focus on the
particular knife-edge conditions in order to demonstrate that, even though
the long-run implications of this model will then be the same as those in Jones
[15] or Segerstrom [29], the transition need not. We work out the transition
from the social planner solution of our model and show the conditions when
it need not be monotonic; on the contrary, we obtain endogenous oscillations
and limit cycles for a wide range of plausible parameter values. We therefore
suggest that technological opportunity, as characterized here, can be a source
of endogenous cycles without needing uncertainty.

Finally, we present the possible directions for future research. These
include decentralizing the technological opportunity-based setup and quan-
tifying technological opportunity empirically. Clearly, these extensions give
rise to several complications which ought to be discussed in detail.

As a final note we would like to advocate the idea of technological op-
portunity as a concept which is extremely useful for the description of the
evolution of technology. This is a rather novel idea which still lacks a sound
empirical justification, but we are convinced that it will gradually earn its
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deserved place in the theory of economic growth and technical change.
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